
Transport Layer Security                                 D. Harkins, Ed.
Internet-Draft                                            Aruba Networks
Intended status: Standards Track                          D. Halasz, Ed.
Expires: June 15, 2014                                   Halasz Ventures
                                                       December 12, 2013

Secure Password Ciphersuites for Transport Layer Security (TLS)
draft-ietf-tls-pwd-03

Abstract

   This memo defines several new ciphersuites for the Transport Layer
   Security (TLS) protocol to support certificate-less, secure
   authentication using only a simple, low-entropy, password.  The
   ciphersuites are all based on an authentication and key exchange
   protocol that is resistant to off-line dictionary attack.
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   described in the Simplified BSD License.
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1.  Background

1.1.  The Case for Certificate-less Authentication

   TLS usually uses public key certificates for authentication
   [RFC5246].  This is problematic in some cases:

   o  Frequently, TLS [RFC5246] is used in devices owned, operated, and
      provisioned by people who lack competency to properly use
      certificates and merely want to establish a secure connection
      using a more natural credential like a simple password.  The
      proliferation of deployments that use a self-signed server
      certificate in TLS [RFC5246] followed by a PAP-style exchange over
      the unauthenticated channel underscores this case.

   o  A password is a more natural credential than a certificate (from
      early childhood people learn the semantics of a shared secret), so
      a password-based TLS ciphersuite can be used to protect an HTTP-
      based certificate enrollment scheme like EST [RFC7030] to parlay a
      simple password into a certificate for subsequent use with any
      certificate-based authentication protocol.  This addresses a
      significant "chicken-and-egg" dilemma found with certificate-only
      use of [RFC5246].

   o  Some PIN-code readers will transfer the entered PIN to a smart
      card in clear text.  Assuming a hostile environment, this is a bad
      practice.  A password-based TLS ciphersuite can enable the
      establishment of an authenticated connection between reader and
      card based on the PIN.

1.2.  Resistance to Dictionary Attack

   It is a common misconception that a protocol that authenticates with
   a shared and secret credential is resistent to dictionary attack if
   the credential is assumed to be an N-bit uniformly random secret,
   where N is sufficiently large.  The concept of resistence to
   dictionary attack really has nothing to do with whether that secret
   can be found in a standard collection of a language's defined words
   (i.e. a dictionary).  It has to do with how an adversary gains an
   advantage in attacking the protocol.

   For a protocol to be resistant to dictionary attack any advantage an
   adversary can gain must be a function of the amount of interactions
   she makes with an honest protocol participant and not a function of
   the amount of computation she uses.  The adversary will not be able
   to obtain any information about the password except whether a single
   guess from a single protocol run which she took part in is correct or
   incorrect.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7030
https://datatracker.ietf.org/doc/html/rfc5246
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   It is assumed that the attacker has access to a pool of data from
   which the secret was drawn-- it could be all numbers between 1 and
   2^N, it could be all defined words in a dictionary.  The key is that
   the attacker cannot do a an attack and then enumerate through the
   pool trying potential secrets (computation) to see if one is correct.
   She must do an active attack for each secret she wishes to try
   (interaction) and the only information she can glean from that attack
   is whether the secret used with that particular attack is correct or
   not.

2.  Keyword Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Introduction

3.1.  Notation

   The following notation is used in this memo:

   password
       a secret, and potentially low-entropy word, phrase, code or key
       used as a credential for authentication.  The password is shared
       between the TLS client and TLS server.

   y = H(x)
       a binary string of arbitrary length, x, is given to a function H
       which produces a fixed-length output, y.

   a | b
       denotes concatenation of string a with string b.

   [a]b
       indicates a string consisting of the single bit "a" repeated "b"
       times.

   x mod y
       indicates the remainder of division of x by y.  The result will
       be between 0 and y.

   len(x)
       indicates the length in bits of the string x.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   LSB(x)
       returns the least-significant bit of the bitstring "x".

   G.x
       indicates the x-coordinate of a point, G, on and elliptic curve.

3.2.  Discrete Logarithm Cryptography

   The ciphersuites defined in this memo use discrete logarithm
   cryptography (see [SP800-56A]) to produce an authenticated and shared
   secret value that is an element in a group defined by a set of domain
   parameters.  The domain parameters can be based on either Finite
   Field Cryptography (FFC) or Elliptic Curve Cryptography (EEC).

   TLS [RFC5246] allows for both FFC and ECC domain parameter sets to be
   conveyed verbosely by the server.  This opens up the possibility of a
   malicious server offering a weak group, or one with a trapdoor, that
   would lead to a leaking of information during a run of the protocol.
   Therefore, if explicit domain parameter sets are used with TLS-PWD,
   they MUST be agreed-upon a priori in an out-of-band fashion.  Clients
   MUST NOT accept explicit domain parameter sets from a server that it
   has not previously agreed to accept.

   Elements in a group, either an FFC or EEC group, are indicated using
   upper-case while scalar values are indicated using lower-case.

3.2.1.  Elliptic Curve Cryptography

   The authenticated key exchange defined in this memo uses fundamental
   algorithms of elliptic curves defined over GF(p) as described in
   [RFC6090].

   Domain parameters for the ECC groups used by this memo are:

   o  A prime, p, determining a prime field GF(p).  The cryptographic
      group will be a subgroup of the full elliptic curve group which
      consists points on an elliptic curve-- elements from GF(p) that
      satisfy the curve's equation-- together with the "point at
      infinity" that serves as the identity element.

   o  Elements a and b from GF(p) that define the curve's equation.  The
      point (x,y) in GF(p) x GF(p) is on the elliptic curve if and only
      if (y^2 - x^3 - a*x - b) mod p equals zero (0).

   o  A point, G, on the elliptic curve, which serves as a generator for
      the ECC group.  G is chosen such that its order, with respect to
      elliptic curve addition, is a sufficiently large prime.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6090
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   o  A prime, q, which is the order of G, and thus is also the size of
      the cryptographic subgroup that is generated by G.

   o  A co-factor, f, defined by the requirement that the size of the
      full elliptic curve group (including the "point at infinity") is
      the product of f and q.

   This memo uses the following ECC Functions:

   o  Z = elem-op(X,Y) = X + Y: two points on the curve X and Y, are
      sumed to produce another point on the curve, Z. This is the group
      operation for ECC groups.

   o  Z = scalar-op(x,Y) = x * Y: an integer scalar, x, acts on a point
      on the curve, Y, via repetitive addition (Y is added to itself x
      times), to produce another EEC element, Z.

   o  Y = inverse(X): a point on the curve, X, has an inverse, Y, which
      is also a point on the curve, when their sum is the "point at
      infinity" (the identity for elliptic curve addition).  In other
      words, R + inverse(R) = "0".

   o  z = F(X): the x-coordinate of a point (x, y) on the curve is
      returned.  This is a mapping function to convert a group element
      into an integer.

   Only ECC groups over GF(p) can be used with TLS-PWD.  ECC groups over
   GF(2^m) SHALL NOT be used by TLS-PWD.  In addition, ECC groups with a
   co-factor greater than one (1) SHALL NOT be used by TLS-PWD.

