
Transport Layer Security D. Harkins, Ed.
Internet-Draft Aruba Networks
Intended status: Standards Track D. Halasz, Ed.
Expires: June 15, 2014 Halasz Ventures
 December 12, 2013

Secure Password Ciphersuites for Transport Layer Security (TLS)
draft-ietf-tls-pwd-03

Abstract

 This memo defines several new ciphersuites for the Transport Layer
 Security (TLS) protocol to support certificate-less, secure
 authentication using only a simple, low-entropy, password. The
 ciphersuites are all based on an authentication and key exchange
 protocol that is resistant to off-line dictionary attack.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 15, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Harkins & Halasz Expires June 15, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS Password December 2013

 described in the Simplified BSD License.

Table of Contents

1. Background . 3
1.1. The Case for Certificate-less Authentication 3
1.2. Resistance to Dictionary Attack 3

2. Keyword Definitions . 4
3. Introduction . 4
3.1. Notation . 4
3.2. Discrete Logarithm Cryptography 5
3.2.1. Elliptic Curve Cryptography 5
3.2.2. Finite Field Cryptography 6

3.3. Instantiating the Random Function 7
3.4. Passwords . 8
3.5. Assumptions . 8

4. Specification of the TLS-PWD Handshake 9
4.1. Protecting the Username 9
4.1.1. Construction of a Protected Username 10
4.1.2. Recovery of a Protected Username 11

4.2. Fixing the Password Element 12
4.2.1. Computing an ECC Password Element 13
4.2.2. Computing an FFC Password Element 15

4.3. Changes to Handshake Message Contents 15
4.3.1. Client Hello Changes 15
4.3.2. Server Key Exchange Changes 16
4.3.2.1. Generation of ServerKeyExchange 17
4.3.2.2. Processing of ServerKeyExchange 18

4.3.3. Client Key Exchange Changes 19
4.3.3.1. Generation of Client Key Exchange 19
4.3.3.2. Processing of Client Key Exchange 20

4.4. Computing the Premaster Secret 20
5. Ciphersuite Definition . 21
6. Acknowledgements . 21
7. IANA Considerations . 22
8. Security Considerations 23
9. Implementation Considerations 26
10. References . 27
10.1. Normative References 27
10.2. Informative References 27

Appendix A. Example Exchange 28
 Authors' Addresses . 32

Harkins & Halasz Expires June 15, 2014 [Page 2]

Internet-Draft TLS Password December 2013

1. Background

1.1. The Case for Certificate-less Authentication

 TLS usually uses public key certificates for authentication
 [RFC5246]. This is problematic in some cases:

 o Frequently, TLS [RFC5246] is used in devices owned, operated, and
 provisioned by people who lack competency to properly use
 certificates and merely want to establish a secure connection
 using a more natural credential like a simple password. The
 proliferation of deployments that use a self-signed server
 certificate in TLS [RFC5246] followed by a PAP-style exchange over
 the unauthenticated channel underscores this case.

 o A password is a more natural credential than a certificate (from
 early childhood people learn the semantics of a shared secret), so
 a password-based TLS ciphersuite can be used to protect an HTTP-
 based certificate enrollment scheme like EST [RFC7030] to parlay a
 simple password into a certificate for subsequent use with any
 certificate-based authentication protocol. This addresses a
 significant "chicken-and-egg" dilemma found with certificate-only
 use of [RFC5246].

 o Some PIN-code readers will transfer the entered PIN to a smart
 card in clear text. Assuming a hostile environment, this is a bad
 practice. A password-based TLS ciphersuite can enable the
 establishment of an authenticated connection between reader and
 card based on the PIN.

1.2. Resistance to Dictionary Attack

 It is a common misconception that a protocol that authenticates with
 a shared and secret credential is resistent to dictionary attack if
 the credential is assumed to be an N-bit uniformly random secret,
 where N is sufficiently large. The concept of resistence to
 dictionary attack really has nothing to do with whether that secret
 can be found in a standard collection of a language's defined words
 (i.e. a dictionary). It has to do with how an adversary gains an
 advantage in attacking the protocol.

 For a protocol to be resistant to dictionary attack any advantage an
 adversary can gain must be a function of the amount of interactions
 she makes with an honest protocol participant and not a function of
 the amount of computation she uses. The adversary will not be able
 to obtain any information about the password except whether a single
 guess from a single protocol run which she took part in is correct or
 incorrect.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7030
https://datatracker.ietf.org/doc/html/rfc5246

Harkins & Halasz Expires June 15, 2014 [Page 3]

Internet-Draft TLS Password December 2013

 It is assumed that the attacker has access to a pool of data from
 which the secret was drawn-- it could be all numbers between 1 and
 2^N, it could be all defined words in a dictionary. The key is that
 the attacker cannot do a an attack and then enumerate through the
 pool trying potential secrets (computation) to see if one is correct.
 She must do an active attack for each secret she wishes to try
 (interaction) and the only information she can glean from that attack
 is whether the secret used with that particular attack is correct or
 not.

2. Keyword Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Introduction

3.1. Notation

 The following notation is used in this memo:

 password
 a secret, and potentially low-entropy word, phrase, code or key
 used as a credential for authentication. The password is shared
 between the TLS client and TLS server.

 y = H(x)
 a binary string of arbitrary length, x, is given to a function H
 which produces a fixed-length output, y.

 a | b
 denotes concatenation of string a with string b.

 [a]b
 indicates a string consisting of the single bit "a" repeated "b"
 times.

 x mod y
 indicates the remainder of division of x by y. The result will
 be between 0 and y.

 len(x)
 indicates the length in bits of the string x.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Harkins & Halasz Expires June 15, 2014 [Page 4]

Internet-Draft TLS Password December 2013

 LSB(x)
 returns the least-significant bit of the bitstring "x".

 G.x
 indicates the x-coordinate of a point, G, on and elliptic curve.

3.2. Discrete Logarithm Cryptography

 The ciphersuites defined in this memo use discrete logarithm
 cryptography (see [SP800-56A]) to produce an authenticated and shared
 secret value that is an element in a group defined by a set of domain
 parameters. The domain parameters can be based on either Finite
 Field Cryptography (FFC) or Elliptic Curve Cryptography (EEC).

 TLS [RFC5246] allows for both FFC and ECC domain parameter sets to be
 conveyed verbosely by the server. This opens up the possibility of a
 malicious server offering a weak group, or one with a trapdoor, that
 would lead to a leaking of information during a run of the protocol.
 Therefore, if explicit domain parameter sets are used with TLS-PWD,
 they MUST be agreed-upon a priori in an out-of-band fashion. Clients
 MUST NOT accept explicit domain parameter sets from a server that it
 has not previously agreed to accept.

 Elements in a group, either an FFC or EEC group, are indicated using
 upper-case while scalar values are indicated using lower-case.

3.2.1. Elliptic Curve Cryptography

 The authenticated key exchange defined in this memo uses fundamental
 algorithms of elliptic curves defined over GF(p) as described in
 [RFC6090].

 Domain parameters for the ECC groups used by this memo are:

 o A prime, p, determining a prime field GF(p). The cryptographic
 group will be a subgroup of the full elliptic curve group which
 consists points on an elliptic curve-- elements from GF(p) that
 satisfy the curve's equation-- together with the "point at
 infinity" that serves as the identity element.

 o Elements a and b from GF(p) that define the curve's equation. The
 point (x,y) in GF(p) x GF(p) is on the elliptic curve if and only
 if (y^2 - x^3 - a*x - b) mod p equals zero (0).

 o A point, G, on the elliptic curve, which serves as a generator for
 the ECC group. G is chosen such that its order, with respect to
 elliptic curve addition, is a sufficiently large prime.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6090

Harkins & Halasz Expires June 15, 2014 [Page 5]

Internet-Draft TLS Password December 2013

 o A prime, q, which is the order of G, and thus is also the size of
 the cryptographic subgroup that is generated by G.

 o A co-factor, f, defined by the requirement that the size of the
 full elliptic curve group (including the "point at infinity") is
 the product of f and q.

