
Transport Layer Security Working Group Tim Dierks
INTERNET-DRAFT Consensus Development

 Christopher Allen
 Consensus Development

Expires August 31, 1997 March 6, 1997

The TLS Protocol
Version 1.0

 <draft-ietf-tls-protocol-01.txt>

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or made obsolete by other
 documents at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as work in progress.

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 This document specifies Version 1.0 of the Transport Layer Security
 (TLS) protocol, which is at this stage is strictly based on the
 Secure Sockets Layer (SSL) version 3.0 protocol, and is to serve as
 a basis for future discussions. The TLS protocol provides
 communications privacy over the Internet. The protocol allows
 client/server applications to communicate in a way that is designed
 to prevent eavesdropping, tampering, or message forgery.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-protocol-01.txt

Dierks, T. Expires August, 1997 [Page 1]

INTERNET-DRAFT TLS 1.0 March 1997

Table of Contents

 Status of this memo 1
 Abstract 1
 Table of Contents 2
 1. Introduction 3
 2. Goals 4
 3. Goals of this document 5
 4. Presentation language 5
 4.1. Basic block size 6
 4.2. Miscellaneous 6
 4.3. Vectors 6
 4.4. Numbers 7
 4.5. Enumerateds 7
 4.6. Constructed types 8
 4.6.1. Variants 8
 4.7. Cryptographic attributes 9
 4.8. Constants 10
 5. The TLS Record Protocol 11
 5.1. Connection states 11
 5.2. HMAC and the pseudorandom function 14
 5.3. Record layer 14
 5.3.1. Fragmentation 14
 5.3.2. Record compression and decompression 15
 5.3.3. Record payload protection 16
 5.3.3.1. Null or standard stream cipher 17
 5.3.3.2. CBC block cipher 17
 5.4. Key calculation 18
 5.4.1. Export key generation example 20
 6. The TLS Handshake Protocol 20
 6.1. Change cipher spec protocol 21
 6.2. Alert protocol 22
 6.2.1. Closure alerts 22
 6.2.2. Error alerts 23
 6.3. Handshake Protocol overview 25
 6.4. Handshake protocol 28
 6.4.1. Hello messages 29
 6.4.1.1. Hello request 29
 6.4.1.2. Client hello 29
 6.4.1.3. Server hello 32
 6.4.2. Server certificate 33
 6.4.3. Server key exchange message 34
 6.4.4. Certificate request 36
 6.4.5. Server hello done 37
 6.4.6. Client certificate 38
 6.4.7. Client key exchange message 38
 6.4.7.1. RSA encrypted premaster secret message 39
 6.4.7.2. Client Diffie-Hellman public value 39
 6.4.8. Certificate verify 40

 6.4.9. Finished 40
 7. Cryptographic computations 41
 7.1. Computing the master secret 42

Dierks, T. Expires August, 1997 [Page 2]

INTERNET-DRAFT TLS 1.0 March 1997

 7.1.1. RSA 42
 7.1.2. Diffie-Hellman 42
 8. Application data protocol 42
 A. Protocol constant values 42
 A.1. Reserved port assignments 43
 A.2. Record layer 43
 A.3. Change cipher specs message 44
 A.4. Alert messages 44
 A.5. Handshake protocol 45
 A.5.1. Hello messages 45
 A.5.2. Server authentication and key exchange messages 46
 A.5.3. Client authentication and key exchange messages 47
 A.5.4. Handshake finalization message 47
 A.6. The CipherSuite 48
 A.7. The Security Parameters 49
 B. Glossary 50
 C. CipherSuite definitions 53
 D. Implementation Notes 55
 D.1. Temporary RSA keys 55
 D.2. Random Number Generation and Seeding 55
 D.3. Certificates and authentication 56
 D.4. CipherSuites 56
 E. Backward Compatibility With SSL 56
 E.1. Version 2 client hello 58
 E.2. Avoiding man-in-the-middle version rollback 59
 F. Security analysis 59
 F.1. Handshake protocol 59
 F.1.1. Authentication and key exchange 60
 F.1.1.1. Anonymous key exchange 60
 F.1.1.2. RSA key exchange and authentication 61
 F.1.1.3. Diffie-Hellman key exchange with authentication 61
 F.1.2. Version rollback attacks 62
 F.1.3. Detecting attacks against the handshake protocol 62
 F.1.4. Resuming sessions 62
 F.1.5. MD5 and SHA 63
 F.2. Protecting application data 63
 F.3. Final notes 63
 G. Patent Statement 64
 References 64
 Credits 66
 Comments 67

1. Introduction

 The primary goal of the TLS Protocol is to provide privacy and
 reliability between two communicating applications. The protocol is
 composed of two layers: the TLS Record Protocol and the TLS
 Handshake Protocol. At the lowest level, layered on top of some
 reliable transport protocol (e.g., TCP[TCP]), is the TLS Record

 Protocol. The TLS Record Protocol provides connection security that
 has two basic properties:

Dierks, T. Expires August, 1997 [Page 3]

INTERNET-DRAFT TLS 1.0 March 1997

 - The connection is private. Symmetric cryptography is used for
 data encryption (e.g., DES[DES], RC4[RC4], etc.) The keys for
 this symmetric encryption are generated uniquely for each
 connection and are based on a secret negotiated by another
 protocol (such as the TLS Handshake Protocol). The Record
| Protocol can also be used without encryption.

 - The connection is reliable. Message transport includes a message
 integrity check using a keyed MAC. Secure hash functions (e.g.,
 SHA, MD5, etc.) are used for MAC computations. The Record
 Protocol can operate without a MAC, but is generally only used
 in this mode while another protocol is using the Record Protocol
 as a transport for negotiating security parameters.

 The TLS Record Protocol is used for encapsulation of various higher
 level protocols. One such encapsulated protocol, the TLS Handshake
 Protocol, allows the server and client to authenticate each other
 and to negotiate an encryption algorithm and cryptographic keys
 before the application protocol transmits or receives its first byte
 of data. The TLS Handshake Protocol provides connection security
 that has three basic properties:

 - The peer's identity can be authenticated using asymmetric, or
 public key, cryptography (e.g., RSA[RSA], DSS[DSS], etc.). This
 authentication can be made optional, but is generally required
 for at least one of the peers.

 - The negotiation of a shared secret is secure: the negotiated
| secret is unavailable to eavesdroppers, and for any
| authenticated connection the secret cannot be obtained, even by
| an attacker who can place himself in the middle of the
| connection.

 - The negotiation is reliable: no attacker can modify the
| negotiation communication without being detected by the parties
| to the communication.

 One advantage of TLS is that it is application protocol independent.
| Higher level protocols can layer on top of the TLS Protocol
 transparently.

2. Goals

 The goals of TLS Protocol, in order of their priority, are:

 1. Cryptographic security: TLS should be used to establish a secure
 connection between two parties.

 2. Interoperability: Independent programmers should be able to
 develop applications utilizing TLS that will then be able to

 successfully exchange cryptographic parameters without knowledge
 of one another's code.

Dierks, T. Expires August, 1997 [Page 4]

INTERNET-DRAFT TLS 1.0 March 1997

 Note: It is not the case that all instances of TLS (even in the same
 application domain) will be able to successfully connect. For
 instance, if the server supports a particular hardware token,
 and the client does not have access to such a token, then the
| connection will not succeed. There is no required set of ciphers
| for minimal compliance, so some implementations may be unable to
| communicate.

 3. Extensibility: TLS seeks to provide a framework into which new
 public key and bulk encryption methods can be incorporated as
 necessary. This will also accomplish two sub-goals: to prevent
 the need to create a new protocol (and risking the introduction
 of possible new weaknesses) and to avoid the need to implement
 an entire new security library.

 4. Relative efficiency: Cryptographic operations tend to be highly
 CPU intensive, particularly public key operations. For this
 reason, the TLS protocol has incorporated an optional session
 caching scheme to reduce the number of connections that need to
 be established from scratch. Additionally, care has been taken
 to reduce network activity.

3. Goals of this document

| This document and the TLS protocol itself are based on the SSL 3.0
| Protocol Specification as published by Netscape. The differences
| between this protocol and SSL 3.0 are not dramatic, but they are
| significant enough that TLS 1.0 and SSL 3.0 do not interoperate
| (although TLS 1.0 does incorporate a mechanism by which a TLS
| implementation can back down to SSL 3.0). This document is intended
| primarily for readers who will be implementing the protocol and
| those doing cryptographic analysis of it. The spec has been written
| with this in mind, and it is intended to reflect the needs of those
| two groups. For that reason, many of the algorithm-dependent data
| structures and rules are included in the body of the text (as
| opposed to in an Appendix), providing easier access to them.

 This document is not intended to supply any details of service
 definition nor interface definition, although it does cover select
 areas of policy as they are required for the maintenance of solid
 security.

4. Presentation language

 This document deals with the formatting of data in an external
 representation. The following very basic and somewhat casually
 defined presentation syntax will be used. The syntax draws from
 several sources in its structure. Although it resembles the
 programming language "C" in its syntax and XDR [XDR] in both its

 syntax and intent, it would be risky to draw too many parallels. The
 purpose of this presentation language is to document TLS only, not
 to have general application beyond that particular goal.

Dierks, T. Expires August, 1997 [Page 5]

INTERNET-DRAFT TLS 1.0 March 1997

4.1. Basic block size

 The representation of all data items is explicitly specified. The
 basic data block size is one byte (i.e. 8 bits). Multiple byte data
 items are concatenations of bytes, from left to right, from top to
 bottom. From the bytestream a multi-byte item (a numeric in the
 example) is formed (using C notation) by:

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

 This byte ordering for multi-byte values is the commonplace network
 byte order or big endian format.

4.2. Miscellaneous

 Comments begin with "/*" and end with "*/".

 Optional components are denoted by enclosing them in "[[]]" double
 brackets.

 Single byte entities containing uninterpreted data are of type
 opaque.

4.3. Vectors

 A vector (single dimensioned array) is a stream of homogeneous data
 elements. The size of the vector may be specified at documentation
 time or left unspecified until runtime. In either case the length
 declares the number of bytes, not the number of elements, in the
 vector. The syntax for specifying a new type T' that is a fixed
 length vector of type T is

 T T'[n];

 Here T' occupies n bytes in the data stream, where n is a multiple
 of the size of T. The length of the vector is not included in the
 encoded stream.

 In the following example, Datum is defined to be three consecutive
 bytes that the protocol does not interpret, while Data is three
 consecutive Datum, consuming a total of nine bytes.

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* 3 consecutive 3 byte vectors */

 Variable length vectors are defined by specifying a subrange of
 legal lengths, inclusively, using the notation <floor..ceiling>.
 When encoded, the actual length precedes the vector's contents in
 the byte stream. The length will be in the form of a number

 consuming as many bytes as required to hold the vector's specified
 maximum (ceiling) length. A variable length vector with an actual

Dierks, T. Expires August, 1997 [Page 6]

INTERNET-DRAFT TLS 1.0 March 1997

 length field of zero is referred to as an empty vector.

 T T'<floor..ceiling>;

 In the following example, mandatory is a vector that must contain
 between 300 and 400 bytes of type opaque. It can never be empty. The
 actual length field consumes two bytes, a uint16, sufficient to
 represent the value 400 (see Section 4.4). On the other hand, longer
 can represent up to 800 bytes of data, or 400 uint16 elements, and
 it may be empty. Its encoding will include a two byte actual length
 field prepended to the vector.

 opaque mandatory<300..400>;
 /* length field is 2 bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

4.4. Numbers

 The basic numeric data type is an unsigned byte (uint8). All larger
 numeric data types are formed from fixed length series of bytes
 concatenated as described in Section 4.1 and are also unsigned. The
 following numeric types are predefined.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

| All values, here and elsewhere in the specification, are stored in
| "network" or "big-endian" order; the uint32 represented by the hex
| bytes 01 02 03 04 is equivalent to the decimal value 16909060.

4.5. Enumerateds

 An additional sparse data type is available called enum. A field of
 type enum can only assume the values declared in the definition.
 Each definition is a different type. Only enumerateds of the same
 type may be assigned or compared. Every element of an enumerated
 must be assigned a value, as demonstrated in the following example.
 Since the elements of the enumerated are not ordered, they can be
 assigned any unique value, in any order.

 enum { e1(v1), e2(v2), ... , en(vn), [[(n)]] } Te;

 Enumerateds occupy as much space in the byte stream as would its
 maximal defined ordinal value. The following definition would cause
 one byte to be used to carry fields of type Color.

 enum { red(3), blue(5), white(7) } Color;

Dierks, T. Expires August, 1997 [Page 7]

INTERNET-DRAFT TLS 1.0 March 1997

 One may optionally specify a value without its associated tag to
 force the width definition without defining a superfluous element.
 In the following example, Taste will consume two bytes in the data
 stream but can only assume the values 1, 2 or 4.

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

 The names of the elements of an enumeration are scoped within the
 defined type. In the first example, a fully qualified reference to
 the second element of the enumeration would be Color.blue. Such
 qualification is not required if the target of the assignment is
 well specified.

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

 For enumerateds that are never converted to external representation,
 the numerical information may be omitted.

 enum { low, medium, high } Amount;

4.6. Constructed types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } [[T]];

 The fields within a structure may be qualified using the type's name
 using a syntax much like that available for enumerateds. For
 example, T.f2 refers to the second field of the previous
 declaration. Structure definitions may be embedded.

4.6.1. Variants

 Defined structures may have variants based on some knowledge that is
 available within the environment. The selector must be an enumerated
 type that defines the possible variants the structure defines. There
 must be a case arm for every element of the enumeration declared in
 the select. The body of the variant structure may be given a label
 for reference. The mechanism by which the variant is selected at
 runtime is not prescribed by the presentation language.

 struct {

 T1 f1;
 T2 f2;

Dierks, T. Expires August, 1997 [Page 8]

INTERNET-DRAFT TLS 1.0 March 1997

 Tn fn;
 select (E) {
 case e1: Te1;
 case e2: Te2;

 case en: Ten;
 } [[fv]];
 } [[Tv]];

 For example:

 enum { apple, orange } VariantTag;
 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;
 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;
 struct {
 select (VariantTag) { /* value of selector is implicit */
 case apple: V1; /* VariantBody, tag = apple */
 case orange: V2; /* VariantBody, tag = orange */
 } variant_body; /* optional label on variant */
 } VariantRecord;

 Variant structures may be qualified (narrowed) by specifying a value
 for the selector prior to the type. For example, a

 orange VariantRecord

 is a narrowed type of a VariantRecord containing a variant_body of
 type V2.