   A composite (x, y) pair can be validated as a point on the elliptic
   curve by checking whether: 1) both coordinates x and y are greater
   than zero (0) and less than the prime defining the underlying field;
   2) the x- and y- coordinates satisfy the equation of the curve; and
   3) they do not represent the point-at-infinity "0".  If any of those
   conditions are not true the (x, y) pair is not a valid point on the
   curve.

3.2.2.  Finite Field Cryptography

   Domain parameters for the FFC groups used by this memo are:

   o  A prime, p, determining a prime field GF(p), the integers modulo
      p.  The FFC group will be a subgroup of GF(p)*, the multiplicative
      group of non-zero elements in GF(p).

   o  An element, G, in GF(p)* which serves as a generator for the FFC
      group.  G is chosen such that its multiplicative order is a
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      sufficiently large prime divisor of ((p-1)/2).

   o  A prime, q, which is the multiplicative order of G, and thus also
      the size of the cryptographic subgroup of GF(p)* that is generated
      by G.

   This memo uses the following FFC Functions:

   o  Z = elem-op(X,Y) = (X * Y) mod p: two FFC elements, X and Y, are
      multiplied modulo the prime, p, to produce another FFC element, Z.
      This is the group operation for FFC groups.

   o  Z = scalar-op(x,Y) = Y^x mod p: an integer scalar, x, acts on an
      FFC group element, Y, via exponentiation modulo the prime, p, to
      produce another FFC element, Z.

   o  Y = inverse(X): a group element, X, has an inverse, Y, when the
      product of the element and its inverse modulo the prime equals one
      (1).  In other words, (X * inverse(X)) mod p = 1.

   o  z = F(X): is the identity function since an element in an FFC
      group is already an integer.  It is included here for consistency
      in the specification.

   Many FFC groups used in IETF protocols are based on safe primes and
   do not define an order (q).  For these groups, the order (q) used in
   this memo shall be the prime of the group minus one divided by two--
   (p-1)/2.

   An integer can be validated as being an element in an FFC group by
   checking whether: 1) it is between one (1) and the prime, p,
   exclusive; and 2) if modular exponentiation of the integer by the
   group order, q, equals one (1).  If either of these conditions are
   not true the integer is not an element in the group.

3.3.  Instantiating the Random Function

   The protocol described in this memo uses a random function, H, which
   is modeled as a "random oracle".  At first glance, one may view this
   as a hash function.  As noted in [RANDOR], though, hash functions are
   too structured to be used directly as a random oracle.  But they can
   be used to instantiate the random oracle.

   The random function, H, in this memo is instantiated by using the
   hash algorithm defined by the particular TLS-PWD ciphersuite in HMAC
   mode with a key whose length is equal to block size of the hash
   algorithm and whose value is zero.  For example, if the ciphersuite
   is TLS_ECCPWD_WITH_AES_128_GCM_SHA256 then H will be instantiated
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   with SHA256 as:

       H(x) = HMAC-SHA256([0]32, x)

3.4.  Passwords

   The authenticated key exchange used in TLS-PWD requires each side to
   have a common view of a shared credential.  To protect the server's
   database of stored passwords, though, the password SHALL be salted
   and the result, called the base, SHALL be used as the authentication
   credential.

   The salting function is defined as:

       base = HMAC-SHA256(salt, username | password)

   The password used for generation of the base SHALL be represented as
   a UTF-8 encoded character string processed according to the rules of
   the [RFC4013] profile of [RFC3454] and the salt SHALL be a 32 octet
   random number.  The server SHALL store a triplet of the form:

       { username, base, salt }

   And the client SHALL generate the base upon receiving the salt from
   the server.

3.5.  Assumptions

   The security properties of the authenticated key exchange defined in
   this memo are based on a number of assumptions:

   1.  The random function, H, is a "random oracle" as defined in
       [RANDOR].

   2.  The discrete logarithm problem for the chosen group is hard.
       That is, given g, p, and y = g^x mod p, it is computationally
       infeasible to determine x.  Similarly, for an ECC group given the
       curve definition, a generator G, and Y = x * G, it is
       computationally infeasible to determine x.

   3.  Quality random numbers with sufficient entropy can be created.
       This may entail the use of specialized hardware.  If such
       hardware is unavailable a cryptographic mixing function (like a
       strong hash function) to distill enropy from multiple,
       uncorrelated sources of information and events may be needed.  A
       very good discussion of this can be found in [RFC4086].

   If the server supports username protection (see Section 4.1), it is

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4086
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   assumed that the server has chosen a domain parameter set and
   generated a username-protection keypair.  The chosen domain parameter
   set and public key are assumed to be conveyed to the client at the
   time the client's username and password were provisioned.

4.  Specification of the TLS-PWD Handshake

   The authenticated key exchange is accomplished by each side deriving
   a password-based element, PE, in the chosen group, making a
   "commitment" to a single guess of the password using PE, and
   generating the Premaster Secret.  The ability of each side to produce
   a valid finished message authenticates itself to the other side.

   The authenticated key exchange is dropped into the standard TLS
   message handshake by modifying some of the messages.

           Client                                            Server
          --------                                          --------

           Client Hello (name)     -------->

                                                       Server Hello
                                       Server Key Exchange (commit)
                                   <--------      Server Hello Done

           Client Key Exchange (commit)
           [Change cipher spec]
           Finished                -------->

                                               [Change cipher spec]
                                   <--------               Finished

           Application Data        <------->       Application Data

                                 Figure 1

4.1.  Protecting the Username

   The client is required to identify herself to the server before the
   server can look up the appropriate client credential with which to
   perform the authenticated key exchange.  This has negative privacy
   implicaitons and opens up the client to tracking and increased
   monitoring.  It is therefore useful for the client to be able to
   protect her username from passive monitors of the exchange and
   against active attack by a malicious server.  TLS-PWD provides such a
   mechsnism.  Support for protected usernames is RECOMMENDED.
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   To enable username protection a server choses a domain parameter set,
   chooses a random private key, s, such that 1 < s < (q-1), where q is
   the order of the chosen group, uses scalar-op() with the selected
   group's generator to generate a public key, S:

       S = scalar-op(s, G)

   This keypair SHALL only be used for username protection.  For
   efficiency, the domain parameter set used for userame protection MUST
   be based on elliptic curve cryptography.  Any ECC group that is
   approprate for TLS-PWD (see Section 3.2.1) is suitable for this
   purpose but for interoperability, brainpoolP256r1 MUST be supported.
   The domain parameter set used for username protection does not
   restrict the choice of domain parameter set used for the underlying
   key exchange in any way.

   When the client's username and password are provisioned on the
   server, the server conveys the chosen group and its public key to the
   client.  This is stored on the client along with the server-specific
   state (e.g. the hostname) it uses to initiate a TLS-PWD exchange.
   The server uses the same group and public key with all clients.