 This memo uses the following ECC Functions:

 o Z = elem-op(X,Y) = X + Y: two points on the curve X and Y, are
 sumed to produce another point on the curve, Z. This is the group
 operation for ECC groups.

 o Z = scalar-op(x,Y) = x * Y: an integer scalar, x, acts on a point
 on the curve, Y, via repetitive addition (Y is added to itself x
 times), to produce another EEC element, Z.

 o Y = inverse(X): a point on the curve, X, has an inverse, Y, which
 is also a point on the curve, when their sum is the "point at
 infinity" (the identity for elliptic curve addition). In other
 words, R + inverse(R) = "0".

 o z = F(X): the x-coordinate of a point (x, y) on the curve is
 returned. This is a mapping function to convert a group element
 into an integer.

 Only ECC groups over GF(p) can be used with TLS-PWD. ECC groups over
 GF(2^m) SHALL NOT be used by TLS-PWD. In addition, ECC groups with a
 co-factor greater than one (1) SHALL NOT be used by TLS-PWD.

 A composite (x, y) pair can be validated as a point on the elliptic
 curve by checking whether: 1) both coordinates x and y are greater
 than zero (0) and less than the prime defining the underlying field;
 2) the x- and y- coordinates satisfy the equation of the curve; and
 3) they do not represent the point-at-infinity "0". If any of those
 conditions are not true the (x, y) pair is not a valid point on the
 curve.

3.2.2. Finite Field Cryptography

 Domain parameters for the FFC groups used by this memo are:

 o A prime, p, determining a prime field GF(p), the integers modulo
 p. The FFC group will be a subgroup of GF(p)*, the multiplicative
 group of non-zero elements in GF(p).

 o An element, G, in GF(p)* which serves as a generator for the FFC
 group. G is chosen such that its multiplicative order is a

Harkins & Halasz Expires June 15, 2014 [Page 6]

Internet-Draft TLS Password December 2013

 sufficiently large prime divisor of ((p-1)/2).

 o A prime, q, which is the multiplicative order of G, and thus also
 the size of the cryptographic subgroup of GF(p)* that is generated
 by G.

 This memo uses the following FFC Functions:

 o Z = elem-op(X,Y) = (X * Y) mod p: two FFC elements, X and Y, are
 multiplied modulo the prime, p, to produce another FFC element, Z.
 This is the group operation for FFC groups.

 o Z = scalar-op(x,Y) = Y^x mod p: an integer scalar, x, acts on an
 FFC group element, Y, via exponentiation modulo the prime, p, to
 produce another FFC element, Z.

 o Y = inverse(X): a group element, X, has an inverse, Y, when the
 product of the element and its inverse modulo the prime equals one
 (1). In other words, (X * inverse(X)) mod p = 1.

 o z = F(X): is the identity function since an element in an FFC
 group is already an integer. It is included here for consistency
 in the specification.

 Many FFC groups used in IETF protocols are based on safe primes and
 do not define an order (q). For these groups, the order (q) used in
 this memo shall be the prime of the group minus one divided by two--
 (p-1)/2.

 An integer can be validated as being an element in an FFC group by
 checking whether: 1) it is between one (1) and the prime, p,
 exclusive; and 2) if modular exponentiation of the integer by the
 group order, q, equals one (1). If either of these conditions are
 not true the integer is not an element in the group.

3.3. Instantiating the Random Function

 The protocol described in this memo uses a random function, H, which
 is modeled as a "random oracle". At first glance, one may view this
 as a hash function. As noted in [RANDOR], though, hash functions are
 too structured to be used directly as a random oracle. But they can
 be used to instantiate the random oracle.

 The random function, H, in this memo is instantiated by using the
 hash algorithm defined by the particular TLS-PWD ciphersuite in HMAC
 mode with a key whose length is equal to block size of the hash
 algorithm and whose value is zero. For example, if the ciphersuite
 is TLS_ECCPWD_WITH_AES_128_GCM_SHA256 then H will be instantiated

Harkins & Halasz Expires June 15, 2014 [Page 7]

Internet-Draft TLS Password December 2013

 with SHA256 as:

 H(x) = HMAC-SHA256([0]32, x)

3.4. Passwords

 The authenticated key exchange used in TLS-PWD requires each side to
 have a common view of a shared credential. To protect the server's
 database of stored passwords, though, the password SHALL be salted
 and the result, called the base, SHALL be used as the authentication
 credential.

 The salting function is defined as:

 base = HMAC-SHA256(salt, username | password)

 The password used for generation of the base SHALL be represented as
 a UTF-8 encoded character string processed according to the rules of
 the [RFC4013] profile of [RFC3454] and the salt SHALL be a 32 octet
 random number. The server SHALL store a triplet of the form:

 { username, base, salt }

 And the client SHALL generate the base upon receiving the salt from
 the server.

3.5. Assumptions

 The security properties of the authenticated key exchange defined in
 this memo are based on a number of assumptions:

 1. The random function, H, is a "random oracle" as defined in
 [RANDOR].

 2. The discrete logarithm problem for the chosen group is hard.
 That is, given g, p, and y = g^x mod p, it is computationally
 infeasible to determine x. Similarly, for an ECC group given the
 curve definition, a generator G, and Y = x * G, it is
 computationally infeasible to determine x.

 3. Quality random numbers with sufficient entropy can be created.
 This may entail the use of specialized hardware. If such
 hardware is unavailable a cryptographic mixing function (like a
 strong hash function) to distill enropy from multiple,
 uncorrelated sources of information and events may be needed. A
 very good discussion of this can be found in [RFC4086].

 If the server supports username protection (see Section 4.1), it is

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4086

Harkins & Halasz Expires June 15, 2014 [Page 8]

Internet-Draft TLS Password December 2013

 assumed that the server has chosen a domain parameter set and
 generated a username-protection keypair. The chosen domain parameter
 set and public key are assumed to be conveyed to the client at the
 time the client's username and password were provisioned.

4. Specification of the TLS-PWD Handshake

 The authenticated key exchange is accomplished by each side deriving
 a password-based element, PE, in the chosen group, making a
 "commitment" to a single guess of the password using PE, and
 generating the Premaster Secret. The ability of each side to produce
 a valid finished message authenticates itself to the other side.

 The authenticated key exchange is dropped into the standard TLS
 message handshake by modifying some of the messages.

 Client Server
 -------- --------

 Client Hello (name) -------->

 Server Hello
 Server Key Exchange (commit)
 <-------- Server Hello Done

 Client Key Exchange (commit)
 [Change cipher spec]
 Finished -------->

 [Change cipher spec]
 <-------- Finished

 Application Data <-------> Application Data

 Figure 1

4.1. Protecting the Username

 The client is required to identify herself to the server before the
 server can look up the appropriate client credential with which to
 perform the authenticated key exchange. This has negative privacy
 implicaitons and opens up the client to tracking and increased
 monitoring. It is therefore useful for the client to be able to
 protect her username from passive monitors of the exchange and
 against active attack by a malicious server. TLS-PWD provides such a
 mechsnism. Support for protected usernames is RECOMMENDED.

