
TLS P. Wouters, Ed.
Internet-Draft Red Hat
Intended status: Standards Track H. Tschofenig, Ed.
Expires: January 17, 2014 Nokia Siemens Networks
 J. Gilmore

 S. Weiler
 SPARTA, Inc.
 T. Kivinen
 AuthenTec
 July 16, 2013

Out-of-Band Public Key Validation for Transport Layer Security (TLS)
draft-ietf-tls-oob-pubkey-08.txt

Abstract

 This document specifies a new certificate type and two TLS
 extensions, one for the client and one for the server, for exchanging
 raw public keys in Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) for use with out-of-band public key
 validation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Wouters, et al. Expires January 17, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft TLS OOB Public Key Validation July 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. New TLS Extension . 3
4. TLS Handshake Extension 7
4.1. Client Hello . 7
4.2. Server Hello . 7
4.3. Certificate Request 7
4.4. Other Handshake Messages 7
4.5. Client authentication 8

5. Examples . 8
6. Security Considerations 10
7. IANA Considerations . 11
8. Acknowledgements . 11
9. References . 12
9.1. Normative References 12
9.2. Informative References 13

Appendix A. Example Encoding 13
 Authors' Addresses . 14

1. Introduction

 Traditionally, TLS client and server public keys are obtained in PKIX
 containers in-band using the TLS handshake and validated using trust
 anchors based on a [PKIX] certification authority (CA). This method
 can add a complicated trust relationship that is difficult to
 validate. Examples of such complexity can be seen in
 [Defeating-SSL].

 Alternative methods are available that allow a TLS clients/servers to
 obtain the TLS servers/client public key:

 o TLS clients can obtain the TLS server public key from a DNSSEC
 secured resource records using DANE [RFC6698].

 o The TLS client or server public key is obtained from a [PKIX]
 certificate chain from an Lightweight Directory Access Protocol
 (LDAP) [LDAP] server or web page.

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6698

Wouters, et al. Expires January 17, 2014 [Page 2]

Internet-Draft TLS OOB Public Key Validation July 2013

 o The TLS client and server public key is provisioned into the
 operating system firmware image, and updated via software updates.
 For example:

 Some smart objects use the UDP-based Constrained Application
 Protocol (CoAP) [I-D.ietf-core-coap] to interact with a Web server
 to upload sensor data at a regular intervals, such as temperature
 readings. CoAP [I-D.ietf-core-coap] can utilize DTLS for securing
 the client-to-server communication. As part of the manufacturing
 process, the embedded device may be configured with the address
 and the public key of a dedicated CoAP server, as well as a public
 key for the client itself.

 The mechanism defined herein only provides authentication when an
 out-of-band mechanism is also used to bind the public key to the
 entity presenting the key.

 This document registers a new value to the IANA certificate types
 registry for the support of raw public keys. It also defines two new
 TLS extensions, "client_certificate_type" and
 "server_certificate_type".

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. New TLS Extension

 This section describes the changes to the TLS handshake message
 contents when raw public keys are to be used. Figure 4 illustrates
 the exchange of messages as described in the sub-sections below. The
 client and the server exchange make use of two new TLS extensions,
 namely 'client_certificate_type' and 'server_certificate_type', and
 an already available IANA TLS Certificate Type registry
 [TLS-Certificate-Types-Registry] to indicate their ability and desire
 to exchange raw public keys. These raw public keys, in the form of a
 SubjectPublicKeyInfo structure, are then carried inside the
 Certificate payload. The Certificate and the SubjectPublicKeyInfo
 structure is shown in Figure 1.

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 select(certificate_type){

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wouters, et al. Expires January 17, 2014 [Page 3]

Internet-Draft TLS OOB Public Key Validation July 2013

 // certificate type defined in this document.
 case RawPublicKey:
 opaque ASN.1_subjectPublicKeyInfo<1..2^24-1>;

 // X.509 certificate defined in RFC 5246
 case X.509:
 ASN.1Cert certificate_list<0..2^24-1>;

 // Additional certificate type based on TLS
 // Certificate Type Registry
 };
 } Certificate;

 Figure 1: TLS Certificate Structure.

