
 Tim Dierks
 Independent
 Eric Rescorla
INTERNET-DRAFT Network Resonance, Inc.
<draft-ietf-tls-rfc4346-bis-02.txt> October 2006 (Expires April 2006)

 The TLS Protocol
 Version 1.2

Status of this Memo
 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document specifies Version 1.2 of the Transport Layer Security
 (TLS) protocol. The TLS protocol provides communications security
 over the Internet. The protocol allows client/server applications to
 communicate in a way that is designed to prevent eavesdropping,
 tampering, or message forgery.

Table of Contents

 1. Introduction 4
 1.1 Differences from TLS 1.1 5
 1.1 Requirements Terminology 5

Dierks & Rescorla Standards Track [Page 1]draft-

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

ietf-tls-rfc4346-bis-02.txt TLS October 2006

 2. Goals 5
 3. Goals of this document 6
 4. Presentation language 6
 4.1. Basic block size 7
 4.2. Miscellaneous 7
 4.3. Vectors 7
 4.4. Numbers 8
 4.5. Enumerateds 8
 4.6. Constructed types 9
 4.6.1. Variants 10
 4.7. Cryptographic attributes 11
 4.8. Constants 12
 5. HMAC and the pseudorandom function 12
 6. The TLS Record Protocol 14
 6.1. Connection states 14
 6.2. Record layer 17
 6.2.1. Fragmentation 17
 6.2.2. Record compression and decompression 18
 6.2.3. Record payload protection 19
 6.2.3.1. Null or standard stream cipher 19
 6.2.3.2. CBC block cipher 20
 6.2.3.3. AEAD ciphers 23
 6.3. Key calculation 24
 7. The TLS Handshaking Protocols 24
 7.1. Change cipher spec protocol 25
 7.2. Alert protocol 26
 7.2.1. Closure alerts 27
 7.2.2. Error alerts 28
 7.3. Handshake Protocol overview 31
 7.4. Handshake protocol 35
 7.4.1. Hello messages 36
 7.4.1.1. Hello request 36
 7.4.1.2. Client hello 37
 7.4.1.3. Server hello 40
 7.4.1.4 Hello Extensions 41
 7.4.1.4.1 Server Name Indication 43
 7.4.1.4.2 Maximum Fragment Length Negotiation 44
 7.4.1.4.3 Client Certificate URLs 46
 7.4.1.4.4 Trusted CA Indication 46
 7.4.1.4.5 Truncated HMAC 48
 7.4.1.4.6 Certificate Status Request 49
 7.4.1.4.7 Cert Hash Types 50
 7.4.1.4.8 Procedure for Defining New Extensions 51
 7.4.2. Server certificate 52
 7.4.3. Server key exchange message 53
 7.4.4. CertificateStatus 56
 7.4.5. Certificate request 56
 7.4.6. Server hello done 58

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 2]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 7.4.7. Client certificate 59
 7.4.8. Client Certificate URLs 59
 7.4.9. Client key exchange message 61
 7.4.9.1. RSA encrypted premaster secret message 62
 7.4.9.2. Client Diffie-Hellman public value 64
 7.4.10. Certificate verify 65
 7.4.10. Finished 65
 8. Cryptographic computations 66
 8.1. Computing the master secret 67
 8.1.1. RSA 67
 8.1.2. Diffie-Hellman 67
 9. Mandatory Cipher Suites 67
 A. Protocol constant values 71
 A.1. Record layer 71
 A.2. Change cipher specs message 72
 A.3. Alert messages 72
 A.4. Handshake protocol 74
 A.4.1. Hello messages 74
 A.4.2. Server authentication and key exchange messages 77
 A.4.3. Client authentication and key exchange messages 78
 A.4.4. Handshake finalization message 79
 A.5. The CipherSuite 80
 A.6. The Security Parameters 83
 B. Glossary 84
 C. CipherSuite definitions 88
 D. Implementation Notes 90
 D.1 Random Number Generation and Seeding 90
 D.2 Certificates and authentication 90
 D.3 CipherSuites 90
 E. Backward Compatibility 91
 E.1. Version 2 client hello 92
 E.2. Avoiding man-in-the-middle version rollback 93
 F. Security analysis 95
 F.1. Handshake protocol 95
 F.1.1. Authentication and key exchange 95
 F.1.1.1. Anonymous key exchange 95
 F.1.1.2. RSA key exchange and authentication 96
 F.1.1.3. Diffie-Hellman key exchange with authentication 97
 F.1.2. Version rollback attacks 97
 F.1.3. Detecting attacks against the handshake protocol 98
 F.1.4. Resuming sessions 98
 F.1.5 Extensions 99
 F.1.5.1 Security of server_name 99
 F.1.5.2 Security of client_certificate_url 100

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 F.1.5.4. Security of trusted_ca_keys 101
 F.1.5.5. Security of truncated_hmac 101
 F.1.5.6. Security of status_request 102
 F.2. Protecting application data 102

Dierks & Rescorla Standards Track [Page 3]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 F.3. Explicit IVs 103
 F.4 Security of Composite Cipher Modes 103
 F.5 Denial of Service 104
 F.6. Final notes 104

1. Introduction

 The primary goal of the TLS Protocol is to provide privacy and data
 integrity between two communicating applications. The protocol is
 composed of two layers: the TLS Record Protocol and the TLS Handshake
 Protocol. At the lowest level, layered on top of some reliable
 transport protocol (e.g., TCP[TCP]), is the TLS Record Protocol. The
 TLS Record Protocol provides connection security that has two basic
 properties:

 - The connection is private. Symmetric cryptography is used for
 data encryption (e.g., DES [DES], RC4 [SCH], etc.). The keys for
 this symmetric encryption are generated uniquely for each
 connection and are based on a secret negotiated by another
 protocol (such as the TLS Handshake Protocol). The Record
 Protocol can also be used without encryption.

 - The connection is reliable. Message transport includes a message
 integrity check using a keyed MAC. Secure hash functions (e.g.,
 SHA, MD5, etc.) are used for MAC computations. The Record
 Protocol can operate without a MAC, but is generally only used in
 this mode while another protocol is using the Record Protocol as
 a transport for negotiating security parameters.

 The TLS Record Protocol is used for encapsulation of various higher
 level protocols. One such encapsulated protocol, the TLS Handshake
 Protocol, allows the server and client to authenticate each other and
 to negotiate an encryption algorithm and cryptographic keys before
 the application protocol transmits or receives its first byte of
 data. The TLS Handshake Protocol provides connection security that
 has three basic properties:

 - The peer's identity can be authenticated using asymmetric, or
 public key, cryptography (e.g., RSA [RSA], DSS [DSS], etc.). This
 authentication can be made optional, but is generally required

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 for at least one of the peers.

 - The negotiation of a shared secret is secure: the negotiated
 secret is unavailable to eavesdroppers, and for any authenticated
 connection the secret cannot be obtained, even by an attacker who
 can place himself in the middle of the connection.

Dierks & Rescorla Standards Track [Page 4]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 - The negotiation is reliable: no attacker can modify the
 negotiation communication without being detected by the parties
 to the communication.

 One advantage of TLS is that it is application protocol independent.
 Higher level protocols can layer on top of the TLS Protocol
 transparently. The TLS standard, however, does not specify how
 protocols add security with TLS; the decisions on how to initiate TLS
 handshaking and how to interpret the authentication certificates
 exchanged are left up to the judgment of the designers and
 implementors of protocols which run on top of TLS.

1.1 Differences from TLS 1.1
 This document is a revision of the TLS 1.1 [TLS1.1] protocol which
 contains improved flexibility, particularly for negotiation of
 cryptographic algorithms. The major changes are:

 - Merged in TLS Extensions and AES Cipher Suites from external
 documents.

 - Replacement of MD5/SHA-1 combination in the PRF

 - Replacement of MD5/SHA-1 combination in the digitally-signed
 element.

 - Allow the client to indicate which hash functions it supports.

 - Allow the server to indicate which hash functions it supports

 - Addition of support for authenticated encryption with additional
 data modes.

1.1 Requirements Terminology

 Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
 "MAY" that appear in this document are to be interpreted as described
 in RFC 2119 [REQ].

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/rfc2119

2. Goals

 The goals of TLS Protocol, in order of their priority, are:

 1. Cryptographic security: TLS should be used to establish a secure
 connection between two parties.

 2. Interoperability: Independent programmers should be able to
 develop applications utilizing TLS that will then be able to
 successfully exchange cryptographic parameters without knowledge

Dierks & Rescorla Standards Track [Page 5]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 of one another's code.

 3. Extensibility: TLS seeks to provide a framework into which new
 public key and bulk encryption methods can be incorporated as
 necessary. This will also accomplish two sub-goals: to prevent
 the need to create a new protocol (and risking the introduction
 of possible new weaknesses) and to avoid the need to implement an
 entire new security library.

 4. Relative efficiency: Cryptographic operations tend to be highly
 CPU intensive, particularly public key operations. For this
 reason, the TLS protocol has incorporated an optional session
 caching scheme to reduce the number of connections that need to
 be established from scratch. Additionally, care has been taken to
 reduce network activity.

3. Goals of this document

 This document and the TLS protocol itself are based on the SSL 3.0
 Protocol Specification as published by Netscape. The differences
 between this protocol and SSL 3.0 are not dramatic, but they are
 significant enough that the various versions of TLS and SSL 3.0 do
 not interoperate (although each protocol incorporates a mechanism by
 which an implementation can back down to prior versions.) This
 document is intended primarily for readers who will be implementing
 the protocol and those doing cryptographic analysis of it. The
 specification has been written with this in mind, and it is intended
 to reflect the needs of those two groups. For that reason, many of
 the algorithm-dependent data structures and rules are included in the
 body of the text (as opposed to in an appendix), providing easier
 access to them.

 This document is not intended to supply any details of service
 definition nor interface definition, although it does cover select
 areas of policy as they are required for the maintenance of solid

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 security.

4. Presentation language

 This document deals with the formatting of data in an external
 representation. The following very basic and somewhat casually
 defined presentation syntax will be used. The syntax draws from
 several sources in its structure. Although it resembles the
 programming language "C" in its syntax and XDR [XDR] in both its
 syntax and intent, it would be risky to draw too many parallels. The
 purpose of this presentation language is to document TLS only, not to
 have general application beyond that particular goal.