   To protect a username, the client and server perform a static-
   ephemeral Diffie-Hellman exchange, using compact representation (and
   therefore compact output, see [RFC6090]).  The result of the Diffie-
   Hellman exchange is passed to HKDF [RFC5869] to create a key-
   encrypting key suitable for AES-SIV [RFC5297].  The length of the
   key-encrypting key, l, and the hash function to use with HKDF depends
   on the length of the prime, p, of the group used to provide username
   protection:

   o  SHA-256, SIV-128, l=256 bits: when len(p) <= 256

   o  SHA-384, SIV-192, l=384 bits: when 256 < len(p) <= 384

   o  SHA-512, SIV-256, l=512 bits: when len(p) > 384

4.1.1.  Construction of a Protected Username

   Prior to initiating a TLS-PWD exchange, the client chooses a random
   secret, c, such that 1 < c < (q-1), where q is the order of the group
   from which the server's public key was generated, and uses
   scalar-op() with the group's generator to create a public key, C. It
   uses scalar-op() with the server's public key and c to create a
   shared secret and derives a key-encrypting key, k, using the "salt-
   less" mode of HKDF [RFC5869].

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc5869
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       C = scalar-op(c, G)

       Z = scalar-op(c, S)

       k = HKDF-expand(HKDF-extract(NULL, Z.x), "", l)

   Where NULL indicates the salt-free invocation and "" indicates an
   empty string (i.e. there is no "context" passed to HKDF).

   The key, k, and the client's username is then passed to SIV-encrypt
   with no AAD and no nonce to produce an encrypted username, u:

       u = SIV-encrypt(k, username)

   Note: the format of the ciphertext output from SIV includes the
   authenticating synthetic initialization vector.

   The protected username SHALL be the concatenation of the x-coordinate
   of the client's public key, C, and the encrypted username, u.  The
   length of the x-coordinate of C MUST be equal to the length of the
   group's prime, p, pre-pended with zeros, if necessary.  The protected
   username is inserted into the PWD_name extension and the
   ExtensionType MUST be PWD_protect (see Section 4.3.1).

   The length of the ciphertext output from SIV, minus the synthetic
   initialization vector, will be equal to the length of the input
   plaintext, in this case the username.  To further foil traffic
   analysis, it is RECOMMENDED that clients append a series of NULL
   bytes to their usernames prior to passing them to SIV-encrypt() and
   to vary the number of bytes added with each distinct run of TLS-PWD.

4.1.2.  Recovery of a Protected Username

   A server that receives a protected username needs to recover the
   client's username prior to performing the key exchange.  To do so,
   the server computes the client's public key, completes the static-
   ephemeral Diffie-Hellman exchange, derives the key encrypting key, k,
   and decrypts the username.

   The length of the x-coordinate of the client's public key is known
   (it is the length of the prime from the domain parameter set used to
   protect usernames) and can easily be separated from the ciphertext in
   the PWD_name extension in the Client Hello-- the first len(p) bits
   are the x-coordinate of the client's public key and the remaining
   bits are the ciphertext.

   Since compressed representation is used by the client, the server
   MUST compute the y-coordinate of the client's public key by using the
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   equation of the curve:

       y^2 = x^3 + ax + b

   and solving for y.  There are two solutions for y but since
   compressed output is also being used, the selection is irrelevant.
   The server reconstructs the client's public value, C, from (x, y).
   If there is no solution for y, or if (x, y) is not a valid point on
   the elliptic curve (see Section 3.2.1), the server MUST treat the
   Client Hello as if it did not have a password for a given username
   (see Section 4.3.1).

   The server then uses scalar-op() with the reconstructed point C and
   the private key it uses for protected passwords, s, to generate a
   shared secret, and derives a key-encrypting key, k, in the same
   manner as in Section 4.1.1.

       Z = scalar-op(s, C)

       k = HKDF-expand(HKDF-extract(NULL, Z.x), "", l)

   The key, k, and the ciphertext portion of the PWD_name extension, u,
   are passed to SIV-decrypt with no AAD and no nonce to produce the
   username:

       username = SIV-decrypt(k, u)

   If SIV-decrypt returns the symbol FAIL indicating unsuccessful
   decryption and verification the server MUST treat the ClientHello as
   if it did not have a password for a given username (see

Section 4.3.1).  If successful, the server has obtained the client's
   username and can process it as needed.  Any NULL octets added by the
   client prior to encryption can be easily stripped off of the string
   that represents the username.

4.2.  Fixing the Password Element

   Prior to making a "commitment" both sides must generate a secret
   element, PE, in the chosen group using the common password-derived
   base.  The server generates PE after it receives the Client Hello and
   chooses the particular group to use, and the client generates PE upon
   receipt of the Server Key Exchange.

   Fixing the password element involves an iterative "hunting and
   pecking" technique using the prime from the negotiated group's domain
   parameter set and an ECC- or FFC-specific operation depending on the
   negotiated group.
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   To thwart side channel attacks which attempt to determine the number
   of iterations of the "hunting-and-pecking" loop are used to find PE
   for a given password, a security parameter, m, is used to ensure that
   at least m iterations are always performed.

   First, an 8-bit counter is set to the value one (1).  Then, H is used
   to generate a password seed from the a counter, the prime of the
   selected group, and the base (which is derived from the username,
   password, and salt):

                      pwd-seed = H(base | counter | p)

   Then, using the technique from section B.5.1 of [FIPS186-3], the pwd-
   seed is expanded using the PRF to the length of the prime from the
   negotiated group's domain parameter set plus a constant sixty-four
   (64) to produce an intermediate pwd-tmp which is modularly reduced to
   create pwd-value:

       n = len(p) + 64
       pwd-tmp = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
                     ClientHello.random | ServerHello.random) [0..n];
       pwd-value = (pwd-tmp mod (p-1)) + 1

   The pwd-value is then passed to the group-specific operation which
   either returns the selected password element or fails.  If the group-
   specific operation fails, the counter is incremented, a new pwd-seed
   is generated, and the hunting-and-pecking continues.  This process
   continues until the group-specific operation returns the password
   element.  After the password element has been chosen, the base is
   changed to a random number, the counter is incremented and the
   hunting-and-pecking continues until the counter is greater than the
   security parameter, m.

   The probability that one requires more than n iterations of the
   "hunting and pecking" loop to find an ECC PE is roughly (q/2p)^n and
   to find an FFC PE is roughly (q/p)^n, both of which rapidly approach
   zero (0) as n increases.  The security parameter, m, SHOULD be set
   sufficiently large such that the probability that finding PE would
   take more than m iterations is sufficiently small (see Section 8).

   When PE has been discovered, pwd-seed, pwd-tmp, and pwd-value SHALL
   be irretrievably destroyed.

