
INTERNET-DRAFT Matthew Hur
Transport Layer Security Working Group Cisco Systems
draft-ietf-tls-kerb-00.txt Ari Medvinsky
Obsoletes: RFC 2712 Keen.com
November 06, 2000 (Expires May 06, 2001)

 Kerberos Cipher Suites in Transport Layer Security (TLS)

0. Status Of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as ``work in progress.''

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet- Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

1. Abstract

RFC 2712 [KERBTLS] introduced mechanisms for supporting Kerberos
 [KERB] authentication within the TLS protocol [TLS]. This document
 extends RFC 2712 to support delegation of Kerberos credentials. In
 this way, a TLS server may obtain a Kerberos service ticket on behalf
 of the TLS client. Thus, a single client identity may be used for
 authentication within a multi-tier architecture. This draft also
 proposes a mechanism for a TLS server to indicate Kerberos-specific
 information to the client within the certificate request message in
 the initial exchange.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-kerb-00.txt
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc2712

2. Introduction

 Flexibility is one of the main strengths of the TLS protocol. Clients
 and servers can negotiate cipher suites to meet specific security and
 administrative policies. RFC 2712 specified how TLS could be
 extended to support organizations with heterogeneous security
 deployments that include authentication systems based on symmetric
 cryptography. Kerberos, originally developed at MIT, is based on an
 open standard and is the most widely deployed symmetric key
 authentication system. Just as other documents specify hybrid
 asymmetric/symmetric key protocols [PKINIT] [PKCROSS] [PKTAPP], this
 document specifies how TLS may incorporate both symmetric and
 asymmetric key crypto systems.

 This document describes the use of Kerberos authentication within
 the TLS framework. This achieves mutual authentication and the
 establishment of a master secret using Kerberos credentials.
 Additionally, this document specifies support for delegation of
 Kerberos credentials, which enables end to end authentication within
 an n-tier architecture. The proposed changes are minimal and, in
 fact, no different from adding a new public key algorithm to the TLS
 framework.

3. Kerberos Authentication Option In TLS

 This section describes the addition of the Kerberos authentication
 option to the TLS protocol. Throughout this document, we refer to
 the basic SSL handshake shown in Figure 1. For a review of the TLS
 handshake see [TLS].

 +---+
 | CLIENT SERVER |
 | ------ ------ |
 | ClientHello |
 | ---------------------------> |
 | ServerHello |
 | Certificate * |
 | ServerKeyExchange* |
 | CertificateRequest* |
 | ServerHelloDone |
 | <--------------------------- |
 | Certificate* |
 | ClientKeyExchange |
 | CertificateVerify* |
 | change cipher spec |
 | Finished |
 | | ---------------------------> |
 | | change cipher spec |

https://datatracker.ietf.org/doc/html/rfc2712

	Finished	
Application Data <--------------------------> Application Data		
 +---+
 FIGURE 1: The TLS protocol. All messages followed by a star are
 optional. Note: This figure was taken from RFC 2246.

 The TLS security context is negotiated in the client and server hello
 messages. For example: TLS_RSA_WITH_RC4_MD5 means the initial
 authentication will be done using the RSA public key algorithm, RC4
 will be used for the session key, and MACs will be based on the MD5
 algorithm. Thus, to facilitate the Kerberos authentication option,
 we must start by defining Kerberos cipher suites including (but not
 limited to):

 CipherSuite TLS_KRB5_WITH_DES_CBC_SHA = { 0x00,0x1E };
 CipherSuite TLS_KRB5_WITH_3DES_EDE_CBC_SHA = { 0x00,0x1F };
 CipherSuite TLS_KRB5_WITH_RC4_128_SHA = { 0x00,0x20 };
 CipherSuite TLS_KRB5_WITH_IDEA_CBC_SHA = { 0x00,0x21 };
 CipherSuite TLS_KRB5_WITH_DES_CBC_MD5 = { 0x00,0x22 };
 CipherSuite TLS_KRB5_WITH_3DES_EDE_CBC_MD5 = { 0x00,0x23 };
 CipherSuite TLS_KRB5_WITH_RC4_128_MD5 = { 0x00,0x24 };
 CipherSuite TLS_KRB5_WITH_IDEA_CBC_MD5 = { 0x00,0x25 };

 CipherSuite TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA = { 0x00,0x26 };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA = { 0x00,0x27 };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC4_40_SHA = { 0x00,0x28 };
 CipherSuite TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 = { 0x00,0x29 };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 = { 0x00,0x2A };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC4_40_MD5 = { 0x00,0x2B };