Dierks & Rescorla Standards Track [Page 6]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

4.1. Basic block size

 The representation of all data items is explicitly specified. The
 basic data block size is one byte (i.e. 8 bits). Multiple byte data
 items are concatenations of bytes, from left to right, from top to
 bottom. From the bytestream a multi-byte item (a numeric in the
 example) is formed (using C notation) by:

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

 This byte ordering for multi-byte values is the commonplace network
 byte order or big endian format.

4.2. Miscellaneous

 Comments begin with "/*" and end with "*/".

 Optional components are denoted by enclosing them in "[[]]" double
 brackets.

 Single byte entities containing uninterpreted data are of type
 opaque.

4.3. Vectors

 A vector (single dimensioned array) is a stream of homogeneous data
 elements. The size of the vector may be specified at documentation
 time or left unspecified until runtime. In either case the length
 declares the number of bytes, not the number of elements, in the
 vector. The syntax for specifying a new type T' that is a fixed
 length vector of type T is

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 T T'[n];

 Here T' occupies n bytes in the data stream, where n is a multiple of
 the size of T. The length of the vector is not included in the
 encoded stream.

 In the following example, Datum is defined to be three consecutive
 bytes that the protocol does not interpret, while Data is three
 consecutive Datum, consuming a total of nine bytes.

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* 3 consecutive 3 byte vectors */

Dierks & Rescorla Standards Track [Page 7]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Variable length vectors are defined by specifying a subrange of legal
 lengths, inclusively, using the notation <floor..ceiling>. When
 encoded, the actual length precedes the vector's contents in the byte
 stream. The length will be in the form of a number consuming as many
 bytes as required to hold the vector's specified maximum (ceiling)
 length. A variable length vector with an actual length field of zero
 is referred to as an empty vector.

 T T'<floor..ceiling>;

 In the following example, mandatory is a vector that must contain
 between 300 and 400 bytes of type opaque. It can never be empty. The
 actual length field consumes two bytes, a uint16, sufficient to
 represent the value 400 (see Section 4.4). On the other hand, longer
 can represent up to 800 bytes of data, or 400 uint16 elements, and it
 may be empty. Its encoding will include a two byte actual length
 field prepended to the vector. The length of an encoded vector must
 be an even multiple of the length of a single element (for example, a
 17 byte vector of uint16 would be illegal).

 opaque mandatory<300..400>;
 /* length field is 2 bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

4.4. Numbers

 The basic numeric data type is an unsigned byte (uint8). All larger
 numeric data types are formed from fixed length series of bytes

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 concatenated as described in Section 4.1 and are also unsigned. The
 following numeric types are predefined.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

 All values, here and elsewhere in the specification, are stored in
 "network" or "big-endian" order; the uint32 represented by the hex
 bytes 01 02 03 04 is equivalent to the decimal value 16909060.

4.5. Enumerateds

 An additional sparse data type is available called enum. A field of
 type enum can only assume the values declared in the definition.
 Each definition is a different type. Only enumerateds of the same
 type may be assigned or compared. Every element of an enumerated must

Dierks & Rescorla Standards Track [Page 8]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 be assigned a value, as demonstrated in the following example. Since
 the elements of the enumerated are not ordered, they can be assigned
 any unique value, in any order.

 enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

 Enumerateds occupy as much space in the byte stream as would its
 maximal defined ordinal value. The following definition would cause
 one byte to be used to carry fields of type Color.

 enum { red(3), blue(5), white(7) } Color;

 One may optionally specify a value without its associated tag to
 force the width definition without defining a superfluous element.
 In the following example, Taste will consume two bytes in the data
 stream but can only assume the values 1, 2 or 4.

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

 The names of the elements of an enumeration are scoped within the
 defined type. In the first example, a fully qualified reference to
 the second element of the enumeration would be Color.blue. Such
 qualification is not required if the target of the assignment is well
 specified.

 Color color = Color.blue; /* overspecified, legal */

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Color color = blue; /* correct, type implicit */

 For enumerateds that are never converted to external representation,
 the numerical information may be omitted.

 enum { low, medium, high } Amount;

4.6. Constructed types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } [[T]];

Dierks & Rescorla Standards Track [Page 9]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 The fields within a structure may be qualified using the type's name
 using a syntax much like that available for enumerateds. For example,
 T.f2 refers to the second field of the previous declaration.
 Structure definitions may be embedded.

4.6.1. Variants

 Defined structures may have variants based on some knowledge that is
 available within the environment. The selector must be an enumerated
 type that defines the possible variants the structure defines. There
 must be a case arm for every element of the enumeration declared in
 the select. The body of the variant structure may be given a label
 for reference. The mechanism by which the variant is selected at
 runtime is not prescribed by the presentation language.

 struct {
 T1 f1;
 T2 f2;

 Tn fn;
 select (E) {
 case e1: Te1;
 case e2: Te2;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 case en: Ten;
 } [[fv]];
 } [[Tv]];

 For example:

 enum { apple, orange } VariantTag;
 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;
 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;
 struct {
 select (VariantTag) { /* value of selector is implicit */
 case apple: V1; /* VariantBody, tag = apple */
 case orange: V2; /* VariantBody, tag = orange */
 } variant_body; /* optional label on variant */
 } VariantRecord;

 Variant structures may be qualified (narrowed) by specifying a value
 for the selector prior to the type. For example, a

Dierks & Rescorla Standards Track [Page 10]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 orange VariantRecord

 is a narrowed type of a VariantRecord containing a variant_body of
 type V2.

4.7. Cryptographic attributes

 The five cryptographic operations digital signing, stream cipher
 encryption, block cipher encryption, authenticated encryption with
 additional data (AEAD) encryption and public key encryption are
 designated digitally-signed, stream-ciphered, block-ciphered, aead-
 ciphered, and public-key-encrypted, respectively. A field's
 cryptographic processing is specified by prepending an appropriate
 key word designation before the field's type specification.
 Cryptographic keys are implied by the current session state (see

Section 6.1).

 In digital signing, one-way hash functions are used as input for a
 signing algorithm. A digitally-signed element is encoded as an opaque
 vector <0..2^16-1>, where the length is specified by the signing

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 algorithm and key.

 In RSA signing, the output of the chosen hash function is encoded as
 a PKCS #1 DigestInfo and then signed using block type 01 as described
 in Section 8.1 as described in [PKCS1A].

 Note: the standard reference for PKCS#1 is now RFC 3447 [PKCS1B].
 However, to minimize differences with TLS 1.0 text, we are using the
 terminology of RFC 2313 [PKCS1A].

 In DSS, the 20 bytes of the SHA-1 hash are run directly through the
 Digital Signing Algorithm with no additional hashing. This produces
 two values, r and s. The DSS signature is an opaque vector, as above,
 the contents of which are the DER encoding of:

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER
 }

 In stream cipher encryption, the plaintext is exclusive-ORed with an
 identical amount of output generated from a cryptographically-secure
 keyed pseudorandom number generator.

 In block cipher encryption, every block of plaintext encrypts to a
 block of ciphertext. All block cipher encryption is done in CBC
 (Cipher Block Chaining) mode, and all items which are block-ciphered
 will be an exact multiple of the cipher block length.

Dierks & Rescorla Standards Track [Page 11]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 In AEAD encryption, the plaintext is simultaneously encrypted and
 integrity protected. The input may be of any length and the output is
 generally larger than the input in order to accomodate the integrity
 check value.

 In public key encryption, a public key algorithm is used to encrypt
 data in such a way that it can be decrypted only with the matching
 private key. A public-key-encrypted element is encoded as an opaque
 vector <0..2^16-1>, where the length is specified by the signing
 algorithm and key.

 An RSA encrypted value is encoded with PKCS #1 block type 2 as
 described in [PKCS1A].

 In the following example:

 stream-ciphered struct {

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 uint8 field1;
 uint8 field2;
 digitally-signed opaque hash[20];
 } UserType;

 The contents of hash are used as input for the signing algorithm,
 then the entire structure is encrypted with a stream cipher. The
 length of this structure, in bytes would be equal to 2 bytes for
 field1 and field2, plus two bytes for the length of the signature,
 plus the length of the output of the signing algorithm. This is known
 due to the fact that the algorithm and key used for the signing are
 known prior to encoding or decoding this structure.

4.8. Constants

 Typed constants can be defined for purposes of specification by
 declaring a symbol of the desired type and assigning values to it.
 Under-specified types (opaque, variable length vectors, and
 structures that contain opaque) cannot be assigned values. No fields
 of a multi-element structure or vector may be elided.

 For example,

 struct {
 uint8 f1;
 uint8 f2;
 } Example1;

 Example1 ex1 = {1, 4}; /* assigns f1 = 1, f2 = 4 */

5. HMAC and the pseudorandom function

Dierks & Rescorla Standards Track [Page 12]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 A number of operations in the TLS record and handshake layer required
 a keyed MAC; this is a secure digest of some data protected by a
 secret. Forging the MAC is infeasible without knowledge of the MAC
 secret. The construction we use for this operation is known as HMAC,
 described in [HMAC].

 In addition, a construction is required to do expansion of secrets
 into blocks of data for the purposes of key generation or validation.
 This pseudo-random function (PRF) takes as input a secret, a seed,
 and an identifying label and produces an output of arbitrary length.

 First, we define a data expansion function, P_hash(secret, data)
 which uses a single hash function to expand a secret and seed into an
 arbitrary quantity of output:

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
 HMAC_hash(secret, A(2) + seed) +
 HMAC_hash(secret, A(3) + seed) + ...

 Where + indicates concatenation.

 A() is defined as:
 A(0) = seed
 A(i) = HMAC_hash(secret, A(i-1))

 P_hash can be iterated as many times as is necessary to produce the
 required quantity of data. For example, if P_SHA-1 was being used to
 create 64 bytes of data, it would have to be iterated 4 times
 (through A(4)), creating 80 bytes of output data; the last 16 bytes
 of the final iteration would then be discarded, leaving 64 bytes of
 output data.