Harkins & Halasz Expires June 15, 2014 [Page 9]

Internet-Draft TLS Password December 2013

 To enable username protection a server choses a domain parameter set,
 chooses a random private key, s, such that 1 < s < (q-1), where q is
 the order of the chosen group, uses scalar-op() with the selected
 group's generator to generate a public key, S:

 S = scalar-op(s, G)

 This keypair SHALL only be used for username protection. For
 efficiency, the domain parameter set used for userame protection MUST
 be based on elliptic curve cryptography. Any ECC group that is
 approprate for TLS-PWD (see Section 3.2.1) is suitable for this
 purpose but for interoperability, brainpoolP256r1 MUST be supported.
 The domain parameter set used for username protection does not
 restrict the choice of domain parameter set used for the underlying
 key exchange in any way.

 When the client's username and password are provisioned on the
 server, the server conveys the chosen group and its public key to the
 client. This is stored on the client along with the server-specific
 state (e.g. the hostname) it uses to initiate a TLS-PWD exchange.
 The server uses the same group and public key with all clients.

 To protect a username, the client and server perform a static-
 ephemeral Diffie-Hellman exchange, using compact representation (and
 therefore compact output, see [RFC6090]). The result of the Diffie-
 Hellman exchange is passed to HKDF [RFC5869] to create a key-
 encrypting key suitable for AES-SIV [RFC5297]. The length of the
 key-encrypting key, l, and the hash function to use with HKDF depends
 on the length of the prime, p, of the group used to provide username
 protection:

 o SHA-256, SIV-128, l=256 bits: when len(p) <= 256

 o SHA-384, SIV-192, l=384 bits: when 256 < len(p) <= 384

 o SHA-512, SIV-256, l=512 bits: when len(p) > 384

4.1.1. Construction of a Protected Username

 Prior to initiating a TLS-PWD exchange, the client chooses a random
 secret, c, such that 1 < c < (q-1), where q is the order of the group
 from which the server's public key was generated, and uses
 scalar-op() with the group's generator to create a public key, C. It
 uses scalar-op() with the server's public key and c to create a
 shared secret and derives a key-encrypting key, k, using the "salt-
 less" mode of HKDF [RFC5869].

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc5869

Harkins & Halasz Expires June 15, 2014 [Page 10]

Internet-Draft TLS Password December 2013

 C = scalar-op(c, G)

 Z = scalar-op(c, S)

 k = HKDF-expand(HKDF-extract(NULL, Z.x), "", l)

 Where NULL indicates the salt-free invocation and "" indicates an
 empty string (i.e. there is no "context" passed to HKDF).

 The key, k, and the client's username is then passed to SIV-encrypt
 with no AAD and no nonce to produce an encrypted username, u:

 u = SIV-encrypt(k, username)

 Note: the format of the ciphertext output from SIV includes the
 authenticating synthetic initialization vector.

 The protected username SHALL be the concatenation of the x-coordinate
 of the client's public key, C, and the encrypted username, u. The
 length of the x-coordinate of C MUST be equal to the length of the
 group's prime, p, pre-pended with zeros, if necessary. The protected
 username is inserted into the PWD_name extension and the
 ExtensionType MUST be PWD_protect (see Section 4.3.1).

 The length of the ciphertext output from SIV, minus the synthetic
 initialization vector, will be equal to the length of the input
 plaintext, in this case the username. To further foil traffic
 analysis, it is RECOMMENDED that clients append a series of NULL
 bytes to their usernames prior to passing them to SIV-encrypt() and
 to vary the number of bytes added with each distinct run of TLS-PWD.

4.1.2. Recovery of a Protected Username

 A server that receives a protected username needs to recover the
 client's username prior to performing the key exchange. To do so,
 the server computes the client's public key, completes the static-
 ephemeral Diffie-Hellman exchange, derives the key encrypting key, k,
 and decrypts the username.

 The length of the x-coordinate of the client's public key is known
 (it is the length of the prime from the domain parameter set used to
 protect usernames) and can easily be separated from the ciphertext in
 the PWD_name extension in the Client Hello-- the first len(p) bits
 are the x-coordinate of the client's public key and the remaining
 bits are the ciphertext.

 Since compressed representation is used by the client, the server
 MUST compute the y-coordinate of the client's public key by using the

Harkins & Halasz Expires June 15, 2014 [Page 11]

Internet-Draft TLS Password December 2013

 equation of the curve:

 y^2 = x^3 + ax + b

 and solving for y. There are two solutions for y but since
 compressed output is also being used, the selection is irrelevant.
 The server reconstructs the client's public value, C, from (x, y).
 If there is no solution for y, or if (x, y) is not a valid point on
 the elliptic curve (see Section 3.2.1), the server MUST treat the
 Client Hello as if it did not have a password for a given username
 (see Section 4.3.1).

 The server then uses scalar-op() with the reconstructed point C and
 the private key it uses for protected passwords, s, to generate a
 shared secret, and derives a key-encrypting key, k, in the same
 manner as in Section 4.1.1.

 Z = scalar-op(s, C)

 k = HKDF-expand(HKDF-extract(NULL, Z.x), "", l)

 The key, k, and the ciphertext portion of the PWD_name extension, u,
 are passed to SIV-decrypt with no AAD and no nonce to produce the
 username:

 username = SIV-decrypt(k, u)

 If SIV-decrypt returns the symbol FAIL indicating unsuccessful
 decryption and verification the server MUST treat the ClientHello as
 if it did not have a password for a given username (see

Section 4.3.1). If successful, the server has obtained the client's
 username and can process it as needed. Any NULL octets added by the
 client prior to encryption can be easily stripped off of the string
 that represents the username.

4.2. Fixing the Password Element

 Prior to making a "commitment" both sides must generate a secret
 element, PE, in the chosen group using the common password-derived
 base. The server generates PE after it receives the Client Hello and
 chooses the particular group to use, and the client generates PE upon
 receipt of the Server Key Exchange.

 Fixing the password element involves an iterative "hunting and
 pecking" technique using the prime from the negotiated group's domain
 parameter set and an ECC- or FFC-specific operation depending on the
 negotiated group.

Harkins & Halasz Expires June 15, 2014 [Page 12]

Internet-Draft TLS Password December 2013

 To thwart side channel attacks which attempt to determine the number
 of iterations of the "hunting-and-pecking" loop are used to find PE
 for a given password, a security parameter, m, is used to ensure that
 at least m iterations are always performed.

 First, an 8-bit counter is set to the value one (1). Then, H is used
 to generate a password seed from the a counter, the prime of the
 selected group, and the base (which is derived from the username,
 password, and salt):

 pwd-seed = H(base | counter | p)

 Then, using the technique from section B.5.1 of [FIPS186-3], the pwd-
 seed is expanded using the PRF to the length of the prime from the
 negotiated group's domain parameter set plus a constant sixty-four
 (64) to produce an intermediate pwd-tmp which is modularly reduced to
 create pwd-value:

 n = len(p) + 64
 pwd-tmp = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
 ClientHello.random | ServerHello.random) [0..n];
 pwd-value = (pwd-tmp mod (p-1)) + 1

 The pwd-value is then passed to the group-specific operation which
 either returns the selected password element or fails. If the group-
 specific operation fails, the counter is incremented, a new pwd-seed
 is generated, and the hunting-and-pecking continues. This process
 continues until the group-specific operation returns the password
 element. After the password element has been chosen, the base is
 changed to a random number, the counter is incremented and the
 hunting-and-pecking continues until the counter is greater than the
 security parameter, m.

 The probability that one requires more than n iterations of the
 "hunting and pecking" loop to find an ECC PE is roughly (q/2p)^n and
 to find an FFC PE is roughly (q/p)^n, both of which rapidly approach
 zero (0) as n increases. The security parameter, m, SHOULD be set
 sufficiently large such that the probability that finding PE would
 take more than m iterations is sufficiently small (see Section 8).

 When PE has been discovered, pwd-seed, pwd-tmp, and pwd-value SHALL
 be irretrievably destroyed.