 The SubjectPublicKeyInfo structure is defined in Section 4.1 of RFC
5280 [PKIX] and does not only contain the raw keys, such as the

 public exponent and the modulus of an RSA public key, but also an
 algorithm identifier. The algorithm identifier can also include
 parameters. The structure, as shown in Figure 2, is encoded in an
 DER encoded ASN.1 format [X.690] and therefore contains length
 information as well. An example is provided in Appendix A.

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 Figure 2: SubjectPublicKeyInfo ASN.1 Structure.

 The algorithm identifiers are Object Identifiers (OIDs). RFC 3279
 [RFC3279] and [RFC5480] define the following OIDs shown in Figure 3.

 Key Type | Document | OID
 -----------------------+----------------------------+-------------------
 RSA | Section 2.3.1 of RFC 3279 | 1.2.840.113549.1.1
 |............................|...................
 Digital Signature | |
 Algorithm (DSS) | Section 2.3.2 of RFC 3279 | 1.2.840.10040.4.1
 |............................|...................
 Elliptic Curve | |

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc5480
https://datatracker.ietf.org/doc/html/rfc3279#section-2.3.1
https://datatracker.ietf.org/doc/html/rfc3279#section-2.3.2

Wouters, et al. Expires January 17, 2014 [Page 4]

Internet-Draft TLS OOB Public Key Validation July 2013

 Digital Signature | |
 Algorithm (ECDSA) | Section 2.3.5 of RFC 5480 | 1.2.840.10045.2.1
 -----------------------+----------------------------+-------------------

 Figure 3: Example Algorithm Object Identifiers.

 The message exchange in Figure 4 shows the 'client_certificate_type'
 and 'server_certificate_type' extensions added to the client and
 server hello messages.

 client_hello,
 client_certificate_type
 server_certificate_type ->

 <- server_hello,
 client_certificate_type,
 server_certificate_type,
 certificate,
 server_key_exchange,
 certificate_request,
 server_hello_done
 certificate,
 client_key_exchange,
 certificate_verify,
 change_cipher_spec,
 finished ->

 <- change_cipher_spec,
 finished

 Application Data <-------> Application Data

 Figure 4: Basic Raw Public Key TLS Exchange.

 The semantic of the two extensions is defined as follows:

 The 'client_certificate_type' and 'server_certificate_type' sent
 in the client hello, may carry a list of supported certificate
 types, sorted by client preference. It is a list in the case
 where the client supports multiple certificate types. These
 extension MUST be omitted if the client only supports X.509
 certificates. The 'client_certificate_type' sent in the client
 hello indicates the certificate types the client is able to
 provide to the server, when requested using a certificate_request
 message. The 'server_certificate_type' in the client hello

https://datatracker.ietf.org/doc/html/rfc5480#section-2.3.5

Wouters, et al. Expires January 17, 2014 [Page 5]

Internet-Draft TLS OOB Public Key Validation July 2013

 indicates the type of certificates the client is able to process
 when provided by the server in a subsequent certificate payload.

 The 'client_certificate_type' returned in the server hello
 indicates the certificate type found in the attached certificate
 payload. Only a single value is permitted. The
 'server_certificate_type' in the server hello indicates the type
 of certificates the client is requested to provide in a subsequent
 certificate payload. The value conveyed in the
 'server_certificate_type' MUST be selected from one of the values
 provided in the 'server_certificate_type' sent in the client
 hello. If the server does not send a certificate_request payload
 or none of the certificates supported by the client (as indicated
 in the 'server_certificate_type' in the client hello) match the
 server-supported certificate types the 'server_certificate_type'
 payload sent in the server hello is omitted.

 The "extension_data" field of this extension contains the
 ClientCertTypeExtension or the ServerCertTypeExtension structure, as
 shown in Figure 5. The CertificateType structure is an enum with
 with values from TLS Certificate Type Registry.

 struct {
 select(ClientOrServerExtension)
 case client:
 CertificateType client_certificate_types<1..2^8-1>;
 case server:
 CertificateType client_certificate_type;
 }
 } ClientCertTypeExtension;

 struct {
 select(ClientOrServerExtension)
 case client:
 CertificateType server_certificate_types<1..2^8-1>;
 case server:
 CertificateType server_certificate_type;
 }
 } ServerCertTypeExtension;

 Figure 5: CertTypeExtension Structure.

