
 E. Rescorla
INTERNET-DRAFT Terisa Systems, Inc.
<draft-ietf-tls-https-01.txt> March 1998 (Expires September-98)

 HTTP Over TLS

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).
Abstract

 This memo describes how to use TLS to secure HTTP connections over
 the Internet. Current practice is to layer HTTP over SSL (the prede-
 cessor to TLS), distinguishing secured traffic from insecure traffic
 by the use of a different server port. This document documents that
 practice using TLS. A companion document describes a method for using
 HTTP/TLS over the same port as normal HTTP.

1. Introduction

 HTTP [RFC2068] was originally used in the clear on the Internet.
 However, increased use of HTTP for sensitive applications has
 required security measures. SSL, and its successor TLS [TLS] were
 designed to provide channel-oriented security. This document
 describes how to use HTTP over TLS.

1.1. Discussion of this Draft

 This draft is being discussed on the "ietf-apps-tls" mailing list. To
 subscribe, send a message to:

 ietf-apps-tls-request@imc.org

 with the single word

Rescorla [Page

https://datatracker.ietf.org/doc/html/draft-ietf-tls-https-01.txt
https://datatracker.ietf.org/doc/html/rfc2068

1]Internet-Draft HTTP Over TLS

 subscribe

 in the body of the message. There is a Web site for the mailing list
 at <http://www.imc.org/ietf-apps-tls/>.

1.2. Requirements Terminology

 Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
 "MAY" that appear in this document are to be interpreted as described
 in [RFC2119].

2. HTTP Over TLS

 Conceptually, HTTP/TLS is very simple. Simply use HTTP over TLS pre-
 cisely as you would use HTTP over TCP.

2.1. Connection Initiation

 The agent acting as the HTTP client should also act as the TLS
 client. It should initiate a connection to the server on the
 appropriate port and then send the TLS ClientHello to begin the TLS
 handshake. When the TLS handshake has finished. The client may then
 initiate the first HTTP request. All HTTP data MUST be sent using as
 TLS "application data". Normal HTTP behavior, including retained
 connections should be followed.

2.2. Connection Closure

 TLS provides a facility for secure connection closure. When a valid
 closure alert is received, an implementation can be assured that no
 further data will be received on that connection. TLS implementa-
 tions MUST initiate an exchange of closure alerts before closing a
 connection. A TLS implementation MAY, after sending a closure alert,
 close the connection without waiting for the peer to send its closure
 alert, generating an "incomplete close". Note that an implementation
 which does this MAY choose to reuse the session. This SHOULD only be
 done when the application knows (typically through detecting HTTP
 message boundaries) that it has received all the message data that it
 cares about.

 As specified in [TLS], any implementation which receives a connection
 close without first receiving a valid closure alert (a "premature
 close") MUST NOT reuse that session. Note that a premature close does
 not call into question the security of the data already received, but
 simply indicates that subsequent data might have been truncated.
 Because TLS is oblivious to HTTP request/response boundaries, it is
 necessary to examine the HTTP data itself (specifically the Content-

http://www.imc.org/ietf-apps-tls/
https://datatracker.ietf.org/doc/html/rfc2119

Rescorla [Page
2]Internet-Draft HTTP Over TLS

 Length header) to determine whether the truncation occurred inside a
 message or between messages.

2.2.1. Client Behavior

 Because HTTP uses connection closure to signal end of server data,
 client implementations MUST treat any premature closes as errors and
 the data received as potentially truncated. Two cases in particular
 deserve special note:

 A HTTP response without a Content-Length header. Since data length
in
 this situation is signalled by connection close a premature close
 generated by the server cannot be distinguished from a spurious
 close generated by an attacker.

 A HTTP response with a valid Content-Length header closed before
 all data has been read. Because TLS does not provide document
oriented protection, it is
 impossible to determine whether the server has miscomputed the
 Content-Length or an attacker has truncated the connection.

 When encountering a premature close, a client SHOULD treat as com-
 pleted all requests for which it has received as much data as speci-
 fied in the Content-Length header.

 A client detecting an incomplete close SHOULD recover gracefully. It
 MAY resume a TLS session closed in this fashion.

 Clients MUST send a closure alert before closing the connection.
 Clients which are unprepared to receive any more data MAY choose not
 to wait for the server's closure alert and simply close the connec-
 tion, thus generating an incomplete close on the server side.

2.2.2. Server Behavior

RFC2068 permits an HTTP client to close the connection at any time,
 and requires servers to recover gracefully. In particular, servers
 SHOULD be prepared to receive an incomplete close from the client,
 since the client can often determine when the end of server data is.
 Servers SHOULD be willing to resume TLS sessions closed in this
 fashion.