4.7. Cryptographic attributes

 The four cryptographic operations digital signing, stream cipher
 encryption, block cipher encryption, and public key encryption are
 designated digitally-signed, stream-ciphered, block-ciphered, and
 public-key-encrypted, respectively. A field's cryptographic
 processing is specified by prepending an appropriate key word
 designation before the field's type specification. Cryptographic
 keys are implied by the current session state (see Section 5.1).

 In digital signing, one-way hash functions are used as input for a
 signing algorithm. In RSA signing, a 36-byte structure of two hashes
 (one SHA and one MD5) is signed (encrypted with the private key). In

 DSS, the 20 bytes of the SHA hash are run directly through the
 Digital Signing Algorithm with no additional hashing. A
 digitally-signed element is encoded as an opaque vector <0..2^16-1>,

Dierks, T. Expires August, 1997 [Page 9]

INTERNET-DRAFT TLS 1.0 March 1997

 where the length is specified by the signing algorithm and key.

 In stream cipher encryption, the plaintext is exclusive-ORed with an
 identical amount of output generated from a cryptographically-secure
 keyed pseudorandom number generator.

 In block cipher encryption, every block of plaintext encrypts to a
 block of ciphertext. All block cipher encryption is done in CBC
 (Cipher Block Chaining) mode, and all items which are block-ciphered
 will be an exact multiple of the cipher block length.

 In public key encryption, a public key algorithm is used to encrypt
 data in such a way that it can be decrypted only with the matching
 private key. A public-key-encrypted element is encoded as an opaque
 vector <0..2^16-1>, where the length is specified by the signing
 algorithm and key.

 In the following example:

 stream-ciphered struct {
 uint8 field1;
 uint8 field2;
 digitally-signed opaque hash[20];
 } UserType;

 The contents of hash are used as input for the signing algorithm,
 then the entire structure is encrypted with a stream cipher. The
 length of this structure, in bytes would be equal to 2 bytes for
 field1 and field2, plus two bytes for the length of the signature,
 plus the length of the output of the signing algorithm. This is
 known due to the fact that the algorithm and key used for the
 signing are known prior to encoding or decoding this structure.

4.8. Constants

 Typed constants can be defined for purposes of specification by
 declaring a symbol of the desired type and assigning values to it.
 Under-specified types (opaque, variable length vectors, and
 structures that contain opaque) cannot be assigned values. No fields
 of a multi-element structure or vector may be elided.

 For example,

 struct {
 uint8 f1;
 uint8 f2;
 } Example1;

 Example1 ex1 = {1, 4}; /* assigns f1 = 1, f2 = 4 */

Dierks, T. Expires August, 1997 [Page 10]

INTERNET-DRAFT TLS 1.0 March 1997

5. The TLS Record Protocol

 The TLS Record Protocol is a layered protocol. At each layer,
 messages may include fields for length, description, and content.
 The Record Protocol takes messages to be transmitted, fragments the
 data into manageable blocks, optionally compresses the data, applies
 a MAC, encrypts, and transmits the result. Received data is
 decrypted, verified, decompressed, and reassembled, then delivered
 to higher level clients.

| Four record protocol clients are described in this document: the
| handshake protocol, the alert protocol, the change cipher spec
| protocol, and the application data protocol. In order to allow
| extension of the TLS protocol, additional record types can be
| supported by the record protocol. Any new record types should
| allocate type values immediately beyond the ContentType values for
| the four record types described here (see Appendix A.2). If a TLS
| implementation receives a record type it does not understand, it
| should just ignore it. Any protocol designed for use over TLS must
| be carefully designed to deal with all possible attacks against it.

5.1. Connection states

 A TLS connection state is the operating environment of the TLS
 Record Protocol. It specifies a compression algorithm, encryption
 algorithm, and MAC algorithm. In addition, the parameters for these
 algorithms are known: the MAC secret and the bulk encryption keys
 and IVs for the connection in both the read and the write
 directions. Logically, there are always four connection states
 outstanding: the current read and write states, and the pending read
 and write states. All records are processed under the current read
 and write states. The security parameters for the pending states can
 be set by the TLS Handshake Protocol, and the Handshake Protocol can
 selectively make either of the pending states current, in which case
 the appropriate current state is disposed of and replaced with the
 pending state; the pending state is then reinitialized to an empty
 state. It is illegal to make a state which has not been initialized
 with security parameters a current state (although those security
 parameters may specify that no compression, encryption or MAC
 algorithm is to be used). The initial current state always specifies
 that no encryption, compression, or MAC will be used.

 The security parameters for a TLS Connection read and write state
 are set by providing the following values:

 connection end
 Whether this entity is considered the "client" or the "server"
 in this connection.

 bulk encryption algorithm
 An algorithm to be used for bulk encryption. This specification
 includes the key size of this algorithm, how much of that key is

Dierks, T. Expires August, 1997 [Page 11]

INTERNET-DRAFT TLS 1.0 March 1997

 secret, whether it is a block or stream cipher, the block size
 of the cipher (if appropriate), and whether it is considered an
 "export" cipher.

 MAC algorithm
 An algorithm to be used for message authentication. This
| specification includes the size of the hash which is returned by
| the MAC algorithm.

 compression algorithm
 An algorithm to be used for data compression. This specification
 must include all information the algorithm requires to do
 compression.

 master secret
 A 48 byte secret shared between the two peers in the connection.

 client random
 A 32 byte value provided by the client.

 server random
 A 32 byte value provided by the server.

 These parameters are defined in the presentation language as:

 enum { server, client } ConnectionEnd;

 enum { null, rc4, rc2, des, 3des, des40 } BulkCipherAlgorithm;

 enum { stream, block } CipherType;

 enum { true, false } IsExportable;

 enum { null, md5, sha } MACAlgorithm;

 enum { null(0), (255) } CompressionMethod;

 /* The algorithms specified in CompressionMethod,
 BulkCipherAlgorithm, and MACAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 BulkCipherAlgorithm bulk_cipher_algorithm;
 CipherType cipher_type;
 uint8 key_size;
 uint8 key_material_length;
 IsExportable is_exportable;
 MACAlgorithm mac_algorithm;
 uint8 hash_size;
 CompressionMethod compression_algorithm;

 opaque master_secret[48];
 opaque client_random[32];

Dierks, T. Expires August, 1997 [Page 12]

INTERNET-DRAFT TLS 1.0 March 1997

 opaque server_random[32];
 } SecurityParameters;

 The record layer will use the security parameters to generate the
 following six items:

 client write MAC secret
 server write MAC secret
 client write key
 server write key
 client write IV (for block ciphers only)
 server write IV (for block ciphers only)

 The client write parameters are used by the server when receiving
 and processing records and vice-versa. The algorithm used for
 generating these items from the security parameters is described in

section 5.4.

 Once the security parameters have been set and the keys have been
 generated, the connection states can be instantiated by making them
 the current states. These current states must be updated for each
 record processed. Each connection state includes the following
 elements:

 compression state
 The current state of the compression algorithm.

 cipher state
 The current state of the encryption algorithm. This will consist
 of the scheduled key for that connection. In addition, for block
| ciphers running in CBC mode, this will initially contain the IV
| for that connection state and be updated to contain the
| ciphertext of the last block encrypted or decrypted as records
| are processed. For block ciphers in other modes, whatever state
| is necessary to sustain encryption or decryption must be
| maintained. For stream ciphers, this will contain whatever the
| necessary state information is to allow the stream to continue
| to encrypt or decrypt data.

 MAC secret
 The MAC secret for this connection as generated above.

 sequence number
 Each connection state contains a sequence number, which is
 maintained seperately for read and write states. The sequence
 number must be set to zero whenever a connection state is made
 the active state. Sequence numbers are of type uint64 and may
 not exceed 2^64-1. A sequence number is incremented after each
 record: specifically, the first record which is transmitted

 under a particular connection state should use sequence number
 0.

Dierks, T. Expires August, 1997 [Page 13]

INTERNET-DRAFT TLS 1.0 March 1997

5.2. HMAC and the pseudorandom function

| A number of operations in the TLS record and handshake layer
| required a keyed MAC; this is a secure digest of some data protected
| by a secret. Forging the MAC is infeasible without knowledge of the
| MAC secret. Finding two data messages which have the same MAC is
| also cryptographically infeasible. The construction we use for this
| operation is known as HMAC, described in [HMAC].

| HMAC can be used with a variety of different hash algorithms. TLS
| uses it with two different algorithms: MD5 and SHA-1, denoting these
| as HMAC_MD5(secret, data) and HMAC_SHA(secret, data). In order to
| extend the security even further, an additional construction is
| defined which uses both MD5 and SHA-1: HMAC_mix(secret, data) =
| HMAC_MD5(secret, HMAC_SHA(secret, data)). This provides some
| protection against either of the algorithms being completely broken.

| In addition, TLS needs the ability to generate a chunk of random
| data of arbitrary length from a secret and a seed. To do this, a
| pseudorandom function (PRF) is defined. This function generates data
| by repeatedly applying HMAC_mix to the secret and seed, generating
| 16 bytes at a time.

| PRF(secret, seed) = HMAC_mix(secret, 'A' + seed) +

| HMAC_mix(secret, 'BB' + seed) +

| HMAC_mix(secret, 'CCC' + seed) + ...

| Where + indicates concatenation

| Where each iteration of PRF generates 16 bytes of output and
| consists of the HMAC_mix of the secret and the seed, where the seed
| is varied by prepending a string of bytes, where the first iteration
| uses a one byte string with the single value 'A' (0x40), the second
| uses a two byte string containing the value 'B' (0x41) twice, and so
| on. This can be repeated to generate up to 26 16-byte blocks, which
| is more than TLS ever requires.

5.3. Record layer

 The TLS Record Layer receives uninterpreted data from higher layers
 in non-empty blocks of arbitrary size.

5.3.1. Fragmentation

 The record layer fragments information blocks into TLSPlaintext
 records of 2^14 bytes or less. Client message boundaries are not
 preserved in the record layer (i.e., multiple client messages of the
 same ContentType may be coalesced into a single TLSPlaintext record,

 or may be fragmented across several records).

Dierks, T. Expires August, 1997 [Page 14]

INTERNET-DRAFT TLS 1.0 March 1997

 struct {
 uint8 major, minor;
 } ProtocolVersion;

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 type
 The higher level protocol used to process the enclosed fragment.

 version
 The version of the protocol being employed. This document
| describes TLS Version 1.0, which uses the version { 3, 1 }. The
| version value 3.1 is historical: TLS version 1.0 is a minor
| modification to the SSL 3.0 protocol, which bears the version
| value 3.0. (See Appendix A.1.1).

 length
 The length (in bytes) of the following TLSPlaintext.fragment.
 The length should not exceed 2^14.

 fragment
 The application data. This data is transparent and treated as an
 independent block to be dealt with by the higher level protocol
 specified by the type field.

 Note: Data of different TLS Record layer content types may be
 interleaved. Application data is generally of lower precedence
 for transmission than other content types.

5.3.2. Record compression and decompression

 All records are compressed using the compression algorithm defined
 in the current session state. There is always an active compression
 algorithm; however, initially it is defined as
 CompressionMethod.null. The compression algorithm translates a
 TLSPlaintext structure into a TLSCompressed structure. Compression
 functions are initialized with default state information whenever a
 connection state is made active.

 Compression must be lossless and may not increase the content length

 by more than 1024 bytes. If the decompression function encounters a
 TLSCompressed.fragment that would decompress to a length in excess

Dierks, T. Expires August, 1997 [Page 15]

INTERNET-DRAFT TLS 1.0 March 1997

 of 2^14 bytes, it should report a fatal decompression failure error.

 struct {
 ContentType type; /* same as TLSPlaintext.type */
 ProtocolVersion version;/* same as TLSPlaintext.version */
 uint16 length;
 opaque fragment[TLSCompressed.length];
 } TLSCompressed;

 length
 The length (in bytes) of the following TLSCompressed.fragment.
 The length should not exceed 2^14 + 1024.

 fragment
 The compressed form of TLSPlaintext.fragment.

 Note: A CompressionMethod.null operation is an identity operation; no
 fields are altered.

 Implementation note:
 Decompression functions are responsible for ensuring that
 messages cannot cause internal buffer overflows.

5.3.3. Record payload protection

 The encryption and MAC functions translate a TLSCompressed structure
 into a TLSCiphertext. The decryption functions reverse the process.
 Transmissions also include a sequence number so that missing,
 altered, or extra messages are detectable.

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 select (CipherSpec.cipher_type) {
 case stream: GenericStreamCipher;
 case block: GenericBlockCipher;
 } fragment;
 } TLSCiphertext;

 type
 The type field is identical to TLSCompressed.type.

 version
 The version field is identical to TLSCompressed.version.

 length
 The length (in bytes) of the following TLSCiphertext.fragment.
 The length may not exceed 2^14 + 2048.

Dierks, T. Expires August, 1997 [Page 16]

INTERNET-DRAFT TLS 1.0 March 1997

 fragment
 The encrypted form of TLSCompressed.fragment, with the MAC.

5.3.3.1. Null or standard stream cipher

 Stream ciphers (including BulkCipherAlgorithm.null - see Appendix
A.7) convert TLSCompressed.fragment structures to and from stream

 TLSCiphertext.fragment structures.

 stream-ciphered struct {
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 } GenericStreamCipher;

 The MAC is generated as:

| HMAC_hash(MAC_write_secret, seq_num + TLSCompressed.version +
| TLSCompressed.type + TLSCompressed.length +
| TLSCompressed.fragment));

 where "+" denotes concatenation.

 seq_num
 The sequence number for this record.

 hash
 The hashing algorithm specified by
 SecurityParameters.mac_algorithm.

 Note that the MAC is computed before encryption. The stream cipher
 encrypts the entire block, including the MAC. For stream ciphers
 that do not use a synchronization vector (such as RC4), the stream
 cipher state from the end of one record is simply used on the
 subsequent packet. If the CipherSuite is TLS_NULL_WITH_NULL_NULL,
 encryption consists of the identity operation (i.e., the data is not
 encrypted and the MAC size is zero implying that no MAC is used).
 TLSCiphertext.length is TLSCompressed.length plus
 CipherSpec.hash_size.

5.3.3.2. CBC block cipher

 For block ciphers (such as RC2 or DES), the encryption and MAC
 functions convert TLSCompressed.fragment structures to and from
 block TLSCiphertext.fragment structures.

 block-ciphered struct {
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 uint8 padding[GenericBlockCipher.padding_length];
 uint8 padding_length;

 } GenericBlockCipher;

Dierks, T. Expires August, 1997 [Page 17]

INTERNET-DRAFT TLS 1.0 March 1997

 The MAC is generated as described in Section 5.3.3.1.

 padding
 Padding that is added to force the length of the plaintext to be
| an even multiple of the block cipher's block length. The padding
| may be any length up to 255 bytes long, as long as it results in
| the TLSCiphertext.length being an even multiple of the block
| length. Lengths longer than necessary might be desirable to
| frustrate attacks on a protocol based on analysis of the lengths
| of exchanged messages. The padding data must be filled with the
| padding length repeated to fill the array.

 padding_length
 The length of the padding must be less than the cipher's block
 length and may be zero. The padding length should be such that
 the total size of the GenericBlockCipher structure is a multiple
 of the cipher's block length.