 No new cipher suites are required to use raw public keys. All
 existing cipher suites that support a key exchange method compatible
 with the defined extension can be used.

Wouters, et al. Expires January 17, 2014 [Page 6]

Internet-Draft TLS OOB Public Key Validation July 2013

4. TLS Handshake Extension

4.1. Client Hello

 In order to indicate the support of out-of-band raw public keys,
 clients MUST include the 'client_certificate_type' and
 'server_certificate_type' extensions in an extended client hello
 message. The hello extension mechanism is described in TLS 1.2
 [RFC5246].

4.2. Server Hello

 If the server receives a client hello that contains the
 'client_certificate_type' and 'server_certificate_type' extensions
 and chooses a cipher suite then three outcomes are possible:

 1. The server does not support the extension defined in this
 document. In this case the server returns the server hello
 without the extensions defined in this document.

 2. The server supports the extension defined in this document and
 has at least one certificate type in common with the client. In
 this case it returns the 'server_certificate_type' and indicates
 the selected certificate type value.

 3. The server supports the extension defined in this document but
 does not have a certificate type in common with the client. In
 this case the server terminate the session with a fatal alert of
 type "unsupported_certificate".

 If the TLS server also requests a certificate from the client (via
 the certificate_request) it MUST include the
 'client_certificate_type' extension with a value chosen from the list
 of client-supported certificates types (as provided in the
 'client_certificate_type' of the client hello).

 If the client hello indicates support of raw public keys in the
 'client_certificate_type' extension and the server chooses to use raw
 public keys then the TLS server MUST place the SubjectPublicKeyInfo
 structure into the Certificate payload.

4.3. Certificate Request

 The semantics of this message remain the same as in the TLS
 specification.

4.4. Other Handshake Messages

https://datatracker.ietf.org/doc/html/rfc5246

Wouters, et al. Expires January 17, 2014 [Page 7]

Internet-Draft TLS OOB Public Key Validation July 2013

 All the other handshake messages are identical to the TLS
 specification.

4.5. Client authentication

 Client authentication by the TLS server is supported only through
 authentication of the received client SubjectPublicKeyInfo via an
 out-of-band method.

5. Examples

 Figure 6, Figure 7, and Figure 8 illustrate example exchanges.

 The first example shows an exchange where the TLS client indicates
 its ability to receive and validate raw public keys from the server.
 In our example the client is quite restricted since it is unable to
 process other certificate types sent by the server. It also does not
 have credentials (at the TLS layer) it could send. The
 'client_certificate_type' extension indicates this in [1]. When the
 TLS server receives the client hello it processes the
 'client_certificate_type' extension. Since it also has a raw public
 key it indicates in [2] that it had chosen to place the
 SubjectPublicKeyInfo structure into the Certificate payload [3]. The
 client uses this raw public key in the TLS handshake and an out-of-
 band technique, such as DANE, to verify its validity.

 client_hello,
 server_certificate_type=(RawPublicKey) -> // [1]

 <- server_hello,
 server_certificate_type=(RawPublicKey), // [2]
 certificate, // [3]
 server_key_exchange,
 server_hello_done

 client_key_exchange,
 change_cipher_spec,
 finished ->

 <- change_cipher_spec,
 finished

 Application Data <-------> Application Data

 Figure 6: Example with Raw Public Key provided by the TLS Server

Wouters, et al. Expires January 17, 2014 [Page 8]