 TLS's PRF is created by applying P_hash to the secret S as:

 PRF(secret, label, seed) = P_<hash>(secret, label + seed)

 Unless the cipher suite definition specifies otherwise, the hash
 function used in P MUST be the same hash function selected for the
 HMAC in the cipher suite. For existing cipher suites (which use MD5
 or SHA-1), the hash MUST be SHA-1. New ciphers which do not use HMAC
 MUST explicitly specify a PRF.

 The label is an ASCII string. It should be included in the exact form
 it is given without a length byte or trailing null character. For
 example, the label "slithy toves" would be processed by hashing the
 following bytes:

 73 6C 69 74 68 79 20 74 6F 76 65 73

Dierks & Rescorla Standards Track [Page 13]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

6. The TLS Record Protocol

 The TLS Record Protocol is a layered protocol. At each layer,
 messages may include fields for length, description, and content.
 The Record Protocol takes messages to be transmitted, fragments the
 data into manageable blocks, optionally compresses the data, applies
 a MAC, encrypts, and transmits the result. Received data is
 decrypted, verified, decompressed, and reassembled, then delivered to
 higher level clients.

 Four record protocol clients are described in this document: the

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 handshake protocol, the alert protocol, the change cipher spec
 protocol, and the application data protocol. In order to allow
 extension of the TLS protocol, additional record types can be
 supported by the record protocol. Any new record types SHOULD
 allocate type values immediately beyond the ContentType values for
 the four record types described here (see Appendix A.1). All such
 values must be defined by RFC 2434 Standards Action. See section 11
 for IANA Considerations for ContentType values.

 If a TLS implementation receives a record type it does not
 understand, it SHOULD just ignore it. Any protocol designed for use
 over TLS MUST be carefully designed to deal with all possible attacks
 against it. Note that because the type and length of a record are
 not protected by encryption, care SHOULD be taken to minimize the
 value of traffic analysis of these values.

6.1. Connection states

 A TLS connection state is the operating environment of the TLS Record
 Protocol. It specifies a compression algorithm, encryption algorithm,
 and MAC algorithm. In addition, the parameters for these algorithms
 are known: the MAC secret and the bulk encryption keys for the
 connection in both the read and the write directions. Logically,
 there are always four connection states outstanding: the current read
 and write states, and the pending read and write states. All records
 are processed under the current read and write states. The security
 parameters for the pending states can be set by the TLS Handshake
 Protocol, and the Change Cipher Spec can selectively make either of
 the pending states current, in which case the appropriate current
 state is disposed of and replaced with the pending state; the pending
 state is then reinitialized to an empty state. It is illegal to make
 a state which has not been initialized with security parameters a
 current state. The initial current state always specifies that no
 encryption, compression, or MAC will be used.

 The security parameters for a TLS Connection read and write state are
 set by providing the following values:

Dierks & Rescorla Standards Track [Page 14]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 connection end
 Whether this entity is considered the "client" or the "server" in
 this connection.

 bulk encryption algorithm
 An algorithm to be used for bulk encryption. This specification
 includes the key size of this algorithm, how much of that key is
 secret, whether it is a block, stream, or AEAD cipher, the block

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 size of the cipher (if appropriate).

 MAC algorithm
 An algorithm to be used for message authentication. This
 specification includes the size of the hash which is returned by
 the MAC algorithm.

 compression algorithm
 An algorithm to be used for data compression. This specification
 must include all information the algorithm requires to do
 compression.

 master secret
 A 48 byte secret shared between the two peers in the connection.

 client random
 A 32 byte value provided by the client.

 server random
 A 32 byte value provided by the server.

 These parameters are defined in the presentation language as:

 enum { server, client } ConnectionEnd;

 enum { null, rc4, rc2, des, 3des, des40, idea, aes }
BulkCipherAlgorithm;

 enum { stream, block, aead } CipherType;

 enum { null, md5, sha, sha256, sha384, sha512} MACAlgorithm;

 /* The use of "sha" above is historical and denotes SHA-1 */

 enum { null(0), (255) } CompressionMethod;

 /* The algorithms specified in CompressionMethod,
 BulkCipherAlgorithm, and MACAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;

Dierks & Rescorla Standards Track [Page 15]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 BulkCipherAlgorithm bulk_cipher_algorithm;
 CipherType cipher_type;
 uint8 key_size;
 uint8 key_material_length;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 MACAlgorithm mac_algorithm;
 uint8 hash_size;
 CompressionMethod compression_algorithm;
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

 The record layer will use the security parameters to generate the
 following four items:

 client write MAC secret
 server write MAC secret
 client write key
 server write key

 The client write parameters are used by the server when receiving and
 processing records and vice-versa. The algorithm used for generating
 these items from the security parameters is described in section 6.3.

 Once the security parameters have been set and the keys have been
 generated, the connection states can be instantiated by making them
 the current states. These current states MUST be updated for each
 record processed. Each connection state includes the following
 elements:

 compression state
 The current state of the compression algorithm.

 cipher state
 The current state of the encryption algorithm. This will consist
 of the scheduled key for that connection. For stream ciphers,
 this will also contain whatever the necessary state information
 is to allow the stream to continue to encrypt or decrypt data.

 MAC secret
 The MAC secret for this connection as generated above.

 sequence number
 Each connection state contains a sequence number, which is
 maintained separately for read and write states. The sequence
 number MUST be set to zero whenever a connection state is made
 the active state. Sequence numbers are of type uint64 and may not
 exceed 2^64-1. Sequence numbers do not wrap. If a TLS

Dierks & Rescorla Standards Track [Page 16]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 implementation would need to wrap a sequence number it must

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 renegotiate instead. A sequence number is incremented after each
 record: specifically, the first record which is transmitted under
 a particular connection state MUST use sequence number 0.

6.2. Record layer

 The TLS Record Layer receives uninterpreted data from higher layers
 in non-empty blocks of arbitrary size.

6.2.1. Fragmentation

 The record layer fragments information blocks into TLSPlaintext
 records carrying data in chunks of 2^14 bytes or less. Client message
 boundaries are not preserved in the record layer (i.e., multiple
 client messages of the same ContentType MAY be coalesced into a
 single TLSPlaintext record, or a single message MAY be fragmented
 across several records).

 struct {
 uint8 major, minor;
 } ProtocolVersion;

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 type
 The higher level protocol used to process the enclosed fragment.

 version
 The version of the protocol being employed. This document
 describes TLS Version 1.2, which uses the version { 3, 3 }. The
 version value 3.3 is historical, deriving from the use of 3.1 for
 TLS 1.0. (See Appendix A.1).

 length
 The length (in bytes) of the following TLSPlaintext.fragment.
 The length should not exceed 2^14.

Dierks & Rescorla Standards Track [Page 17]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 fragment
 The application data. This data is transparent and treated as an
 independent block to be dealt with by the higher level protocol
 specified by the type field.

 Note: Data of different TLS Record layer content types MAY be
 interleaved. Application data is generally of lower precedence
 for transmission than other content types. However, records MUST
 be delivered to the network in the same order as they are
 protected by the record layer. Recipients MUST receive and
 process interleaved application layer traffic during handshakes
 subsequent to the first one on a connection.

6.2.2. Record compression and decompression

 All records are compressed using the compression algorithm defined in
 the current session state. There is always an active compression
 algorithm; however, initially it is defined as
 CompressionMethod.null. The compression algorithm translates a
 TLSPlaintext structure into a TLSCompressed structure. Compression
 functions are initialized with default state information whenever a
 connection state is made active.

 Compression must be lossless and may not increase the content length
 by more than 1024 bytes. If the decompression function encounters a
 TLSCompressed.fragment that would decompress to a length in excess of
 2^14 bytes, it should report a fatal decompression failure error.

 struct {
 ContentType type; /* same as TLSPlaintext.type */
 ProtocolVersion version;/* same as TLSPlaintext.version */
 uint16 length;
 opaque fragment[TLSCompressed.length];
 } TLSCompressed;

 length
 The length (in bytes) of the following TLSCompressed.fragment.
 The length should not exceed 2^14 + 1024.

 fragment
 The compressed form of TLSPlaintext.fragment.

 Note: A CompressionMethod.null operation is an identity operation; no
 fields are altered.

 Implementation note:
 Decompression functions are responsible for ensuring that

Dierks & Rescorla Standards Track [Page 18]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 messages cannot cause internal buffer overflows.

6.2.3. Record payload protection

 The encryption and MAC functions translate a TLSCompressed structure
 into a TLSCiphertext. The decryption functions reverse the process.
 The MAC of the record also includes a sequence number so that
 missing, extra or repeated messages are detectable.

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 select (CipherSpec.cipher_type) {
 case stream: GenericStreamCipher;
 case block: GenericBlockCipher;
 case aead: GenericAEADCipher;
 } fragment;
 } TLSCiphertext;

 type
 The type field is identical to TLSCompressed.type.

 version
 The version field is identical to TLSCompressed.version.

 length
 The length (in bytes) of the following TLSCiphertext.fragment.
 The length may not exceed 2^14 + 2048.

 fragment
 The encrypted form of TLSCompressed.fragment, with the MAC.

6.2.3.1. Null or standard stream cipher

 Stream ciphers (including BulkCipherAlgorithm.null - see Appendix
A.6) convert TLSCompressed.fragment structures to and from stream

 TLSCiphertext.fragment structures.

 stream-ciphered struct {
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 } GenericStreamCipher;

 The MAC is generated as:

 HMAC_hash(MAC_write_secret, seq_num + TLSCompressed.type +

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 TLSCompressed.version + TLSCompressed.length +

Dierks & Rescorla Standards Track [Page 19]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 TLSCompressed.fragment));

 where "+" denotes concatenation.

 seq_num
 The sequence number for this record.

 hash
 The hashing algorithm specified by
 SecurityParameters.mac_algorithm.

 Note that the MAC is computed before encryption. The stream cipher
 encrypts the entire block, including the MAC. For stream ciphers that
 do not use a synchronization vector (such as RC4), the stream cipher
 state from the end of one record is simply used on the subsequent
 packet. If the CipherSuite is TLS_NULL_WITH_NULL_NULL, encryption
 consists of the identity operation (i.e., the data is not encrypted
 and the MAC size is zero implying that no MAC is used).
 TLSCiphertext.length is TLSCompressed.length plus
 CipherSpec.hash_size.

