
TLS Working Group A. Langley
Internet-Draft N. Modadugu
Intended status: Experimental B. Moeller
Expires: November 12, 2016 Google
 May 11, 2016

Transport Layer Security (TLS) False Start
draft-ietf-tls-falsestart-02

Abstract

 This document specifies an optional behavior of TLS client
 implementations, dubbed False Start. It affects only protocol
 timing, not on-the-wire protocol data, and can be implemented
 unilaterally. A TLS False Start reduces handshake latency to one
 round trip.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 12, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Langley, et al. Expires November 12, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS False Start May 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Requirements Notation . 2
2. Introduction . 2
3. False Start Compatibility 4
4. Client-side False Start 4
5. Security Considerations 5
5.1. Symmetric Cipher . 6
5.2. Protocol Version . 7
5.3. Key Exchange and Client Certificate Type 7

6. Acknowledgments . 8
7. IANA Considerations . 8
8. References . 8
8.1. Normative References 8
8.2. Informative References 9

Appendix A. Implementation Notes 9
 Authors' Addresses . 10

1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Introduction

 A full handshake in TLS protocol versions up to TLS 1.2 [RFC5246]
 requires two full protocol rounds (four flights) before the handshake
 is complete and the protocol parties may begin to send application
 data. Thus, using TLS can add a latency penalty of two network
 round-trip times for application protocols in which the client sends
 data first, such as HTTP [RFC7230].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7230

Langley, et al. Expires November 12, 2016 [Page 2]

Internet-Draft TLS False Start May 2016

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Figure 1 [RFC5246]. Message flow for a full handshake

 This document describes a technique that alleviates the latency
 burden imposed by TLS: the client-side TLS False Start. If certain
 conditions are met, the client can start to send application data
 when the full handshake is only partially complete, namely, when the
 client has sent its own "ChangeCipherSpec" and "Finished" messages
 (thus having updated its TLS Record Protocol write state as
 negotiated in the handshake), but has yet to receive the server's
 "ChangeCipherSpec" and "Finished" messages. (By section 7.4.9 of
 [RFC5246], after a full handshake, the client would have to delay
 sending application data until it has received and validated the
 server's "Finished" message.) Accordingly, the latency penalty for
 using TLS with HTTP can be kept at one round-trip time.

 (Note that in practice, the TCP three-way handshake [RFC0793]
 typically adds one round-trip time before the client can even send
 the ClientHello. See [RFC7413] for a latency improvement at that
 level.)

 When an earlier TLS session is resumed, TLS uses an abbreviated
 handshake with only three protocol flights. For application
 protocols in which the client sends data first, this abbreviated
 handshake adds just one round-trip time to begin with, so there is no
 need for a client-side False Start. However, if the server sends
 application data first, the abbreviated handshake adds two round-trip
 times, and this could be reduced to just one added round-trip time by
 doing a server-side False Start. There is little need for this in
 practice, so this document does not consider server-side False Starts
 further.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7413

Langley, et al. Expires November 12, 2016 [Page 3]

Internet-Draft TLS False Start May 2016

 Note also that TLS versions 1.3 [tls13] and beyond are out of scope
 for this document. False Start will not be needed with these newer
 versions since protocol flows minimizing the number of round trips
 have become a first-order design goal.

 In a False Start, when the client sends application data before it
 has received and verified the server's "Finished" message, there are
 two possible outcomes:

 o The handshake completes successfully: Once both "Finished"
 messages have been received and verified, this retroactively
 validates the handshake. In this case, the transcript of protocol
 data carried over the transport underlying TLS will look as usual,
 apart from the different timing.

 o The handshake fails: If a party does not receive the other side's
 "Finished" message, or if the "Finished" message's contents are
 not correct, the handshake never gets validated. This means that
 an attacker may have removed, changed, or injected handshake
 messages. In this case, data has been sent over the underlying
 transport that would not have been sent without the False Start.

 The latter scenario makes it necessary to restrict when a False Start
 is allowed, as described in this document. Section 3 considers basic
 requirements for using False Start. Section 4 specifies the behavior
 for clients, referring to important security considerations in

Section 5.

3. False Start Compatibility

 TLS False Start as described in detail in the subsequent sections, if
 implemented, is an optional feature.

 A TLS server implementation is defined to be "False Start compatible"
 if it tolerates receiving TLS records on the transport connection
 early, before the protocol has reached the state to process these.
 For successful use of client-side False Start in a TLS connection,
 the server has to be False Start compatible. Out-of-band knowledge
 that the server is False Start compatible may be available, e.g. if
 this is mandated by specific application profile standards. As
 discussed in Appendix A, the requirement for False Start
 compatibility does generally not pose a hindrance in practice.

4. Client-side False Start

 This section specifies a change to the behavior of TLS client
 implementations in full TLS handshakes.