Internet-Draft TLS OOB Public Key Validation July 2013

 In our second example the TLS client as well as the TLS server use
 raw public keys. This is a use case envisioned for smart object
 networking. The TLS client in this case is an embedded device that
 is configured with a raw public key for use with TLS and is also able
 to process raw public keys sent by the server. Therefore, it
 indicates these capabilities in [1]. As in the previously shown
 example the server fulfills the client's request, indicates this via
 the "RawPublicKey" value in the server_certificate_type payload, and
 provides a raw public key into the Certificate payload back to the
 client (see [3]). The TLS server, however, demands client
 authentication and therefore a certificate_request is added [4]. The
 certificate_type payload in [2] indicates that the TLS server accepts
 raw public keys. The TLS client, who has a raw public key pre-
 provisioned, returns it in the Certificate payload [5] to the server.

 client_hello,
 client_certificate_type=(RawPublicKey) // [1]
 server_certificate_type=(RawPublicKey) // [1]
 ->
 <- server_hello,
 server_certificate_type=(RawPublicKey)//[2]
 certificate, // [3]
 client_certificate_type=(RawPublicKey)//[4]
 certificate_request, // [4]
 server_key_exchange,
 server_hello_done

 certificate, // [5]
 client_key_exchange,
 change_cipher_spec,
 finished ->

 <- change_cipher_spec,
 finished

 Application Data <-------> Application Data

 Figure 7: Example with Raw Public Key provided by the TLS Server and
 the Client

 In our last example we illustrate a combination of raw public key and
 X.509 usage. The client uses a raw public key for client
 authentication but the server provides an X.509 certificate. This
 exchange starts with the client indicating its ability to process
 X.509 certificates provided by the server, and the ability to send
 raw public keys (see [1]). The server provides the X.509 certificate

Wouters, et al. Expires January 17, 2014 [Page 9]

Internet-Draft TLS OOB Public Key Validation July 2013

 in [3] with the indication present in [2]. For client authentication
 the server indicates in [4] that it selected the raw public key
 format and requests a certificate from the client in [5]. The TLS
 client provides a raw public key in [6] after receiving and
 processing the TLS server hello message.

 client_hello,
 server_certificate_type=(X.509)
 client_certificate_type=(RawPublicKey) // [1]
 ->
 <- server_hello,
 server_certificate_type=(X.509)//[2]
 certificate, // [3]
 client_certificate_type=(RawPublicKey)//[4]
 certificate_request, // [5]
 server_key_exchange,
 server_hello_done
 certificate, // [6]
 client_key_exchange,
 change_cipher_spec,
 finished ->

 <- change_cipher_spec,
 finished

 Application Data <-------> Application Data

 Figure 8: Hybrid Certificate Example

6. Security Considerations

 The transmission of raw public keys, as described in this document,
 provides benefits by lowering the over-the-air transmission overhead
 since raw public keys are quite naturally smaller than an entire
 certificate. There are also advantages from a code size point of
 view for parsing and processing these keys. The cryptographic
 procedures for associating the public key with the possession of a
 private key also follows standard procedures.

 The main security challenge is, however, how to associate the public
 key with a specific entity. Without a secure binding between
 identity and key the protocol will be vulnerable to masquerade and
 man-in-the-middle attacks. This document assumes that such binding
 can be made out-of-band and we list a few examples in Section 1.
 DANE [RFC6698] offers one such approach. In order to address these
 vulnerabilities, specifications that make use of the extension MUST

https://datatracker.ietf.org/doc/html/rfc6698

Wouters, et al. Expires January 17, 2014 [Page 10]

Internet-Draft TLS OOB Public Key Validation July 2013

 specify how the identity and public key are bound. If public keys
 are obtained using DANE, these public keys are authenticated via
 DNSSEC. Pre-configured keys is another out of band method for
 authenticating raw public keys. While pre-configured keys are not
 suitable for a generic Web-based e-commerce environment such keys are
 a reasonable approach for many smart object deployments where there
 is a close relationship between the software running on the device
 and the server-side communication endpoint. Regardless of the chosen
 mechanism for out-of-band public key validation an assessment of the
 most suitable approach has to be made prior to the start of a
 deployment to ensure the security of the system.