6.2.3.2. CBC block cipher

 For block ciphers (such as RC2, DES, or AES), the encryption and MAC
 functions convert TLSCompressed.fragment structures to and from block
 TLSCiphertext.fragment structures.

 block-ciphered struct {
 opaque IV[CipherSpec.block_length];
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 uint8 padding[GenericBlockCipher.padding_length];
 uint8 padding_length;
 } GenericBlockCipher;

 The MAC is generated as described in Section 6.2.3.1.

 IV
 TLS 1.2 uses an explicit IV in order to prevent the attacks described
 by [CBCATT]. We recommend the following equivalently strong
 procedures. For clarity we use the following notation.

 IV -- the transmitted value of the IV field in the
 GenericBlockCipher structure.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 CBC residue -- the last ciphertext block of the previous record
 mask -- the actual value which the cipher XORs with the
 plaintext prior to encryption of the first cipher block
 of the record.

Dierks & Rescorla Standards Track [Page 20]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 In versions of TLS prior to 1.1, there was no IV field and the CBC
residue
 and mask were one and the same. See Sections 6.1, 6.2.3.2 and 6.3,
 of [TLS1.0] for details of TLS 1.0 IV handling.

 One of the following two algorithms SHOULD be used to generate the
 per-record IV:

 (1) Generate a cryptographically strong random string R of
 length CipherSpec.block_length. Place R
 in the IV field. Set the mask to R. Thus, the first
 cipher block will be encrypted as E(R XOR Data).

 (2) Generate a cryptographically strong random number R of
 length CipherSpec.block_length and prepend it to the plaintext
 prior to encryption. In
 this case either:

 (a) The cipher may use a fixed mask such as zero.
 (b) The CBC residue from the previous record may be used
 as the mask. This preserves maximum code compatibility
 with TLS 1.0 and SSL 3. It also has the advantage that
 it does not require the ability to quickly reset the IV,
 which is known to be a problem on some systems.

 In either 2(a) or 2(b) the data (R || data) is fed into the
 encryption process. The first cipher block (containing
 E(mask XOR R) is placed in the IV field. The first
 block of content contains E(IV XOR data)

 The following alternative procedure MAY be used: However, it has
 not been demonstrated to be equivalently cryptographically strong
 to the above procedures. The sender prepends a fixed block F to
 the plaintext (or alternatively a block generated with a weak
 PRNG). He then encrypts as in (2) above, using the CBC residue
 from the previous block as the mask for the prepended block. Note
 that in this case the mask for the first record transmitted by
 the application (the Finished) MUST be generated using a
 cryptographically strong PRNG.

 The decryption operation for all three alternatives is the same.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 The receiver decrypts the entire GenericBlockCipher structure and
 then discards the first cipher block, corresponding to the IV
 component.

 padding
 Padding that is added to force the length of the plaintext to be
 an integral multiple of the block cipher's block length. The
 padding MAY be any length up to 255 bytes long, as long as it

Dierks & Rescorla Standards Track [Page 21]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 results in the TLSCiphertext.length being an integral multiple of
 the block length. Lengths longer than necessary might be
 desirable to frustrate attacks on a protocol based on analysis of
 the lengths of exchanged messages. Each uint8 in the padding data
 vector MUST be filled with the padding length value. The receiver
 MUST check this padding and SHOULD use the bad_record_mac alert
 to indicate padding errors.

 padding_length
 The padding length MUST be such that the total size of the
 GenericBlockCipher structure is a multiple of the cipher's block
 length. Legal values range from zero to 255, inclusive. This
 length specifies the length of the padding field exclusive of the
 padding_length field itself.

 The encrypted data length (TLSCiphertext.length) is one more than the
 sum of TLSCompressed.length, CipherSpec.hash_size, and
 padding_length.

 Example: If the block length is 8 bytes, the content length
 (TLSCompressed.length) is 61 bytes, and the MAC length is 20
 bytes, the length before padding is 82 bytes (this does not
 include the IV, which may or may not be encrypted, as
 discussed above). Thus, the padding length modulo 8 must be
 equal to 6 in order to make the total length an even multiple
 of 8 bytes (the block length). The padding length can be 6,
 14, 22, and so on, through 254. If the padding length were the
 minimum necessary, 6, the padding would be 6 bytes, each
 containing the value 6. Thus, the last 8 octets of the
 GenericBlockCipher before block encryption would be xx 06 06
 06 06 06 06 06, where xx is the last octet of the MAC.

 Note: With block ciphers in CBC mode (Cipher Block Chaining),
 it is critical that the entire plaintext of the record be known
 before any ciphertext is transmitted. Otherwise it is possible
 for the attacker to mount the attack described in [CBCATT].

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Implementation Note: Canvel et. al. [CBCTIME] have demonstrated a
 timing attack on CBC padding based on the time required to
 compute the MAC. In order to defend against this attack,
 implementations MUST ensure that record processing time is
 essentially the same whether or not the padding is correct. In
 general, the best way to to do this is to compute the MAC even if
 the padding is incorrect, and only then reject the packet. For
 instance, if the pad appears to be incorrect the implementation
 might assume a zero-length pad and then compute the MAC. This
 leaves a small timing channel, since MAC performance depends to
 some extent on the size of the data fragment, but it is not

Dierks & Rescorla Standards Track [Page 22]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 believed to be large enough to be exploitable due to the large
 block size of existing MACs and the small size of the timing
 signal.

6.2.3.3. AEAD ciphers

 For AEAD [AEAD] ciphers (such as [CCM] or [GCM]) the AEAD function
 converts TLSCompressed.fragment structures to and from AEAD
 TLSCiphertext.fragment structures.

 aead-ciphered struct {
 opaque IV[CipherSpec.iv_length];
 opaque aead_output[AEADEncrypted.length];
 } GenericAEADCipher;

 AEAD ciphers take as input a single key, optional IV (depending on
 the cipher), plaintext, and "additional data" to be included in the
 authentication check. I.e.,

 AEADEncrypted = AEAD-Encrypt(key, IV, plaintext,
 additional_data)

 The key is either the client_write_key or the server_write_key. When
 AEAD algorithms are used the MAC keys are of zero length and are not
 used. The length of the IV depends on the cipher suite. If it is
 required it MUST be generated using a cryptographically strong random
 number generator. Note that the IV may be zero length. The plaintext
 is the TLSCompressed.fragment. The additional_data is defined as
 follows:

 additional_data = seq_num + TLSCompressed.type +
 TLSCompressed.version + TLSCompressed.length;

 Where "+" denotes concatenation.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 AEADEncrypted.length will generally be larger than
 TLSCompressed.length, but by an amount that varies with the cipher
 and the required padding (if any). AEAD algorithms MUST NOT produce
 an expansion of greater than 1024 bytes.

 In order to decrypt and verify, the cipher takes as input the key,
 IV, the "additional_data", and the AEADEncrypted value. The output is
 either the plaintext or an error indicating that the decryption
 failed. There is no separate integrity check. I.e.,

 TLSCompressed.fragment = AEAD-Decrypt(write_key, IV, AEADEncrypted,
 TLSCiphertext.type + TLSCiphertext.version +
 TLSCiphertext.length);

Dierks & Rescorla Standards Track [Page 23]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 If the decryption fails, a fatal bad_record_mac alert MUST be
 generated.

6.3. Key calculation

 The Record Protocol requires an algorithm to generate keys, and MAC
 secrets from the security parameters provided by the handshake
 protocol.

 The master secret is hashed into a sequence of secure bytes, which
 are assigned to the MAC secrets and keys required by the current
 connection state (see Appendix A.6). CipherSpecs require a client
 write MAC secret, a server write MAC secret, a client write key, and
 a server write key, which are generated from the master secret in
 that order. Unused values are empty.

 When generating keys and MAC secrets, the master secret is used as an
 entropy source.

 To generate the key material, compute

 key_block = PRF(SecurityParameters.master_secret,
 "key expansion",
 SecurityParameters.server_random +
 SecurityParameters.client_random);

 until enough output has been generated. Then the key_block is
 partitioned as follows:

 client_write_MAC_secret[SecurityParameters.hash_size]
 server_write_MAC_secret[SecurityParameters.hash_size]

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 client_write_key[SecurityParameters.key_material_length]
 server_write_key[SecurityParameters.key_material_length]

 Implementation note:
 The currently defined which requires the most material is
 AES_256_CBC_SHA, defined in [TLSAES]. It requires 2 x 32 byte
 keys and 2 x 20 byte MAC secrets, for a total 104 bytes of key
 material.

7. The TLS Handshaking Protocols

 TLS has three subprotocols which are used to allow peers to agree
 upon security parameters for the record layer, authenticate
 themselves, instantiate negotiated security parameters, and
 report error conditions to each other.

Dierks & Rescorla Standards Track [Page 24]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 The Handshake Protocol is responsible for negotiating a session,
 which consists of the following items:

 session identifier
 An arbitrary byte sequence chosen by the server to identify an
 active or resumable session state.

 peer certificate
 X509v3 [X509] certificate of the peer. This element of the
 state may be null.

 compression method
 The algorithm used to compress data prior to encryption.

 cipher spec
 Specifies the bulk data encryption algorithm (such as null,
 DES, etc.) and a MAC algorithm (such as MD5 or SHA). It also
 defines cryptographic attributes such as the hash_size. (See

Appendix A.6 for formal definition)

 master secret
 48-byte secret shared between the client and server.

 is resumable
 A flag indicating whether the session can be used to initiate
 new connections.

 These items are then used to create security parameters for use by

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 the Record Layer when protecting application data. Many connections
 can be instantiated using the same session through the resumption
 feature of the TLS Handshake Protocol.

7.1. Change cipher spec protocol

 The change cipher spec protocol exists to signal transitions in
 ciphering strategies. The protocol consists of a single message,
 which is encrypted and compressed under the current (not the pending)
 connection state. The message consists of a single byte of value 1.

 struct {
 enum { change_cipher_spec(1), (255) } type;
 } ChangeCipherSpec;

 The change cipher spec message is sent by both the client and server
 to notify the receiving party that subsequent records will be
 protected under the newly negotiated CipherSpec and keys. Reception
 of this message causes the receiver to instruct the Record Layer to
 immediately copy the read pending state into the read current state.