4.2.1. Computing an ECC Password Element

 The group-specific operation for ECC groups uses pwd-value, pwd-seed,
 and the equation for the curve to produce PE. First, pwd-value is
 used directly as the x-coordinate, x, with the equation for the

Harkins & Halasz Expires June 15, 2014 [Page 13]

Internet-Draft TLS Password December 2013

 elliptic curve, with parameters a and b from the domain parameter set
 of the curve, to solve for a y-coordinate, y. If there is no
 solution to the quadratic equation, this operation fails and the
 hunting-and-pecking process continues. If a solution is found, then
 an ambiguity exists as there are technically two solutions to the
 equation and pwd-seed is used to unambiguously select one of them.
 If the low-order bit of pwd-seed is equal to the low-order bit of y,
 then a candidate PE is defined as the point (x, y); if the low-order
 bit of pwd-seed differs from the low-order bit of y, then a candidate
 PE is defined as the point (x, p - y), where p is the prime over
 which the curve is defined. The candidate PE becomes PE, a random
 number is used instead of the base, and the hunting and pecking
 continues until it has looped through m iterations.

 Algorithmically, the process looks like this:

 found = 0
 counter = 0
 base = H(username | password | salt)
 n = len(p) + 64
 do {
 counter = counter + 1
 pwd-seed = H(base | counter | p)
 pwd-tmp = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
 ClientHello.random | ServerHello.random) [0..n]
 pwd-value = (pwd-tmp mod (p-1)) + 1
 x = pwd-value
 if ((y = sqrt(x^3 + ax + b)) != FAIL)
 then
 if (found == 0)
 then
 if (LSB(y) == LSB(pwd-seed))
 then
 PE = (x, y)
 else
 PE = (x, p-y)
 fi
 found = 1
 base = random()
 fi
 fi
 } while ((found == 0) || (counter <= m))

 Figure 2: Fixing PE for ECC Groups

Harkins & Halasz Expires June 15, 2014 [Page 14]

Internet-Draft TLS Password December 2013

4.2.2. Computing an FFC Password Element

 The group-specific operation for FFC groups takes pwd-value, and the
 prime, p, and order, q, from the group's domain parameter set (see

Section 3.2.2 when the order is not part of the defined domain
 parameter set) to directly produce a candidate password element, by
 exponentiating the pwd-value to the value ((p-1)/q) modulo the prime.
 If the result is greater than one (1), the candidate password element
 becomes PE, and the hunting and pecking terminates successfully.

 Algorithmically, the process looks like this:

 found = 0
 counter = 0
 base = H(username | password | salt)
 n = len(p) + 64
 do {
 counter = counter + 1
 pwd-seed = H(base | counter | p)
 pwd-tmp = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
 ClientHello.random | ServerHello.random) [0..n]
 pwd-value = (pwd-tmp mod (p-1)) + 1
 PE = pwd-value ^ ((p-1)/q) mod p
 if (PE > 1)
 then
 found = 1
 base = random()
 fi
 } while ((found == 0) || (counter <= m))

 Figure 3: Fixing PE for FFC Groups

4.3. Changes to Handshake Message Contents

4.3.1. Client Hello Changes

 The client is required to identify herself to the server by adding a
 either a PWD_protect or PWD_clear extension to the Client Hello
 message depending on whether the client wishes to protect its
 username (see Section 4.1) or not, respectively. The PWD_protect and
 PWD_clear extensions use the standard mechanism defined in [RFC5246].
 The "extension data" field of the PWD extension SHALL contain a
 PWD_name which is used to identify the password shared between the
 client and server. If username protection is performed, and the
 ExtensionType is PWD_protect, the contents of the PWD_name SHALL be
 constructed according to Section 4.1.1).

https://datatracker.ietf.org/doc/html/rfc5246

Harkins & Halasz Expires June 15, 2014 [Page 15]

Internet-Draft TLS Password December 2013

 enum { PWD_clear(TBD1), PWD_protect(TBD2) } ExtensionType;

 opaque PWD_name<1..2^8-1>;

 An unprotected PWD_name SHALL be UTF-8 encoded character string
 processed according to the rules of the [RFC4013] profile of
 [RFC3454] and a protected PWD_name SHALL be a string of bits.

 A client offering a PWD ciphersuite MUST include one of the PWD_name
 extensions in her Client Hello.

 If a server does not have a password for a client identified by the
 username either extracted from the PWD_name, if unprotected, or
 recovered using the technique in Section 4.1.2, if protected, or if
 recovery of a protected username fails, the server SHOULD hide that
 fact by simulating the protocol-- putting random data in the PWD-
 specific components of the Server Key Exchange-- and then rejecting
 the client's finished message with a "bad_record_mac" alert. To
 properly effect a simulated TLS-PWD exchange, an appropriate delay
 SHOULD be inserted between receipt of the Client Hello and response
 of the Server Hello. Alternately, a server MAY choose to terminate
 the exchange if a password is not found.

 The server decides on a group to use with the named user (see
Section 9 and generates the password element, PE, according to
Section 4.2.2.

4.3.2. Server Key Exchange Changes

 The domain parameter set for the selected group MUST be specified in
 the ServerKeyExchange, either explicitly or, in the case of some
 elliptic curve groups, by name. In addition to the group
 specification, the ServerKeyExchange also contains the server's
 "commitment" in the form of a scalar and element, and the salt which
 was used to store the user's password.

 Two new values have been added to the enumerated KeyExchangeAlgorithm
 to indicate TLS-PWD using finite field cryptography, ff_pwd, and TLS-
 PWD using elliptic curve cryptography, ec_pwd.

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454

Harkins & Halasz Expires June 15, 2014 [Page 16]

Internet-Draft TLS Password December 2013

 enum { ff_pwd, ec_pwd } KeyExchangeAlgorithms;

 struct {
 opaque salt<1..2^8-1>;
 opaque pwd_p<1..2^16-1>;
 opaque pwd_g<1..2^16-1>;
 opaque pwd_q<1..2^16-1>;
 opaque ff_selement<1..2^16-1>;
 opaque ff_sscalar<1..2^16-1>;
 } ServerFFPWDParams;

 struct
 opaque salt<1..2^8-1>;
 ECParameters curve_params;
 ECPoint ec_selement;
 opaque ec_sscalar<1..2^8-1>;
 } ServerECPWDParams;

 struct {
 select (KeyExchangeAlgorithm) {
 case ec_pwd:
 ServerECPWDParams params;
 case ff_pwd:
 ServerFFPWDParams params;
 };
 } ServerKeyExchange;

4.3.2.1. Generation of ServerKeyExchange

 The scalar and Element that comprise the server's "commitment" are
 generated as follows.

 First two random numbers, called private and mask, between zero and
 the order of the group (exclusive) are generated. If their sum
 modulo the order of the group, q, equals zero the numbers must be
 thrown away and new random numbers generated. If their sum modulo
 the order of the group, q, is greater than zero the sum becomes the
 scalar.

 scalar = (private + mask) mod q

 The Element is then calculated as the inverse of the group's scalar
 operation (see the group specific operations in Section 3.2) with the
 mask and PE.

 Element = inverse(scalar-op(mask, PE))

Harkins & Halasz Expires June 15, 2014 [Page 17]

Internet-Draft TLS Password December 2013

 After calculation of the scalar and Element the mask SHALL be
 irretrievably destroyed.