4.2.1.  Computing an ECC Password Element

   The group-specific operation for ECC groups uses pwd-value, pwd-seed,
   and the equation for the curve to produce PE.  First, pwd-value is
   used directly as the x-coordinate, x, with the equation for the
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   elliptic curve, with parameters a and b from the domain parameter set
   of the curve, to solve for a y-coordinate, y.  If there is no
   solution to the quadratic equation, this operation fails and the
   hunting-and-pecking process continues.  If a solution is found, then
   an ambiguity exists as there are technically two solutions to the
   equation and pwd-seed is used to unambiguously select one of them.
   If the low-order bit of pwd-seed is equal to the low-order bit of y,
   then a candidate PE is defined as the point (x, y); if the low-order
   bit of pwd-seed differs from the low-order bit of y, then a candidate
   PE is defined as the point (x, p - y), where p is the prime over
   which the curve is defined.  The candidate PE becomes PE, a random
   number is used instead of the base, and the hunting and pecking
   continues until it has looped through m iterations.

   Algorithmically, the process looks like this:

       found = 0
       counter = 0
       base = H(username | password | salt)
       n = len(p) + 64
       do {
         counter = counter + 1
         pwd-seed = H(base | counter | p)
         pwd-tmp = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
                       ClientHello.random | ServerHello.random) [0..n]
         pwd-value = (pwd-tmp mod (p-1)) + 1
         x = pwd-value
         if ( (y = sqrt(x^3 + ax + b)) != FAIL)
           then
           if (found == 0)
           then
             if (LSB(y) == LSB(pwd-seed))
             then
               PE = (x, y)
             else
               PE = (x, p-y)
             fi
             found = 1
             base = random()
           fi
         fi
       } while ((found == 0) || (counter <= m))

                    Figure 2: Fixing PE for ECC Groups
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4.2.2.  Computing an FFC Password Element

   The group-specific operation for FFC groups takes pwd-value, and the
   prime, p, and order, q, from the group's domain parameter set (see

Section 3.2.2 when the order is not part of the defined domain
   parameter set) to directly produce a candidate password element, by
   exponentiating the pwd-value to the value ((p-1)/q) modulo the prime.
   If the result is greater than one (1), the candidate password element
   becomes PE, and the hunting and pecking terminates successfully.

   Algorithmically, the process looks like this:

       found = 0
       counter = 0
       base = H(username | password | salt)
       n = len(p) + 64
       do {
         counter = counter + 1
         pwd-seed = H(base | counter | p)
         pwd-tmp = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
                       ClientHello.random | ServerHello.random) [0..n]
         pwd-value = (pwd-tmp mod (p-1)) + 1
         PE = pwd-value ^ ((p-1)/q) mod p
         if (PE > 1)
         then
           found = 1
           base = random()
         fi
       } while ((found == 0) || (counter <= m))

                    Figure 3: Fixing PE for FFC Groups

4.3.  Changes to Handshake Message Contents

4.3.1.  Client Hello Changes

   The client is required to identify herself to the server by adding a
   either a PWD_protect or PWD_clear extension to the Client Hello
   message depending on whether the client wishes to protect its
   username (see Section 4.1) or not, respectively.  The PWD_protect and
   PWD_clear extensions use the standard mechanism defined in [RFC5246].
   The "extension data" field of the PWD extension SHALL contain a
   PWD_name which is used to identify the password shared between the
   client and server.  If username protection is performed, and the
   ExtensionType is PWD_protect, the contents of the PWD_name SHALL be
   constructed according to Section 4.1.1).

https://datatracker.ietf.org/doc/html/rfc5246
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       enum { PWD_clear(TBD1), PWD_protect(TBD2) } ExtensionType;

       opaque PWD_name<1..2^8-1>;

   An unprotected PWD_name SHALL be UTF-8 encoded character string
   processed according to the rules of the [RFC4013] profile of
   [RFC3454] and a protected PWD_name SHALL be a string of bits.

   A client offering a PWD ciphersuite MUST include one of the PWD_name
   extensions in her Client Hello.

   If a server does not have a password for a client identified by the
   username either extracted from the PWD_name, if unprotected, or
   recovered using the technique in Section 4.1.2, if protected, or if
   recovery of a protected username fails, the server SHOULD hide that
   fact by simulating the protocol-- putting random data in the PWD-
   specific components of the Server Key Exchange-- and then rejecting
   the client's finished message with a "bad_record_mac" alert.  To
   properly effect a simulated TLS-PWD exchange, an appropriate delay
   SHOULD be inserted between receipt of the Client Hello and response
   of the Server Hello.  Alternately, a server MAY choose to terminate
   the exchange if a password is not found.

   The server decides on a group to use with the named user (see
Section 9 and generates the password element, PE, according to
Section 4.2.2.

4.3.2.  Server Key Exchange Changes

   The domain parameter set for the selected group MUST be specified in
   the ServerKeyExchange, either explicitly or, in the case of some
   elliptic curve groups, by name.  In addition to the group
   specification, the ServerKeyExchange also contains the server's
   "commitment" in the form of a scalar and element, and the salt which
   was used to store the user's password.

   Two new values have been added to the enumerated KeyExchangeAlgorithm
   to indicate TLS-PWD using finite field cryptography, ff_pwd, and TLS-
   PWD using elliptic curve cryptography, ec_pwd.

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
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                 enum { ff_pwd, ec_pwd } KeyExchangeAlgorithms;

                 struct {
                   opaque salt<1..2^8-1>;
                   opaque pwd_p<1..2^16-1>;
                   opaque pwd_g<1..2^16-1>;
                   opaque pwd_q<1..2^16-1>;
                   opaque ff_selement<1..2^16-1>;
                   opaque ff_sscalar<1..2^16-1>;
                 } ServerFFPWDParams;

                 struct
                   opaque salt<1..2^8-1>;
                   ECParameters curve_params;
                   ECPoint ec_selement;
                   opaque ec_sscalar<1..2^8-1>;
                 } ServerECPWDParams;

                 struct {
                   select (KeyExchangeAlgorithm) {
                     case ec_pwd:
                       ServerECPWDParams params;
                     case ff_pwd:
                       ServerFFPWDParams params;
                   };
                 } ServerKeyExchange;

4.3.2.1.  Generation of ServerKeyExchange

   The scalar and Element that comprise the server's "commitment" are
   generated as follows.

   First two random numbers, called private and mask, between zero and
   the order of the group (exclusive) are generated.  If their sum
   modulo the order of the group, q, equals zero the numbers must be
   thrown away and new random numbers generated.  If their sum modulo
   the order of the group, q, is greater than zero the sum becomes the
   scalar.

       scalar = (private + mask) mod q

   The Element is then calculated as the inverse of the group's scalar
   operation (see the group specific operations in Section 3.2) with the
   mask and PE.

       Element = inverse(scalar-op(mask, PE))
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   After calculation of the scalar and Element the mask SHALL be
   irretrievably destroyed.

4.3.2.1.1.  ECC Server Key Exchange

   EEC domain parameters are specified, either explicitly or named, in
   the ECParameters component of the EEC-specific ServerKeyExchange as
   defined in [RFC4492].  The scalar SHALL become the ec_sscalar
   component and the Element SHALL become the ec_selement of the
   ServerKeyExchange.  If the client requested a specific point format
   (compressed or uncompressed) with the Support Point Formats Extension
   (see [RFC4492]) in its Client Hello, the Element MUST be formatted in
   the ec_selement to conform to that request.  If the client offered
   (an) elliptic curve(s) in its ClientHello using the Supported
   Elliptic Curves Extension, the server MUST include (one of the) named
   curve(s) in the ECParameters field in the ServerKeyExchange and the
   key exchange operations specified in Section 4.3.2.1 MUST use that
   group.