Dierks & Rescorla Standards Track [Page 25]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Immediately after sending this message, the sender MUST instruct the
 record layer to make the write pending state the write active state.
 (See section 6.1.) The change cipher spec message is sent during the
 handshake after the security parameters have been agreed upon, but
 before the verifying finished message is sent (see section 7.4.11

 Note: if a rehandshake occurs while data is flowing on a connection,
 the communicating parties may continue to send data using the old
 CipherSpec. However, once the ChangeCipherSpec has been sent, the new
 CipherSpec MUST be used. The first side to send the ChangeCipherSpec
 does not know that the other side has finished computing the new
 keying material (e.g. if it has to perform a time consuming public
 key operation). Thus, a small window of time during which the
 recipient must buffer the data MAY exist. In practice, with modern
 machines this interval is likely to be fairly short.

7.2. Alert protocol

 One of the content types supported by the TLS Record layer is the
 alert type. Alert messages convey the severity of the message and a
 description of the alert. Alert messages with a level of fatal result
 in the immediate termination of the connection. In this case, other
 connections corresponding to the session may continue, but the
 session identifier MUST be invalidated, preventing the failed session
 from being used to establish new connections. Like other messages,

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 alert messages are encrypted and compressed, as specified by the
 current connection state.

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed(21),
 record_overflow(22),
 decompression_failure(30),
 handshake_failure(40),
 no_certificate_RESERVED (41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),

Dierks & Rescorla Standards Track [Page 26]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 decrypt_error(51),
 export_restriction_RESERVED(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 user_canceled(90),
 no_renegotiation(100),
 unsupported_extension(110), /* new */
 certificate_unobtainable(111), /* new */
 unrecognized_name(112), /* new */
 bad_certificate_status_response(113), /* new */
 bad_certificate_hash_value(114), /* new */
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

7.2.1. Closure alerts

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 The client and the server must share knowledge that the connection is
 ending in order to avoid a truncation attack. Either party may
 initiate the exchange of closing messages.

 close_notify
 This message notifies the recipient that the sender will not send
 any more messages on this connection. Note that as of TLS 1.1,
 failure to properly close a connection no longer requires that a
 session not be resumed. This is a change from TLS 1.0 to conform
 with widespread implementation practice.

 Either party may initiate a close by sending a close_notify alert.
 Any data received after a closure alert is ignored.

 Unless some other fatal alert has been transmitted, each party is
 required to send a close_notify alert before closing the write side
 of the connection. The other party MUST respond with a close_notify
 alert of its own and close down the connection immediately,
 discarding any pending writes. It is not required for the initiator
 of the close to wait for the responding close_notify alert before
 closing the read side of the connection.

 If the application protocol using TLS provides that any data may be
 carried over the underlying transport after the TLS connection is
 closed, the TLS implementation must receive the responding
 close_notify alert before indicating to the application layer that

Dierks & Rescorla Standards Track [Page 27]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 the TLS connection has ended. If the application protocol will not
 transfer any additional data, but will only close the underlying
 transport connection, then the implementation MAY choose to close the
 transport without waiting for the responding close_notify. No part of
 this standard should be taken to dictate the manner in which a usage
 profile for TLS manages its data transport, including when
 connections are opened or closed.

 Note: It is assumed that closing a connection reliably delivers
 pending data before destroying the transport.

7.2.2. Error alerts

 Error handling in the TLS Handshake protocol is very simple. When an
 error is detected, the detecting party sends a message to the other
 party. Upon transmission or receipt of an fatal alert message, both
 parties immediately close the connection. Servers and clients MUST
 forget any session-identifiers, keys, and secrets associated with a
 failed connection. Thus, any connection terminated with a fatal alert

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 MUST NOT be resumed. The following error alerts are defined:

 unexpected_message
 An inappropriate message was received. This alert is always fatal
 and should never be observed in communication between proper
 implementations.

 bad_record_mac
 This alert is returned if a record is received with an incorrect
 MAC. This alert also MUST be returned if an alert is sent because
 a TLSCiphertext decrypted in an invalid way: either it wasn't an
 even multiple of the block length, or its padding values, when
 checked, weren't correct. This message is always fatal.

 decryption_failed
 This alert MAY be returned if a TLSCiphertext decrypted in an
 invalid way: either it wasn't an even multiple of the block
 length, or its padding values, when checked, weren't correct.
 This message is always fatal.

 Note: Differentiating between bad_record_mac and
 decryption_failed alerts may permit certain attacks against CBC
 mode as used in TLS [CBCATT]. It is preferable to uniformly use
 the bad_record_mac alert to hide the specific type of the error.

 record_overflow
 A TLSCiphertext record was received which had a length more than
 2^14+2048 bytes, or a record decrypted to a TLSCompressed record

Dierks & Rescorla Standards Track [Page 28]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 with more than 2^14+1024 bytes. This message is always fatal.

 decompression_failure
 The decompression function received improper input (e.g. data
 that would expand to excessive length). This message is always
 fatal.

 handshake_failure
 Reception of a handshake_failure alert message indicates that the
 sender was unable to negotiate an acceptable set of security
 parameters given the options available. This is a fatal error.

 no_certificate_RESERVED
 This alert was used in SSLv3 but not in TLS. It should not be
 sent by compliant implementations.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 bad_certificate
 A certificate was corrupt, contained signatures that did not
 verify correctly, etc.

 unsupported_certificate
 A certificate was of an unsupported type.

 certificate_revoked
 A certificate was revoked by its signer.

 certificate_expired
 A certificate has expired or is not currently valid.

 certificate_unknown
 Some other (unspecified) issue arose in processing the
 certificate, rendering it unacceptable.

 illegal_parameter
 A field in the handshake was out of range or inconsistent with
 other fields. This is always fatal.

 unknown_ca
 A valid certificate chain or partial chain was received, but the
 certificate was not accepted because the CA certificate could not
 be located or couldn't be matched with a known, trusted CA. This
 message is always fatal.

 access_denied
 A valid certificate was received, but when access control was
 applied, the sender decided not to proceed with negotiation.
 This message is always fatal.

Dierks & Rescorla Standards Track [Page 29]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 decode_error
 A message could not be decoded because some field was out of the
 specified range or the length of the message was incorrect. This
 message is always fatal.

 decrypt_error
 A handshake cryptographic operation failed, including being
 unable to correctly verify a signature, decrypt a key exchange,
 or validate a finished message.

 export_restriction_RESERVED
 This alert was used in TLS 1.0 but not TLS 1.1.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 protocol_version
 The protocol version the client has attempted to negotiate is
 recognized, but not supported. (For example, old protocol
 versions might be avoided for security reasons). This message is
 always fatal.

 insufficient_security
 Returned instead of handshake_failure when a negotiation has
 failed specifically because the server requires ciphers more
 secure than those supported by the client. This message is always
 fatal.

 internal_error
 An internal error unrelated to the peer or the correctness of the
 protocol makes it impossible to continue (such as a memory
 allocation failure). This message is always fatal.

 user_canceled
 This handshake is being canceled for some reason unrelated to a
 protocol failure. If the user cancels an operation after the
 handshake is complete, just closing the connection by sending a
 close_notify is more appropriate. This alert should be followed
 by a close_notify. This message is generally a warning.

 no_renegotiation
 Sent by the client in response to a hello request or by the
 server in response to a client hello after initial handshaking.
 Either of these would normally lead to renegotiation; when that
 is not appropriate, the recipient should respond with this alert;
 at that point, the original requester can decide whether to
 proceed with the connection. One case where this would be
 appropriate would be where a server has spawned a process to
 satisfy a request; the process might receive security parameters
 (key length, authentication, etc.) at startup and it might be
 difficult to communicate changes to these parameters after that

Dierks & Rescorla Standards Track [Page 30]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 point. This message is always a warning.

 The following error alerts apply only to the extensions described
 in Section XXX. To avoid "breaking" existing clients and servers,
 these alerts MUST NOT be sent unless the sending party has
 received an extended hello message from the party they are
 communicating with.

 unsupported_extension
 sent by clients that receive an extended server hello containing

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 an extension that they did not put in the corresponding client
 hello (see Section 2.3). This message is always fatal.

 unrecognized_name
 sent by servers that receive a server_name extension request, but
 do not recognize the server name. This message MAY be fatal.

 certificate_unobtainable
 sent by servers who are unable to retrieve a certificate chain
 from the URL supplied by the client (see Section 3.3). This
 message MAY be fatal - for example if client authentication is
 required by the server for the handshake to continue and the
 server is unable to retrieve the certificate chain, it may send a
 fatal alert.

 bad_certificate_status_response
 sent by clients that receive an invalid certificate status
 response (see Section 3.6). This message is always fatal.

 bad_certificate_hash_value
 sent by servers when a certificate hash does not match a client
 provided certificate_hash. This message is always fatal.

 For all errors where an alert level is not explicitly specified, the
 sending party MAY determine at its discretion whether this is a fatal
 error or not; if an alert with a level of warning is received, the
 receiving party MAY decide at its discretion whether to treat this as
 a fatal error or not. However, all messages which are transmitted
 with a level of fatal MUST be treated as fatal messages.

 New alerts values MUST be defined by RFC 2434 Standards Action. See
Section 11 for IANA Considerations for alert values.

7.3. Handshake Protocol overview

 The cryptographic parameters of the session state are produced by the
 TLS Handshake Protocol, which operates on top of the TLS Record
 Layer. When a TLS client and server first start communicating, they

Dierks & Rescorla Standards Track [Page 31]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 agree on a protocol version, select cryptographic algorithms,
 optionally authenticate each other, and use public-key encryption
 techniques to generate shared secrets.

 The TLS Handshake Protocol involves the following steps:

 - Exchange hello messages to agree on algorithms, exchange random

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 values, and check for session resumption.

 - Exchange the necessary cryptographic parameters to allow the
 client and server to agree on a premaster secret.

 - Exchange certificates and cryptographic information to allow the
 client and server to authenticate themselves.

 - Generate a master secret from the premaster secret and exchanged
 random values.