 CipherSuite TLS_KRB5_WITH_NULL_SHA = { 0x00,0x?? };
 CipherSuite TLS_KRB5_WITH_NULL_MD5 = { 0x00,0x?? };
 CipherSuite TLS_KRB5_WITH_NULL_NULL = { 0x00,0x?? };

 To establish a Kerberos-based security context, one or more of the
 above cipher suites must be specified in the client hello message. If
 the TLS server supports the Kerberos authentication option, the
 server hello message, sent to the client, will confirm the Kerberos
 cipher suite selected by the server. The server's certificate and
 the ServerKeyExchange shown in Figure 1 will be omitted since
 authentication and the establishment of a master secret will be done
 using the client's Kerberos credentials for the TLS server. Note
 that these messages are specified as optional in the TLS protocol;
 therefore, omitting them is permissible.

 The Kerberos option affects three of the TLS messages: the
 CertificateRequest, the client Certificate, and the
 ClientKeyExchange. However, only the client Certificate and the
 ClientKeyExchange are required.

https://datatracker.ietf.org/doc/html/rfc2246

3.1. Usage of the CertificateRequest Message

 If the server accepts a Kerberos-based ciphersuite, then it MUST send
 the CertificateRequest message to the client. This message conveys
 Kerberos-specific characteristics such as realm name or attributes
 such as forwarded ticket.

RFC 2246 defines the CertificateRequest message as follows:
 +---+
 | |
 | enum { |
 | rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4), |
 | (255) |
 | } ClientCertificateType; |
 | |
 | opaque DistinguishedName<1..2^16-1>; |
 | |
 | struct { ClientCertificateType certificate_types<1..2^8-1>; |
 | DistinguishedName certificate_authorities<3..2^16-1>; |
 | } CertificateRequest; |
 | |
 +---+
 FIGURE 2: CertificateRequest message from RFC 2246

 This specification defines a new ClientCertificateType for a Kerberos
 certificate. This enables a client to respond to the
 CertificateRequest message when using Kerberos ciphersuites. Thus
 the following change for ClientCertificateType is required
 (Figure 3).

 +---+
 | |
 | enum { |
 | rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4), |
 | kerberos(5), (255) |
 | } ClientCertificateType; |
 | |
 +---+
 FIGURE 3: New Kerberos ClientCertificateType

 In the case of a public key based authentication algorithm, the
 opaque DistinguishedName field is derived from [X509], and it
 contains the name of an acceptable certification authority (This is
 as specified in [TLS]). In the case of a Kerberos
 ClientCertificateType, the DistinguishedName field is defined to
 represent Kerberos information (KerbInfo) as shown in Figure 4.

 +---+
 | |

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246

 | enum |
 | { |
 | srv_tkt(1), fwd_tgt(2), (255) |
 | } KerbInfoType; |
 | |
 | enum |
 | { |
 | initial_tkt_required(1), (255) |
 | } AttrType; /* This may be extended to include attributes */ |
 | /* such as forwardable or renewable for example */ |
 | |
 | struct |
 | { |
 | AttrType attr_type; |
 | opaque attr_data <0..2^16-1>; |
 | } AttrInfoType |
 | |
 | struct |
 | { |
 | uint32 length; /* length of this struct */ |
 | KerbInfoType type; |
 | opaque sname <0..2^16-1>; |
 | opaque srealm <0..2^16-1>; |
 | opaque cname <0..2^16-1>; |
 | opaque crealm <0..2^16-1>; |
 | AttrInfoType attr_info <0..2^16-1>; /* sequence of */ |
 | /* attributes */ |
 | uint32 etypes <0..2^16-1>; /* list of supported */ |
 | /* Kerberos etypes */ |
 | /* for authentication */ |
 | } TktInfo; |
 | |
 | struct |
 | { |
 | uint16 num; /* number of TktInfo structs */ |
 | TktInfo tkt_info <1..2^20-1>; /* MUST have at least */ |
 | /* 1 TktInfo structs */ |
 | } KerbInfo |
 | |
 +---+
 FIGURE 4: Kerberos Information for CertificateRequest Message

3.2. Usage of the Client Certificate Message

 As specified by [TLS], when the client receives the
 CertificateRequest message, it MUST respond with the client
 Certificate message. As stated above, this specification defines a
 Kerberos certificate type. The format for the Kerberos certificate
 is specified in figure 5 below. This structure consists of a
 Kerberos AP-REQ message that is used for authenticating the client to

 he server. It optionally contains a series of Kerberos KRB-CRED
 messages to convey delegated credentials.