   As mentioned in Section 3.2.1, elliptic curves over GF(2^m), so
   called characteristic-2 curves, and curves with a co-factor greater
   than one (1) SHALL NOT be used with TLS-PWD.

4.3.2.1.2.  FFC Server Key Exchange

   FFC domain parameters sent in the ServerKeyExchange are for the
   group's prime, generator (which is only used for verification of the
   group specification), and the order of the group's generator.  The
   scalar SHALL become the ff_sscalar component and the Element SHALL
   become the ff_selement in the FFC-specific ServerKeyExchange.

   As mentioned in Section 3.2.2 if the prime is a safe prime and no
   order is included in the domain parameter set, the order added to the
   ServerKeyExchange SHALL be the prime minus one divided by two--
   (p-1)/2.

4.3.2.2.  Processing of ServerKeyExchange

   Upon receipt of the ServerKeyExchange, the client decides whether to
   support the indicated group or not.  If the client used the Supported
   Elliptic Curves Extension to offer (a) named curve(s) in her
   ClientHello, the named curve in the ServerKeyExchange MUST be one
   offered.  If the server is explicitly specifying a group, either an
   FFC or ECC group, the client and server MUST have agreed upon groups
   prior to beginning the exchange (see Section 3.2) and the client MUST
   compare each field of the explicit offer to the agreed-upon group(s).
   Any discrepency SHALL result in the exchange being aborted.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492
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   If the client decides to support the indicated group the server's
   "commitment" MUST be validated by ensuring that: 1) the server's
   scalar value is greater than zero (0) and less than the order of the
   group, q; and 2) that the Element is valid for the chosen group (see

Section 3.2.2 and Section 3.2.1 for how to determine whether an
   Element is valid for the particular group.  Note that if the Element
   is a compressed point on an elliptic curve it MUST be uncompressed
   before checking its validity).

   If the group is acceptable and the server's "commitment" has been
   successfully validated, the client extracts the salt from the
   ServerKeyExchange and generates the password element, PE, according
   to Section 3.4 and Section 4.2.2.  If the group is not acceptable or
   the server's "commitment" failed validation, the eexchange MUST be
   aborted.

4.3.3.  Client Key Exchange Changes

   When the value of KeyExchangeAlgorithm is either ff_pwd or ec_pwd,
   the ClientKeyExchange is used to convey the client's "commitment" to
   the server.  It, therefore, contains a scalar and an Element.

                     struct {
                       opaque ff_celement<1..2^16-1>;
                       opaque ff_cscalar<1..2^16-1>;
                     } ClientFFPWDParams;

                     struct
                       ECPoint ec_celement;
                       opaque ec_cscalar<1..2^8-1>;
                     } ClientECPWDParams;

                     struct {
                       select (KeyExchangeAlgorithm) {
                         case ff_pwd: ClientFFPWDParams;
                         case ec_pwd: ClientECPWDParams;
                       } exchange_keys;
                     } ClientKeyExchange;

4.3.3.1.  Generation of Client Key Exchange

   The client's scalar and Element are generated in the manner described
   in Section 4.3.2.1.

   For an FFC group, the scalar SHALL become the ff_cscalar component
   and the Element SHALL become the ff_celement in the FFC-specific
   ClientKeyExchange.
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   For an ECC group, the scalar SHALL become the ec_cscalar component
   and the ELement SHALL become the ec_celement in the ECC-specific
   ClientKeyExchange.  If the client requested a specific point format
   (compressed or uncompressed) with the Support Point Formats Extension
   in its ClientHello, then the Element MUST be formatted in the
   ec_celement to conform to its initial request.

4.3.3.2.  Processing of Client Key Exchange

   Upon receipt of the ClientKeyExchange, the server must validate the
   client's "commitment" by ensuring that: 1) the client's scalar and
   element differ from the server's scalar and element; 2) the client's
   scalar value is greater than zero (0) and less than the order of the
   group, q; and 3) that the Element is valid for the chosen group (see

Section 3.2.2 and Section 3.2.1 for how to determin whether an
   Element is valid for a particular group.  Note that if the Element is
   a compressed point on an elliptic curve it MUST be uncompressed
   before checking its validity.  If any of these three conditions are
   not met the server MUST abort the exchange.

4.4.  Computing the Premaster Secret

   The client uses the server's scalar and Element, denoted here as
   ServerKeyExchange.scalar and ServerKeyExchange.Element, and the
   random private value, denoted here as client.private, she created as
   part of the generation of her "commit" to compute an intermediate
   value, z, as indicated:

   z = F(scalar-op(client.private,
                   element-op(ServerKeyExchange.Element,
                              scalar-op(ServerKeyExchange.scalar, PE))))

   With the same notation as above, the server the client's scalar and
   Element, and his random private value, denoted here as
   server.private, he created as part of the generation of his "commit"
   to compute the premaster secret as follows:

   z = F(scalar-op(server.private,
                   element-op(ClientKeyExchange.Element,
                              scalar-op(ClientKeyExchange.scalar, PE))))

   The intermediate value, z, is then used as the premaster secret after
   any leading bytes of z that contain all zero bits have been stripped
   off.
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5.  Ciphersuite Definition

   This memo adds the following ciphersuites:

       CipherSuite TLS_FFCPWD_WITH_3DES_EDE_CBC_SHA = ( TBD, TBD );

       CipherSuite TLS_FFCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256 = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_256_GCM_SHA384 = (TBD, TBD );

       CipherSuite TLS_FFCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA256 = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_256_CCM_SHA384 = (TBD, TBD );

   Implementations conforming to this specification MUST support the
   TLS_ECCPWD_WITH_AES_128_CBC_SHA ciphersuite; they SHOULD support
   TLS_ECCPWD_WITH_AES_128_CCM_SHA, TLS_FFCPWD_WITH_AES_128_CCM_SHA,
   TLS_ECCPWD_WITH_AES_128_GCM_SHA256,
   TLS_ECCPWD_WITH_AES_256_GCM_SHA384; and MAY support the remaining
   ciphersuites.

   When negotiated with a version of TLS prior to 1.2, the Pseudo-Random
   Function (PRF) from that version is used; otherwise, the PRF is the
   TLS PRF [RFC5246] using the hash function indicated by the
   ciphersuite.  Regardless of the TLS version, the TLS-PWD random
   function, H, is always instantiated with the hash algorithm indicated
   by the ciphersuite.