 - Provide security parameters to the record layer.

 - Allow the client and server to verify that their peer has
 calculated the same security parameters and that the handshake
 occurred without tampering by an attacker.

 Note that higher layers should not be overly reliant on TLS always
 negotiating the strongest possible connection between two peers:
 there are a number of ways a man in the middle attacker can attempt
 to make two entities drop down to the least secure method they
 support. The protocol has been designed to minimize this risk, but
 there are still attacks available: for example, an attacker could
 block access to the port a secure service runs on, or attempt to get
 the peers to negotiate an unauthenticated connection. The fundamental
 rule is that higher levels must be cognizant of what their security
 requirements are and never transmit information over a channel less
 secure than what they require. The TLS protocol is secure, in that
 any cipher suite offers its promised level of security: if you
 negotiate 3DES with a 1024 bit RSA key exchange with a host whose
 certificate you have verified, you can expect to be that secure.

Dierks & Rescorla Standards Track [Page 32]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 However, you SHOULD never send data over a link encrypted with 40 bit
 security unless you feel that data is worth no more than the effort
 required to break that encryption.

 These goals are achieved by the handshake protocol, which can be

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 summarized as follows: The client sends a client hello message to
 which the server must respond with a server hello message, or else a
 fatal error will occur and the connection will fail. The client hello
 and server hello are used to establish security enhancement
 capabilities between client and server. The client hello and server
 hello establish the following attributes: Protocol Version, Session
 ID, Cipher Suite, and Compression Method. Additionally, two random
 values are generated and exchanged: ClientHello.random and
 ServerHello.random.

 The actual key exchange uses up to four messages: the server
 certificate, the server key exchange, the client certificate, and the
 client key exchange. New key exchange methods can be created by
 specifying a format for these messages and defining the use of the
 messages to allow the client and server to agree upon a shared
 secret. This secret MUST be quite long; currently defined key
 exchange methods exchange secrets which range from 48 to 128 bytes in
 length.

 Following the hello messages, the server will send its certificate,
 if it is to be authenticated. Additionally, a server key exchange
 message may be sent, if it is required (e.g. if their server has no
 certificate, or if its certificate is for signing only). If the
 server is authenticated, it may request a certificate from the
 client, if that is appropriate to the cipher suite selected. Now the
 server will send the server hello done message, indicating that the
 hello-message phase of the handshake is complete. The server will
 then wait for a client response. If the server has sent a certificate
 request message, the client must send the certificate message. The
 client key exchange message is now sent, and the content of that
 message will depend on the public key algorithm selected between the
 client hello and the server hello. If the client has sent a
 certificate with signing ability, a digitally-signed certificate
 verify message is sent to explicitly verify the certificate.

 At this point, a change cipher spec message is sent by the client,
 and the client copies the pending Cipher Spec into the current Cipher
 Spec. The client then immediately sends the finished message under
 the new algorithms, keys, and secrets. In response, the server will
 send its own change cipher spec message, transfer the pending to the
 current Cipher Spec, and send its finished message under the new

Dierks & Rescorla Standards Track [Page 33]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Cipher Spec. At this point, the handshake is complete and the client
 and server may begin to exchange application layer data. (See flow

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 chart below.) Application data MUST NOT be sent prior to the
 completion of the first handshake (before a cipher suite other
 TLS_NULL_WITH_NULL_NULL is established).
 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 CertificateStatus*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 CertificateURL*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

 Note: To help avoid pipeline stalls, ChangeCipherSpec is an
 independent TLS Protocol content type, and is not actually a TLS
 handshake message.

 When the client and server decide to resume a previous session or
 duplicate an existing session (instead of negotiating new security
 parameters) the message flow is as follows:

 The client sends a ClientHello using the Session ID of the session to
 be resumed. The server then checks its session cache for a match. If
 a match is found, and the server is willing to re-establish the
 connection under the specified session state, it will send a
 ServerHello with the same Session ID value. At this point, both
 client and server MUST send change cipher spec messages and proceed
 directly to finished messages. Once the re-establishment is complete,
 the client and server MAY begin to exchange application layer data.
 (See flow chart below.) If a Session ID match is not found, the
 server generates a new session ID and the TLS client and server
 perform a full handshake.

Dierks & Rescorla Standards Track [Page 34]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Client Server

 ClientHello -------->
 ServerHello
 [ChangeCipherSpec]
 <-------- Finished
 [ChangeCipherSpec]
 Finished -------->
 Application Data <-------> Application Data

 Fig. 2 - Message flow for an abbreviated handshake

 The contents and significance of each message will be presented in
 detail in the following sections.

7.4. Handshake protocol

 The TLS Handshake Protocol is one of the defined higher level clients
 of the TLS Record Protocol. This protocol is used to negotiate the
 secure attributes of a session. Handshake messages are supplied to
 the TLS Record Layer, where they are encapsulated within one or more
 TLSPlaintext structures, which are processed and transmitted as
 specified by the current active session state.

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), certificate_url(21), certificate_status(22),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case certificate: Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done: ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 case certificate_url: CertificateURL;

Dierks & Rescorla Standards Track [Page 35]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 case certificate_status: CertificateStatus;
 } body;
 } Handshake;

 The handshake protocol messages are presented below in the order they
 MUST be sent; sending handshake messages in an unexpected order
 results in a fatal error. Unneeded handshake messages can be omitted,
 however. Note one exception to the ordering: the Certificate message
 is used twice in the handshake (from server to client, then from
 client to server), but described only in its first position. The one
 message which is not bound by these ordering rules is the Hello
 Request message, which can be sent at any time, but which should be
 ignored by the client if it arrives in the middle of a handshake.

 New Handshake message type values MUST be defined via RFC 2434
 Standards Action. See Section 11 for IANA Considerations for these
 values.

7.4.1. Hello messages

 The hello phase messages are used to exchange security enhancement
 capabilities between the client and server. When a new session
 begins, the Record Layer's connection state encryption, hash, and
 compression algorithms are initialized to null. The current
 connection state is used for renegotiation messages.

7.4.1.1. Hello request

 When this message will be sent:
 The hello request message MAY be sent by the server at any time.

 Meaning of this message:
 Hello request is a simple notification that the client should
 begin the negotiation process anew by sending a client hello
 message when convenient. This message will be ignored by the
 client if the client is currently negotiating a session. This
 message may be ignored by the client if it does not wish to
 renegotiate a session, or the client may, if it wishes, respond
 with a no_renegotiation alert. Since handshake messages are
 intended to have transmission precedence over application data,
 it is expected that the negotiation will begin before no more
 than a few records are received from the client. If the server
 sends a hello request but does not receive a client hello in
 response, it may close the connection with a fatal alert.

 After sending a hello request, servers SHOULD not repeat the request
 until the subsequent handshake negotiation is complete.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/rfc2434

Dierks & Rescorla Standards Track [Page 36]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Structure of this message:
 struct { } HelloRequest;

 Note: This message MUST NOT be included in the message hashes which are
 maintained throughout the handshake and used in the finished
 messages and the certificate verify message.

7.4.1.2. Client hello

 When this message will be sent:
 When a client first connects to a server it is required to send
 the client hello as its first message. The client can also send a
 client hello in response to a hello request or on its own
 initiative in order to renegotiate the security parameters in an
 existing connection.

 Structure of this message:
 The client hello message includes a random structure, which is
 used later in the protocol.

 struct {
 uint32 gmt_unix_time;
 opaque random_bytes[28];
 } Random;

 gmt_unix_time
 The current time and date in standard UNIX 32-bit format (seconds
 since the midnight starting Jan 1, 1970, GMT, ignoring leap
 seconds) according to the sender's internal clock. Clocks are not
 required to be set correctly by the basic TLS Protocol; higher
 level or application protocols may define additional
 requirements.

 random_bytes
 28 bytes generated by a secure random number generator.

 The client hello message includes a variable length session
 identifier. If not empty, the value identifies a session between the
 same client and server whose security parameters the client wishes to
 reuse. The session identifier MAY be from an earlier connection, this
 connection, or another currently active connection. The second option
 is useful if the client only wishes to update the random structures
 and derived values of a connection, while the third option makes it
 possible to establish several independent secure connections without
 repeating the full handshake protocol. These independent connections

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 may occur sequentially or simultaneously; a SessionID becomes valid
 when the handshake negotiating it completes with the exchange of
 Finished messages and persists until removed due to aging or because

Dierks & Rescorla Standards Track [Page 37]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 a fatal error was encountered on a connection associated with the
 session. The actual contents of the SessionID are defined by the
 server.

 opaque SessionID<0..32>;

 Warning:
 Because the SessionID is transmitted without encryption or
 immediate MAC protection, servers MUST not place confidential
 information in session identifiers or let the contents of fake
 session identifiers cause any breach of security. (Note that the
 content of the handshake as a whole, including the SessionID, is
 protected by the Finished messages exchanged at the end of the
 handshake.)

 The CipherSuite list, passed from the client to the server in the
 client hello message, contains the combinations of cryptographic
 algorithms supported by the client in order of the client's
 preference (favorite choice first). Each CipherSuite defines a key
 exchange algorithm, a bulk encryption algorithm (including secret key
 length) and a MAC algorithm. The server will select a cipher suite
 or, if no acceptable choices are presented, return a handshake
 failure alert and close the connection.

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 The client hello includes a list of compression algorithms supported
 by the client, ordered according to the client's preference.

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 } ClientHello;

 If the client wishes to use extensions (see Section XXX),
 it may send an ExtendedClientHello:

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;

Dierks & Rescorla Standards Track [Page 38]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Extension client_hello_extension_list<0..2^16-1>;
 } ExtendedClientHello;

 These two messages can be distinguished by determining whether there
 are bytes following what would be the end of the ClientHello.

 client_version
 The version of the TLS protocol by which the client wishes to
 communicate during this session. This SHOULD be the latest
 (highest valued) version supported by the client. For this
 version of the specification, the version will be 3.2 (See

Appendix E for details about backward compatibility).

 random
 A client-generated random structure.

 session_id
 The ID of a session the client wishes to use for this connection.
 This field should be empty if no session_id is available or the
 client wishes to generate new security parameters.

 cipher_suites
 This is a list of the cryptographic options supported by the
 client, with the client's first preference first. If the
 session_id field is not empty (implying a session resumption
 request) this vector MUST include at least the cipher_suite from
 that session. Values are defined in Appendix A.5.

 compression_methods
 This is a list of the compression methods supported by the
 client, sorted by client preference. If the session_id field is
 not empty (implying a session resumption request) it must include
 the compression_method from that session. This vector must
 contain, and all implementations must support,
 CompressionMethod.null. Thus, a client and server will always be
 able to agree on a compression method.

 client_hello_extension_list

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Clients MAY request extended functionality from servers by
 sending data in the client_hello_extension_list. Here the new
 "client_hello_extension_list" field contains a list of
 extensions. The actual "Extension" format is defined in Section
 XXX.

