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Abstract

Hybrid key exchange refers to using multiple key exchange algorithms

simultaneously and combining the result with the goal of providing

security even if all but one of the component algorithms is broken.

It is motivated by transition to post-quantum cryptography. This

document provides a construction for hybrid key exchange in the

Transport Layer Security (TLS) protocol version 1.3.

Discussion of this work is encouraged to happen on the TLS IETF

mailing list tls@ietf.org or on the GitHub repository which contains

the draft: https://github.com/dstebila/draft-ietf-tls-hybrid-design.
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1. Introduction

This document gives a construction for hybrid key exchange in TLS

1.3. The overall design approach is a simple, "concatenation"-based

approach: each hybrid key exchange combination should be viewed as a

single new key exchange method, negotiated and transmitted using the

existing TLS 1.3 mechanisms.

This document does not propose specific post-quantum mechanisms; see

Section 1.4 for more on the scope of this document.

1.1. Revision history

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.
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Earlier versions of this document categorized various design

decisions one could make when implementing hybrid key exchange in

TLS 1.3.

Since draft-ietf-tls-hybrid-design-03:

Some wording changes

Remove design considerations appendix

draft-ietf-tls-hybrid-design-03:

Remove specific code point examples and requested codepoint

range for hybrid private use

Change "Open questions" to "Discussion"

Some wording changes

draft-ietf-tls-hybrid-design-02:

Bump to version -02 to avoid expiry

draft-ietf-tls-hybrid-design-01:

Forbid variable-length secret keys

Use fixed-length KEM public keys/ciphertexts

draft-ietf-tls-hybrid-design-00:

Allow key_exchange values from the same algorithm to be reused

across multiple KeyShareEntry records in the same ClientHello.

draft-stebila-tls-hybrid-design-03:

Add requirement for KEMs to provide protection against key

reuse.

Clarify FIPS-compliance of shared secret concatenation method.

draft-stebila-tls-hybrid-design-02:

Design considerations from draft-stebila-tls-hybrid-design-00

and draft-stebila-tls-hybrid-design-01 are moved to the

appendix.

A single construction is given in the main body.
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draft-stebila-tls-hybrid-design-01:

Add (Comb-KDF-1) and (Comb-KDF-2) options.

Add two candidate instantiations.

draft-stebila-tls-hybrid-design-00: Initial version.

1.2. Terminology

For the purposes of this document, it is helpful to be able to

divide cryptographic algorithms into two classes:

"Traditional" algorithms: Algorithms which are widely deployed

today, but which may be deprecated in the future. In the context

of TLS 1.3 in 2019, examples of traditional key exchange

algorithms include elliptic curve Diffie-Hellman using secp256r1

or x25519, or finite-field Diffie-Hellman.

"Next-generation" (or "next-gen") algorithms: Algorithms which

are not yet widely deployed, but which may eventually be widely

deployed. An additional facet of these algorithms may be that we

have less confidence in their security due to them being

relatively new or less studied. This includes "post-quantum"

algorithms.

"Hybrid" key exchange, in this context, means the use of two (or

more) key exchange algorithms based on different cryptographic

assumptions, e.g., one traditional algorithm and one next-gen

algorithm, with the purpose of the final session key being secure as

long as at least one of the component key exchange algorithms

remains unbroken. We use the term "component" algorithms to refer to

the algorithms combined in a hybrid key exchange.

We note that some authors prefer the phrase "composite" to refer to

the use of multiple algorithms, to distinguish from "hybrid public

key encryption" in which a key encapsulation mechanism and data

encapsulation mechanism are combined to create public key

encryption.

The primary motivation of this document is preparing for post-

quantum algorithms. However, it is possible that public key

cryptography based on alternative mathematical constructions will be

required independent of the advent of a quantum computer, for

example because of a cryptanalytic breakthrough. As such we opt for

the more generic term "next-generation" algorithms rather than

exclusively "post-quantum" algorithms.

Note that TLS 1.3 uses the phrase "groups" to refer to key exchange

algorithms - for example, the supported_groups extension - since all
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key exchange algorithms in TLS 1.3 are Diffie-Hellman-based. As a

result, some parts of this document will refer to data structures or

messages with the term "group" in them despite using a key exchange

algorithm that is not Diffie-Hellman-based nor a group.

1.3. Motivation for use of hybrid key exchange

A hybrid key exchange algorithm allows early adopters eager for

post-quantum security to have the potential of post-quantum security

(possibly from a less-well-studied algorithm) while still retaining

at least the security currently offered by traditional algorithms.