Langley, et al. Expires November 12, 2016 [Page 4]

Internet-Draft TLS False Start May 2016

 When the client has sent its "ChangeCipherSpec" and "Finished"
 messages, its default behavior following [RFC5246] is to not send
 application data until it has received the server's
 "ChangeCipherSpec" and "Finished" messages, which completes the
 handshake. With the False Start protocol modification, the client
 MAY send application data earlier (under the new Cipher Spec) if each
 of the following conditions is satisfied:

 o The application layer has requested the TLS False Start option.

 o The symmetric cipher defined by the cipher suite negotiated in
 this handshake has been whitelisted for use with False Start
 according to the Security Considerations in Section 5.1.

 o The protocol version chosen by ServerHello.server_version has been
 whitelisted for use with False Start according to the Security
 Considerations in Section 5.2.

 o The key exchange method defined by the cipher suite negotiated in
 this handshake and, if applicable, its parameters have been
 whitelisted for use with False Start according to the Security
 Considerations in Section 5.3.

 o In the case of a handshake with client authentication, the client
 certificate type has been whitelisted for use with False Start
 according to the Security Considerations in Section 5.3.

 The rules for receiving data from the server remain unchanged.

 Note that the TLS client cannot infer the presence of an
 authenticated server until all handshake messages have been received.
 With False Start, unlike with the default handshake behavior,
 applications are able to send data before this point has been
 reached: from an application point of view, being able to send data
 does not imply that an authenticated peer is present. Accordingly,
 it is recommended that TLS implementations allow the application
 layer to query whether the handshake has completed.

5. Security Considerations

 In a TLS handshake, the "Finished" messages serve to validate the
 entire handshake. These messages are based on a hash of the
 handshake so far processed by a PRF keyed with the new master secret
 (serving as a MAC), and are also sent under the new Cipher Spec with
 its keyed MAC, where the MAC key again is derived from the master
 secret. The protocol design relies on the assumption that any server
 and/or client authentication done during the handshake carries over
 to this. While an attacker could, for example, have changed the

https://datatracker.ietf.org/doc/html/rfc5246

Langley, et al. Expires November 12, 2016 [Page 5]

Internet-Draft TLS False Start May 2016

 cipher suite list sent by the client to the server and thus
 influenced cipher suite selection (presumably towards a less secure
 choice) or could have made other modifications to handshake messages
 in transmission, the attacker would not be able to round off the
 modified handshake with a valid "Finished" message: every TLS cipher
 suite is presumed to key the PRF appropriately to ensure
 unforgeability. Once the handshake has been validated by verifying
 the "Finished" messages, this confirms that the handshake has not
 been tampered with, thus bootstrapping secure encryption (using
 algorithms as negotiated) from secure authentication.

 Using False Start interferes with this approach of bootstrapping
 secure encryption from secure authentication, as application data may
 have already been sent before "Finished" validation confirms that the
 handshake has not been tampered with -- so there is generally no hope
 to be sure that communication with the expected peer is indeed taking
 place during the False Start. Instead, the security goal is to
 ensure that if anyone at all can decrypt the application data sent in
 a False Start, this must be the legitimate peer: while an attacker
 could be influencing the handshake (restricting cipher suite
 selection, modifying key exchange messages, etc.), the attacker
 should not be able to benefit from this. The TLS protocol already
 relies on such a security property for authentication -- with False
 Start, the same is needed for encryption. This motivates the rules
 put forth in the following subsections.

 It is prudent for applications to be even more restrictive. If
 heuristically a small list of cipher suites and a single protocol
 version is found to be sufficient for the majority of TLS handshakes
 in practice, it could make sense to forego False Start for any
 handshake that does not match this expected pattern, even if there is
 no concrete reason to assume a cryptographic weakness. Similarly, if
 handshakes almost always use ephemeral ECDH over one of a few named
 curves, it could make sense to disallow False Start with any other
 supported curve.

5.1. Symmetric Cipher

 Clients MUST NOT use the False Start protocol modification in a
 handshake unless the cipher suite uses a symmetric cipher that is
 considered cryptographically strong.

 Implementations may have their own classification of ciphers (and may
 additionally allow the application layer to provide a
 classification), but generally only symmetric ciphers with an
 effective key length of 128 bits or more can be considered strong.
 Also, various ciphers specified for use with TLS are known to have
 cryptographic weaknesses regardless of key length (none of the

Langley, et al. Expires November 12, 2016 [Page 6]

Internet-Draft TLS False Start May 2016

 ciphers specified in [RFC4492] and [RFC5246] can be recommended for
 use with False Start). The AES_128_GCM_SHA256 or AES_256_GCM_SHA384
 ciphers specified in [RFC5288] and [RFC5289] can be considered
 sufficiently strong for most uses. Implementations that support
 additional cipher suites have to be careful to whitelist only
 suitable symmetric ciphers; if in doubt, False Start should not be
 used with a given symmetric cipher.

 While an attacker can change handshake messages to force a downgrade
 to a less secure symmetric cipher than otherwise would have been
 chosen, this rule ensures that in such a downgrade attack no
 application data will be sent under an insecure symmetric cipher.