 The encrypted data length (TLSCiphertext.length) is one more than
 the sum of TLSCompressed.length, CipherSpec.hash_size, and
 padding_length.

Example: If the block length is 8 bytes, the content length
| (TLSCompressed.length) is 61 bytes, and the MAC length is 20
| bytes, the length before padding is 82 bytes. Thus, the
| padding length modulo 8 must be equal to 6 in order to make
| the total length an even multiple of 8 bytes (the block
| length). The padding length can be 6, 14, 22, and so on,
| through 254. If the padding length were the minimum necessary,
| 6, the padding would be 6 bytes, each containing the value 6.

|Note: With block ciphers in CBC mode (Cipher Block Chaining) the
 initialization vector (IV) for the first record is generated
 with the other keys and secrets when the security parameters are
 set. The IV for subsequent records is the last ciphertext block
 from the previous record.

5.4. Key calculation

 The Record Protocol requires an algorithm to generate keys, IVs, and
 MAC secrets from the security parameters provided by the handshake
 protocol.

 The master secret is hashed into a sequence of secure bytes, which
 are assigned to the MAC secrets, keys, and non-export IVs required
 by the current connection state (see Appendix A.7). CipherSpecs
 require a client write MAC secret, a server write MAC secret, a
 client write key, a server write key, a client write IV, and a
 server write IV, which are generated from the master secret in that

 order. Unused values are empty.

Dierks, T. Expires August, 1997 [Page 18]

INTERNET-DRAFT TLS 1.0 March 1997

 When generating keys and MAC secrets, the master secret is used as
 an entropy source, and the random values provide unencrypted salt
 material and IVs for exportable ciphers.

 To generate the key material, compute

| key_block = PRF(SecurityParameters.master_secret,
| SecurityParameters.master_secret +
| SecurityParameters.server_random +
| SecurityParameters.client_random);

 until enough output has been generated. Then the key_block is
 partitioned as follows:

 client_write_MAC_secret[SecurityParameters.hash_size]
 server_write_MAC_secret[SecurityParameters.hash_size]
 client_write_key[SecurityParameters.key_material]
 server_write_key[SecurityParameters.key_material]
 client_write_IV[SecurityParameters.IV_size]
 server_write_IV[SecurityParameters.IV_size]

 The client_write_IV and server_write_IV are only generated for
 non-export block ciphers. For exportable block ciphers, the
 initialization vectors are generated later, as described below. Any
 extra key_block material is discarded.

 Implementation note:
 The cipher spec which is defined in this document which requires
 the most material is 3DES_EDE_CBC_SHA: it requires 2 x 24 byte
 keys, 2 x 20 byte MAC secrets, and 2 x 8 byte IVs, for a total
 of 104 bytes of key material. This will require iterating the
| PRF algorithm seven times, through 'GGGGGGG'.

 Exportable encryption algorithms (for which CipherSpec.is_exportable
 is true) require additional processing as follows to derive their
 final write keys:

| final_client_write_key =
| PRF(SecurityParameters.client_write_key,
| SecurityParameters.client_random +
| SecurityParameters.server_random);
| final_server_write_key =
| PRF(SecurityParameters.server_write_key,
| SecurityParameters.client_random +
| SecurityParameters.server_random);

| Exportable encryption algorithms derive their IVs solely from the
| random messages:

| iv_block = PRF("", SecurityParameters.client_random +

| SecurityParameters.server_random);

Dierks, T. Expires August, 1997 [Page 19]

INTERNET-DRAFT TLS 1.0 March 1997

| The iv_block is partitioned into two initialization vectors as the
| key_block was above:

| client_write_IV[SecurityParameters.IV_size]
| server_write_IV[SecurityParameters.IV_size]

| Note that the PRF is used without a secret in this case: this just
| means that the secret has a length of zero bytes and contributes
| nothing to the hashing in the PRF.

5.4.1. Export key generation example

 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 requires five random bytes for
 each of the two encryption keys and 16 bytes for each of the MAC
 keys, for a total of 42 bytes of key material. MD5 produces 16 bytes
| of output per call, so the PRF will iterate three times internally.
| The PRF output is stored in the key_block. The key_block is
| partitioned, and the write keys are salted because this is an
| exportable encryption algorithm.

| key_block = PRF(master_secret,
| master_secret +
| server_random +
| client_random)[0..41]
 client_write_MAC_secret = key_block[0..15]
 server_write_MAC_secret = key_block[16..31]
 client_write_key = key_block[32..36]
 server_write_key = key_block[37..41]
| final_client_write_key = PRF(client_write_key,
| client_random +
| server_random)[0..15]
| final_server_write_key = PRF(server_write_key,
| client_random +
| server_random)[0..15]
| iv_block = PRF("", client_random +
| server_random)[0..15]
| client_write_IV = iv_block[0..7]
| server_write_IV = iv_block[8..15]

6. The TLS Handshake Protocol

 The TLS Handshake Protocol consists of a suite of three
 sub-protocols which are used to allow peers to agree upon security
 parameters for the record layer, authenticate themselves,
 instantiate negotiated security parameters, and report error
 conditions to each other.

 The Handshake Protocol is responsible for negotiating a session,
 which consists of the following items:

Dierks, T. Expires August, 1997 [Page 20]

INTERNET-DRAFT TLS 1.0 March 1997

 session identifier
 An arbitrary byte sequence chosen by the server to identify an
 active or resumable session state.

 peer certificate
 X509v3[X509] certificate of the peer. This element of the state
 may be null.

 compression method
 The algorithm used to compress data prior to encryption.

 cipher spec
 Specifies the bulk data encryption algorithm (such as null, DES,
 etc.) and a MAC algorithm (such as MD5 or SHA). It also defines
 cryptographic attributes such as the hash_size. (See Appendix

A.7 for formal definition)

 master secret
 48-byte secret shared between the client and server.

 is resumable
 A flag indicating whether the session can be used to initiate
 new connections.

 These items are then used to create security parameters for use by
 the Record Layer when protecting application data. Many connections
 can be instantiated using the same session through the resumption
 feature of the TLS Handshake Protocol.

6.1. Change cipher spec protocol

 The change cipher spec protocol exists to signal transitions in
 ciphering strategies. The protocol consists of a single message,
 which is encrypted and compressed under the current (not the
 pending) connection state. The message consists of a single byte of
 value 1.

 struct {
 enum { change_cipher_spec(1), (255) } type;
 } ChangeCipherSpec;

 The change cipher spec message is sent by both the client and server
 to notify the receiving party that subsequent records will be
 protected under the newly negotiated CipherSpec and keys. Reception
 of this message causes the receiver to instruct the Record Layer to
 immediately copy the read pending state into the read current state.
 Immediately after sending this message, the sender should instruct
 the record layer to make the write pending state the write active
 state. (See section 5.1.) The change cipher spec message is sent
 during the handshake after the security parameters have been agreed

 upon, but before the verifying finished message is sent (see section
6.4.9).

Dierks, T. Expires August, 1997 [Page 21]

INTERNET-DRAFT TLS 1.0 March 1997

6.2. Alert protocol

 One of the content types supported by the TLS Record layer is the
 alert type. Alert messages convey the severity of the message and a
 description of the alert. Alert messages with a level of fatal
 result in the immediate termination of the connection. In this case,
 other connections corresponding to the session may continue, but the
 session identifier must be invalidated, preventing the failed
 session from being used to establish new connections. Like other
 messages, alert messages are encrypted and compressed, as specified
 by the current connection state.

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
| decryption_failed(21),
| record_overflow(22),
 decompression_failure(30),
 handshake_failure(40),
 no_certificate(41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
| unknown_ca(48),
| access_denied(49),
| decode_error(50),
| decrypt_error(51),
| export_restriction(60),
| protocol_version(70),
| insufficient_security(71),
| internal_error(80),
| user_canceled(90),
| no_renegotiation(100),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

6.2.1. Closure alerts

 The client and the server must share knowledge that the connection
 is ending in order to avoid a truncation attack. Either party may
 initiate the exchange of closing messages.

Dierks, T. Expires August, 1997 [Page 22]

INTERNET-DRAFT TLS 1.0 March 1997

 close_notify
 This message notifies the recipient that the sender will not
 send any more messages on this connection. The session becomes
 unresumable if any connection is terminated without proper
 close_notify messages with level equal to warning.

 Either party may initiate a close by sending a close_notify alert.
 Any data received after a closure alert is ignored.

 Each party is required to send a close_notify alert before closing
 the write side of the connection. It is required that the other
 party respond with a close_notify alert of its own and close down
 the connection immediately, discarding any pending writes. It is not
 required for the initiator of the close to wait for the responding
 close_notify alert before closing the read side of the connection.

 NB: It is assumed that closing a connection reliably delivers
 pending data before destroying the transport.

6.2.2. Error alerts

 Error handling in the TLS Handshake protocol is very simple. When an
 error is detected, the detecting party sends a message to the other
 party. Upon transmission or receipt of an fatal alert message, both
 parties immediately close the connection. Servers and clients are
 required to forget any session-identifiers, keys, and secrets
 associated with a failed connection. The following error alerts are
 defined:

 unexpected_message
 An inappropriate message was received. This alert is always
 fatal and should never be observed in communication between
 proper implementations.

 bad_record_mac
 This alert is returned if a record is received with an incorrect
 MAC. This message is always fatal.

| decryption_failed
| A TLSCiphertext decrypted in an invalid way: either it wasn`t an
| even multiple of the block length or its padding values, when
| checked, weren`t correct. This message is always fatal.

| record_overflow
| A TLSCiphertext record was received which had a length more than
| 2^14+2048 bytes, or a record decrypted to a TLSCompressed record
| with more than 2^14+1024 bytes. This message is always fatal.

 decompression_failure
 The decompression function received improper input (e.g. data

 that would expand to excessive length). This message is always
 fatal.

Dierks, T. Expires August, 1997 [Page 23]

INTERNET-DRAFT TLS 1.0 March 1997

 handshake_failure
 Reception of a handshake_failure alert message indicates that
 the sender was unable to negotiate an acceptable set of security
 parameters given the options available. This is a fatal error.

 no_certificate
 A no_certificate alert message may be sent in response to a
 certification request if no appropriate certificate is
 available.

 bad_certificate
 A certificate was corrupt, contained signatures that did not
 verify correctly, etc.

 unsupported_certificate
 A certificate was of an unsupported type.

 certificate_revoked
 A certificate was revoked by its signer.

 certificate_expired
 A certificate has expired or is not currently valid.

 certificate_unknown
 Some other (unspecified) issue arose in processing the
 certificate, rendering it unacceptable.

 illegal_parameter
 A field in the handshake was out of range or inconsistent with
 other fields. This is always fatal.

| unknown_ca
| A valid certificate chain or partial chain was received, but the
| certificate was not accepted because the CA certificate could
| not be located or couldn`t be matched with a known, trusted CA.
| This message is always fatal.

| access_denied
| A valid certificate was received, but when access control was
| applied, the sender decided not to proceed with negotiation.
| This message is always fatal.

| decode_error
| A message could not be decoded because some field was out of the
| specified range or the length of the message was incorrect. This
| message is always fatal.

| export_restriction
| A negotiation not in compliance with export restrictions was
| detected; for example, attemption to transfer a 1024 bit

| ephemeral RSA key for the RSA_EXPORT handshake method. This
| message is always fatal.

Dierks, T. Expires August, 1997 [Page 24]

INTERNET-DRAFT TLS 1.0 March 1997

| protocol_version
| The protocol version the client has attempted to negotiate is
| recognized, but not supported. (For example, old protocol
| versions might be avoided for security reasons). This message is
| always fatal.

| insufficient_security
| Returned instead of handshake_failure when a negotiation has
| failed specifically because the server requires ciphers more
| secure than those supported by the client. This message is
| always fatal.

| internal_error
| An internal error unrelated to the peer or the correctness of
| the protocol makes it impossible to continue (such as a memory
| allocation failure). This message is always fatal.

| user_cancelled
| This handshake is being cancelled for some reason unrelated to a
| protocol failure. If the user cancels an operation after the
| handshake is complete, just closing the connection by sending a
| close_notify is more appropriate. This alert should be followed
| by a close_notify. This message is generally a warning.

| no_renegotiation
| Sent by the client in response to a hello request or by the
| server in response to a client hello after initial handshaking.
| Either of these would normally lead to renegotiation; when that
| is not appropriate, the reciepient should respond with this
| alert; at that point, the original reqester can decide whether
| to proceed with the connection. One case where this would be
| appropriate would be where a server has spawned a process to
| satisfy a request; the process might receive secuirty parameters
| (key length, authentication, etc.) at startup and it might be
| difficult to communicate changes to these parameters after that
| point. This message is always a warning.

 For all errors where an alert level is not explicitly specified, the
 sending party may determine at its discretion whether this is a
 fatal error or not; if an alert with a level of warning is received,
 the receiving party may decide at its discretion whether to treat
 this as a fatal error or not. However, all messages which are
 transmitted with a level of fatal must be treated as fatal messages.

6.3. Handshake Protocol overview

 The cryptographic parameters of the session state are produced by
 the TLS Handshake Protocol, which operates on top of the TLS Record
 Layer. When a TLS client and server first start communicating, they

 agree on a protocol version, select cryptographic algorithms,
 optionally authenticate each other, and use public-key encryption
 techniques to generate shared secrets.

Dierks, T. Expires August, 1997 [Page 25]

INTERNET-DRAFT TLS 1.0 March 1997

| The TLS Handshake Protocol has the following goals:

 - Exchange hello messages to agree on algorithms, exchange random
 values, and check for session resumption.

 - Exchange the necessary cryptographic parameters to allow the
 client and server to agree on a premaster secret.

 - Exchange certificates and cryptographic information to allow the
 client and server to authenticate themselves.

 - Generate a master secret from the premaster secret and exchanged
 random values.

 - Provide security paramers to the record layer.

 - Allow the client and server to verify that their peer has
 calculated the same security parameters and that the handshake
 occured without tampering by an attacker.