They may even need to retain traditional algorithms due to

regulatory constraints, for example FIPS compliance.

Ideally, one would not use hybrid key exchange: one would have

confidence in a single algorithm and parameterization that will

stand the test of time. However, this may not be the case in the

face of quantum computers and cryptanalytic advances more generally.

Many (though not all) post-quantum algorithms currently under

consideration are relatively new; they have not been subject to the

same depth of study as RSA and finite-field or elliptic curve

Diffie-Hellman, and thus the security community does not necessarily

have as much confidence in their fundamental security, or the

concrete security level of specific parameterizations.

Moreover, it is possible that after next-generation algorithms are

defined, and for a period of time thereafter, conservative users may

not have full confidence in some algorithms.

Some users may want to accelerate adoption of post-quantum

cryptography due the threat of retroactive decryption: if a

cryptographic assumption is broken due to the advent of a quantum

computer or some other cryptanalytic breakthrough, confidentiality

of information can be broken retroactively by any adversary who has

passively recorded handshakes and encrypted communications. Hybrid

key exchange enables potential security against retroactive

decryption while not fully abandoning classical cryptosystems.

As such, there may be users for whom hybrid key exchange is an

appropriate step prior to an eventual transition to next-generation

algorithms.

1.4. Scope

This document focuses on hybrid ephemeral key exchange in TLS 1.3 

[TLS13]. It intentionally does not address:

Selecting which next-generation algorithms to use in TLS 1.3, or

algorithm identifiers or encoding mechanisms for next-generation

¶

¶

¶

¶

¶

¶

¶

¶

*



algorithms. This selection will be based on the recommendations

by the Crypto Forum Research Group (CFRG), which is currently

waiting for the results of the NIST Post-Quantum Cryptography

Standardization Project [NIST].

Authentication using next-generation algorithms. While quantum

computers could retroactively decrypt previous sessions, session

authentication cannot be retroactively broken.

1.5. Goals

The primary goal of a hybrid key exchange mechanism is to facilitate

the establishment of a shared secret which remains secure as long as

as one of the component key exchange mechanisms remains unbroken.

In addition to the primary cryptographic goal, there may be several

additional goals in the context of TLS 1.3:

Backwards compatibility: Clients and servers who are "hybrid-

aware", i.e., compliant with whatever hybrid key exchange

standard is developed for TLS, should remain compatible with

endpoints and middle-boxes that are not hybrid-aware. The three

scenarios to consider are:

Hybrid-aware client, hybrid-aware server: These parties

should establish a hybrid shared secret.

Hybrid-aware client, non-hybrid-aware server: These parties

should establish a traditional shared secret (assuming the

hybrid-aware client is willing to downgrade to traditional-

only).

Non-hybrid-aware client, hybrid-aware server: These parties

should establish a traditional shared secret (assuming the

hybrid-aware server is willing to downgrade to traditional-

only).

Ideally backwards compatibility should be achieved without extra

round trips and without sending duplicate information; see below.

High performance: Use of hybrid key exchange should not be

prohibitively expensive in terms of computational performance. In

general this will depend on the performance characteristics of

the specific cryptographic algorithms used, and as such is

outside the scope of this document. See [PST] for preliminary

results about performance characteristics.
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Low latency: Use of hybrid key exchange should not substantially

increase the latency experienced to establish a connection.

Factors affecting this may include the following.

The computational performance characteristics of the specific

algorithms used. See above.

The size of messages to be transmitted. Public key and

ciphertext sizes for post-quantum algorithms range from

hundreds of bytes to over one hundred kilobytes, so this

impact can be substantial. See [PST] for preliminary results

in a laboratory setting, and [LANGLEY] for preliminary results

on more realistic networks.

Additional round trips added to the protocol. See below.

No extra round trips: Attempting to negotiate hybrid key exchange

should not lead to extra round trips in any of the three hybrid-

aware/non-hybrid-aware scenarios listed above.

Minimal duplicate information: Attempting to negotiate hybrid key

exchange should not mean having to send multiple public keys of

the same type.

2. Key encapsulation mechanisms

This document models key agreement as key encapsulation mechanisms

(KEMs), which consist of three algorithms:

KeyGen() -> (pk, sk): A probabilistic key generation algorithm,

which generates a public key pk and a secret key sk.

Encaps(pk) -> (ct, ss): A probabilistic encapsulation algorithm,

which takes as input a public key pk and outputs a ciphertext ct

and shared secret ss.