5.2. Protocol Version

 Clients MUST NOT use the False Start protocol modification in a
 handshake unless the protocol version chosen by
 ServerHello.server_version has been whitelisted for this use.

 Generally, to avoid potential protocol downgrade attacks,
 implementations should whitelist only their latest (highest-valued)
 supported TLS protocol version (and, if applicable, any earlier
 protocol versions that they would use in fallback retries without
 TLS_FALLBACK_SCSV [RFC7507]).

 The details of nominally identical cipher suites can differ between
 protocol versions, so this reinforces Section 5.1.

5.3. Key Exchange and Client Certificate Type

 Clients MUST NOT use the False Start protocol modification in a
 handshake unless the cipher suite uses a key exchange method that has
 been whitelisted for this use. Also, clients MUST NOT use the False
 Start protocol modification unless any parameters to the key exchange
 methods (such as ServerDHParams, ServerECDHParams) have been
 whitelisted for this use. Furthermore, when using client
 authentication, clients MUST NOT use the False Start protocol
 modification unless the client certificate type has been whitelisted
 for this use.

 Implementations may have their own whitelists of key exchange
 methods, parameters, and client certificate types (and may
 additionally allow the application layer to specify whitelists).
 Generally, out of the options from [RFC5246] and [RFC4492], the
 following whitelists are recommended:

 o Key exchange methods: DHE_RSA, ECDHE_RSA, DHE_DSS, ECDHE_ECDSA

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc5289
https://datatracker.ietf.org/doc/html/rfc7507
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492

Langley, et al. Expires November 12, 2016 [Page 7]

Internet-Draft TLS False Start May 2016

 o Parameters: well-known DH groups (at least 3,072 bits), named
 curves (at least 256 bits)

 o Client certificate types: none

 However, if an implementation that supports only key exchange methods
 from [RFC5246] and [RFC4492] does not support any of the above key
 exchange methods, all of its supported key exchange methods can be
 whitelisted for False Start use. Care is required with any
 additional key exchange methods, as these may not have similar
 properties.

 The recommended whitelists are such that if cryptographic algorithms
 suitable for forward secrecy would possibly be negotiated, no False
 Start will take place if the current handshake fails to provide
 forward secrecy. (Forward secrecy can be achieved using ephemeral
 Diffie-Hellman or ephemeral Elliptic-Curve Diffie-Hellman; there is
 no forward secrecy when a using key exchange method of RSA, RSA_PSK,
 DH_DSS, DH_RSA, ECDH_ECDSA, or ECDH_RSA, or a client certificate type
 of rsa_fixed_dh, dss_fixed_dh, rsa_fixed_ecdh, or ecdsa_fixed_ecdh.)
 As usual, the benefits of forward secrecy may need to be balanced
 against efficiency, and accordingly even implementations that support
 the above key exchange methods might whitelist further key exchange
 methods and client certificate types.

 Client certificate types rsa_sign, dss_sign, and ecdsa_sign do allow
 forward security, but using False Start with any of these means
 sending application data tied to the client's signature before the
 server's authenticity (and, thus, the CertificateRequest message) has
 been completely verified, so these too are not generally suitable for
 the client certificate type whitelist.

6. Acknowledgments

 The authors wish to thank Wan-Teh Chang, Ben Laurie, Martin Thomson,
 Eric Rescorla, and Brian Smith for their input.

7. IANA Considerations

 None.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Langley, et al. Expires November 12, 2016 [Page 8]

Internet-Draft TLS False Start May 2016

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 August 2008.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 August 2008.

8.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

 [RFC7507] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, April 2015.

 [tls13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", Work in Progress, draft-ietf-tls-tls13-12,
 March 2016.

Appendix A. Implementation Notes

 TLS False Start is a modification to the TLS protocol, and some
 implementations that conform to [RFC5246] may have problems
 interacting with implementations that use the False Start
 modification. If the peer uses a False Start, application data
 records may be received directly following the peer's "Finished"
 message, before the TLS implementation has sent its own "Finished"
 message. False Start compatibility as defined in Section 3 ensures

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc5289
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7413
http://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7507
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-12
https://datatracker.ietf.org/doc/html/rfc5246

Langley, et al. Expires November 12, 2016 [Page 9]

Internet-Draft TLS False Start May 2016

 that these records with application data will simply remain buffered
 for later processing.

 A False Start compatible TLS implementation does not have to be aware
 of the False Start concept, and is certainly not expected to detect
 whether a False Start handshake is currently taking place: thanks to
 transport layer buffering, typical implementations will be False
 Start compatible without having been designed for it.

Authors' Addresses

 Adam Langley
 Google Inc.
 345 Spear St
 San Francisco, CA 94105
 USA

 Email: agl@google.com

 Nagendra Modadugu
 Google Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 USA

 Email: nagendra@cs.stanford.edu

 Bodo Moeller
 Google Switzerland GmbH
 Brandschenkestrasse 110
 Zurich 8002
 Switzerland

 Email: bmoeller@acm.org

Langley, et al. Expires November 12, 2016 [Page 10]