 These goals are achieved by the handshake protocol, which can be
 summarized as follows: The client sends a client hello message to
 which the server must respond with a server hello message, or else a
 fatal error will occur and the connection will fail. The client
 hello and server hello are used to establish security enhancement
 capabilities between client and server. The client hello and server
 hello establish the following attributes: Protocol Version, Session
 ID, Cipher Suite, and Compression Method. Additionally, two random
 values are generated and exchanged: ClientHello.random and
 ServerHello.random.

 The actual key exchange uses up to four messages: the server
 certificate, the server key exchange, the client certificate, and
 the client key exchange. New key exchange methods can be created by
 specifing a format for these messages and defining the use of the
 messages to allow the client and server to agree upon a shared
 secret. This secret should be quite long; currently defined key
 exchange methods exchange secrets which range from 48 to 128 bytes
 in length.

 Following the hello messages, the server will send its certificate,
 if it is to be authenticated. Additionally, a server key exchange
 message may be sent, if it is required (e.g. if their server has no
 certificate, or if its certificate is for signing only). If the
 server is authenticated, it may request a certificate from the
 client, if that is appropriate to the cipher suite selected. Now the
 server will send the server hello done message, indicating that the
 hello-message phase of the handshake is complete. The server will
 then wait for a client response. If the server has sent a
 certificate request message, the client must send either the

 certificate message or a no_certificate alert. The client key
 exchange message is now sent, and the content of that message will

Dierks, T. Expires August, 1997 [Page 26]

INTERNET-DRAFT TLS 1.0 March 1997

 depend on the public key algorithm selected between the client hello
 and the server hello. If the client has sent a certificate with
 signing ability, a digitally-signed certificate verify message is
 sent to explicitly verify the certificate.

 At this point, a change cipher spec message is sent by the client,
 and the client copies the pending Cipher Spec into the current
 Cipher Spec. The client then immediately sends the finished message
 under the new algorithms, keys, and secrets. In response, the server
 will send its own change cipher spec message, transfer the pending
 to the current Cipher Spec, and send its finished message under the
 new Cipher Spec. At this point, the handshake is complete and the
 client and server may begin to exchange application layer data. (See
 flow chart below.)

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 * Indicates optional or situation-dependent messages that are not
 always sent.

 Note: To help avoid pipeline stalls, ChangeCipherSpec is an
 independent TLS Protocol content type, and is not actually a TLS
 handshake message.

 When the client and server decide to resume a previous session or
 duplicate an existing session (instead of negotiating new security
 parameters) the message flow is as follows:

 The client sends a ClientHello using the Session ID of the session
 to be resumed. The server then checks its session cache for a match.
 If a match is found, and the server is willing to re-establish the
 connection under the specified session state, it will send a
 ServerHello with the same Session ID value. At this point, both
 client and server must send change cipher spec messages and proceed

 directly to finished messages. Once the re-establishment is
 complete, the client and server may begin to exchange application
 layer data. (See flow chart below.) If a Session ID match is not

Dierks, T. Expires August, 1997 [Page 27]

INTERNET-DRAFT TLS 1.0 March 1997

 found, the server generates a new session ID and the TLS client and
 server perform a full handshake.

 Client Server

 ClientHello -------->
 ServerHello
 [ChangeCipherSpec]
 <-------- Finished
 [ChangeCipherSpec]
 Finished -------->
 Application Data <-------> Application Data

 The contents and significance of each message will be presented in
 detail in the following sections.

6.4. Handshake protocol

 The TLS Handshake Protocol is one of the defined higher level
 clients of the TLS Record Protocol. This protocol is used to
 negotiate the secure attributes of a session. Handshake messages are
 supplied to the TLS Record Layer, where they are encapsulated within
 one or more TLSPlaintext structures, which are processed and
 transmitted as specified by the current active session state.

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case certificate: Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done: ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 } body;
 } Handshake;

Dierks, T. Expires August, 1997 [Page 28]

INTERNET-DRAFT TLS 1.0 March 1997

 The handshake protocol messages are presented in the order they must
 be sent; sending handshake messages in an unexpected order results
| in a fatal error. Unneeded handshake messages can be omitted,
| however. The one exception is the Hello request message, which may
| be sent by the server at any time.

6.4.1. Hello messages

 The hello phase messages are used to exchange security enhancement
 capabilities between the client and server. When a new session
 begins, the Record Layer's connection state encryption, hash, and
 compression algorithms are initialized to null. The current
 connection state is used for renegotiation messages.

6.4.1.1. Hello request

 When this message will be sent:
 The hello request message may be sent by the server at any time.

 Meaning of this message:
 Hello request is a simple notification that the client should
 begin the negotiation process anew by sending a client hello
 message when convenient. This message will be ignored by the
 client if the client is currently negotiating a session. This
 message may be ignored by the client if it does not wish to
 renegotiate a session. Since handshake messages are intended to
 have transmission precedence over application data, it is
 expected that the negotiation will begin before no more than a
 few records are received from the client. If the server sends a
 hello request but does not recieve a client hello in response,
 it may close the connection with a fatal alert.

 After sending a hello request, servers should not repeat the request
 until the subsequent handshake negotiation is complete.

 Structure of this message:
 struct { } HelloRequest;

 Note: This message should never be included in the message hashes
 which are maintained throughout the handshake and used in the
 finished messages and the certificate verify message.

6.4.1.2. Client hello

 When this message will be sent:
 When a client first connects to a server it is required to send
 the client hello as its first message. The client can also send
 a client hello in response to a hello request or on its own
 initiative in order to renegotiate the security parameters in an
 existing connection.

Dierks, T. Expires August, 1997 [Page 29]

INTERNET-DRAFT TLS 1.0 March 1997

 Structure of this message:
 The client hello message includes a random structure, which is
 used later in the protocol.

 struct {
 uint32 gmt_unix_time;
 opaque random_bytes[28];
 } Random;

 gmt_unix_time
 The current time and date in standard UNIX 32-bit format
 according to the sender's internal clock. Clocks are not
 required to be set correctly by the basic TLS Protocol; higher
 level or application protocols may define additional
 requirements.

 random_bytes
 28 bytes generated by a secure random number generator.

 The client hello message includes a variable length session
 identifier. If not empty, the value identifies a session between the
 same client and server whose security parameters the client wishes
 to reuse. The session identifier may be from an earlier connection,
 this connection, or another currently active connection. The second
 option is useful if the client only wishes to update the random
 structures and derived values of a connection, while the third
| option makes it possible to establish several independent secure
| connections without repeating the full handshake protocol. These
| independant connections may occur sequentially or simultaneously; a
| SessionID becomes valid when the handshake negotiating it completes
| with the exchange of Finished messages and persists until removed
| due to aging or because a fatal error was encountered on a
| connection associated with the session. The actual contents of the
| SessionID are defined by the server.

 opaque SessionID<0..32>;

 Warning:
| Because the SessionID is transmitted without encryption or
| immediate MAC protection, servers must not place confidential
| information in session identifiers or let the contents of fake
| session identifiers cause any breach of security. (Note that the
| contents of the handshake as a whole, including the SessionID,
| is protected by the Finished messages exchanged at the end of
| the handshake.)

 The CipherSuite list, passed from the client to the server in the
 client hello message, contains the combinations of cryptographic
 algorithms supported by the client in order of the client's

 preference (first choice first). Each CipherSuite defines a key
 exchange algorithm, a bulk encryption algorithm (including secret
 key length) and a MAC algorithm. The server will select a cipher

Dierks, T. Expires August, 1997 [Page 30]

INTERNET-DRAFT TLS 1.0 March 1997

 suite or, if no acceptable choices are presented, return a handshake
 failure alert and close the connection.

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 The client hello includes a list of compression algorithms supported
 by the client, ordered according to the client's preference.

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 } ClientHello;

 client_version
 The version of the TLS protocol by which the client wishes to
 communicate during this session. This should be the latest
 (highest valued) version supported by the client. For this
| version of the specification, the version will be 3.1 (See

Appendix E for details about backward compatibility).

 random
 A client-generated random structure.

 session_id
 The ID of a session the client wishes to use for this
 connection. This field should be empty if no session_id is
 available or the client wishes to generate new security
 parameters.

 cipher_suites
 This is a list of the cryptographic options supported by the
 client, with the client's first preference first. If the
 session_id field is not empty (implying a session resumption
 request) this vector must include at least the cipher_suite from
 that session. Values are defined in Appendix A.6.

 compression_methods
 This is a list of the compression methods supported by the
 client, sorted by client preference. If the session_id field is
 not empty (implying a session resumption request) it must
 include the compression_method from that session. This vector
 must contain, and all implementations must support,
 CompressionMethod.null. Thus, a client and server will always be
 able to agree on a compression method.

Dierks, T. Expires August, 1997 [Page 31]

INTERNET-DRAFT TLS 1.0 March 1997

 After sending the client hello message, the client waits for a
 server hello message. Any other handshake message returned by the
 server except for a hello request is treated as a fatal error.

 Forward compatibility note:
 In the interests of forward compatibility, it is permitted for a
 client hello message to include extra data after the compression
 methods. This data must be included in the handshake hashes, but
 must otherwise be ignored. This is the only handshake message
 for which this is legal; for all other messages, the amount of
 data in the message must match the description of the message
 precisely.

6.4.1.3. Server hello

 When this message will be sent:
 The server will send this message in response to a client hello
 message when it was able to find an acceptable set of
 algorithms. If it cannot find such a match, it will respond with
 a handshake failure alert.

 Structure of this message:
 struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 } ServerHello;

 server_version
 This field will contain the lower of that suggested by the
 client in the client hello and the highest supported by the
| server. For this version of the specification, the version is
| 3.1 (See Appendix E for details about backward compatibility).

 random
 This structure is generated by the server and must be different
 from (and independent of) ClientHello.random.

 session_id
 This is the identity of the session corresponding to this
 connection. If the ClientHello.session_id was non-empty, the
 server will look in its session cache for a match. If a match is
 found and the server is willing to establish the new connection
 using the specified session state, the server will respond with
 the same value as was supplied by the client. This indicates a
 resumed session and dictates that the parties must proceed
 directly to the finished messages. Otherwise this field will

 contain a different value identifying the new session. The
 server may return an empty session_id to indicate that the
 session will not be cached and therefore cannot be resumed.

Dierks, T. Expires August, 1997 [Page 32]

INTERNET-DRAFT TLS 1.0 March 1997

 cipher_suite
 The single cipher suite selected by the server from the list in
 ClientHello.cipher_suites. For resumed sessions this field is
 the value from the state of the session being resumed.

 compression_method
 The single compression algorithm selected by the server from the
 list in ClientHello.compression_methods. For resumed sessions
 this field is the value from the resumed session state.

6.4.2. Server certificate

 When this message will be sent:
 The server must send a certificate whenever the agreed-upon key
 exchange method is not an anonymous one. This message will
 always immediately follow the server hello message.

 Meaning of this message:
 The certificate type must be appropriate for the selected cipher
 suite's key exchange algorithm, and is generally an X.509v3
 certificate. It must contain a key which matches the key
 exchange method, as follows. Unless otherwise specified, the
 signing algorithm for the certificate must be the same as the
 algorithm for the certificate key. Unless otherwise specified,
 the public key may be of any length.

 Key Exchange Algorithm Certificate Key Type

 RSA RSA public key; the certificate must
 allow the key to be used for encryption.

 RSA_EXPORT RSA public key of length greater than
 512 bits which can be used for signing,
 or a key of 512 bits or shorter which
 Can be used for encryption or signing.

 DHE_DSS DSS public key.

 DHE_DSS_EXPORT DSS public key.

 DHE_RSA RSA public key which can be used for
 signing.

 DHE_RSA_EXPORT RSA public key which can be used for
 signing.

 DH_DSS Diffie-Hellman key. The algorithm used
 to sign the certificate should be DSS.

 DH_RSA Diffie-Hellman key. The algorithm used

 to sign the certificate should be RSA.

Dierks, T. Expires August, 1997 [Page 33]

INTERNET-DRAFT TLS 1.0 March 1997

 As CipherSuites which specify new key exchange methods are specified
 for the TLS Protocol, they will imply certificate format and the
 required encoded keying information.

 Structure of this message:
 opaque ASN.1Cert<1..2^24-1>;
 struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 } Certificate;

 certificate_list
| This is a sequence (chain) of X.509v3 certificates. The sender's
| certificate must come first in the list. Each following
| certificate must directly certify the one preceding it. Because
| certificate validation requires that root keys be distributed
| independantly, the self-signed certificate which specifies the
| root certificate authority may optionally be omitted from the
| chain, under the assumption that the remote end must already
| possess it in order to validate it in any case.

 The same message type and structure will be used for the client's
| response to a certificate request message. Note that a client may
| send no certificates if it does not have an appropriate certificate
| to send in response to the server's authentication request.

 Note: PKCS #7 [PKCS7] is not used as the format for the certificate
 vector because PKCS #6 [PKCS6] extended certificates are not
 used. Also PKCS #7 defines a SET rather than a SEQUENCE, making
 the task of parsing the list more difficult.

6.4.3. Server key exchange message

 When this message will be sent:
| This message will be sent immediately after the server
| certificate message (or the server hello message, if this is an
| anonymous negotiation).

 The server key exchange message is sent by the server only when
 the server certificate message (if sent) does not contain enough
 data to allow the client to exchange a premaster secret. This is
 true for the following key exchange methods:

 RSA_EXPORT (if the public key in the server certificate is
 longer than 512 bits)
 DHE_DSS
 DHE_DSS_EXPORT
 DHE_RSA
 DHE_RSA_EXPORT
 DH_anon

Dierks, T. Expires August, 1997 [Page 34]

INTERNET-DRAFT TLS 1.0 March 1997

 It is not legal to send the server key exchange message for the
 following key exchange methods:

 RSA
 RSA_EXPORT (when the public key in the server certificate is
 less than or equal to 512 bits in length)
 DH_DSS
 DH_RSA

 Meaning of this message:
 This message conveys cryptographic information to allow the
 client to communicate the premaster secret: either an RSA public
 key to encrypt the premaster secret with, or a Diffie-Hellman
 public key with which the client can complete a key exchange
 (with the result being the premaster secret.)

 As additional CipherSuites are defined for TLS which include new key
 exchange algorithms, the server key exchange message will be sent if
 and only if the certificate type associated with the key exchange
 algorithm does not provide enough information for the client to
 exchange a premaster secret.

 Note: According to current US export law, RSA moduli larger than 512
 bits may not be used for key exchange in software exported from
 the US. With this message, the larger RSA keys encoded in
 certificates may be used to sign temporary shorter RSA keys for
 the RSA_EXPORT key exchange method.