Decaps(sk, ct) -> ss: A decapsulation algorithm, which takes as

input a secret key sk and ciphertext ct and outputs a shared

secret ss, or in some cases a distinguished error value.

The main security property for KEMs is indistinguishability under

adaptive chosen ciphertext attack (IND-CCA2), which means that

shared secret values should be indistinguishable from random strings

even given the ability to have other arbitrary ciphertexts

decapsulated. IND-CCA2 corresponds to security against an active

attacker, and the public key / secret key pair can be treated as a

long-term key or reused. A common design pattern for obtaining

security under key reuse is to apply the Fujisaki-Okamoto (FO)

transform [FO] or a variant thereof [HHK].

*

¶

-

¶

-

¶

- ¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶



A weaker security notion is indistinguishability under chosen

plaintext attack (IND-CPA), which means that the shared secret

values should be indistinguishable from random strings given a copy

of the public key. IND-CPA roughly corresponds to security against a

passive attacker, and sometimes corresponds to one-time key

exchange.

Key exchange in TLS 1.3 is phrased in terms of Diffie-Hellman key

exchange in a group. DH key exchange can be modeled as a KEM, with 

KeyGen corresponding to selecting an exponent x as the secret key

and computing the public key g^x; encapsulation corresponding to

selecting an exponent y, computing the ciphertext g^y and the shared

secret g^(xy), and decapsulation as computing the shared secret 

g^(xy). See [I-D.irtf-cfrg-hpke] for more details of such Diffie-

Hellman-based key encapsulation mechanisms.

TLS 1.3 does not require that ephemeral public keys be used only in

a single key exchange session; some implementations may reuse them,

at the cost of limited forward secrecy. As a result, any KEM used in

the manner described in this document MUST explicitly be designed to

be secure in the event that the public key is reused, such as

achieving IND-CCA2 security or having a transform like the Fujisaki-

Okamoto transform [FO] [HHK] applied. While it is recommended that

implementations avoid reuse of KEM public keys, implementations that

do reuse KEM public keys MUST ensure that the number of reuses of a

KEM public key abides by any bounds in the specification of the KEM

or subsequent security analyses. Implementations MUST NOT reuse

randomness in the generation of KEM ciphertexts.

3. Construction for hybrid key exchange

3.1. Negotiation

Each particular combination of algorithms in a hybrid key exchange

will be represented as a NamedGroup and sent in the supported_groups

extension. No internal structure or grammar is implied or required

in the value of the identifier; they are simply opaque identifiers.

Each value representing a hybrid key exchange will correspond to an

ordered pair of two algorithms. For example, a future document could

specify that one codepoint corresponds to secp256r1+PQALG1, and

another corresponds to x25519+PQALG1. (We note that this is

independent from future documents standardizing solely post-quantum

key exchange methods, which would have to be assigned their own

identifier.)

Specific values shall be standardized by IANA in the TLS Supported

Groups registry.
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3.2. Transmitting public keys and ciphertexts

We take the relatively simple "concatenation approach": the messages

from the two algorithms being hybridized will be concatenated

together and transmitted as a single value, to avoid having to

change existing data structures. The values are directly

concatenated, without any additional encoding or length fields; this

assumes that the representation and length of elements is fixed once

the algorithm is fixed. If concatenation were to be used with values

that are not fixed-length, a length prefix or other unambiguous

encoding must be used to ensure that the composition of the two

values is injective and requires a mechanism different from that

specified in this document.

Recall that in TLS 1.3 a KEM public key or KEM ciphertext is

represented as a KeyShareEntry:

These are transmitted in the extension_data fields of 

KeyShareClientHello and KeyShareServerHello extensions:

    enum {

          /* Elliptic Curve Groups (ECDHE) */

          secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019),

          x25519(0x001D), x448(0x001E),

          /* Finite Field Groups (DHE) */

          ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102),

          ffdhe6144(0x0103), ffdhe8192(0x0104),

          /* Hybrid Key Exchange Methods */

          TBD(0xTBD), ...,

          /* Reserved Code Points */

          ffdhe_private_use(0x01FC..0x01FF),

          ecdhe_private_use(0xFE00..0xFEFF),

          (0xFFFF)

    } NamedGroup;

¶

¶

¶

    struct {

        NamedGroup group;

        opaque key_exchange<1..2^16-1>;

    } KeyShareEntry;

¶
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The client's shares are listed in descending order of client

preference; the server selects one algorithm and sends its

corresponding share.