7. IANA Considerations

 IANA is asked to register a new value in the "TLS Certificate Types"
 registry of Transport Layer Security (TLS) Extensions
 [TLS-Certificate-Types-Registry], as follows:

 Value: 2
 Description: Raw Public Key
 Reference: [[THIS RFC]]

 This document asks IANA to allocate two new TLS extensions,
 "client_certificate_type" and "server_certificate_type", from the TLS
 ExtensionType registry defined in [RFC5246]. These extensions are
 used in both the client hello message and the server hello message.
 The new extension type is used for certificate type negotiation. The
 values carried in these extensions are taken from the TLS Certificate
 Types registry [TLS-Certificate-Types-Registry].

8. Acknowledgements

 The feedback from the TLS working group meeting at IETF#81 has
 substantially shaped the document and we would like to thank the
 meeting participants for their input. The support for hashes of
 public keys has been moved to [I-D.ietf-tls-cached-info] after the
 discussions at the IETF#82 meeting.

 We would like to thank the following persons for their review
 comments: Martin Rex, Bill Frantz, Zach Shelby, Carsten Bormann,
 Cullen Jennings, Rene Struik, Alper Yegin, Jim Schaad, Barry Leiba,
 Paul Hoffman, Robert Cragie, Nikos Mavrogiannopoulos, Phil Hunt, John
 Bradley, Klaus Hartke, Stefan Jucker, Kovatsch Matthias, Daniel Kahn
 Gillmor, Peter Sylvester, and James Manger. Nikos Mavrogiannopoulos
 contributed the design for re-using the certificate type registry.

https://datatracker.ietf.org/doc/html/rfc5246

Wouters, et al. Expires January 17, 2014 [Page 11]

Internet-Draft TLS OOB Public Key Validation July 2013

 Barry Leiba contributed guidance for the IANA consideration text.
 Stefan Jucker, Kovatsch Matthias, and Klaus Hartke provided
 implementation feedback regarding the SubjectPublicKeyInfo structure.

 We would like to thank our TLS working group chairs, Eric Rescorla
 and Joe Salowey, for their guidance and support. Finally, we would
 like to thank Sean Turner, who is the responsible security area
 director for this work for his review comments and suggestions.

9. References

9.1. Normative References

 [PKIX] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 3279, April 2002.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [TLS-Certificate-Types-Registry]
 , "TLS Certificate Types Registry", February 2013, <http:/
 /www.iana.org/assignments/tls-extensiontype-values#tls-
 extensiontype-values-2>.

 [X.690] , "Information technology - ASN.1 encoding rules: >
 Specification of Basic Encoding Rules (BER), Canonical >
 Encoding Rules (CER) and Distinguished Encoding Rules >
 (DER).", RFC 5280, 2002.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5480
https://datatracker.ietf.org/doc/html/rfc5280

Wouters, et al. Expires January 17, 2014 [Page 12]

Internet-Draft TLS OOB Public Key Validation July 2013

9.2. Informative References

 [ASN.1-Dump]
 Gutmann, P., "ASN.1 Object Dump Program", February 2013,
 <http://www.cs.auckland.ac.nz/~pgut001/>.

 [Defeating-SSL]
 Marlinspike, M., "New Tricks for Defeating SSL in
 Practice", February 2009, <http://www.blackhat.com/

presentations/bh-dc-09/Marlinspike/BlackHat-DC-09
-Marlinspike-Defeating-SSL.pdf>.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [I-D.ietf-tls-cached-info]
 Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", draft-ietf-tls-

cached-info-14 (work in progress), March 2013.

 [LDAP] Sermersheim, J., "Lightweight Directory Access Protocol
 (LDAP): The Protocol", RFC 4511, June 2006.

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, August 2012.

Appendix A. Example Encoding

 For example, the following hex sequence describes a
 SubjectPublicKeyInfo structure inside the certificate payload:

 0 1 2 3 4 5 6 7 8 9
 ---+------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1 | 0x30, 0x81, 0x9f, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48,
 2 | 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x81,
 3 | 0x8d, 0x00, 0x30, 0x81, 0x89, 0x02, 0x81, 0x81, 0x00, 0xcd,
 4 | 0xfd, 0x89, 0x48, 0xbe, 0x36, 0xb9, 0x95, 0x76, 0xd4, 0x13,
 5 | 0x30, 0x0e, 0xbf, 0xb2, 0xed, 0x67, 0x0a, 0xc0, 0x16, 0x3f,
 6 | 0x51, 0x09, 0x9d, 0x29, 0x2f, 0xb2, 0x6d, 0x3f, 0x3e, 0x6c,
 7 | 0x2f, 0x90, 0x80, 0xa1, 0x71, 0xdf, 0xbe, 0x38, 0xc5, 0xcb,
 8 | 0xa9, 0x9a, 0x40, 0x14, 0x90, 0x0a, 0xf9, 0xb7, 0x07, 0x0b,
 9 | 0xe1, 0xda, 0xe7, 0x09, 0xbf, 0x0d, 0x57, 0x41, 0x86, 0x60,
 10 | 0xa1, 0xc1, 0x27, 0x91, 0x5b, 0x0a, 0x98, 0x46, 0x1b, 0xf6,
 11 | 0xa2, 0x84, 0xf8, 0x65, 0xc7, 0xce, 0x2d, 0x96, 0x17, 0xaa,

http://www.cs.auckland.ac.nz/~pgut001/
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-18
https://datatracker.ietf.org/doc/html/draft-ietf-tls-cached-info-14
https://datatracker.ietf.org/doc/html/draft-ietf-tls-cached-info-14
https://datatracker.ietf.org/doc/html/rfc4511
https://datatracker.ietf.org/doc/html/rfc6698

Wouters, et al. Expires January 17, 2014 [Page 13]

Internet-Draft TLS OOB Public Key Validation July 2013

 12 | 0x91, 0xf8, 0x61, 0x04, 0x50, 0x70, 0xeb, 0xb4, 0x43, 0xb7,
 13 | 0xdc, 0x9a, 0xcc, 0x31, 0x01, 0x14, 0xd4, 0xcd, 0xcc, 0xc2,
 14 | 0x37, 0x6d, 0x69, 0x82, 0xd6, 0xc6, 0xc4, 0xbe, 0xf2, 0x34,
 15 | 0xa5, 0xc9, 0xa6, 0x19, 0x53, 0x32, 0x7a, 0x86, 0x0e, 0x91,
 16 | 0x82, 0x0f, 0xa1, 0x42, 0x54, 0xaa, 0x01, 0x02, 0x03, 0x01,
 17 | 0x00, 0x01

 Figure 9: Example SubjectPublicKeyInfo Structure Byte Sequence.

 The decoded byte-sequence shown in Figure 9 (for example using
 Peter's ASN.1 decoder [ASN.1-Dump]) illustrates the structure, as
 shown in Figure 10.

 Offset Length Description

 0 3+159: SEQUENCE {
 3 2+13: SEQUENCE {
 5 2+9: OBJECT IDENTIFIER Value (1 2 840 113549 1 1 1)
 : PKCS #1, rsaEncryption
 16 2+0: NULL
 : }
 18 3+141: BIT STRING, encapsulates {
 22 3+137: SEQUENCE {
 25 3+129: INTEGER Value (1024 bit)
 157 2+3: INTEGER Value (65537)
 : }
 : }
 : }

 Figure 10: Decoding of Example SubjectPublicKeyInfo Structure.

Authors' Addresses

 Paul Wouters (editor)
 Red Hat

 Email: paul@nohats.ca

Wouters, et al. Expires January 17, 2014 [Page 14]

Internet-Draft TLS OOB Public Key Validation July 2013

 Hannes Tschofenig (editor)
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 John Gilmore
 PO Box 170608
 San Francisco, California 94117
 USA

 Phone: +1 415 221 6524
 Email: gnu@toad.com
 URI: https://www.toad.com/

 Samuel Weiler
 SPARTA, Inc.
 7110 Samuel Morse Drive
 Columbia, Maryland 21046
 US

 Email: weiler@tislabs.com

 Tero Kivinen
 AuthenTec
 Eerikinkatu 28
 HELSINKI FI-00180
 FI

 Email: kivinen@iki.fi

http://www.tschofenig.priv.at
https://www.toad.com/

Wouters, et al. Expires January 17, 2014 [Page 15]