 Structure of this message:
 enum { rsa, diffie_hellman } KeyExchangeAlgorithm;

 struct {
 opaque rsa_modulus<1..2^16-1>;
 opaque rsa_exponent<1..2^16-1>;
 } ServerRSAParams;

 rsa_modulus
 The modulus of the server's temporary RSA key.

 rsa_exponent
 The public exponent of the server's temporary RSA key.

 struct {
 opaque dh_p<1..2^16-1>;
 opaque dh_g<1..2^16-1>;
 opaque dh_Ys<1..2^16-1>;
 } ServerDHParams; /* Ephemeral DH parameters */

 dh_p
 The prime modulus used for the Diffie-Hellman operation.

Dierks, T. Expires August, 1997 [Page 35]

INTERNET-DRAFT TLS 1.0 March 1997

 dh_g
 The generator used for the Diffie-Hellman operation.

 dh_Ys
 The server's Diffie-Hellman public value (g^X mod p).

 struct {
 select (KeyExchangeAlgorithm) {
 case diffie_hellman:
 ServerDHParams params;
 Signature signed_params;
 case rsa:
 ServerRSAParams params;
 Signature signed_params;
 };
 } ServerKeyExchange;

 params
 The server's key exchange parameters.

 signed_params
 For non-anonymous key exchanges, a hash of the corresponding
 params value, with the signature appropriate to that hash
 applied.

 md5_hash
 MD5(ClientHello.random + ServerHello.random + ServerParams);

 sha_hash
 SHA(ClientHello.random + ServerHello.random + ServerParams);

 enum { anonymous, rsa, dsa } SignatureAlgorithm;

 select (SignatureAlgorithm)
 { case anonymous: struct { };
 case rsa:
 digitally-signed struct {
 opaque md5_hash[16];
 opaque sha_hash[20];
 };
 case dsa:
 digitally-signed struct {
 opaque sha_hash[20];
 };
 } Signature;

6.4.4. Certificate request

 When this message will be sent:
 A non-anonymous server can optionally request a certificate from

| the client, if appropriate for the selected cipher suite. This
| message, if sent, will immediately follow the Server Key

Dierks, T. Expires August, 1997 [Page 36]

INTERNET-DRAFT TLS 1.0 March 1997

| Exchange message (if it is sent; otherwise, the Server
| Certificate message).

 Structure of this message:
 enum {
 rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 rsa_ephemeral_dh(5), dss_ephemeral_dh(6),
 (255)
 } ClientCertificateType;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 DistinguishedName certificate_authorities<3..2^16-1>;
 } CertificateRequest;

 certificate_types
 This field is a list of the types of certificates requested,
 sorted in order of the server's preference.

 certificate_authorities
 A list of the distinguished names of acceptable certificate
| authorities. These distinguished names may specify a desired
| distinguished name for a root CA or for a subordinate CA;
| thus, this message can be used both to describe known roots
| and a desired authorization space.

 Note: DistinguishedName is derived from [X509].

 Note: It is a fatal handshake_failure alert for an anonymous server to
 request client identification.

6.4.5. Server hello done

 When this message will be sent:
 The server hello done message is sent by the server to indicate
 the end of the server hello and associated messages. After
 sending this message the server will wait for a client response.

 Meaning of this message:
 This message means that the server is done sending messages to
 support the key exchange, and the client can proceed with its
 phase of the key exchange.

 Upon receipt of the server hello done message the client should
 verify that the server provided a valid certificate if required
 and check that the server hello parameters are acceptable.

 Structure of this message:

 struct { } ServerHelloDone;

Dierks, T. Expires August, 1997 [Page 37]

INTERNET-DRAFT TLS 1.0 March 1997

6.4.6. Client certificate

 When this message will be sent:
 This is the first message the client can send after receiving a
 server hello done message. This message is only sent if the
 server requests a certificate. If no suitable certificate is
| available, the client should send a certificate message
| containing no certificates. If client authentication is required
| by the server for the handshake to continue, it may respond with
| a fatal handshake failure alert. Client certificates are sent
| using the Certificate structure defined in Section 6.4.2.

 Note: When using a static Diffie-Hellman based key exchange method
 (DH_DSS or DH_RSA), if client authentication is requested, the
 Diffie-Hellman group and generator encoded in the client's
 certificate must match the server specified Diffie-Hellman
 parameters if the client's parameters are to be used for the key
 exchange.

6.4.7. Client key exchange message

 When this message will be sent:
 This message is always sent by the client. It will immediately
| follow the client certificate message, if it is sent. Otherwise
| it will be the first message sent by the client after it
| receives the server hello done message.

 Meaning of this message:
 With this message, the premaster secret is set, either though
 direct transmisson of the RSA-encrypted secret, or by the
 transmission of Diffie-Hellman parameters which will allow each
 side to agree upon the same premaster secret. When the key
 exchange method is DH_RSA or DH_DSS, client certification has
 been requested, and the client was able to respond with a
 certificate which contained a Diffie-Hellman public key whose
 parameters (group and generator) matched those specified by the
 server in its certificate, this message will not contain any
 data.

 Structure of this message:
 The choice of messages depends on which key exchange method has
 been selected. See Section 6.4.3 for the KeyExchangeAlgorithm
 definition.

 struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 } exchange_keys;

 } ClientKeyExchange;

Dierks, T. Expires August, 1997 [Page 38]

INTERNET-DRAFT TLS 1.0 March 1997

6.4.7.1. RSA encrypted premaster secret message

 Meaning of this message:
 If RSA is being used for key agreement and authentication, the
 client generates a 48-byte premaster secret, encrypts it using
 the public key from the server's certificate or the temporary
 RSA key provided in a server key exchange message, and sends the
 result in an encrypted premaster secret message. This structure
 is a variant of the client key exchange message, not a message
 in itself.

 Structure of this message:
 struct {
 ProtocolVersion client_version;
 opaque random[46];
 } PreMasterSecret;

 client_version
 The latest (newest) version supported by the client. This is
| used to detect version roll-back attacks. Upon receiving the
| premaster secret, the server should check that this value
| matches the value transmitted by the client in the client
| hello message.

 random
 46 securely-generated random bytes.

 struct {
 public-key-encrypted PreMasterSecret pre_master_secret;
 } EncryptedPreMasterSecret;

 pre_master_secret
 This random value is generated by the client and is used to
 generate the master secret, as specified in Section 7.1.

6.4.7.2. Client Diffie-Hellman public value

 Meaning of this message:
 This structure conveys the client's Diffie-Hellman public value
 (Yc) if it was not already included in the client's certificate.
 The encoding used for Yc is determined by the enumerated
 PublicValueEncoding. This structure is a variant of the client
 key exchange message, not a message in itself.

 Structure of this message:
 enum { implicit, explicit } PublicValueEncoding;

 implicit
 If the client certificate already contains a suitable
 Diffie-Hellman key, then Yc is implicit and does not need to

| be sent again. In this case, the Client Key Exchange message
| will be sent, but will be empty.

Dierks, T. Expires August, 1997 [Page 39]

INTERNET-DRAFT TLS 1.0 March 1997

 explicit
 Yc needs to be sent.

 struct {
 select (PublicValueEncoding) {
 case implicit: struct { };
 case explicit: opaque dh_Yc<1..2^16-1>;
 } dh_public;
 } ClientDiffieHellmanPublic;

 dh_Yc
 The client's Diffie-Hellman public value (Yc).

6.4.8. Certificate verify

 When this message will be sent:
 This message is used to provide explicit verification of a
 client certificate. This message is only sent following a client
 certificate that has signing capability (i.e. all certificates
 except those containing fixed Diffie-Hellman parameters). When
 sent, it will immediately follow the client key exchange
 message.

 Structure of this message:
 struct {
 Signature signature;
 } CertificateVerify;

 The Signature type is defined in 6.4.3.

 CertificateVerify.signature.md5_hash
| HMAC_MD5(master_secret, handshake_messages);

 Certificate.signature.sha_hash
| HMAC_SHA(master_secret, handshake_messages);

 Here handshake_messages refers to all handshake messages sent or
 received starting at client hello up to but not including this
 message, including the type and length fields of the handshake
 messages. This is the concatenation of all the Handshake structures
 as defined in 6.4 exchanged thus far.

6.4.9. Finished

 When this message will be sent:
 A finished message is always sent immediately after a change
 cipher spec message to verify that the key exchange and
 authentication processes were successful. It is essential that a
 change cipher spec message be received between the other
 handshake messages and the Finished message.

Dierks, T. Expires August, 1997 [Page 40]

INTERNET-DRAFT TLS 1.0 March 1997

 Meaning of this message:
 The finished message is the first protected with the
 just-negotiated algorithms, keys, and secrets. No acknowledgment
 of the finished message is required; parties may begin sending
 encrypted data immediately after sending the finished message.
 Recipients of finished messages must verify that the contents
 are correct.

 enum { client(0x434C4E54), server(0x53525652) } Sender;

 struct {
 opaque md5_hash[16];
 opaque sha_hash[20];
 } Finished;

 md5_hash
| HMAC_MD5(master_secret, handshake_messages + Sender);

 sha_hash
| HMAC_SHA(master_secret, handshake_messages + Sender);

 handshake_messages
 All of the data from all handshake messages up to but not
 including this message. This is only data visible at the
 handshake layer and does not include record layer headers.
 This is the concatenation of all the Handshake structures as
 defined in 6.4 exchanged thus far.

 It is a fatal error if a finished message is not preceeded by a
 change cipher spec message at the appropriate point in the
 handshake.

 The hash contained in finished messages sent by the server
 incorporate Sender.server; those sent by the client incorporate
 Sender.client. The value handshake_messages includes all handshake
 messages starting at client hello up to, but not including, this
 finished message. This may be different from handshake_messages in

Section 6.4.8 because it would include the certificate verify
 message (if sent). Also, the handshake_messages for the finished
 message sent by the client will be different from that for the
 finished message sent by the server, because the one which is sent
 second will include the prior one.

 Note: Change cipher spec messages are not handshake messages and are
| not included in the hash computations. Also, Hello Request
| messages are omitted from handshake hashes.

7. Cryptographic computations

 In order to begin connection protection, the TLS Record Protocol

 requires specification of a suite of algorithms, a master secret,
 and the client and server random values. The authentication,

Dierks, T. Expires August, 1997 [Page 41]

INTERNET-DRAFT TLS 1.0 March 1997

 encryption, and MAC algorithms are determined by the cipher_suite
 selected by the server and revealed in the server hello message. The
 compression algorithm is negotiated in the hello messages, and the
 random values are exchanged in the hello messages. All that remains
 is to calculate the master secret.

7.1. Computing the master secret

 For all key exchange methods, the same algorithm is used to convert
 the pre_master_secret into the master_secret. The pre_master_secret
 should be deleted from memory once the master_secret has been
 computed.

| master_secret = PRF(pre_master_secret, pre_master_secret +
| ClientHello.random + ServerHello.random);

 The master secret is always exactly 48 bytes in length. The length
 of the premaster secret will vary depending on key exchange method.

7.1.1. RSA

 When RSA is used for server authentication and key exchange, a
 48-byte pre_master_secret is generated by the client, encrypted
 under the server's public key, and sent to the server. The server
 uses its private key to decrypt the pre_master_secret. Both parties
 then convert the pre_master_secret into the master_secret, as
 specified above.

 RSA digital signatures are performed using PKCS #1 [PKCS1] block
 type 1. RSA public key encryption is performed using PKCS #1 block
 type 2.

7.1.2. Diffie-Hellman

 A conventional Diffie-Hellman computation is performed. The
 negotiated key (Z) is used as the pre_master_secret, and is
 converted into the master_secret, as specified above.

 Note: Diffie-Hellman parameters are specified by the server, and may
 be either ephemeral or contained within the server's
 certificate.

8. Application data protocol

 Application data messages are carried by the Record Layer and are
 fragmented, compressed and encrypted based on the current connection
 state. The messages are treated as transparent data to the record
 layer.

A. Protocol constant values

 This section describes protocol types and constants.

Dierks, T. Expires August, 1997 [Page 42]

INTERNET-DRAFT TLS 1.0 March 1997

A.1. Reserved port assignments

 At the present time TLS is implemented using TCP/IP as the base
| networking technology, although the protocol should be useful over
| any transport which can provide a reliable stream connection. The
 IANA reserved the following Internet Protocol [IP] port numbers for
 use in conjunction with the SSL 3.0 Protocol, which we presume will
 be used by TLS as well.

 443 Reserved for use by Hypertext Transfer Protocol with SSL (https)

 465 Reserved for use by Simple Mail Transfer Protocol with SSL
 (ssmtp).

 563 Reserved for use by Network News Transfer Protocol with SSL
 (snntp).

 636 Reserved for Light Directory Access Protocol with SSL (ssl-ldap)

 990 Reserved (pending) for File Transfer Protocol with SSL (ftps)

 995 Reserved for Post Office Protocol with SSL (spop3)

A.2. Record layer

 struct {
 uint8 major, minor;
 } ProtocolVersion;

| ProtocolVersion version = { 3, 1 }; /* TLS v1.0 */

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSCompressed.length];
 } TLSCompressed;

 struct {
 ContentType type;

Dierks, T. Expires August, 1997 [Page 43]

INTERNET-DRAFT TLS 1.0 March 1997

 ProtocolVersion version;
 uint16 length;
 select (CipherSpec.cipher_type) {
 case stream: GenericStreamCipher;
 case block: GenericBlockCipher;
 } fragment;
 } TLSCiphertext;

 stream-ciphered struct {
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 } GenericStreamCipher;

 block-ciphered struct {
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 uint8 padding[GenericBlockCipher.padding_length];
 uint8 padding_length;
 } GenericBlockCipher;

A.3. Change cipher specs message

 struct {
 enum { change_cipher_spec(1), (255) } type;
 } ChangeCipherSpec;

A.4. Alert messages

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decompression_failure(30),
 handshake_failure(40),
 no_certificate(41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter (47),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;

 } Alert;

Dierks, T. Expires August, 1997 [Page 44]

INTERNET-DRAFT TLS 1.0 March 1997

A.5. Handshake protocol

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type;
 uint24 length;
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case certificate: Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_done: ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 } body;
 } Handshake;

A.5.1. Hello messages

 struct { } HelloRequest;

 struct {
 uint32 gmt_unix_time;
 opaque random_bytes[28];
 } Random;

 opaque SessionID<0..32>;

 uint8 CipherSuite[2];

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<0..2^16-1>;
 CompressionMethod compression_methods<0..2^8-1>;
 } ClientHello;

 struct {
 ProtocolVersion server_version;

Dierks, T. Expires August, 1997 [Page 45]

INTERNET-DRAFT TLS 1.0 March 1997

 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 } ServerHello;