4.3.2.1.1. ECC Server Key Exchange

 EEC domain parameters are specified, either explicitly or named, in
 the ECParameters component of the EEC-specific ServerKeyExchange as
 defined in [RFC4492]. The scalar SHALL become the ec_sscalar
 component and the Element SHALL become the ec_selement of the
 ServerKeyExchange. If the client requested a specific point format
 (compressed or uncompressed) with the Support Point Formats Extension
 (see [RFC4492]) in its Client Hello, the Element MUST be formatted in
 the ec_selement to conform to that request. If the client offered
 (an) elliptic curve(s) in its ClientHello using the Supported
 Elliptic Curves Extension, the server MUST include (one of the) named
 curve(s) in the ECParameters field in the ServerKeyExchange and the
 key exchange operations specified in Section 4.3.2.1 MUST use that
 group.

 As mentioned in Section 3.2.1, elliptic curves over GF(2^m), so
 called characteristic-2 curves, and curves with a co-factor greater
 than one (1) SHALL NOT be used with TLS-PWD.

4.3.2.1.2. FFC Server Key Exchange

 FFC domain parameters sent in the ServerKeyExchange are for the
 group's prime, generator (which is only used for verification of the
 group specification), and the order of the group's generator. The
 scalar SHALL become the ff_sscalar component and the Element SHALL
 become the ff_selement in the FFC-specific ServerKeyExchange.

 As mentioned in Section 3.2.2 if the prime is a safe prime and no
 order is included in the domain parameter set, the order added to the
 ServerKeyExchange SHALL be the prime minus one divided by two--
 (p-1)/2.

4.3.2.2. Processing of ServerKeyExchange

 Upon receipt of the ServerKeyExchange, the client decides whether to
 support the indicated group or not. If the client used the Supported
 Elliptic Curves Extension to offer (a) named curve(s) in her
 ClientHello, the named curve in the ServerKeyExchange MUST be one
 offered. If the server is explicitly specifying a group, either an
 FFC or ECC group, the client and server MUST have agreed upon groups
 prior to beginning the exchange (see Section 3.2) and the client MUST
 compare each field of the explicit offer to the agreed-upon group(s).
 Any discrepency SHALL result in the exchange being aborted.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492

Harkins & Halasz Expires June 15, 2014 [Page 18]

Internet-Draft TLS Password December 2013

 If the client decides to support the indicated group the server's
 "commitment" MUST be validated by ensuring that: 1) the server's
 scalar value is greater than zero (0) and less than the order of the
 group, q; and 2) that the Element is valid for the chosen group (see

Section 3.2.2 and Section 3.2.1 for how to determine whether an
 Element is valid for the particular group. Note that if the Element
 is a compressed point on an elliptic curve it MUST be uncompressed
 before checking its validity).

 If the group is acceptable and the server's "commitment" has been
 successfully validated, the client extracts the salt from the
 ServerKeyExchange and generates the password element, PE, according
 to Section 3.4 and Section 4.2.2. If the group is not acceptable or
 the server's "commitment" failed validation, the eexchange MUST be
 aborted.

4.3.3. Client Key Exchange Changes

 When the value of KeyExchangeAlgorithm is either ff_pwd or ec_pwd,
 the ClientKeyExchange is used to convey the client's "commitment" to
 the server. It, therefore, contains a scalar and an Element.

 struct {
 opaque ff_celement<1..2^16-1>;
 opaque ff_cscalar<1..2^16-1>;
 } ClientFFPWDParams;

 struct
 ECPoint ec_celement;
 opaque ec_cscalar<1..2^8-1>;
 } ClientECPWDParams;

 struct {
 select (KeyExchangeAlgorithm) {
 case ff_pwd: ClientFFPWDParams;
 case ec_pwd: ClientECPWDParams;
 } exchange_keys;
 } ClientKeyExchange;

4.3.3.1. Generation of Client Key Exchange

 The client's scalar and Element are generated in the manner described
 in Section 4.3.2.1.

 For an FFC group, the scalar SHALL become the ff_cscalar component
 and the Element SHALL become the ff_celement in the FFC-specific
 ClientKeyExchange.

Harkins & Halasz Expires June 15, 2014 [Page 19]

Internet-Draft TLS Password December 2013

 For an ECC group, the scalar SHALL become the ec_cscalar component
 and the ELement SHALL become the ec_celement in the ECC-specific
 ClientKeyExchange. If the client requested a specific point format
 (compressed or uncompressed) with the Support Point Formats Extension
 in its ClientHello, then the Element MUST be formatted in the
 ec_celement to conform to its initial request.

4.3.3.2. Processing of Client Key Exchange

 Upon receipt of the ClientKeyExchange, the server must validate the
 client's "commitment" by ensuring that: 1) the client's scalar and
 element differ from the server's scalar and element; 2) the client's
 scalar value is greater than zero (0) and less than the order of the
 group, q; and 3) that the Element is valid for the chosen group (see

Section 3.2.2 and Section 3.2.1 for how to determin whether an
 Element is valid for a particular group. Note that if the Element is
 a compressed point on an elliptic curve it MUST be uncompressed
 before checking its validity. If any of these three conditions are
 not met the server MUST abort the exchange.

4.4. Computing the Premaster Secret

 The client uses the server's scalar and Element, denoted here as
 ServerKeyExchange.scalar and ServerKeyExchange.Element, and the
 random private value, denoted here as client.private, she created as
 part of the generation of her "commit" to compute an intermediate
 value, z, as indicated:

 z = F(scalar-op(client.private,
 element-op(ServerKeyExchange.Element,
 scalar-op(ServerKeyExchange.scalar, PE))))

 With the same notation as above, the server the client's scalar and
 Element, and his random private value, denoted here as
 server.private, he created as part of the generation of his "commit"
 to compute the premaster secret as follows:

 z = F(scalar-op(server.private,
 element-op(ClientKeyExchange.Element,
 scalar-op(ClientKeyExchange.scalar, PE))))

 The intermediate value, z, is then used as the premaster secret after
 any leading bytes of z that contain all zero bits have been stripped
 off.

Harkins & Halasz Expires June 15, 2014 [Page 20]

Internet-Draft TLS Password December 2013

5. Ciphersuite Definition

 This memo adds the following ciphersuites:

 CipherSuite TLS_FFCPWD_WITH_3DES_EDE_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256 = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_256_GCM_SHA384 = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA256 = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_256_CCM_SHA384 = (TBD, TBD);

 Implementations conforming to this specification MUST support the
 TLS_ECCPWD_WITH_AES_128_CBC_SHA ciphersuite; they SHOULD support
 TLS_ECCPWD_WITH_AES_128_CCM_SHA, TLS_FFCPWD_WITH_AES_128_CCM_SHA,
 TLS_ECCPWD_WITH_AES_128_GCM_SHA256,
 TLS_ECCPWD_WITH_AES_256_GCM_SHA384; and MAY support the remaining
 ciphersuites.

 When negotiated with a version of TLS prior to 1.2, the Pseudo-Random
 Function (PRF) from that version is used; otherwise, the PRF is the
 TLS PRF [RFC5246] using the hash function indicated by the
 ciphersuite. Regardless of the TLS version, the TLS-PWD random
 function, H, is always instantiated with the hash algorithm indicated
 by the ciphersuite.

 For those ciphersuites that use Cipher Block Chaining (CBC)
 [SP800-38A] mode, the MAC is HMAC [RFC2104] with the hash function
 indicated by the ciphersuite.

6. Acknowledgements

 The authenticated key exchange defined here has also been defined for
 use in 802.11 networks, as an EAP method, and as an authentication
 method for IKE. Each of these specifications has elicited very
 helpful comments from a wide collection of people that have allowed
 the definition of the authenticated key exchange to be refined and

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2104

Harkins & Halasz Expires June 15, 2014 [Page 21]

Internet-Draft TLS Password December 2013

 improved.