For a hybrid key exchange, the key_exchange field of a KeyShareEntry

is the concatenation of the key_exchange field for each of the

constituent algorithms. The order of shares in the concatenation is

the same as the order of algorithms indicated in the definition of

the NamedGroup.

For the client's share, the key_exchange value contains the

concatenation of the pk outputs of the corresponding KEMs' KeyGen

algorithms, if that algorithm corresponds to a KEM; or the (EC)DH

ephemeral key share, if that algorithm corresponds to an (EC)DH

group. For the server's share, the key_exchange value contains

concatenation of the ct outputs of the corresponding KEMs' Encaps

algorithms, if that algorithm corresponds to a KEM; or the (EC)DH

ephemeral key share, if that algorithm corresponds to an (EC)DH

group.

[TLS13] requires that ``The key_exchange values for each

KeyShareEntry MUST be generated independently.'' In the context of

this document, since the same algorithm may appear in multiple named

groups, we relax the above requirement to allow the same

key_exchange value for the same algorithm to be reused in multiple

KeyShareEntry records sent in within the same ClientHello. However,

key_exchange values for different algorithms MUST be generated

independently.

3.3. Shared secret calculation

Here we also take a simple "concatenation approach": the two shared

secrets are concatenated together and used as the shared secret in

the existing TLS 1.3 key schedule. Again, we do not add any

additional structure (length fields) in the concatenation procedure:

among all Round 3 finalists and alternate candidates, once the

algorithm and variant are specified, the shared secret output length

is fixed.

In other words, the shared secret is calculated as

    struct {

        KeyShareEntry client_shares<0..2^16-1>;

    } KeyShareClientHello;

    struct {

        KeyShareEntry server_share;

    } KeyShareServerHello;

¶
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    concatenated_shared_secret = shared_secret_1 || shared_secret_2¶



and inserted into the TLS 1.3 key schedule in place of the (EC)DHE

shared secret:

FIPS-compliance of shared secret concatenation. [NIST-SP-800-56C] or 

[NIST-SP-800-135] give NIST recommendations for key derivation

methods in key exchange protocols. Some hybrid combinations may

combine the shared secret from a NIST-approved algorithm (e.g., ECDH

using the nistp256/secp256r1 curve) with a shared secret from a non-

approved algorithm (e.g., post-quantum). [NIST-SP-800-56C] lists

simple concatenation as an approved method for generation of a

hybrid shared secret in which one of the constituent shared secret

is from an approved method.

4. Discussion

Larger public keys and/or ciphertexts. The HybridKeyExchange struct

in Section 3.2 limits public keys and ciphertexts to 2^16-1 bytes;

this is bounded by the same (2^16-1)-byte limit on the key_exchange

field in the KeyShareEntry struct. Some post-quantum KEMs have

larger public keys and/or ciphertexts; for example, Classic

¶

                                    0

                                    |

                                    v

                      PSK ->  HKDF-Extract = Early Secret

                                    |

                                    +-----> Derive-Secret(...)

                                    +-----> Derive-Secret(...)

                                    +-----> Derive-Secret(...)

                                    |

                                    v

                              Derive-Secret(., "derived", "")

                                    |

                                    v

concatenated_shared_secret -> HKDF-Extract = Handshake Secret

^^^^^^^^^^^^^^^^^^^^^^^^^^          |

                                    +-----> Derive-Secret(...)

                                    +-----> Derive-Secret(...)

                                    |

                                    v

                              Derive-Secret(., "derived", "")

                                    |

                                    v

                         0 -> HKDF-Extract = Master Secret

                                    |

                                    +-----> Derive-Secret(...)

                                    +-----> Derive-Secret(...)

                                    +-----> Derive-Secret(...)

                                    +-----> Derive-Secret(...)

¶
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McEliece's smallest parameter set has public key size 261,120 bytes.

Hence this draft can not accommodate all current NIST Round 3

candidates.

Duplication of key shares. Concatenation of public keys in the 

HybridKeyExchange struct as described in Section 3.2 can result in

sending duplicate key shares. For example, if a client wanted to

offer support for two combinations, say "secp256r1+sikep503" and

"x25519+sikep503", it would end up sending two sikep503 public keys,

since the KeyShareEntry for each combination contains its own copy

of a sikep503 key. This duplication may be more problematic for

post-quantum algorithms which have larger public keys.