A.5.2. Server authentication and key exchange messages

 opaque ASN.1Cert<2^24-1>;

 struct {
 ASN.1Cert certificate_list<1..2^24-1>;
 } Certificate;

 enum { rsa, diffie_hellman } KeyExchangeAlgorithm;

 struct {
 opaque RSA_modulus<1..2^16-1>;
 opaque RSA_exponent<1..2^16-1>;
 } ServerRSAParams;

 struct {
 opaque DH_p<1..2^16-1>;
 opaque DH_g<1..2^16-1>;
 opaque DH_Ys<1..2^16-1>;
 } ServerDHParams;

 struct {
 select (KeyExchangeAlgorithm) {
 case diffie_hellman:
 ServerDHParams params;
 Signature signed_params;
 case rsa:
 ServerRSAParams params;
 Signature signed_params;
 };
 } ServerKeyExchange;

 enum { anonymous, rsa, dsa } SignatureAlgorithm;

 select (SignatureAlgorithm)
 { case anonymous: struct { };
 case rsa:
 digitally-signed struct {
 opaque md5_hash[16];
 opaque sha_hash[20];
 };
 case dsa:
 digitally-signed struct {
 opaque sha_hash[20];

 };
 } Signature;

Dierks, T. Expires August, 1997 [Page 46]

INTERNET-DRAFT TLS 1.0 March 1997

 enum {
 RSA_sign(1), DSS_sign(2), RSA_fixed_DH(3),
 DSS_fixed_DH(4), RSA_ephemeral_DH(5), DSS_ephemeral_DH(6),
 (255)
 } CertificateType;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 CertificateType certificate_types<1..2^8-1>;
 DistinguishedName certificate_authorities<3..2^16-1>;
 } CertificateRequest;

 struct { } ServerHelloDone;

A.5.3. Client authentication and key exchange messages

 struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: DiffieHellmanClientPublicValue;
 } exchange_keys;
 } ClientKeyExchange;

 struct {
 ProtocolVersion client_version;
 opaque random[46];
 } PreMasterSecret;

 struct {
 public-key-encrypted PreMasterSecret pre_master_secret;
 } EncryptedPreMasterSecret;

 enum { implicit, explicit } PublicValueEncoding;

 struct {
 select (PublicValueEncoding) {
 case implicit: struct {};
 case explicit: opaque DH_Yc<1..2^16-1>;
 } dh_public;
 } ClientDiffieHellmanPublic;

 struct {
 Signature signature;
 } CertificateVerify;

A.5.4. Handshake finalization message

 struct {
 opaque md5_hash[16];

 opaque sha_hash[20];
 } Finished;

Dierks, T. Expires August, 1997 [Page 47]

INTERNET-DRAFT TLS 1.0 March 1997

A.6. The CipherSuite

 The following values define the CipherSuite codes used in the client
 hello and server hello messages.

 A CipherSuite defines a cipher specification supported in TLS
 Version 1.0.

 CipherSuite TLS_NULL_WITH_NULL_NULL = { 0x00,0x00 };

 The following CipherSuite definitions require that the server
 provide an RSA certificate that can be used for key exchange. The
 server may request either an RSA or a DSS signature-capable
 certificate in the certificate request message.

 CipherSuite TLS_RSA_WITH_NULL_MD5 = { 0x00,0x01 };
 CipherSuite TLS_RSA_WITH_NULL_SHA = { 0x00,0x02 };
 CipherSuite TLS_RSA_EXPORT_WITH_RC4_40_MD5 = { 0x00,0x03 };
 CipherSuite TLS_RSA_WITH_RC4_128_MD5 = { 0x00,0x04 };
 CipherSuite TLS_RSA_WITH_RC4_128_SHA = { 0x00,0x05 };
 CipherSuite TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = { 0x00,0x06 };
 CipherSuite TLS_RSA_WITH_IDEA_CBC_SHA = { 0x00,0x07 };
 CipherSuite TLS_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x08 };
 CipherSuite TLS_RSA_WITH_DES_CBC_SHA = { 0x00,0x09 };
 CipherSuite TLS_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0A };

 The following CipherSuite definitions are used for
 server-authenticated (and optionally client-authenticated)
 Diffie-Hellman. DH denotes cipher suites in which the server's
 certificate contains the Diffie-Hellman parameters signed by the
 certificate authority (CA). DHE denotes ephemeral Diffie-Hellman,
 where the Diffie-Hellman parameters are signed by a DSS or RSA
 certificate, which has been signed by the CA. The signing algorithm
| used is specified after the DH or DHE parameter. The server can
| request an RSA or DSS signature-capable certificate from the client
| for client authentication or it may request a Diffie-Hellman
| certificate. Any Diffie-Hellman certificate provided by the client
| must use the parameters (group and generator) described by the
| server.

 CipherSuite TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x0B };
 CipherSuite TLS_DH_DSS_WITH_DES_CBC_SHA = { 0x00,0x0C };
 CipherSuite TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0D };
 CipherSuite TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x0E };
 CipherSuite TLS_DH_RSA_WITH_DES_CBC_SHA = { 0x00,0x0F };
 CipherSuite TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x10 };
 CipherSuite TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x11 };
 CipherSuite TLS_DHE_DSS_WITH_DES_CBC_SHA = { 0x00,0x12 };
 CipherSuite TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x13 };

 CipherSuite TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x14 };
 CipherSuite TLS_DHE_RSA_WITH_DES_CBC_SHA = { 0x00,0x15 };
 CipherSuite TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x16 };

Dierks, T. Expires August, 1997 [Page 48]

INTERNET-DRAFT TLS 1.0 March 1997

 The following cipher suites are used for completely anonymous
 Diffie-Hellman communications in which neither party is
 authenticated. Note that this mode is vulnerable to
| man-in-the-middle attacks and is therefore deprecated.

 CipherSuite TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 = { 0x00,0x17 };
 CipherSuite TLS_DH_anon_WITH_RC4_128_MD5 = { 0x00,0x18 };
 CipherSuite TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x19 };
 CipherSuite TLS_DH_anon_WITH_DES_CBC_SHA = { 0x00,0x1A };
 CipherSuite TLS_DH_anon_WITH_3DES_EDE_CBC_SHA = { 0x00,0x1B };

 Note: All cipher suites whose first byte is 0xFF are considered
 private and can be used for defining local/experimental
 algorithms. Interoperability of such types is a local matter.

 Note: Additional cipher suites will be considered for implementation
 only with submission of notarized letters from two independent
 entities. Netscape Communications Corp. will act as an interim
 registration office, until a public standards body assumes
 control of TLS.

A.7. The Security Parameters

 These security parameters are determined by the TLS Handshake
 Protocol and provided as parameters to the TLS Record Layer in order
 to initialize a connection state. SecurityParameters includes:

 enum { null(0), (255) } CompressionMethod;

 enum { server, client } ConnectionEnd;

 enum { null, rc4, rc2, des, 3des, des40 } BulkCipherAlgorithm;

 enum { stream, block } CipherType;

 enum { true, false } IsExportable;

 enum { null, md5, sha } MACAlgorithm;

 /* The algorithms specified in CompressionMethod,
 BulkCipherAlgorithm, and MACAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 BulkCipherAlgorithm bulk_cipher_algorithm;
 CipherType cipher_type;
 uint8 key_size;
 uint8 key_material_length;
 IsExportable is_exportable;
 MACAlgorithm mac_algorithm;

 uint8 hash_size;
 uint8 whitener_length;

Dierks, T. Expires August, 1997 [Page 49]

INTERNET-DRAFT TLS 1.0 March 1997

 CompressionMethod compression_algorithm;
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

B. Glossary

 application protocol
 An application protocol is a protocol that normally layers
 directly on top of the transport layer (e.g., TCP/IP). Examples
 include HTTP, TELNET, FTP, and SMTP.

 asymmetric cipher
 See public key cryptography.

 authentication
 Authentication is the ability of one entity to determine the
 identity of another entity.

 block cipher
 A block cipher is an algorithm that operates on plaintext in
 groups of bits, called blocks. 64 bits is a typical block size.

 bulk cipher
 A symmetric encryption algorithm used to encrypt large
 quantities of data.

| cipher block chaining (CBC)
| CBC is a mode in which every plaintext block encrypted with a
| block cipher is first exclusive-ORed with the previous
| ciphertext block (or, in the case of the first block, with the
| initialization vector). For decryption, every block is first
| decrypted, then exclusive-ORed with the previous ciphertext
| block (or IV).

 certificate
 As part of the X.509 protocol (a.k.a. ISO Authentication
 framework), certificates are assigned by a trusted Certificate
 Authority and provide verification of a party's identity and may
 also supply its public key.

 client
 The application entity that initiates a connection to a server

 client write key
 The key used to encrypt data written by the client.

 client write MAC secret
 The secret data used to authenticate data written by the client.

Dierks, T. Expires August, 1997 [Page 50]

INTERNET-DRAFT TLS 1.0 March 1997

 connection
 A connection is a transport (in the OSI layering model
 definition) that provides a suitable type of service. For TLS,
 such connections are peer to peer relationships. The connections
 are transient. Every connection is associated with one session.

 Data Encryption Standard
 DES is a very widely used symmetric encryption algorithm. DES is
| a block cipher with a 56 bit key and an 8 byte block size. Note
| that in TLS, for key generation purposes, DES is treated as
| having an 8 byte key length (64 bits), but it still only
| provides 56 bits of protection. DES can also be operated in a
| mode where three independant keys and three encryptions are used
| for each block of data; this uses 168 bits of key (24 bytes in
| the TLS key generation method) and provides the equivalent of
| 112 bits of security. [DES], [3DES]

 Digital Signature Standard (DSS)
 A standard for digital signing, including the Digital Signing
 Algorithm, approved by the National Institute of Standards and
 Technology, defined in NIST FIPS PUB 186, "Digital Signature
 Standard," published May, 1994 by the U.S. Dept. of Commerce.
 [DSS]

 digital signatures
 Digital signatures utilize public key cryptography and one-way
 hash functions to produce a signature of the data that can be
 authenticated, and is difficult to forge or repudiate.

 handshake
 An initial negotiation between client and server that
 establishes the parameters of their transactions.

 Initialization Vector (IV)
 When a block cipher is used in CBC mode, the initialization
 vector is exclusive-ORed with the first plaintext block prior to
 encryption.

 IDEA
 A 64-bit block cipher designed by Xuejia Lai and James Massey.
 [IDEA]

 Message Authentication Code (MAC)
 A Message Authentication Code is a one-way hash computed from a
| message and some secret data. It is difficult to forge without
| knowing the secret data and it is difficult to find messages
| which hash to the same MAC. Its purpose is to detect if the
| message has been altered.

 master secret
 Secure secret data used for generating encryption keys, MAC
 secrets, and IVs.

Dierks, T. Expires August, 1997 [Page 51]

INTERNET-DRAFT TLS 1.0 March 1997

 MD5
 MD5 is a secure hashing function that converts an arbitrarily
| long data stream into a digest of fixed size (16 bytes). [MD5]

 public key cryptography
 A class of cryptographic techniques employing two-key ciphers.
 Messages encrypted with the public key can only be decrypted
 with the associated private key. Conversely, messages signed
 with the private key can be verified with the public key.

 one-way hash function
 A one-way transformation that converts an arbitrary amount of
 data into a fixed-length hash. It is computationally hard to
 reverse the transformation or to find collisions. MD5 and SHA
 are examples of one-way hash functions.

 RC2, RC4
 Proprietary bulk ciphers from RSA Data Security, Inc. (There is
 no good reference to these as they are unpublished works;
 however, see [RSADSI]). RC2 is block cipher and RC4 is a stream
 cipher.

 RSA
 A very widely used public-key algorithm that can be used for
 either encryption or digital signing. [RSA]

 salt
 Non-secret random data used to make export encryption keys
 resist precomputation attacks.

 server
 The server is the application entity that responds to requests
 for connections from clients. The server is passive, waiting for
 requests from clients.

 session
 A TLS session is an association between a client and a server.
 Sessions are created by the handshake protocol. Sessions define
 a set of cryptographic security parameters, which can be shared
 among multiple connections. Sessions are used to avoid the
 expensive negotiation of new security parameters for each
 connection.

 session identifier
 A session identifier is a value generated by a server that
 identifies a particular session.

 server write key
 The key used to encrypt data written by the server.

Dierks, T. Expires August, 1997 [Page 52]

INTERNET-DRAFT TLS 1.0 March 1997

 server write MAC secret
 The secret data used to authenticate data written by the server.

 SHA
 The Secure Hash Algorithm is defined in FIPS PUB 180-1. It
| produces a 20-byte output. Note that all references to SHA
| actually use the modified SHA-1 algorithm. [SHA]

 SSL
 Netscape's Secure Socket Layer protocol [SSL3]. TLS is based on
 SSL Version 3.0

 stream cipher
 An encryption algorithm that converts a key into a
 cryptographically-strong keystream, which is then exclusive-ORed
 with the plaintext.

 symmetric cipher
 See bulk cipher.

| Transport Layer Security (TLS)
| This protocol; also, the Transport Layer Security working group
| of the Internet Engineering Task Force (IETF). See "Comments" at
| the end of this document.

C. CipherSuite definitions

CipherSuite Is Key Cipher Hash
 Exportable Exchange

TLS_NULL_WITH_NULL_NULL * NULL NULL NULL
TLS_RSA_WITH_NULL_MD5 * RSA NULL MD5
TLS_RSA_WITH_NULL_SHA * RSA NULL SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5 * RSA_EXPORT RC4_40 MD5
TLS_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5
TLS_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 * RSA_EXPORT RC2_CBC_40 MD5
TLS_RSA_WITH_IDEA_CBC_SHA RSA IDEA_CBC SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA * RSA_EXPORT DES40_CBC SHA
TLS_RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA * DH_DSS_EXPORT DES40_CBC SHA
TLS_DH_DSS_WITH_DES_CBC_SHA DH_DSS DES_CBC SHA
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS 3DES_EDE_CBC SHA
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA * DH_RSA_EXPORT DES40_CBC SHA
TLS_DH_RSA_WITH_DES_CBC_SHA DH_RSA DES_CBC SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES_EDE_CBC SHA
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA * DHE_DSS_EXPORT DES40_CBC SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA DHE_DSS DES_CBC SHA

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE_DSS 3DES_EDE_CBC SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA * DHE_RSA_EXPORT DES40_CBC SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA DHE_RSA DES_CBC SHA

Dierks, T. Expires August, 1997 [Page 53]

INTERNET-DRAFT TLS 1.0 March 1997

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES_EDE_CBC SHA
TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 * DH_anon_EXPORT RC4_40 MD5
TLS_DH_anon_WITH_RC4_128_MD5 DH_anon RC4_128 MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA DH_anon DES40_CBC SHA
TLS_DH_anon_WITH_DES_CBC_SHA DH_anon DES_CBC SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA DH_anon 3DES_EDE_CBC SHA

 * Indicates IsExportable is True

 Key
 Exchange
 Algorithm Description Key size limit

 DHE_DSS Ephemeral DH with DSS signatures None
 DHE_DSS_EXPORT Ephemeral DH with DSS signatures DH = 512 bits
 DHE_RSA Ephemeral DH with RSA signatures None
 DHE_RSA_EXPORT Ephemeral DH with RSA signatures DH = 512 bits,
 RSA = none
 DH_anon Anonymous DH, no signatures None
 DH_anon_EXPORT Anonymous DH, no signatures DH = 512 bits
 DH_DSS DH with DSS-based certificates None
 DH_DSS_EXPORT DH with DSS-based certificates DH = 512 bits
 DH_RSA DH with RSA-based certificates None
 DH_RSA_EXPORT DH with RSA-based certificates DH = 512 bits,
 RSA = none
 NULL No key exchange N/A
 RSA RSA key exchange None
 RSA_EXPORT RSA key exchange RSA = 512 bits

 Key size limit
 The key size limit gives the size of the largest public key that
 can be legally used for encryption in cipher suites that are
 exportable.