   For those ciphersuites that use Cipher Block Chaining (CBC)
   [SP800-38A] mode, the MAC is HMAC [RFC2104] with the hash function
   indicated by the ciphersuite.
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   The authenticated key exchange defined here has also been defined for
   use in 802.11 networks, as an EAP method, and as an authentication
   method for IKE.  Each of these specifications has elicited very
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https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2104
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   The authors would like to thank Scott Fluhrer for discovering the
   "password as exponent" attack that was possible in an early version
   of this key exchange and for his very helpful suggestions on the
   techniques for fixing the PE to prevent it.  The authors would also
   like to thank Hideyuki Suzuki for his insight in discovering an
   attack against a previous version of the underlying key exchange
   protocol.  Special thanks to Lily Chen for helpful discussions on
   hashing into an elliptic curve.  Rich Davis suggested the defensive
   checks that are part of the processing of the ServerKeyExchange and
   ClientKeyExchange messages, and his various comments have greatly
   improved the quality of this memo and the underlying key exchange on
   which it is based.

   Martin Rex, Peter Gutmann, Marsh Ray, and Rene Struik, discussed the
   possibility of a side-channel attack against the hunting-and-pecking
   loop on the TLS mailing list.  That discussion prompted the addition
   of the security parameter, m, to the hunting-and-pecking loop.

7.  IANA Considerations

   IANA SHALL assign two values for a new TLS extention type from the
   TLS ExtensionType Registry defined in [RFC5246] with the name
   "pwd_protect" and "pwd_clear".  The RFC editor SHALL replace TBD1 and
   TBD2 in Section 4.3.1 with the IANA-assigned value for these
   extensions.

   IANA SHALL assign nine new ciphersuites from the TLS Ciphersuite
   Registry defined in [RFC5246] for the following ciphersuites:

       CipherSuite TLS_FFCPWD_WITH_3DES_EDE_CBC_SHA = ( TBD, TBD );

       CipherSuite TLS_FFCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256 = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_256_GCM_SHA384 = (TBD, TBD );

       CipherSuite TLS_FFCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD );

       CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA256 = (TBD, TBD );

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
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       CipherSuite TLS_ECCPWD_WITH_AES_256_CCM_SHA384 = (TBD, TBD );

   The RFC editor SHALL replace (TBD, TBD) in all the ciphersuites
   defined in Section 5 with the appropriate IANA-assigned values.  The
   "DTLS-OK" column in the ciphersuite registry SHALL be set to "Y" for
   all ciphersuites defined in this memo.

8.  Security Considerations

   A passive attacker against this protocol will see the
   ServerKeyExchange and the ClientKeyExchange containing the server's
   scalar and Element, and the client's scalar and Element,
   respectively.  The client and server effectively hide their secret
   private value by masking it modulo the order of the selected group.
   If the order is "q", then there are approximately "q" distinct pairs
   of numbers that will sum to the scalar values observed.  It is
   possible for an attacker to iterate through all such values but for a
   large value of "q", this exhaustive search technique is
   computationally infeasible.  The attacker would have a better chance
   in solving the discrete logarithm problem, which we have already
   assumed (see Section 3.5) to be an intractable problem.

   A passive attacker can take the Element from either the
   ServerKeyExchange or the ClientKeyExchange and try to determine the
   random "mask" value used in its construction and then recover the
   other party's "private" value from the scalar in the same message.
   But this requires the attacker to solve the discrete logarithm
   problem which we assumed was intractable.

   Both the client and the server obtain a shared secret, the premaster
   secret, based on a secret group element and the private information
   they contributed to the exchange.  The secret group element is based
   on the password.  If they do not share the same password they will be
   unable to derive the same secret group element and if they don't
   generate the same secret group element they will be unable to
   generate the same premaster secret.  Seeing a finished message along
   with the ServerKeyExchange and ClientKeyExchange will not provide any
   additional advantage of attack since it is generated with the
   unknowable premaster secret.

   An active attacker impersonating the client can induce a server to
   send a ServerKeyExchange containing the server's scalar and Element.
   It can attempt to generate a ClientKeyExchange and send to the server
   but the attacker is required to send a finished message first so the
   only information she can obtain in this attack is less than the
   information she can obtain from a passive attack, so this particular
   active attack is not very fruitful.
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   An active attacker can impersonate the server and send a forged
   ServerKeyExchange after receiving the ClientHello.  The attacker then
   waits until it receives the ClientKeyExchange and finished message
   from the client.  Now the attacker can attempt to run through all
   possible values of the password, computing PE (see Section 4.2),
   computing candidate premaster secrets (see Section 4.4), and
   attempting to recreate the client's finished message.

   But the attacker committed to a single guess of the password with her
   forged ServerKeyExchange.  That value was used by the client in her
   computation of the premaster secret which was used to produce the
   finished message.  Any guess of the password which differs from the
   one used in the forged ServerKeyExchange would result in each side
   using a different PE in the computation of the premaster secret and
   therefore the finished message cannot be verified as correct, even if
   a subsequent guess, while running through all possible values, was
   correct.  The attacker gets one guess, and one guess only, per active
   attack.

   Instead of attempting to guess at the password, an attacker can
   attempt to determine PE and then launch an attack.  But PE is
   determined by the output of the random function, H, which is
   indistinguishable from a random source since H is assumed to be a
   "random oracle" (Section 3.5).  Therefore, each element of the finite
   cyclic group will have an equal probability of being the PE.  The
   probability of guessing PE will be 1/q, where q is the order of the
   group.  For a large value of "q" this will be computationally
   infeasible.

   The implications of resistance to dictionary attack are significant.
   An implementation can provision a password in a practical and
   realistic manner-- i.e. it MAY be a character string and it MAY be
   relatively short-- and still maintain security.  The nature of the
   pool of potential passwords determines the size of the pool, D, and
   countermeasures can prevent an attacker from determining the password
   in the only possible way: repeated, active, guessing attacks.  For
   example, a simple four character string using lower-case English
   characters, and assuming random selection of those characters, will
   result in D of over four hundred thousand.  An attacker would need to
   mount over one hundred thousand active, guessing attacks (which will
   easily be detected) before gaining any significant advantage in
   determining the pre-shared key.

   Countermeasures to deal with successive active, guessing attacks are
   only possible by noticing a certain username is failing repeatedly
   over a certain period of time.  Attacks which attempt to find a
   password for a random user are more difficult to detect.  For
   instance, if a device uses a serial number as a username and the pool
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   of potential passwords is sufficiently small, a more effective attack
   would be to select a password and try all potential "users" to
   disperse the attack and confound countermeasures.  It is therefore
   RECOMMENDED that implementations of TLS-PWD keep track of the total
   number of failed authentications regardless of username in an effort
   to detect and thwart this type of attack.

   The benefits of resistance to dictionary attack can be lessened by a
   client using the same passwords with multiple servers.  An attacker
   could re-direct a session from one server to the other if the
   attacker knew that the intended server stored the same password for
   the client as another server.