 The authors would like to thank Scott Fluhrer for discovering the
 "password as exponent" attack that was possible in an early version
 of this key exchange and for his very helpful suggestions on the
 techniques for fixing the PE to prevent it. The authors would also
 like to thank Hideyuki Suzuki for his insight in discovering an
 attack against a previous version of the underlying key exchange
 protocol. Special thanks to Lily Chen for helpful discussions on
 hashing into an elliptic curve. Rich Davis suggested the defensive
 checks that are part of the processing of the ServerKeyExchange and
 ClientKeyExchange messages, and his various comments have greatly
 improved the quality of this memo and the underlying key exchange on
 which it is based.

 Martin Rex, Peter Gutmann, Marsh Ray, and Rene Struik, discussed the
 possibility of a side-channel attack against the hunting-and-pecking
 loop on the TLS mailing list. That discussion prompted the addition
 of the security parameter, m, to the hunting-and-pecking loop.

7. IANA Considerations

 IANA SHALL assign two values for a new TLS extention type from the
 TLS ExtensionType Registry defined in [RFC5246] with the name
 "pwd_protect" and "pwd_clear". The RFC editor SHALL replace TBD1 and
 TBD2 in Section 4.3.1 with the IANA-assigned value for these
 extensions.

 IANA SHALL assign nine new ciphersuites from the TLS Ciphersuite
 Registry defined in [RFC5246] for the following ciphersuites:

 CipherSuite TLS_FFCPWD_WITH_3DES_EDE_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256 = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_256_GCM_SHA384 = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA256 = (TBD, TBD);

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Harkins & Halasz Expires June 15, 2014 [Page 22]

Internet-Draft TLS Password December 2013

 CipherSuite TLS_ECCPWD_WITH_AES_256_CCM_SHA384 = (TBD, TBD);

 The RFC editor SHALL replace (TBD, TBD) in all the ciphersuites
 defined in Section 5 with the appropriate IANA-assigned values. The
 "DTLS-OK" column in the ciphersuite registry SHALL be set to "Y" for
 all ciphersuites defined in this memo.

8. Security Considerations

 A passive attacker against this protocol will see the
 ServerKeyExchange and the ClientKeyExchange containing the server's
 scalar and Element, and the client's scalar and Element,
 respectively. The client and server effectively hide their secret
 private value by masking it modulo the order of the selected group.
 If the order is "q", then there are approximately "q" distinct pairs
 of numbers that will sum to the scalar values observed. It is
 possible for an attacker to iterate through all such values but for a
 large value of "q", this exhaustive search technique is
 computationally infeasible. The attacker would have a better chance
 in solving the discrete logarithm problem, which we have already
 assumed (see Section 3.5) to be an intractable problem.

 A passive attacker can take the Element from either the
 ServerKeyExchange or the ClientKeyExchange and try to determine the
 random "mask" value used in its construction and then recover the
 other party's "private" value from the scalar in the same message.
 But this requires the attacker to solve the discrete logarithm
 problem which we assumed was intractable.

 Both the client and the server obtain a shared secret, the premaster
 secret, based on a secret group element and the private information
 they contributed to the exchange. The secret group element is based
 on the password. If they do not share the same password they will be
 unable to derive the same secret group element and if they don't
 generate the same secret group element they will be unable to
 generate the same premaster secret. Seeing a finished message along
 with the ServerKeyExchange and ClientKeyExchange will not provide any
 additional advantage of attack since it is generated with the
 unknowable premaster secret.

 An active attacker impersonating the client can induce a server to
 send a ServerKeyExchange containing the server's scalar and Element.
 It can attempt to generate a ClientKeyExchange and send to the server
 but the attacker is required to send a finished message first so the
 only information she can obtain in this attack is less than the
 information she can obtain from a passive attack, so this particular
 active attack is not very fruitful.

Harkins & Halasz Expires June 15, 2014 [Page 23]

Internet-Draft TLS Password December 2013

 An active attacker can impersonate the server and send a forged
 ServerKeyExchange after receiving the ClientHello. The attacker then
 waits until it receives the ClientKeyExchange and finished message
 from the client. Now the attacker can attempt to run through all
 possible values of the password, computing PE (see Section 4.2),
 computing candidate premaster secrets (see Section 4.4), and
 attempting to recreate the client's finished message.

 But the attacker committed to a single guess of the password with her
 forged ServerKeyExchange. That value was used by the client in her
 computation of the premaster secret which was used to produce the
 finished message. Any guess of the password which differs from the
 one used in the forged ServerKeyExchange would result in each side
 using a different PE in the computation of the premaster secret and
 therefore the finished message cannot be verified as correct, even if
 a subsequent guess, while running through all possible values, was
 correct. The attacker gets one guess, and one guess only, per active
 attack.

 Instead of attempting to guess at the password, an attacker can
 attempt to determine PE and then launch an attack. But PE is
 determined by the output of the random function, H, which is
 indistinguishable from a random source since H is assumed to be a
 "random oracle" (Section 3.5). Therefore, each element of the finite
 cyclic group will have an equal probability of being the PE. The
 probability of guessing PE will be 1/q, where q is the order of the
 group. For a large value of "q" this will be computationally
 infeasible.

 The implications of resistance to dictionary attack are significant.
 An implementation can provision a password in a practical and
 realistic manner-- i.e. it MAY be a character string and it MAY be
 relatively short-- and still maintain security. The nature of the
 pool of potential passwords determines the size of the pool, D, and
 countermeasures can prevent an attacker from determining the password
 in the only possible way: repeated, active, guessing attacks. For
 example, a simple four character string using lower-case English
 characters, and assuming random selection of those characters, will
 result in D of over four hundred thousand. An attacker would need to
 mount over one hundred thousand active, guessing attacks (which will
 easily be detected) before gaining any significant advantage in
 determining the pre-shared key.

 Countermeasures to deal with successive active, guessing attacks are
 only possible by noticing a certain username is failing repeatedly
 over a certain period of time. Attacks which attempt to find a
 password for a random user are more difficult to detect. For
 instance, if a device uses a serial number as a username and the pool

Harkins & Halasz Expires June 15, 2014 [Page 24]

Internet-Draft TLS Password December 2013

 of potential passwords is sufficiently small, a more effective attack
 would be to select a password and try all potential "users" to
 disperse the attack and confound countermeasures. It is therefore
 RECOMMENDED that implementations of TLS-PWD keep track of the total
 number of failed authentications regardless of username in an effort
 to detect and thwart this type of attack.

 The benefits of resistance to dictionary attack can be lessened by a
 client using the same passwords with multiple servers. An attacker
 could re-direct a session from one server to the other if the
 attacker knew that the intended server stored the same password for
 the client as another server.

 An adversary that has access to, and a considerable amount of control
 over, a client or server could attempt to mount a side-channel attack
 to determine the number of times it took for a certain password (plus
 client random and server random) to select a password element. Each
 such attack could result in a successive paring-down of the size of
 the pool of potential passwords, resulting in a manageably small set
 from which to launch a series of active attacks to determine the
 password. A security parameter, m, is used to normalize the amount
 of work necessary to determine the password element (see

Section 4.2). The probability that a password will require more than
 m iterations is roughly (q/2p)^m for ECC groups and (q/p)^m for FFC
 groups, so it is possible to mitigate side channel attack at the
 expense of a constant cost per connection attempt. But if a
 particular password requires more than k iterations it will leak k
 bits of information to the side-channel attacker, which for some
 dictionaries will uniquely identify the password. Therefore, the
 security parameter, m, needs to be set with great care. It is
 RECOMMENDED that an implementation set the security parameter, m, to
 a value of at least forty (40) which will put the probability that
 more than forty iterations are needed in the order of one in one
 trillion (1:1,000,000,000,000).

 The server uses a database of salted passwords. While this will
 prevent an adversary who gains access to the database from learning
 the client's password, it does not prevent such an adversary from
 impersonating the client back to the server. Each side uses the
 salted password, called the base, as the authenticaiton credential so
 the database of salted passwords MUST be afforded the security of a
 database of plaintext passwords.