 Key Expanded Effective IV Block
 Cipher Type Material Key Material Key Bits Size Size

 NULL * Stream 0 0 0 0 N/A
 IDEA_CBC Block 16 16 128 8 8
 RC2_CBC_40 * Block 5 16 40 8 8
 RC4_40 * Stream 5 16 40 0 N/A
 RC4_128 Stream 16 16 128 0 N/A
 DES40_CBC * Block 5 8 40 8 8
 DES_CBC Block 8 8 56 8 8
 3DES_EDE_CBC Block 24 24 168 8 8

 * Indicates IsExportable is true.

 Key Material

 The number of bytes from the key_block that are used for
 generating the write keys.

Dierks, T. Expires August, 1997 [Page 54]

INTERNET-DRAFT TLS 1.0 March 1997

 Expanded Key Material
 The number of bytes actually fed into the encryption algorithm

 Effective Key Bits
 How much entropy material is in the key material being fed into
 the encryption routines.

 Hash Hash Padding
 function Size Size
 NULL 0 0
 MD5 16 48
 SHA 20 40

Appendix D

D. Implementation Notes

 The TLS protocol cannot prevent many common security mistakes. This
 section provides several recommendations to assist implementers.

D.1. Temporary RSA keys

 US Export restrictions limit RSA keys used for encryption to 512
 bits, but do not place any limit on lengths of RSA keys used for
 signing operations. Certificates often need to be larger than 512
 bits, since 512-bit RSA keys are not secure enough for high-value
 transactions or for applications requiring long-term security. Some
 certificates are also designated signing-only, in which case they
 cannot be used for key exchange.

 When the public key in the certificate cannot be used for
 encryption, the server signs a temporary RSA key, which is then
 exchanged. In exportable applications, the temporary RSA key should
 be the maximum allowable length (i.e., 512 bits). Because 512-bit
 RSA keys are relatively insecure, they should be changed often. For
 typical electronic commerce applications, it is suggested that keys
 be changed daily or every 500 transactions, and more often if
 possible. Note that while it is acceptable to use the same temporary
 key for multiple transactions, it must be signed each time it is
 used.

 RSA key generation is a time-consuming process. In many cases, a
 low-priority process can be assigned the task of key generation.

 Whenever a new key is completed, the existing temporary key can be
 replaced with the new one.

D.2. Random Number Generation and Seeding

 TLS requires a cryptographically-secure pseudorandom number

 generator (PRNG). Care must be taken in designing and seeding PRNGs.
 PRNGs based on secure hash operations, most notably MD5 and/or SHA,

Dierks, T. Expires August, 1997 [Page 55]

INTERNET-DRAFT TLS 1.0 March 1997

 are acceptable, but cannot provide more security than the size of
 the random number generator state. (For example, MD5-based PRNGs
 usually provide 128 bits of state.)

 To estimate the amount of seed material being produced, add the
 number of bits of unpredictable information in each seed byte. For
 example, keystroke timing values taken from a PC compatible's 18.2
 Hz timer provide 1 or 2 secure bits each, even though the total size
 of the counter value is 16 bits or more. To seed a 128-bit PRNG, one
 would thus require approximately 100 such timer values.

Warning: The seeding functions in RSAREF and versions of BSAFE prior to
 3.0 are order-independent. For example, if 1000 seed bits are
 supplied, one at a time, in 1000 separate calls to the seed
 function, the PRNG will end up in a state which depends only
 on the number of 0 or 1 seed bits in the seed data (i.e.,
 there are 1001 possible final states). Applications using
 BSAFE or RSAREF must take extra care to ensure proper seeding.
| This may be accomplished by accumulating seed bits into a
| buffer and processing them all at once or by processing an
| incrementing counter with every seed bit; either method will
| reintroduce order dependance into the seeding process.

D.3. Certificates and authentication

 Implementations are responsible for verifying the integrity of
 certificates and should generally support certificate revocation
 messages. Certificates should always be verified to ensure proper
 signing by a trusted Certificate Authority (CA). The selection and
 addition of trusted CAs should be done very carefully. Users should
 be able to view information about the certificate and root CA.

D.4. CipherSuites

 TLS supports a range of key sizes and security levels, including
 some which provide no or minimal security. A proper implementation
 will probably not support many cipher suites. For example, 40-bit
 encryption is easily broken, so implementations requiring strong
 security should not allow 40-bit keys. Similarly, anonymous
 Diffie-Hellman is strongly discouraged because it cannot prevent
 man-in-the-middle attacks. Applications should also enforce minimum
 and maximum key sizes. For example, certificate chains containing
 512-bit RSA keys or signatures are not appropriate for high-security
 applications.

E. Backward Compatibility With SSL

| For historical reasons and in order to avoid a profligate
| consumption of reserved port numbers, application protocols which

| are secured by TLS 1.0, SSL 3.0, and SSL 2.0 all frequently share
| the same connection port: for example, the https protocol (HTTP
| secured by SSL or TLS) uses port 443 regardless of which security

Dierks, T. Expires August, 1997 [Page 56]

INTERNET-DRAFT TLS 1.0 March 1997

| protocol it is using. Thus, some mechanism must be determined to
| distinguish and negotiate among the various protocols.

| TLS version 1.0 and SSL 3.0 are very similar; thus, supporting both
| is easy. TLS clients who wish to negotiate with SSL 3.0 servers
| should send client hello messages using the SSL 3.0 record format
| and client hello structure, sending {3, 1} for the version field to
| note that they support TLS 1.0. If the server supports only SSL 3.0,
| it will respond with an SSL 3.0 server hello; if it supports TLS,
| with a TLS server hello. The negotiation then proceeds as
| appropriate for the negotiated protocol.

| Similarly, a TLS server which wishes to interoperate with SSL 3.0
| clients should accept SSL 3.0 client hello messages and respond with
| an SSL 3.0 server hello if an SSL 3.0 client hello is received which
| has a version field of {3, 0}, denoting that this client does not
| support TLS.

| Whenever a client already knows the highest protocol known to a
| server (for example, when resuming a session), it should initiate
| the connection in that native protocol.

| TLS 1.0 clients that support SSL Version 2.0 servers must send SSL
| Version 2.0 client hello messages [SSL-2]. TLS servers should accept
| either client hello format if they wish to support SSL 2.0 clients
| on the same connection port. The only deviations from the Version
| 2.0 specification are the ability to specify a version with a value
| of three and the support for more ciphering types in the CipherSpec.

Warning: The ability to send Version 2.0 client hello messages will be
 phased out with all due haste. Implementers should make every
 effort to move forward as quickly as possible. Version 3.0
 provides better mechanisms for moving to newer versions.

 The following cipher specifications are carryovers from SSL Version
 2.0. These are assumed to use RSA for key exchange and
 authentication.

| V2CipherSpec TLS_RC4_128_WITH_MD5 = { 0x01,0x00,0x80 };
| V2CipherSpec TLS_RC4_128_EXPORT40_WITH_MD5 = { 0x02,0x00,0x80 };
| V2CipherSpec TLS_RC2_CBC_128_CBC_WITH_MD5 = { 0x03,0x00,0x80 };
| V2CipherSpec TLS_RC2_CBC_128_CBC_EXPORT40_WITH_MD5
| = { 0x04,0x00,0x80 };
| V2CipherSpec TLS_IDEA_128_CBC_WITH_MD5 = { 0x05,0x00,0x80 };
| V2CipherSpec TLS_DES_64_CBC_WITH_MD5 = { 0x06,0x00,0x40 };
| V2CipherSpec TLS_DES_192_EDE3_CBC_WITH_MD5 = { 0x07,0x00,0xC0 };

| Cipher specifications native to TLS can be included in Version 2.0
| client hello messages using the syntax below. Any V2CipherSpec

| element with its first byte equal to zero will be ignored by Version
| 2.0 servers. Clients sending any of the above V2CipherSpecs should
| also include the TLS equivalent (see Appendix A.6):

Dierks, T. Expires August, 1997 [Page 57]

INTERNET-DRAFT TLS 1.0 March 1997

| V2CipherSpec (see TLS name) = { 0x00, CipherSuite };

E.1. Version 2 client hello

 The Version 2.0 client hello message is presented below using this
 document's presentation model. The true definition is still assumed
 to be the SSL Version 2.0 specification.

 uint8 V2CipherSpec[3];

 struct {
 unit8 msg_type;
 Version version;
 uint16 cipher_spec_length;
 uint16 session_id_length;
 uint16 challenge_length;
 V2CipherSpec cipher_specs[V2ClientHello.cipher_spec_length];
 opaque session_id[V2ClientHello.session_id_length];
 Random challenge;
 } V2ClientHello;

 msg_type
 This field, in conjunction with the version field, identifies a
 version 2 client hello message. The value should be one (1).

 version
 The highest version of the protocol supported by the client
 (equals ProtocolVersion.version, see Appendix A.1.1).

 cipher_spec_length
 This field is the total length of the field cipher_specs. It
 cannot be zero and must be a multiple of the V2CipherSpec length
 (3).

 session_id_length
 This field must have a value of either zero or 16. If zero, the
 client is creating a new session. If 16, the session_id field
 will contain the 16 bytes of session identification.

 challenge_length
 The length in bytes of the client's challenge to the server to
 authenticate itself. This value must be 32.

 cipher_specs
 This is a list of all CipherSpecs the client is willing and able
 to use. There must be at least one CipherSpec acceptable to the
 server.

 session_id
 If this field's length is not zero, it will contain the

 identification for a session that the client wishes to resume.

Dierks, T. Expires August, 1997 [Page 58]

INTERNET-DRAFT TLS 1.0 March 1997

 challenge
 The client challenge to the server for the server to identify
 itself is a (nearly) arbitrary length random. The Version 3.0
 server will right justify the challenge data to become the
 ClientHello.random data (padded with leading zeroes, if
 necessary), as specified in this Version 3.0 protocol. If the
 length of the challenge is greater than 32 bytes, only the last
 32 bytes are used. It is legitimate (but not necessary) for a V3
 server to reject a V2 ClientHello that has fewer than 16 bytes
 of challenge data.

|Note: Requests to resume a TLS session should use a TLS client hello.

E.2. Avoiding man-in-the-middle version rollback

| When TLS clients fall back to Version 2.0 compatibility mode, they
| should use special PKCS #1 block formatting. This is done so that
| TLS servers will reject Version 2.0 sessions with TLS-capable
| clients.

| When TLS clients are in Version 2.0 compatibility mode, they set the
 right-hand (least-significant) 8 random bytes of the PKCS padding
 (not including the terminal null of the padding) for the RSA
 encryption of the ENCRYPTED-KEY-DATA field of the CLIENT-MASTER-KEY
 to 0x03 (the other padding bytes are random). After decrypting the
 ENCRYPTED-KEY-DATA field, servers that support TLS should issue an
 error if these eight padding bytes are 0x03. Version 2.0 servers
 receiving blocks padded in this manner will proceed normally.

Appendix F

F. Security analysis

 The TLS protocol is designed to establish a secure connection
 between a client and a server communicating over an insecure
 channel. This document makes several traditional assumptions,
 including that attackers have substantial computational resources
 and cannot obtain secret information from sources outside the
 protocol. Attackers are assumed to have the ability to capture,
 modify, delete, replay, and otherwise tamper with messages sent over
 the communication channel. This appendix outlines how TLS has been
 designed to resist a variety of attacks.

F.1. Handshake protocol

 The handshake protocol is responsible for selecting a CipherSpec and
 generating a Master Secret, which together comprise the primary
 cryptographic parameters associated with a secure session. The
 handshake protocol can also optionally authenticate parties who have
 certificates signed by a trusted certificate authority.

Dierks, T. Expires August, 1997 [Page 59]

INTERNET-DRAFT TLS 1.0 March 1997

F.1.1. Authentication and key exchange

 TLS supports three authentication modes: authentication of both
 parties, server authentication with an unauthenticated client, and
 total anonymity. Whenever the server is authenticated, the channel
 should be secure against man-in-the-middle attacks, but completely
 anonymous sessions are inherently vulnerable to such attacks.
 Anonymous servers cannot authenticate clients, since the client
 signature in the certificate verify message may require a server
 certificate to bind the signature to a particular server. If the
 server is authenticated, its certificate message must provide a
 valid certificate chain leading to an acceptable certificate
 authority. Similarly, authenticated clients must supply an
 acceptable certificate to the server. Each party is responsible for
 verifying that the other's certificate is valid and has not expired
 or been revoked.

 The general goal of the key exchange process is to create a
 pre_master_secret known to the communicating parties and not to
 attackers. The pre_master_secret will be used to generate the
 master_secret (see Section 7.1). The master_secret is required to
| generate the certificate verify and finished messages, encryption
 keys, and MAC secrets (see Sections 6.4.8, 6.4.9 and 5.4). By
 sending a correct finished message, parties thus prove that they
 know the correct pre_master_secret.

F.1.1.1. Anonymous key exchange

 Completely anonymous sessions can be established using RSA or
 Diffie-Hellman for key exchange. With anonymous RSA, the client
 encrypts a pre_master_secret with the server's uncertified public
 key extracted from the server key exchange message. The result is
 sent in a client key exchange message. Since eavesdroppers do not
 know the server's private key, it will be infeasible for them to
 decode the pre_master_secret. (Note that no anonymous RSA Cipher
 Suites are defined in this document).