Failures. Some post-quantum key exchange algorithms have non-zero

probability of failure, meaning two honest parties may derive

different shared secrets. This would cause a handshake failure. All

current NIST Round 3 candidates have either 0 or cryptographically

small failure rate; if other algorithms are used, implementers

should be aware of the potential of handshake failure. Clients can

retry if a failure is encountered.

5. IANA Considerations

Identifiers for specific key exchange algorithm combinations will be

defined in later documents.

6. Security Considerations

The shared secrets computed in the hybrid key exchange should be

computed in a way that achieves the "hybrid" property: the resulting

secret is secure as long as at least one of the component key

exchange algorithms is unbroken. See [GIACON] and [BINDEL] for an

investigation of these issues. Under the assumption that shared

secrets are fixed length once the combination is fixed, the

construction from Section 3.3 corresponds to the dual-PRF combiner

of [BINDEL] which is shown to preserve security under the assumption

that the hash function is a dual-PRF.

As noted in Section 2, KEMs used in the manner described in this

document MUST explicitly be designed to be secure in the event that

the public key is reused, such as achieving IND-CCA2 security or

having a transform like the Fujisaki-Okamoto transform applied. Some

IND-CPA-secure post-quantum KEMs (i.e., without countermeasures such

as the FO transform) are completely insecure under public key reuse;

for example, some lattice-based IND-CPA-secure KEMs are vulnerable

to attacks that recover the private key after just a few thousand

samples [FLUHRER].

Public keys, ciphertexts, and secrets should be constant length.

This document assumes that the length of each public key,
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[TLS13]

[AVIRAM]

ciphertext, and shared secret is fixed once the algorithm is fixed.

This is the case for all Round 3 finalists and alternate candidates.

Note that variable-length secrets are, generally speaking,

dangerous. In particular, when using key material of variable length

and processing it using hash functions, a timing side channel may

arise. In broad terms, when the secret is longer, the hash function

may need to process more blocks internally. In some unfortunate

circumstances, this has led to timing attacks, e.g. the Lucky

Thirteen [LUCKY13] and Raccoon [RACCOON] attacks.

Furthermore, [AVIRAM] identified a risk of using variable-length

secrets when the hash function used in the key derivation function

is no longer collision-resistant.

Therefore, this specification MUST only be used with algorithms

which have fixed-length shared secrets (after the variant has been

fixed by the algorithm identifier in the NamedGroup negotiation in 

Section 3.1).
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Appendix A. Related work

Quantum computing and post-quantum cryptography in general are

outside the scope of this document. For a general introduction to

quantum computing, see a standard textbook such as [NIELSEN]. For an

overview of post-quantum cryptography as of 2009, see [BERNSTEIN].

For the current status of the NIST Post-Quantum Cryptography

Standardization Project, see [NIST]. For additional perspectives on

the general transition from classical to post-quantum cryptography,

see for example [ETSI] and [HOFFMAN], among others.

There have been several Internet-Drafts describing mechanisms for

embedding post-quantum and/or hybrid key exchange in TLS:

Internet-Drafts for TLS 1.2: [WHYTE12], [CAMPAGNA]

Internet-Drafts for TLS 1.3: [KIEFER], [SCHANCK], [WHYTE13]

There have been several prototype implementations for post-quantum

and/or hybrid key exchange in TLS:

Experimental implementations in TLS 1.2: [BCNS15], [CECPQ1], 

[FRODO], [OQS-102], [S2N]

Experimental implementations in TLS 1.3: [CECPQ2], [OQS-111], 

[PST]

These experimental implementations have taken an ad hoc approach and

not attempted to implement one of the drafts listed above.

Unrelated to post-quantum but still related to the issue of

combining multiple types of keying material in TLS is the use of

pre-shared keys, especially the recent TLS working group document on

including an external pre-shared key [EXTERN-PSK].

Considering other IETF standards, there is work on post-quantum

preshared keys in IKEv2 [IKE-PSK] and a framework for hybrid key

exchange in IKEv2 [IKE-HYBRID]. The XMSS hash-based signature scheme

has been published as an informational RFC by the IRTF [XMSS].

In the academic literature, [EVEN] initiated the study of combining

multiple symmetric encryption schemes; [ZHANG], [DODIS], and 

[HARNIK] examined combining multiple public key encryption schemes,

and [HARNIK] coined the term "robust combiner" to refer to a

compiler that constructs a hybrid scheme from individual schemes
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while preserving security properties. [GIACON] and [BINDEL] examined

combining multiple key encapsulation mechanisms.
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