 Implementation note: In HTTP implementations which do not use per-
 sistent connections, the server ordinarily expects to be able to sig-

https://datatracker.ietf.org/doc/html/rfc2068

 nal end of data by closing the connection. When Content-Length is
 used, however, the client may have already sent the closure alert and
 dropped the connection.

Rescorla [Page
3]Internet-Draft HTTP Over TLS

 Servers MUST attempt to initiate an exchange of closure alerts with
 the client before closing the connection. Servers MAY close the con-
 nection after sending the closure alert, thus generating an incom-
 plete close on the client side.

2.3. Port Number

 The first data that an HTTP server expects to receive from the client
 is the Request-Line production. The first data that a TLS server (and
 hence an HTTP/TLS server) expects to receive is the ClientHello. Con-
 sequently, common practice has been to run HTTP/TLS over a separate
 port in order to distinguish which protocol is being used. When
 HTTP/TLS is being run over a TCP/IP connection, the default port is
 443. This does not preclude HTTP/TLS from being run over another
 transport. TLS only presumes a reliable connection-oriented data
 stream.

2.4. URI Format

 HTTP/TLS is differentiated from HTTP URIs by using the 'https' proto-
 col identifier in place of the 'http' protocol identifier. An example
 URI specifying HTTP/TLS is:

https://abc.com:80/~smith/home.html

3. Endpoint Identification

3.1. Server Identity

 In general, HTTP/TLS requests are generated by dereferencing a URI.
 As a consequence, the hostname for the server is known to the client.
 If the hostname is available, the client MUST check it against the
 server's identity as presented in the server's Certificate message,
 in order to prevent man-in-the-middle attacks.

 If the client has external information as to the expected identity of
 the server, the hostname check MAY be omitted. (For instance, a
 client may be connecting to a machine whose address and hostname are
 dynamic but the client knows the certificate that the server will
 present.) In such cases, it is important to narrow the scope of

https://abc.com:80/~smith/home.html

 acceptable certificates as much as possible in order to prevent man
 in the middle attacks.

 If a subjectAltName extension of type dNSName is present, that MUST
 be used as the identity. Otherwise, the (most specific) Common Name
 field in the Subject field of the certificate MUST be used. Although
 the use of the Common Name is existing practice, it is deprecated and

Rescorla [Page
4]Internet-Draft HTTP Over TLS

 Certification Authorities are encouraged to use the dNSName instead.

 Matching is performed using the matching rules specified by [PKIX],
 including wildcard matches. E.g. *.bar.com would match a.bar.com,
 b.bar.com, etc. but not bar.com. If more than one identity of a given
 type is present in the certificate (e.g. more than one dNSName name,
 a match in any one of the set is considered acceptable.)

 If the hostname does not match the identity in the certificate, user
 oriented clients MUST either notify the user (clients MAY give the
 user the opportunity to continue with the connection in any case) or
 terminate the connection with a bad certificate error. Automated
 clients MUST close the connection, returning a bad certificate error.

3.2. Client Identity

 Typically, the server has no external knowledge of what the client's
 identity ought to be and so checks (other than that the client has a
 certificate chain rooted in an appropriate CA) are not possible. If a
 server has such knowledge (typically from some source external to
 HTTP or TLS) it SHOULD check the identity as described above.

Rescorla [Page
5]Internet-Draft HTTP Over TLS

References
 [PKIX] R. Housley, W. Ford, W. Polk, D. Solo, Internet Public Key
 Infrastructure: Part I: X.509 Certificate and CRL Profile,
 <draft-ietf-pkix-ipki-part1-06.txt>, October 1997.

 [RFC2068] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Berners-Lee, T., "Hypertext Transfer Protocol -- HTTP/1.1"

RFC 2068, January 1997.

 [RFC2119] Bradner, S., "Key Words for use in RFCs to indicate
 Requirement Levels", RFC2119, March 1997.

 [TLS] Dierks, T., Allen, C., "The TLS Protocol", RFCXXXX, November 1997.

Security Considerations

 This entire document is about security.

Author's Address

Eric Rescorla <ekr@terisa.com>
Terisa Systems, Inc.
4984 El Camino Real
Los Altos, CA 94022
Phone: (650) 919-1753

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-06.txt
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119

Rescorla [Page
6]Internet-Draft HTTP Over TLS

 Table of Contents

1. Introduction ... 1

1.1. Discussion of this Draft 1

1.2. Requirements Terminology 2

2. HTTP Over TLS .. 2

2.1. Connection Initiation .. 2

2.2. Connection Closure ... 2

2.2.1. Client Behavior .. 3

2.2.2. Server Behavior .. 3

2.3. Port Number .. 4

2.4. URI Format ... 4

3. Endpoint Identification .. 4

3.1. Server Identity .. 4

RN Client Identity .. 5

References .. 6

Security Considerations ... 6

Author's Address .. 6