 With Diffie-Hellman, the server's public parameters are contained in
 the server key exchange message and the client's are sent in the
 client key exchange message. Eavesdroppers who do not know the
 private values should not be able to find the Diffie-Hellman result
 (i.e. the pre_master_secret).

Warning: Completely anonymous connections only provide protection
 against passive eavesdropping. Unless an independent
 tamper-proof channel is used to verify that the finished
 messages were not replaced by an attacker, server
 authentication is required in environments where active
 man-in-the-middle attacks are a concern.

Dierks, T. Expires August, 1997 [Page 60]

INTERNET-DRAFT TLS 1.0 March 1997

F.1.1.2. RSA key exchange and authentication

 With RSA, key exchange and server authentication are combined. The
 public key may be either contained in the server's certificate or
 may be a temporary RSA key sent in a server key exchange message.
 When temporary RSA keys are used, they are signed by the server's
 RSA or DSS certificate. The signature includes the current
 ClientHello.random, so old signatures and temporary keys cannot be
 replayed. Servers may use a single temporary RSA key for multiple
 negotiation sessions.

 Note: The temporary RSA key option is useful if servers need large
 certificates but must comply with government-imposed size limits
 on keys used for key exchange.

 After verifying the server's certificate, the client encrypts a
 pre_master_secret with the server's public key. By successfully
 decoding the pre_master_secret and producing a correct finished
 message, the server demonstrates that it knows the private key
 corresponding to the server certificate.

 When RSA is used for key exchange, clients are authenticated using
 the certificate verify message (see Section 6.4.8). The client signs
 a value derived from the master_secret and all preceding handshake
 messages. These handshake messages include the server certificate,
 which binds the signature to the server, and ServerHello.random,
 which binds the signature to the current handshake process.

F.1.1.3. Diffie-Hellman key exchange with authentication

 When Diffie-Hellman key exchange is used, the server can either
 supply a certificate containing fixed Diffie-Hellman parameters or
 can use the server key exchange message to send a set of temporary
 Diffie-Hellman parameters signed with a DSS or RSA certificate.
 Temporary parameters are hashed with the hello.random values before
 signing to ensure that attackers do not replay old parameters. In
 either case, the client can verify the certificate or signature to
 ensure that the parameters belong to the server.

 If the client has a certificate containing fixed Diffie-Hellman
 parameters, its certificate contains the information required to
 complete the key exchange. Note that in this case the client and
 server will generate the same Diffie-Hellman result (i.e.,
 pre_master_secret) every time they communicate. To prevent the
 pre_master_secret from staying in memory any longer than necessary,
 it should be converted into the master_secret as soon as possible.
 Client Diffie-Hellman parameters must be compatible with those
 supplied by the server for the key exchange to work.

 If the client has a standard DSS or RSA certificate or is
 unauthenticated, it sends a set of temporary parameters to the
 server in the client key exchange message, then optionally uses a

Dierks, T. Expires August, 1997 [Page 61]

INTERNET-DRAFT TLS 1.0 March 1997

 certificate verify message to authenticate itself.

F.1.2. Version rollback attacks

 Because TLS includes substantial improvements over SSL Version 2.0,
 attackers may try to make TLS-capable clients and servers fall back
 to Version 2.0. This attack can occur if (and only if) two
 TLS-capable parties use an SSL 2.0 handshake.

 Although the solution using non-random PKCS #1 block type 2 message
 padding is inelegant, it provides a reasonably secure way for
 Version 3.0 servers to detect the attack. This solution is not
 secure against attackers who can brute force the key and substitute
 a new ENCRYPTED-KEY-DATA message containing the same key (but with
 normal padding) before the application specified wait threshold has
 expired. Parties concerned about attacks of this scale should not be
 using 40-bit encryption keys anyway. Altering the padding of the
 least-significant 8 bytes of the PKCS padding does not impact
| security for the size of the signed hashes and RSA key lengths used
| in the protocol, since this is essentially equivalent to increasing
| the input block size by 8 bytes.

F.1.3. Detecting attacks against the handshake protocol

 An attacker might try to influence the handshake exchange to make
 the parties select different encryption algorithms than they would
 normally choose. Because many implementations will support 40-bit
 exportable encryption and some may even support null encryption or
 MAC algorithms, this attack is of particular concern.

 For this attack, an attacker must actively change one or more
 handshake messages. If this occurs, the client and server will
 compute different values for the handshake message hashes. As a
 result, the parties will not accept each others' finished messages.
 Without the master_secret, the attacker cannot repair the finished
 messages, so the attack will be discovered.

F.1.4. Resuming sessions

 When a connection is established by resuming a session, new
 ClientHello.random and ServerHello.random values are hashed with the
 session's master_secret. Provided that the master_secret has not
 been compromised and that the secure hash operations used to produce
 the encryption keys and MAC secrets are secure, the connection
 should be secure and effectively independent from previous
 connections. Attackers cannot use known encryption keys or MAC
 secrets to compromise the master_secret without breaking the secure
 hash operations (which use both SHA and MD5).

 Sessions cannot be resumed unless both the client and server agree.

 If either party suspects that the session may have been compromised,
 or that certificates may have expired or been revoked, it should

Dierks, T. Expires August, 1997 [Page 62]

INTERNET-DRAFT TLS 1.0 March 1997

 force a full handshake. An upper limit of 24 hours is suggested for
 session ID lifetimes, since an attacker who obtains a master_secret
 may be able to impersonate the compromised party until the
 corresponding session ID is retired. Applications that may be run in
 relatively insecure environments should not write session IDs to
 stable storage.

F.1.5. MD5 and SHA

 TLS uses hash functions very conservatively. Where possible, both
 MD5 and SHA are used in tandem to ensure that non-catastrophic flaws
 in one algorithm will not break the overall protocol.

F.2. Protecting application data

 The master_secret is hashed with the ClientHello.random and
 ServerHello.random to produce unique data encryption keys and MAC
 secrets for each connection.

 Outgoing data is protected with a MAC before transmission. To
 prevent message replay or modification attacks, the MAC is computed
 from the MAC secret, the sequence number, the message length, the
 message contents, and two fixed character strings. The message type
 field is necessary to ensure that messages intended for one TLS
 Record Layer client are not redirected to another. The sequence
 number ensures that attempts to delete or reorder messages will be
 detected. Since sequence numbers are 64-bits long, they should never
 overflow. Messages from one party cannot be inserted into the
 other's output, since they use independent MAC secrets. Similarly,
 the server-write and client-write keys are independent so stream
 cipher keys are used only once.

 If an attacker does break an encryption key, all messages encrypted
 with it can be read. Similarly, compromise of a MAC key can make
 message modification attacks possible. Because MACs are also
 encrypted, message-alteration attacks generally require breaking the
 encryption algorithm as well as the MAC.

 Note: MAC secrets may be larger than encryption keys, so messages can
 remain tamper resistant even if encryption keys are broken.

F.3. Final notes

 For TLS to be able to provide a secure connection, both the client
 and server systems, keys, and applications must be secure. In
 addition, the implementation must be free of security errors.

 The system is only as strong as the weakest key exchange and
 authentication algorithm supported, and only trustworthy
 cryptographic functions should be used. Short public keys, 40-bit

 bulk encryption keys, and anonymous servers should be used with
 great caution. Implementations and users must be careful when

Dierks, T. Expires August, 1997 [Page 63]

INTERNET-DRAFT TLS 1.0 March 1997

 deciding which certificates and certificate authorities are
 acceptable; a dishonest certificate authority can do tremendous
 damage.

Appendix G

G. Patent Statement

 This version of the TLS protocol relies on the use of patented
 public key encryption technology for authentication and encryption.
 The Internet Standards Process as defined in RFC 1310 requires a
 written statement from the Patent holder that a license will be made
 available to applicants under reasonable terms and conditions prior
 to approving a specification as a Proposed, Draft or Internet
 Standard. The Massachusetts Institute of Technology has granted RSA
 Data Security, Inc., exclusive sub-licensing rights to the following
 patent issued in the United States:

 Cryptographic Communications System and Method ("RSA"), No.
 4,405,829

 The Board of Trustees of the Leland Stanford Junior University have
 granted Caro-Kann Corporation, a wholly owned subsidiary
 corporation, exclusive sub-licensing rights to the following patents
 issued in the United States, and all of their corresponding foreign
 patents:

 Cryptographic Apparatus and Method ("Diffie-Hellman"), No.
 4,200,770

 Public Key Cryptographic Apparatus and Method
 ("Hellman-Merkle"), No. 4,218,582

 The Internet Society, Internet Architecture Board, Internet
 Engineering Steering Group and the Corporation for National Research
 Initiatives take no position on the validity or scope of the patents
 and patent applications, nor on the appropriateness of the terms of
 the assurance. The Internet Society and other groups mentioned above
 have not made any determination as to any other intellectual
 property rights which may apply to the practice of this standard.
 Any further consideration of these matters is the user's own
 responsibility.

References

 [SSL3] Frier, Karton and Kocher,
 internet-draft-tls-ssl-version3-00.txt: "The SSL 3.0 Protocol", Nov
 18 1996.

 [DH1] W. Diffie and M. E. Hellman, "New Directions in Cryptography,"

https://datatracker.ietf.org/doc/html/rfc1310

 IEEE Transactions on Information Theory, V. IT-22, n. 6, Jun 1977,
 pp. 74-84.

Dierks, T. Expires August, 1997 [Page 64]

INTERNET-DRAFT TLS 1.0 March 1997

 [3DES] W. Tuchman, "Hellman Presents No Shortcut Solutions To DES,"
 IEEE Spectrum, v. 16, n. 7, July 1979, pp40-41.

 [DES] ANSI X3.106, "American National Standard for Information
 Systems-Data Link Encryption," American National Standards
 Institute, 1983.

 [DSS] NIST FIPS PUB 186, "Digital Signature Standard," National
 Institute of Standards and Technology, U.S. Department of Commerce,
 18 May 1994.

 [FTP] J. Postel and J. Reynolds, RFC 959: File Transfer Protocol,
 October 1985.

 [HTTP] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext Transfer
 Protocol -- HTTP/1.0, October, 1995.

 [IDEA] X. Lai, "On the Design and Security of Block Ciphers," ETH
 Series in Information Processing, v. 1, Konstanz: Hartung-Gorre
 Verlag, 1992.

 [KRAW] H. Krawczyk, IETF Draft: Keyed-MD5 for Message
 Authentication, November 1995.

 [MD2] R. Rivest. RFC 1319: The MD2 Message Digest Algorithm. April
 1992.

 [MD5] R. Rivest. RFC 1321: The MD5 Message Digest Algorithm. April
 1992.

 [PKCS1] RSA Laboratories, "PKCS #1: RSA Encryption Standard,"
 version 1.5, November 1993.

 [PKCS6] RSA Laboratories, "PKCS #6: RSA Extended Certificate Syntax
 Standard," version 1.5, November 1993.

 [PKCS7] RSA Laboratories, "PKCS #7: RSA Cryptographic Message Syntax
 Standard," version 1.5, November 1993.

 [RSA] R. Rivest, A. Shamir, and L. M. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key Cryptosystems,"
 Communications of the ACM, v. 21, n. 2, Feb 1978, pp. 120-126.

 [RSADSI] Contact RSA Data Security, Inc., Tel: 415-595-8782 [SCH] B.
 Schneier. Applied Cryptography: Protocols, Algorithms, and Source
 Code in C, Published by John Wiley & Sons, Inc. 1994.

 [SHA] NIST FIPS PUB 180-1, "Secure Hash Standard," National
 Institute of Standards and Technology, U.S. Department of Commerce,
 DRAFT, 31 May 1994.

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc1319
https://datatracker.ietf.org/doc/html/rfc1321

Dierks, T. Expires August, 1997 [Page 65]

INTERNET-DRAFT TLS 1.0 March 1997

 [TCP] ISI for DARPA, RFC 793: Transport Control Protocol, September
 1981.

 [TEL] J. Postel and J. Reynolds, RFC 854/5, May, 1993.

 [X509] CCITT. Recommendation X.509: "The Directory - Authentication
 Framework". 1988.

 [XDR] R. Srinivansan, Sun Microsystems, RFC-1832: XDR: External Data
 Representation Standard, August 1995.

Credits

Working Group Chair

 Win Treese
 Open Market
 treeseopenmarket.com

Editors

 Tim Dierks Christopher Allen
 Consensus Development Consensus Development
 timd@consensus.com christophera@consensus.com

Authors

 Alan O. Freier Paul C. Kocher
 Netscape Communications Independent Consultant
 freier@netscape.com pck@netcom.com

 Philip L. Karlton Tim Dierks
 Netscape Communications Consensus Development
 karlton@netscape.com timd@consensus.com

Other contributors

 Martin Abadi Robert Relyea
 Digital Equipment Corporation Netscape Communications
 ma@pa.dec.com relyea@netscape.com

 Taher Elgamal Jim Roskind
 Netscape Communications Netscape Communications
 elgamal@netscape.com jar@netscape.com

 Anil Gangolli Micheal J. Sabin, Ph. D.
 Netscape Communications Consulting Engineer
 gangolli@netscape.com msabin@netcom.com

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc1832

Dierks, T. Expires August, 1997 [Page 66]

INTERNET-DRAFT TLS 1.0 March 1997

 Kipp E.B. Hickman Tom Weinstein
 Netscape Communications Netscape Communications
 kipp@netscape.com tomw@netscape.com

Early reviewers

 Robert Baldwin Clyde Monma
 RSA Data Security, Inc. Bellcore
 baldwin@rsa.com clyde@bellcore.com

 George Cox Eric Murray
 Intel Corporation ericm@lne.com
 cox@ibeam.jf.intel.com

 Cheri Dowell Avi Rubin
 Sun Microsystems Bellcore
 cheri@eng.sun.com rubin@bellcore.com

 Stuart Haber Don Stephenson
 Bellcore Sun Microsystems
 stuart@bellcore.com don.stephenson@eng.sun.com

 Burt Kaliski Joe Tardo
 RSA Data Security, Inc. General Magic
 burt@rsa.com tardo@genmagic.com

Comments

 Comments on this draft should be sent to the editors, Tim Dierks
 <timd@consensus.com> and Christopher Allen
 <christophera@consensus.com>, or to the IETF Transport Layer
 Security (TLS) Working Group.

 The discussion list for IETF-TLS is at IETF-TLS@W3.ORG. You
 subscribe and unsubscribe by sending to IETF-TLS-REQUEST@W3.ORG with
 subscribe or unsubscribe in the SUBJECT of the message.

 Archives of the list are at:
 <http://lists.w3.org/Archives/Public/ietf-tls>

http://lists.w3.org/Archives/Public/ietf-tls

Dierks, T. Expires August, 1997 [Page 67]