 In the event that a client requests additional functionality
 using the extended client hello, and this functionality is not
 supplied by the server, the client MAY abort the handshake.

Dierks & Rescorla Standards Track [Page 39]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 A server that supports the extensions mechanism MUST accept only
 client hello messages in either the original or extended
 ClientHello ormat, and (as for all other messages) MUST check
 that the amount of data in the message precisely matches one of
 these formats; if not then it MUST send a fatal "decode_error"
 alert.

 After sending the client hello message, the client waits for a server
 hello message. Any other handshake message returned by the server
 except for a hello request is treated as a fatal error.

7.4.1.3. Server hello

 When this message will be sent:
 The server will send this message in response to a client hello
 message when it was able to find an acceptable set of algorithms. If
 it cannot find such a match, it will respond with a handshake failure
 alert.

 Structure of this message:
 struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 } ServerHello;

 If the server is sending an extension, it should use the
 ExtendedServerHello:

 struct {
 ProtocolVersion server_version;
 Random random;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 Extension server_hello_extension_list<0..2^16-1>;
 } ExtendedServerHello;

 These two messages can be distinguished by determining whether there
 are bytes following what would be the end of the ServerHello.

Dierks & Rescorla Standards Track [Page 40]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 server_version
 This field will contain the lower of that suggested by the client in
 the client hello and the highest supported by the server. For this
 version of the specification, the version is 3.2 (See Appendix E for
 details about backward compatibility).

 random
 This structure is generated by the server and MUST be independently
 generated from the ClientHello.random.

 session_id
 This is the identity of the session corresponding to this connection.
 If the ClientHello.session_id was non-empty, the server will look in
 its session cache for a match. If a match is found and the server is
 willing to establish the new connection using the specified session
 state, the server will respond with the same value as was supplied by
 the client. This indicates a resumed session and dictates that the
 parties must proceed directly to the finished messages. Otherwise
 this field will contain a different value identifying the new
 session. The server may return an empty session_id to indicate that
 the session will not be cached and therefore cannot be resumed. If a
 session is resumed, it must be resumed using the same cipher suite it
 was originally negotiated with.

 cipher_suite
 The single cipher suite selected by the server from the list in
 ClientHello.cipher_suites. For resumed sessions this field is the
 value from the state of the session being resumed.

 compression_method
 The single compression algorithm selected by the server from the list
 in ClientHello.compression_methods. For resumed sessions this field
 is the value from the resumed session state.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 server_hello_extension_list
 A list of extensions. Note that only extensions offered by the client
 can appear in the server's list.

7.4.1.4 Hello Extensions

 The extension format for extended client hellos and extended server
 hellos is:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

Dierks & Rescorla Standards Track [Page 41]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Here:

 - "extension_type" identifies the particular extension type.

 - "extension_data" contains information specific to the particular
 extension type.

 The extension types defined in this document are:

 enum {
 server_name(0), max_fragment_length(1),
 client_certificate_url(2), trusted_ca_keys(3),
 truncated_hmac(4), status_request(5),
 cert_hash_types(6), (65535)
 } ExtensionType;

 The list of defined extension types is maintained by the IANA. The
 current list can be found at (http://www.iana.org/assignments/tls-

extensions). See sections 7.4.1.4.8 and 11.1 for more information on
 how new values are added.

 Note that for all extension types (including those defined in
 future), the extension type MUST NOT appear in the extended server
 hello unless the same extension type appeared in the corresponding
 client hello. Thus clients MUST abort the handshake if they receive
 an extension type in the extended server hello that they did not
 request in the associated (extended) client hello.

 Nonetheless "server oriented" extensions may be provided in the
 future within this framework - such an extension, say of type x,

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
http://www.iana.org/assignments/tls-extensions
http://www.iana.org/assignments/tls-extensions

 would require the client to first send an extension of type x in the
 (extended) client hello with empty extension_data to indicate that it
 supports the extension type. In this case the client is offering the
 capability to understand the extension type, and the server is taking
 the client up on its offer.

 Also note that when multiple extensions of different types are
 present in the extended client hello or the extended server hello,
 the extensions may appear in any order. There MUST NOT be more than
 one extension of the same type.

 An extended client hello may be sent both when starting a new session
 and when requesting session resumption. Indeed a client that
 requests resumption of a session does not in general know whether the
 server will accept this request, and therefore it SHOULD send an
 extended client hello if it would normally do so for a new session.
 In general the specification of each extension type must include a
 discussion of the effect of the extension both during new sessions

Dierks & Rescorla Standards Track [Page 42]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 and during resumed sessions.

 Note also that all the extensions defined in this document are
 relevant only when a session is initiated. When a client includes one
 or more of the defined extension types in an extended client hello
 while requesting session resumption:

 - If the resumption request is denied, the use of the extensions
 is negotiated as normal.

 - If, on the other hand, the older session is resumed, then the
 server MUST ignore the extensions and send a server hello
 containing none of the extension types; in this case the
 functionality of these extensions negotiated during the original
 session initiation is applied to the resumed session.

7.4.1.4.1 Server Name Indication

 [TLS1.1] does not provide a mechanism for a client to tell a server
 the name of the server it is contacting. It may be desirable for
 clients to provide this information to facilitate secure connections
 to servers that host multiple 'virtual' servers at a single
 underlying network address.

 In order to provide the server name, clients MAY include an extension
 of type "server_name" in the (extended) client hello. The
 "extension_data" field of this extension SHALL contain

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 "ServerNameList" where:

 struct {
 NameType name_type;
 select (name_type) {
 case host_name: HostName;
 } name;
 } ServerName;

 enum {
 host_name(0), (255)
 } NameType;

 opaque HostName<1..2^16-1>;

 struct {
 ServerName server_name_list<1..2^16-1>
 } ServerNameList;

 Currently the only server names supported are DNS hostnames, however
 this does not imply any dependency of TLS on DNS, and other name

Dierks & Rescorla Standards Track [Page 43]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 types may be added in the future (by an RFC that Updates this
 document). TLS MAY treat provided server names as opaque data and
 pass the names and types to the application.

 "HostName" contains the fully qualified DNS hostname of the server,
 as understood by the client. The hostname is represented as a byte
 string using UTF-8 encoding [UTF8], without a trailing dot.

 If the hostname labels contain only US-ASCII characters, then the
 client MUST ensure that labels are separated only by the byte 0x2E,
 representing the dot character U+002E (requirement 1 in section 3.1
 of [IDNA] notwithstanding). If the server needs to match the HostName
 against names that contain non-US-ASCII characters, it MUST perform
 the conversion operation described in section 4 of [IDNA], treating
 the HostName as a "query string" (i.e. the AllowUnassigned flag MUST
 be set). Note that IDNA allows labels to be separated by any of the
 Unicode characters U+002E, U+3002, U+FF0E, and U+FF61, therefore
 servers MUST accept any of these characters as a label separator. If
 the server only needs to match the HostName against names containing
 exclusively ASCII characters, it MUST compare ASCII names case-
 insensitively.

 Literal IPv4 and IPv6 addresses are not permitted in "HostName". It
 is RECOMMENDED that clients include an extension of type

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 "server_name" in the client hello whenever they locate a server by a
 supported name type.

 A server that receives a client hello containing the "server_name"
 extension, MAY use the information contained in the extension to
 guide its selection of an appropriate certificate to return to the
 client, and/or other aspects of security policy. In this event, the
 server SHALL include an extension of type "server_name" in the
 (extended) server hello. The "extension_data" field of this
 extension SHALL be empty.

 If the server understood the client hello extension but does not
 recognize the server name, it SHOULD send an "unrecognized_name"
 alert (which MAY be fatal).

 If an application negotiates a server name using an application
 protocol, then upgrades to TLS, and a server_name extension is sent,
 then the extension SHOULD contain the same name that was negotiated
 in the application protocol. If the server_name is established in
 the TLS session handshake, the client SHOULD NOT attempt to request a
 different server name at the application layer.

7.4.1.4.2 Maximum Fragment Length Negotiation

Dierks & Rescorla Standards Track [Page 44]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 By default, TLS uses fixed maximum plaintext fragment length of 2^14
 bytes. It may be desirable for constrained clients to negotiate a
 smaller maximum fragment length due to memory limitations or
 bandwidth limitations.

 In order to negotiate smaller maximum fragment lengths, clients MAY
 include an extension of type "max_fragment_length" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain:

 enum{
 2^9(1), 2^10(2), 2^11(3), 2^12(4), (255)
 } MaxFragmentLength;

 whose value is the desired maximum fragment length. The allowed
 values for this field are: 2^9, 2^10, 2^11, and 2^12.

 Servers that receive an extended client hello containing a
 "max_fragment_length" extension, MAY accept the requested maximum
 fragment length by including an extension of type
 "max_fragment_length" in the (extended) server hello. The

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 "extension_data" field of this extension SHALL contain
 "MaxFragmentLength" whose value is the same as the requested maximum
 fragment length.

 If a server receives a maximum fragment length negotiation request
 for a value other than the allowed values, it MUST abort the
 handshake with an "illegal_parameter" alert. Similarly, if a client
 receives a maximum fragment length negotiation response that differs
 from the length it requested, it MUST also abort the handshake with
 an "illegal_parameter" alert.

 Once a maximum fragment length other than 2^14 has been successfully
 negotiated, the client and server MUST immediately begin fragmenting
 messages (including handshake messages), to ensure that no fragment
 larger than the negotiated length is sent. Note that TLS already
 requires clients and servers to support fragmentation of handshake
 messages.