 Note that the client may determine the type of credentials to send to
 the server, based on local policy. Part of the input to a client's
 decision may come from the Kerberos KDC. For example, The client may
 convey a delegated ticket based on the ok-as-delegate ticket flag set
 in the service ticket.

 +---+
 | |
 | opaque KrbCred <1..2^16-1>; /* Kerberos-defined KRB-CRED */ |
 | |
 | struct |
 | { |
 | opaque ap_req <1..2^16-1>; |
 | uint16 num; /* number of KrbCred structs */ |
 | KrbCred krb_cred <0..2^20-1>; |
 | } KerberosCert; |
 | |
 +---+
 FIGURE 5: Kerberos Certificate Type

3.3. Usage of the ClientKeyExchange Message

 The Kerberos option must be added to the ClientKeyExchange message as
 shown in Figure 6.

 +---+
 | |
 | struct |
 | { |
 | select (KeyExchangeAlgorithm) |
 | { |
 | case krb: KerbEncryptedPreMasterSecret; |
 | case rsa: EncryptedPreMasterSecret; |
 | case diffie_hellman: ClientDiffieHellmanPublic; |
 | } Exchange_keys; |
 | } ClientKeyExchange; |
 | |
 | KerbEncryptedPreMasterSecret contains the PreMasterSecret |
 | encrypted within a Kerberos-defined EncryptedData structure. |
 | The encryption key is sealed in the ticket sent in the Client |
 | Certificate message. |
 | |
 +---+
 FIGURE 6: The Kerberos option in the ClientKeyExchange.

 To use the Kerberos authentication option, the TLS client must obtain

 a service ticket for the TLS server. In TLS, the ClientKeyExchange
 message is used to pass a random 48-byte pre-master secret to the
 server.

 The client and server then use the pre-master secret to independently
 derive the master secret, which in turn is used for generating
 session keys and for MAC computations. Thus, if the Kerberos option
 is selected, the pre-master secret structure is the same as that used
 in the RSA case; it is encrypted under the Kerberos session key and
 sent to the TLS server along with the Kerberos credentials (see
 Figure 2). The ticket and authenticator are encoded per RFC 1510
 (ASN.1 encoding). Once the ClientKeyExchange message is received,
 the server's secret key is used to unwrap the credentials and extract
 the pre-master secret.

 Lastly, the client and server exchange the finished messages to
 complete the handshake. At this point we have achieved the
 following:

 1) A master secret, used to protect all subsequent communication, is
 securely established.

 2) Mutual client-server authentication is achieved, since the TLS
 server proves knowledge of the master secret in the finished
 message.

 Kerberos fits seamlessly into TLS, without adding any new messages.

4. Naming Conventions:

 To obtain an appropriate service ticket, the TLS client must
 determine the principal name of the TLS server. The Kerberos service
 naming convention is used for this purpose, as follows:

 host/MachineName@Realm
 where:
 - The literal, "host", follows the Kerberos convention when not
 concerned about the protection domain on a particular machine.
 - "MachineName" is the particular instance of the service.
 - The Kerberos "Realm" is the domain name of the machine.

 As specified above, in the CertificateRequest message, the server may
 indicate the appropriate principal name and realm.

5. Summary

 The proposed Kerberos authentication option is added in exactly the
 same manner as a new public key algorithm would be added to TLS.
 Furthermore, it establishes the master secret in exactly the same
 manner.

https://datatracker.ietf.org/doc/html/rfc1510

6. Security Considerations

 Kerberos ciphersuites are subject to the same security considerations
 as the TLS protocol. In addition, just as a public key
 implementation must take care to protect the private key (for example
 the PIN for a smartcard), a Kerberos implementation must take care to
 protect the long lived secret that is shared between the principal
 and the KDC. In particular, a weak password may be subject to a
 dictionary attack. In order to strengthen the initial authentication
 to a KDC, an implementor may choose to utilize secondary
 authentication via a token card, or one may utilize initial
 authentication to the KDC based on public key cryptography (commonly
 known as PKINIT - a product of the Kerberos working group of the
 IETF).