   An adversary that has access to, and a considerable amount of control
   over, a client or server could attempt to mount a side-channel attack
   to determine the number of times it took for a certain password (plus
   client random and server random) to select a password element.  Each
   such attack could result in a successive paring-down of the size of
   the pool of potential passwords, resulting in a manageably small set
   from which to launch a series of active attacks to determine the
   password.  A security parameter, m, is used to normalize the amount
   of work necessary to determine the password element (see

Section 4.2).  The probability that a password will require more than
   m iterations is roughly (q/2p)^m for ECC groups and (q/p)^m for FFC
   groups, so it is possible to mitigate side channel attack at the
   expense of a constant cost per connection attempt.  But if a
   particular password requires more than k iterations it will leak k
   bits of information to the side-channel attacker, which for some
   dictionaries will uniquely identify the password.  Therefore, the
   security parameter, m, needs to be set with great care.  It is
   RECOMMENDED that an implementation set the security parameter, m, to
   a value of at least forty (40) which will put the probability that
   more than forty iterations are needed in the order of one in one
   trillion (1:1,000,000,000,000).

   The server uses a database of salted passwords.  While this will
   prevent an adversary who gains access to the database from learning
   the client's password, it does not prevent such an adversary from
   impersonating the client back to the server.  Each side uses the
   salted password, called the base, as the authenticaiton credential so
   the database of salted passwords MUST be afforded the security of a
   database of plaintext passwords.

   Authentication is performed by proving knowledge of the password.
   Any third party that knows the password shared by the client and
   server can impersonate one to the other.

   The static-ephemeral Diffie-Hellman exchange used to protect
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   usernames requires the server to reuse its Diffie-Hellman public key.
   To prevent an invalid curve attack, an entity that reuses its Diffie-
   Hellman public key needs to check whether the received ephemeral
   public key is actually a point on the curve.  This is done explicitly
   as part of the server's reconstruction of the client's public key out
   of only its x-coordinate ("compact representation").

9.  Implementation Considerations

   The selection of the ciphersuite and selection of the particular
   finite cyclic group to use with the ciphersuite are divorced in this
   memo but they remain intimately close.

   It is RECOMMENDED that implementations take note of the strength
   estimates of particular groups and to select a ciphersuite providing
   commensurate security with its hash and encryption algorithms.  A
   ciphersuite whose encryption algorithm has a keylength less than the
   strength estimate, or whose hash algorithm has a blocksize that is
   less than twice the strength estimate SHOULD NOT be used.

   For example, the elliptic curve named brainpoolP256r1 (whose IANA-
   assigned number is 26) provides an estimated 128 bits of strength and
   would be compatible with an encryption algorithm supporting a key of
   that length, and a hash algorithm that has at least a 256-bit
   blocksize.  Therefore, a suitable ciphersuite to use with
   brainpoolP256r1 could be TLS_ECCPWD_WITH_AES_128_GCM_SHA256 (see

Appendix A for an example of such an exchange).

   Resistance to dictionary attack means that the attacker must launch
   an active attack to make a single guess at the password.  If the size
   of the pool from which the password was extracted was D, and each
   password in the pool has an equal probability of being chosen, then
   the probability of success after a single guess is 1/D. After X
   guesses, and removal of failed guesses from the pool of possible
   passwords, the probability becomes 1/(D-X).  As X grows so does the
   probability of success.  Therefore it is possible for an attacker to
   determine the password through repeated brute-force, active, guessing
   attacks.  Implementations SHOULD take note of this fact and choose an
   appropriate pool of potential passwords-- i.e. make D big.
   Implementations SHOULD also take countermeasures, for instance
   refusing authentication attempts by a particular username for a
   certain amount of time, after the number of failed authentication
   attempts reaches a certain threshold.  No such threshold or amount of
   time is recommended in this memo.
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Appendix A.  Example Exchange

   (Note: at the time of publication of this memo ciphersuites have
   not yet been assigned by IANA and the exchange that follows uses
   the private numberspace).

   username: fred
   password: barney

   ----  prior to running TLS-PWD ----

   server generates salt:

   96 3c 77 cd c1 3a 2a 8d 75 cd dd d1 e0 44 99 29
   84 37 11 c2 1d 47 ce 6e 63 83 cd da 37 e4 7d a3

   and a base:

   6e 7c 79 82 1b 9f 8e 80 21 e9 e7 e8 26 e9 ed 28
   c4 a1 8a ef c8 75 0c 72 6f 74 c7 09 61 d7 00 75

   ---- state derived during the TLS-PWD exchange ----

   client and server generate PE:

   pe.x:
   29 b2 38 55 81 9f 9c 3f c3 71 ba e2 84 f0 93 a3
   a4 fd 34 72 d4 bd 2e 9d f7 15 2d 22 ab 37 aa e6

   server private and mask:

   private:
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   21 d9 9d 34 1c 97 97 b3 ae 72 df d2 89 97 1f 1b
   74 ce 9d e6 8a d4 b9 ab f5 48 88 d8 f6 c5 04 3c
   mask:
   0d 96 ab 62 4d 08 2c 71 25 5b e3 64 8d cd 30 3f
   6a b0 ca 61 a9 50 34 a5 53 e3 30 8d 1d 37 44 e5

   client private and mask:

   private:
   17 1d e8 ca a5 35 2d 36 ee 96 a3 99 79 b5 b7 2f
   a1 89 ae 7a 6a 09 c7 7f 7b 43 8a f1 6d f4 a8 8b
   mask:
   4f 74 5b df c2 95 d3 b3 84 29 f7 eb 30 25 a4 88
   83 72 8b 07 d8 86 05 c0 ee 20 23 16 a0 72 d1 bd

   both parties generate pre-master secret and master secret

   pre-master secret:
   01 f7 a7 bd 37 9d 71 61 79 eb 80 c5 49 83 45 11
   af 58 cb b6 dc 87 e0 18 1c 83 e7 01 e9 26 92 a4
   master secret:
   65 ce 15 50 ee ff 3d aa 2b f4 78 cb 84 29 88 a1
   60 26 a4 be f2 2b 3f ab 23 96 e9 8a 7e 05 a1 0f
   3d 8c ac 51 4d da 42 8d 94 be a9 23 89 18 4c ad

   ---- ssldump output of exchange ----

   New TCP connection #1: Charlene Client <-> Sammy Server
   1 1  0.0018 (0.0018)  C>SV3.3(173)  Handshake
         ClientHello
           Version 3.3
           random[32]=
             52 8f bf 52 17 5d e2 c8 69 84 5f db fa 83 44 f7
             d7 32 71 2e bf a6 79 d8 64 3c d3 1a 88 0e 04 3d
           cipher suites
           TLS_ECCPWD_WITH_AES_128_GCM_SHA256_PRIV
           TLS_ECCPWD_WITH_AES_256_GCM_SHA384_PRIV
           Unknown value 0xff
           compression methods
                     NULL
           extensions
           TLS-PWD unprotected name[5]=
             04 66 72 65 64
           elliptic curve point format[4]=
             03 00 01 02
           elliptic curve list[58]=
             00 38 00 0e 00 0d 00 1c 00 19 00 0b 00 0c 00 1b
             00 18 00 09 00 0a 00 1a 00 16 00 17 00 08 00 06
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             00 07 00 14 00 15 00 04 00 05 00 12 00 13 00 01
             00 02 00 03 00 0f 00 10 00 11
   Packet data[178]=
     16 03 03 00 ad 01 00 00 a9 03 03 52 8f bf 52 17
     5d e2 c8 69 84 5f db fa 83 44 f7 d7 32 71 2e bf
     a6 79 d8 64 3c d3 1a 88 0e 04 3d 00 00 06 ff b3
     ff b4 00 ff 01 00 00 7a b8 aa 00 05 04 66 72 65
     64 00 0b 00 04 03 00 01 02 00 0a 00 3a 00 38 00
     0e 00 0d 00 1c 00 19 00 0b 00 0c 00 1b 00 18 00
     09 00 0a 00 1a 00 16 00 17 00 08 00 06 00 07 00
     14 00 15 00 04 00 05 00 12 00 13 00 01 00 02 00
     03 00 0f 00 10 00 11 00 0d 00 22 00 20 06 01 06
     02 06 03 05 01 05 02 05 03 04 01 04 02 04 03 03
     01 03 02 03 03 02 01 02 02 02 03 01 01 00 0f 00
     01 01