 Authentication is performed by proving knowledge of the password.
 Any third party that knows the password shared by the client and
 server can impersonate one to the other.

 The static-ephemeral Diffie-Hellman exchange used to protect

Harkins & Halasz Expires June 15, 2014 [Page 25]

Internet-Draft TLS Password December 2013

 usernames requires the server to reuse its Diffie-Hellman public key.
 To prevent an invalid curve attack, an entity that reuses its Diffie-
 Hellman public key needs to check whether the received ephemeral
 public key is actually a point on the curve. This is done explicitly
 as part of the server's reconstruction of the client's public key out
 of only its x-coordinate ("compact representation").

9. Implementation Considerations

 The selection of the ciphersuite and selection of the particular
 finite cyclic group to use with the ciphersuite are divorced in this
 memo but they remain intimately close.

 It is RECOMMENDED that implementations take note of the strength
 estimates of particular groups and to select a ciphersuite providing
 commensurate security with its hash and encryption algorithms. A
 ciphersuite whose encryption algorithm has a keylength less than the
 strength estimate, or whose hash algorithm has a blocksize that is
 less than twice the strength estimate SHOULD NOT be used.

 For example, the elliptic curve named brainpoolP256r1 (whose IANA-
 assigned number is 26) provides an estimated 128 bits of strength and
 would be compatible with an encryption algorithm supporting a key of
 that length, and a hash algorithm that has at least a 256-bit
 blocksize. Therefore, a suitable ciphersuite to use with
 brainpoolP256r1 could be TLS_ECCPWD_WITH_AES_128_GCM_SHA256 (see

Appendix A for an example of such an exchange).

 Resistance to dictionary attack means that the attacker must launch
 an active attack to make a single guess at the password. If the size
 of the pool from which the password was extracted was D, and each
 password in the pool has an equal probability of being chosen, then
 the probability of success after a single guess is 1/D. After X
 guesses, and removal of failed guesses from the pool of possible
 passwords, the probability becomes 1/(D-X). As X grows so does the
 probability of success. Therefore it is possible for an attacker to
 determine the password through repeated brute-force, active, guessing
 attacks. Implementations SHOULD take note of this fact and choose an
 appropriate pool of potential passwords-- i.e. make D big.
 Implementations SHOULD also take countermeasures, for instance
 refusing authentication attempts by a particular username for a
 certain amount of time, after the number of failed authentication
 attempts reaches a certain threshold. No such threshold or amount of
 time is recommended in this memo.

10. References

Harkins & Halasz Expires June 15, 2014 [Page 26]

Internet-Draft TLS Password December 2013

10.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, October 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

10.2. Informative References

 [FIPS186-3]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", Federal Information Processing
 Standards Publication 186-3.

 [RANDOR] Bellare, M. and P. Rogaway, "Random Oracles are Practical:
 A Paradigm for Designing Efficient Protocols", Proceedings
 of the 1st ACM Conference on Computer and Communication
 Security, ACM Press, 1993.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc6090

Harkins & Halasz Expires June 15, 2014 [Page 27]

Internet-Draft TLS Password December 2013

 [RFC7030] Pritikin, M., Yee, P., and D. Harkins, "Enrollment over
 Secure Transport", RFC 7030, October 2013.

 [SP800-38A]
 National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation--
 Methods and Techniques", NIST Special Publication 800-38A,
 December 2001.

 [SP800-56A]
 Barker, E., Johnson, D., and M. Smid, "Recommendations for
 Pair-Wise Key Establishment Schemes Using Discrete
 Logarithm Cryptography", NIST Special Publication 800-56A,
 March 2007.

Appendix A. Example Exchange

 (Note: at the time of publication of this memo ciphersuites have
 not yet been assigned by IANA and the exchange that follows uses
 the private numberspace).

 username: fred
 password: barney

 ---- prior to running TLS-PWD ----

 server generates salt:

 96 3c 77 cd c1 3a 2a 8d 75 cd dd d1 e0 44 99 29
 84 37 11 c2 1d 47 ce 6e 63 83 cd da 37 e4 7d a3

 and a base:

 6e 7c 79 82 1b 9f 8e 80 21 e9 e7 e8 26 e9 ed 28
 c4 a1 8a ef c8 75 0c 72 6f 74 c7 09 61 d7 00 75

 ---- state derived during the TLS-PWD exchange ----

 client and server generate PE:

 pe.x:
 29 b2 38 55 81 9f 9c 3f c3 71 ba e2 84 f0 93 a3
 a4 fd 34 72 d4 bd 2e 9d f7 15 2d 22 ab 37 aa e6

 server private and mask:

 private:

https://datatracker.ietf.org/doc/html/rfc7030

Harkins & Halasz Expires June 15, 2014 [Page 28]

Internet-Draft TLS Password December 2013

 21 d9 9d 34 1c 97 97 b3 ae 72 df d2 89 97 1f 1b
 74 ce 9d e6 8a d4 b9 ab f5 48 88 d8 f6 c5 04 3c
 mask:
 0d 96 ab 62 4d 08 2c 71 25 5b e3 64 8d cd 30 3f
 6a b0 ca 61 a9 50 34 a5 53 e3 30 8d 1d 37 44 e5

 client private and mask:

 private:
 17 1d e8 ca a5 35 2d 36 ee 96 a3 99 79 b5 b7 2f
 a1 89 ae 7a 6a 09 c7 7f 7b 43 8a f1 6d f4 a8 8b
 mask:
 4f 74 5b df c2 95 d3 b3 84 29 f7 eb 30 25 a4 88
 83 72 8b 07 d8 86 05 c0 ee 20 23 16 a0 72 d1 bd

 both parties generate pre-master secret and master secret

 pre-master secret:
 01 f7 a7 bd 37 9d 71 61 79 eb 80 c5 49 83 45 11
 af 58 cb b6 dc 87 e0 18 1c 83 e7 01 e9 26 92 a4
 master secret:
 65 ce 15 50 ee ff 3d aa 2b f4 78 cb 84 29 88 a1
 60 26 a4 be f2 2b 3f ab 23 96 e9 8a 7e 05 a1 0f
 3d 8c ac 51 4d da 42 8d 94 be a9 23 89 18 4c ad

 ---- ssldump output of exchange ----

 New TCP connection #1: Charlene Client <-> Sammy Server
 1 1 0.0018 (0.0018) C>SV3.3(173) Handshake
 ClientHello
 Version 3.3
 random[32]=
 52 8f bf 52 17 5d e2 c8 69 84 5f db fa 83 44 f7
 d7 32 71 2e bf a6 79 d8 64 3c d3 1a 88 0e 04 3d
 cipher suites
 TLS_ECCPWD_WITH_AES_128_GCM_SHA256_PRIV
 TLS_ECCPWD_WITH_AES_256_GCM_SHA384_PRIV
 Unknown value 0xff
 compression methods
 NULL
 extensions
 TLS-PWD unprotected name[5]=
 04 66 72 65 64
 elliptic curve point format[4]=
 03 00 01 02
 elliptic curve list[58]=
 00 38 00 0e 00 0d 00 1c 00 19 00 0b 00 0c 00 1b
 00 18 00 09 00 0a 00 1a 00 16 00 17 00 08 00 06

Harkins & Halasz Expires June 15, 2014 [Page 29]