 The unauthenticated CertificateRequest message, specified above,
 enables the server to request a particular client principal name as
 well as a particular service principal name. In the event that a
 service principal name is specified, there is a risk that the client
 may be tricked into requesting a ticket for a rogue server.
 Furthermore, if delegation is requested, the client may be tricked
 into forwarding its TGT to a rogue server. In order to assure that a
 service ticket is obtained for the correct server, the client should
 rely on a combination of its own local policy, local configuration
 information, and information supplied by the KDC. The client may
 choose to use only the naming convention specified in section 4. The
 client may rely on the KDC performing name cannonicalization (this is
 a matter that is adressed in revisions to RFC 1510).

 The client must apply its local policy to determine whether or not to
 forward its credentials. As previously stated, the client should
 incorporate information from the KDC, in particular the ok-as-
 delegate ticket flag, in making such a policy decision.

 A forwarded TGT presents more vulnerabilities in the event of a rogue
 server or the compromise of the session key. An attacker would be
 able to impersonate the client to obtain new service tickets. Such
 an attack may be mitigated by the use of restrictions, such as those
 described in [Neuman].

7. Acknowledgements

 We would like to thank the following people for their input for this
 document:
 Clifford Neuman from ISI
 John Brezak and David Mowers from Microsoft

8. References

https://datatracker.ietf.org/doc/html/rfc1510

 [KERBTLS] A. Medvinsky and M. Hur, "Addition of Kerberos Cipher
 Suites to Transport Layer Security (TLS)", RFC 2712,
 October 1999.

 [KERB] J. Kohl and C. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510, September 1993.

 [TLS] T. Dierks and C. Allen, "The TLS Protocol, Version 1.0",
RFC 2246, January 1999.

 [PKINIT] B. Tung, C. Neuman, M. Hur, A. Medvinsky, S. Medvinsky,
 J. Wray, J. Trostle. Public Key Cryptography for Initial
 Authentication in Kerberos.

draft-ietf-cat-kerberos-pk-init-12.txt

 [PKTAPP] A. Medvinsky, M. Hur, S. Medvinsky, C. Neuman.
 Public Key Utilizing Tickets for Application
 Servers (PKTAPP). draft-ietf-cat-kerberos-pk-tapp-03.txt

 [PKCROSS] M. Hur, B. Tung, T. Ryutov, C. Neuman, G. Tsudik,
 A. Medvinsky, B. Sommerfeld. Public Key Cryptography for
 Cross-Realm Authentication in Kerberos.

draft-ietf-cat-kerberos-pk-cross-06.txt

 [X509] ITU-T (formerly CCITT) Information technology - Open
 Systems Interconnection - The Directory: Authentication
 Framework Recommendation X.509 ISO/IEC 9594-8

 [NEUMAN] B.C. Neuman, "Proxy-Based Authorization and Accounting for
 Distributed Systems". Proceedings of the 13th
 International Conference on Distributed Computing Systems,
 May 1993

9. Authors' Addresses

 Matthew Hur
 Cisco Systems
 500 108th Ave. NE, Suite 500
 Bellevue, WA 98004
 Phone:
 EMail: mhur@cisco.com

http://www.cisco.com

 Ari Medvinsky
 Keen.com
 2480 Sand Hill Road, Suite 200
 Menlo Park, CA 94025
 Phone: +1 415 284 4085
 EMail: ari@keen.com

http://www.keen.com

https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-init-12.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-tapp-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-cross-06.txt
http://www.cisco.com
http://www.keen.com

10. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendices

A. Changes from RFC 2712

 Added new cipher suites with NULL confidentiality:
 TLS_KRB5_WITH_NULL_SHA
 TLS_KRB5_WITH_NULL_MD5
 TLS_KRB5_WITH_NULL_NULL

RFC 2712 utilized only the ClientKeyExchange message for conveying
 the Kerberos credentials and encrypted premaster-secret. This
 specification moves the Kerberos credentials to the client
 certificate message, and it allows the client to pass delegated
 credentials as well. Additionally, this specification allows the
 server to specify Kerberos-specific information (realm, delegation
 required, etc.) in the CertificateRequest message.

B. IESG Note from RFC 2712

https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc2712

 The 40-bit ciphersuites defined in this memo are included only for
 the purpose of documenting the fact that those ciphersuite codes have
 already been assigned. 40-bit ciphersuites were designed to comply
 with US-centric, and now obsolete, export restrictions. They were
 never secure, and nowadays are inadequate even for casual
 applications. Implementation and use of the 40-bit ciphersuites
 defined in this document, and elsewhere, is strongly discouraged.