   1 2  0.0043 (0.0024)  S>CV3.3(94)  Handshake
         ServerHello
           Version 3.3
           random[32]=
             52 8f bf 52 43 78 a1 b1 3b 8d 2c bd 24 70 90 72
             13 69 f8 bf a3 ce eb 3c fc d8 5c bf cd d5 8e aa
           session_id[32]=
             ef ee 38 08 22 09 f2 c1 18 38 e2 30 33 61 e3 d6
             e6 00 6d 18 0e 09 f0 73 d5 21 20 cf 9f bf 62 88
           cipherSuite         TLS_ECCPWD_WITH_AES_128_GCM_SHA256_PRIV
           compressionMethod                   NULL
           extensions
           renegotiate[1]=
             00
           elliptic curve point format[4]=
             03 00 01 02
           heartbeat[1]=
             01
   Packet data[99]=
     16 03 03 00 5e 02 00 00 5a 03 03 52 8f bf 52 43
     78 a1 b1 3b 8d 2c bd 24 70 90 72 13 69 f8 bf a3
     ce eb 3c fc d8 5c bf cd d5 8e aa 20 ef ee 38 08
     22 09 f2 c1 18 38 e2 30 33 61 e3 d6 e6 00 6d 18
     0e 09 f0 73 d5 21 20 cf 9f bf 62 88 ff b3 00 00
     12 ff 01 00 01 00 00 0b 00 04 03 00 01 02 00 0f
     00 01 01

   1 3  0.0043 (0.0000)  S>CV3.3(141)  Handshake
         ServerKeyExchange
           params
             salt[32]=
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               96 3c 77 cd c1 3a 2a 8d 75 cd dd d1 e0 44 99 29
               84 37 11 c2 1d 47 ce 6e 63 83 cd da 37 e4 7d a3
             EC parameters = 3
             curve id = 26
             element[65]=
               04 22 bb d5 6b 48 1d 7f a9 0c 35 e8 d4 2f cd 06
               61 8a 07 78 de 50 6b 1b c3 88 82 ab c7 31 32 ee
               f3 7f 02 e1 3b d5 44 ac c1 45 bd d8 06 45 0d 43
               be 34 b9 28 83 48 d0 3d 6c d9 83 24 87 b1 29 db
               e1
             scalar[32]=
               2f 70 48 96 69 9f c4 24 d3 ce c3 37 17 64 4f 5a
               df 7f 68 48 34 24 ee 51 49 2b b9 66 13 fc 49 21
   Packet data[146]=
     16 03 03 00 8d 0c 00 00 89 00 20 96 3c 77 cd c1
     3a 2a 8d 75 cd dd d1 e0 44 99 29 84 37 11 c2 1d
     47 ce 6e 63 83 cd da 37 e4 7d a3 03 00 1a 41 04
     22 bb d5 6b 48 1d 7f a9 0c 35 e8 d4 2f cd 06 61
     8a 07 78 de 50 6b 1b c3 88 82 ab c7 31 32 ee f3
     7f 02 e1 3b d5 44 ac c1 45 bd d8 06 45 0d 43 be
     34 b9 28 83 48 d0 3d 6c d9 83 24 87 b1 29 db e1
     00 20 2f 70 48 96 69 9f c4 24 d3 ce c3 37 17 64
     4f 5a df 7f 68 48 34 24 ee 51 49 2b b9 66 13 fc
     49 21

   1 4  0.0043 (0.0000)  S>CV3.3(4)  Handshake
         ServerHelloDone
   Packet data[9]=
     16 03 03 00 04 0e 00 00 00

   1 5  0.0086 (0.0043)  C>SV3.3(104)  Handshake
         ClientKeyExchange
           element[65]=
             04 a0 c6 9b 45 0b 85 ae e3 9f 64 6b 6e 64 d3 c1
             08 39 5f 4b a1 19 2d bf eb f0 de c5 b1 89 13 1f
             59 5d d4 ba cd bd d6 83 8d 92 19 fd 54 29 91 b2
             c0 b0 e4 c4 46 bf e5 8f 3c 03 39 f7 56 e8 9e fd
             a0
           scalar[32]=
             66 92 44 aa 67 cb 00 ea 72 c0 9b 84 a9 db 5b b8
             24 fc 39 82 42 8f cd 40 69 63 ae 08 0e 67 7a 48
   Packet data[109]=
     16 03 03 00 68 10 00 00 64 41 04 a0 c6 9b 45 0b
     85 ae e3 9f 64 6b 6e 64 d3 c1 08 39 5f 4b a1 19
     2d bf eb f0 de c5 b1 89 13 1f 59 5d d4 ba cd bd
     d6 83 8d 92 19 fd 54 29 91 b2 c0 b0 e4 c4 46 bf
     e5 8f 3c 03 39 f7 56 e8 9e fd a0 00 20 66 92 44
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     aa 67 cb 00 ea 72 c0 9b 84 a9 db 5b b8 24 fc 39
     82 42 8f cd 40 69 63 ae 08 0e 67 7a 48

   1 6  0.0086 (0.0000)  C>SV3.3(1)  ChangeCipherSpec
   Packet data[6]=
     14 03 03 00 01 01

   1 7  0.0086 (0.0000)  C>SV3.3(40)  Handshake
   Packet data[45]=
     16 03 03 00 28 44 cd 3f 26 ed 64 9a 1b bb 07 c7
     0c 6d 3e 28 af e6 32 b1 17 29 49 a1 14 8e cb 7a
     0b 4b 70 f5 1f 39 c2 9c 7b 6c cc 57 20

   1 8  0.0105 (0.0018)  S>CV3.3(1)  ChangeCipherSpec
   Packet data[6]=
     14 03 03 00 01 01

   1 9  0.0105 (0.0000)  S>CV3.3(40)  Handshake
   Packet data[45]=
     16 03 03 00 28 fd da 3c 9e 48 0a e7 99 ba 41 8c
     9f fd 47 c8 41 2c fd 22 10 77 3f 0f 78 54 5e 41
     a2 21 94 90 12 72 23 18 24 21 c3 60 a4

   1 10 0.0107 (0.0002)  C>SV3.3(100)  application_data
   Packet data....
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