Internet-Draft TLS Password December 2013

 00 07 00 14 00 15 00 04 00 05 00 12 00 13 00 01
 00 02 00 03 00 0f 00 10 00 11
 Packet data[178]=
 16 03 03 00 ad 01 00 00 a9 03 03 52 8f bf 52 17
 5d e2 c8 69 84 5f db fa 83 44 f7 d7 32 71 2e bf
 a6 79 d8 64 3c d3 1a 88 0e 04 3d 00 00 06 ff b3
 ff b4 00 ff 01 00 00 7a b8 aa 00 05 04 66 72 65
 64 00 0b 00 04 03 00 01 02 00 0a 00 3a 00 38 00
 0e 00 0d 00 1c 00 19 00 0b 00 0c 00 1b 00 18 00
 09 00 0a 00 1a 00 16 00 17 00 08 00 06 00 07 00
 14 00 15 00 04 00 05 00 12 00 13 00 01 00 02 00
 03 00 0f 00 10 00 11 00 0d 00 22 00 20 06 01 06
 02 06 03 05 01 05 02 05 03 04 01 04 02 04 03 03
 01 03 02 03 03 02 01 02 02 02 03 01 01 00 0f 00
 01 01

 1 2 0.0043 (0.0024) S>CV3.3(94) Handshake
 ServerHello
 Version 3.3
 random[32]=
 52 8f bf 52 43 78 a1 b1 3b 8d 2c bd 24 70 90 72
 13 69 f8 bf a3 ce eb 3c fc d8 5c bf cd d5 8e aa
 session_id[32]=
 ef ee 38 08 22 09 f2 c1 18 38 e2 30 33 61 e3 d6
 e6 00 6d 18 0e 09 f0 73 d5 21 20 cf 9f bf 62 88
 cipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256_PRIV
 compressionMethod NULL
 extensions
 renegotiate[1]=
 00
 elliptic curve point format[4]=
 03 00 01 02
 heartbeat[1]=
 01
 Packet data[99]=
 16 03 03 00 5e 02 00 00 5a 03 03 52 8f bf 52 43
 78 a1 b1 3b 8d 2c bd 24 70 90 72 13 69 f8 bf a3
 ce eb 3c fc d8 5c bf cd d5 8e aa 20 ef ee 38 08
 22 09 f2 c1 18 38 e2 30 33 61 e3 d6 e6 00 6d 18
 0e 09 f0 73 d5 21 20 cf 9f bf 62 88 ff b3 00 00
 12 ff 01 00 01 00 00 0b 00 04 03 00 01 02 00 0f
 00 01 01

 1 3 0.0043 (0.0000) S>CV3.3(141) Handshake
 ServerKeyExchange
 params
 salt[32]=

Harkins & Halasz Expires June 15, 2014 [Page 30]

Internet-Draft TLS Password December 2013

 96 3c 77 cd c1 3a 2a 8d 75 cd dd d1 e0 44 99 29
 84 37 11 c2 1d 47 ce 6e 63 83 cd da 37 e4 7d a3
 EC parameters = 3
 curve id = 26
 element[65]=
 04 22 bb d5 6b 48 1d 7f a9 0c 35 e8 d4 2f cd 06
 61 8a 07 78 de 50 6b 1b c3 88 82 ab c7 31 32 ee
 f3 7f 02 e1 3b d5 44 ac c1 45 bd d8 06 45 0d 43
 be 34 b9 28 83 48 d0 3d 6c d9 83 24 87 b1 29 db
 e1
 scalar[32]=
 2f 70 48 96 69 9f c4 24 d3 ce c3 37 17 64 4f 5a
 df 7f 68 48 34 24 ee 51 49 2b b9 66 13 fc 49 21
 Packet data[146]=
 16 03 03 00 8d 0c 00 00 89 00 20 96 3c 77 cd c1
 3a 2a 8d 75 cd dd d1 e0 44 99 29 84 37 11 c2 1d
 47 ce 6e 63 83 cd da 37 e4 7d a3 03 00 1a 41 04
 22 bb d5 6b 48 1d 7f a9 0c 35 e8 d4 2f cd 06 61
 8a 07 78 de 50 6b 1b c3 88 82 ab c7 31 32 ee f3
 7f 02 e1 3b d5 44 ac c1 45 bd d8 06 45 0d 43 be
 34 b9 28 83 48 d0 3d 6c d9 83 24 87 b1 29 db e1
 00 20 2f 70 48 96 69 9f c4 24 d3 ce c3 37 17 64
 4f 5a df 7f 68 48 34 24 ee 51 49 2b b9 66 13 fc
 49 21

 1 4 0.0043 (0.0000) S>CV3.3(4) Handshake
 ServerHelloDone
 Packet data[9]=
 16 03 03 00 04 0e 00 00 00

 1 5 0.0086 (0.0043) C>SV3.3(104) Handshake
 ClientKeyExchange
 element[65]=
 04 a0 c6 9b 45 0b 85 ae e3 9f 64 6b 6e 64 d3 c1
 08 39 5f 4b a1 19 2d bf eb f0 de c5 b1 89 13 1f
 59 5d d4 ba cd bd d6 83 8d 92 19 fd 54 29 91 b2
 c0 b0 e4 c4 46 bf e5 8f 3c 03 39 f7 56 e8 9e fd
 a0
 scalar[32]=
 66 92 44 aa 67 cb 00 ea 72 c0 9b 84 a9 db 5b b8
 24 fc 39 82 42 8f cd 40 69 63 ae 08 0e 67 7a 48
 Packet data[109]=
 16 03 03 00 68 10 00 00 64 41 04 a0 c6 9b 45 0b
 85 ae e3 9f 64 6b 6e 64 d3 c1 08 39 5f 4b a1 19
 2d bf eb f0 de c5 b1 89 13 1f 59 5d d4 ba cd bd
 d6 83 8d 92 19 fd 54 29 91 b2 c0 b0 e4 c4 46 bf
 e5 8f 3c 03 39 f7 56 e8 9e fd a0 00 20 66 92 44

Harkins & Halasz Expires June 15, 2014 [Page 31]

Internet-Draft TLS Password December 2013

 aa 67 cb 00 ea 72 c0 9b 84 a9 db 5b b8 24 fc 39
 82 42 8f cd 40 69 63 ae 08 0e 67 7a 48

 1 6 0.0086 (0.0000) C>SV3.3(1) ChangeCipherSpec
 Packet data[6]=
 14 03 03 00 01 01

 1 7 0.0086 (0.0000) C>SV3.3(40) Handshake
 Packet data[45]=
 16 03 03 00 28 44 cd 3f 26 ed 64 9a 1b bb 07 c7
 0c 6d 3e 28 af e6 32 b1 17 29 49 a1 14 8e cb 7a
 0b 4b 70 f5 1f 39 c2 9c 7b 6c cc 57 20

 1 8 0.0105 (0.0018) S>CV3.3(1) ChangeCipherSpec
 Packet data[6]=
 14 03 03 00 01 01

 1 9 0.0105 (0.0000) S>CV3.3(40) Handshake
 Packet data[45]=
 16 03 03 00 28 fd da 3c 9e 48 0a e7 99 ba 41 8c
 9f fd 47 c8 41 2c fd 22 10 77 3f 0f 78 54 5e 41
 a2 21 94 90 12 72 23 18 24 21 c3 60 a4

 1 10 0.0107 (0.0002) C>SV3.3(100) application_data
 Packet data....

Authors' Addresses

 Dan Harkins (editor)
 Aruba Networks
 1322 Crossman Avenue
 Sunnyvale, CA 94089-1113
 United States of America

 Email: dharkins@arubanetworks.com

Harkins & Halasz Expires June 15, 2014 [Page 32]

Internet-Draft TLS Password December 2013

 Dave Halasz (editor)
 Halasz Ventures
 8401 Chagrin Road, Suite 10A
 Chagrin Falls, OH 44023
 United States of America

 Email: david.e.halasz@gmail.com

Harkins & Halasz Expires June 15, 2014 [Page 33]