 The negotiated length applies for the duration of the session
 including session resumptions.

 The negotiated length limits the input that the record layer may
 process without fragmentation (that is, the maximum value of
 TLSPlaintext.length; see [TLS] section 6.2.1). Note that the output
 of the record layer may be larger. For example, if the negotiated
 length is 2^9=512, then for currently defined cipher suites and when
 null compression is used, the record layer output can be at most 793

Dierks & Rescorla Standards Track [Page 45]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 bytes: 5 bytes of headers, 512 bytes of application data, 256 bytes
 of padding, and 20 bytes of MAC. That means that in this event a TLS
 record layer peer receiving a TLS record layer message larger than
 793 bytes may discard the message and send a "record_overflow" alert,
 without decrypting the message.

7.4.1.4.3 Client Certificate URLs

 Ordinarily, when client authentication is performed, client
 certificates are sent by clients to servers during the TLS handshake.
 It may be desirable for constrained clients to send certificate URLs
 in place of certificates, so that they do not need to store their
 certificates and can therefore save memory.

 In order to negotiate to send certificate URLs to a server, clients
 MAY include an extension of type "client_certificate_url" in the
 (extended) client hello. The "extension_data" field of this
 extension SHALL be empty.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 (Note that it is necessary to negotiate use of client certificate
 URLs in order to avoid "breaking" existing TLS 1.0 servers.)

 Servers that receive an extended client hello containing a
 "client_certificate_url" extension, MAY indicate that they are
 willing to accept certificate URLs by including an extension of type
 "client_certificate_url" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

 After negotiation of the use of client certificate URLs has been
 successfully completed (by exchanging hellos including
 "client_certificate_url" extensions), clients MAY send a
 "CertificateURL" message in place of a "Certificate" message. See
 Section XXX.

7.4.1.4.4 Trusted CA Indication

 Constrained clients that, due to memory limitations, possess only a
 small number of CA root keys, may wish to indicate to servers which
 root keys they possess, in order to avoid repeated handshake
 failures.

 In order to indicate which CA root keys they possess, clients MAY
 include an extension of type "trusted_ca_keys" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain "TrustedAuthorities" where:

 struct {
 TrustedAuthority trusted_authorities_list<0..2^16-1>;

Dierks & Rescorla Standards Track [Page 46]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 } TrustedAuthorities;

 struct {
 IdentifierType identifier_type;
 select (identifier_type) {
 case pre_agreed: struct {};
 case key_sha1_hash: SHA1Hash;
 case x509_name: DistinguishedName;
 case cert_sha1_hash: SHA1Hash;
 } identifier;
 } TrustedAuthority;

 enum {
 pre_agreed(0), key_sha1_hash(1), x509_name(2),
 cert_sha1_hash(3), (255)

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 } IdentifierType;

 opaque DistinguishedName<1..2^16-1>;

 Here "TrustedAuthorities" provides a list of CA root key identifiers
 that the client possesses. Each CA root key is identified via
 either:

 - "pre_agreed" - no CA root key identity supplied.

 - "key_sha1_hash" - contains the SHA-1 hash of the CA root key.
 For
 DSA and ECDSA keys, this is the hash of the "subjectPublicKey"
 value. For RSA keys, the hash is of the big-endian byte string
 representation of the modulus without any initial 0-valued bytes.
 (This copies the key hash formats deployed in other
 environments.)

 - "x509_name" - contains the DER-encoded X.509 DistinguishedName
 of
 the CA.

 - "cert_sha1_hash" - contains the SHA-1 hash of a DER-encoded
 Certificate containing the CA root key.

 Note that clients may include none, some, or all of the CA root keys
 they possess in this extension.

 Note also that it is possible that a key hash or a Distinguished Name
 alone may not uniquely identify a certificate issuer - for example if
 a particular CA has multiple key pairs - however here we assume this
 is the case following the use of Distinguished Names to identify
 certificate issuers in TLS.

Dierks & Rescorla Standards Track [Page 47]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 The option to include no CA root keys is included to allow the client
 to indicate possession of some pre-defined set of CA root keys.

 Servers that receive a client hello containing the "trusted_ca_keys"
 extension, MAY use the information contained in the extension to
 guide their selection of an appropriate certificate chain to return
 to the client. In this event, the server SHALL include an extension
 of type "trusted_ca_keys" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

7.4.1.4.5 Truncated HMAC

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Currently defined TLS cipher suites use the MAC construction HMAC
 with either MD5 or SHA-1 [HMAC] to authenticate record layer
 communications. In TLS the entire output of the hash function is
 used as the MAC tag. However it may be desirable in constrained
 environments to save bandwidth by truncating the output of the hash
 function to 80 bits when forming MAC tags.

 In order to negotiate the use of 80-bit truncated HMAC, clients MAY
 include an extension of type "truncated_hmac" in the extended client
 hello. The "extension_data" field of this extension SHALL be empty.

 Servers that receive an extended hello containing a "truncated_hmac"
 extension, MAY agree to use a truncated HMAC by including an
 extension of type "truncated_hmac", with empty "extension_data", in
 the extended server hello.

 Note that if new cipher suites are added that do not use HMAC, and
 the session negotiates one of these cipher suites, this extension
 will have no effect. It is strongly recommended that any new cipher
 suites using other MACs consider the MAC size as an integral part of
 the cipher suite definition, taking into account both security and
 bandwidth considerations.

 If HMAC truncation has been successfully negotiated during a TLS
 handshake, and the negotiated cipher suite uses HMAC, both the client
 and the server pass this fact to the TLS record layer along with the
 other negotiated security parameters. Subsequently during the
 session, clients and servers MUST use truncated HMACs, calculated as
 specified in [HMAC]. That is, CipherSpec.hash_size is 10 bytes, and
 only the first 10 bytes of the HMAC output are transmitted and
 checked. Note that this extension does not affect the calculation of
 the PRF as part of handshaking or key derivation.

 The negotiated HMAC truncation size applies for the duration of the
 session including session resumptions.

Dierks & Rescorla Standards Track [Page 48]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

7.4.1.4.6 Certificate Status Request

 Constrained clients may wish to use a certificate-status protocol
 such as OCSP [OCSP] to check the validity of server certificates, in
 order to avoid transmission of CRLs and therefore save bandwidth on
 constrained networks. This extension allows for such information to
 be sent in the TLS handshake, saving roundtrips and resources.

 In order to indicate their desire to receive certificate status

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 information, clients MAY include an extension of type
 "status_request" in the (extended) client hello. The
 "extension_data" field of this extension SHALL contain
 "CertificateStatusRequest" where:

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPStatusRequest;
 } request;
 } CertificateStatusRequest;

 enum { ocsp(1), (255) } CertificateStatusType;

 struct {
 ResponderID responder_id_list<0..2^16-1>;
 Extensions request_extensions;
 } OCSPStatusRequest;

 opaque ResponderID<1..2^16-1>;

 In the OCSPStatusRequest, the "ResponderIDs" provides a list of OCSP
 responders that the client trusts. A zero-length "responder_id_list"
 sequence has the special meaning that the responders are implicitly
 known to the server - e.g., by prior arrangement. "Extensions" is a
 DER encoding of OCSP request extensions.

 Both "ResponderID" and "Extensions" are DER-encoded ASN.1 types as
 defined in [OCSP]. "Extensions" is imported from [PKIX]. A zero-
 length "request_extensions" value means that there are no extensions
 (as opposed to a zero-length ASN.1 SEQUENCE, which is not valid for
 the "Extensions" type).

 In the case of the "id-pkix-ocsp-nonce" OCSP extension, [OCSP] is
 unclear about its encoding; for clarification, the nonce MUST be a
 DER-encoded OCTET STRING, which is encapsulated as another OCTET
 STRING (note that implementations based on an existing OCSP client
 will need to be checked for conformance to this requirement).

Dierks & Rescorla Standards Track [Page 49]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Servers that receive a client hello containing the "status_request"
 extension, MAY return a suitable certificate status response to the
 client along with their certificate. If OCSP is requested, they
 SHOULD use the information contained in the extension when selecting
 an OCSP responder, and SHOULD include request_extensions in the OCSP
 request.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Servers return a certificate response along with their certificate by
 sending a "CertificateStatus" message immediately after the
 "Certificate" message (and before any "ServerKeyExchange" or
 "CertificateRequest" messages). Section XXX describes the
 CertificateStatus message.

7.4.1.4.7 Cert Hash Types

 The client MAY use the "cert_hash_types" to indicate to the server
 which hash functions may be used in the signature on the server's
 certificate. The "extension_data" field of this extension contains:

 enum{
 md5(0), sha1(1), sha256(2), sha384(3), sha512(4), (255)
 } HashType;

 struct {
 HashType<255> types;
 } CertHashTypes;

 These values indicate support for MD5 [MD5], SHA-1, SHA-256, SHA-384,
 and SHA-512 [SHA] respectively. The server MUST NOT send this
 extension.

 Clients SHOULD send this extension if they support any algorithm
 other than SHA-1. If this extension is not used, servers SHOULD
 assume that the client supports only SHA-1. Note: this is a change
 from TLS 1.1 where there are no explicit rules but as a practical
 matter one can assume that the peer supports MD5 and SHA-1.

 HashType values are divided into three groups:

 1. Values from 0 (zero) through 63 decimal (0x3F) inclusive are
 reserved for IETF Standards Track protocols.

 2. Values from 64 decimal (0x40) through 223 decimal (0xDF) inclusive
 are reserved for assignment for non-Standards Track methods.

 3. Values from 224 decimal (0xE0) through 255 decimal (0xFF)
 inclusive are reserved for private use.

Dierks & Rescorla Standards Track [Page 50]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Additional information describing the role of IANA in the
 allocation of HashType code points is described
 in Section 11.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

7.4.1.4.8 Procedure for Defining New Extensions

 The list of extension types, as defined in Section 2.3, is
 maintained by the Internet Assigned Numbers Authority (IANA). Thus
 an application needs to be made to the IANA in order to obtain a new
 extension type value. Since there are subtle (and not so subtle)
 interactions that may occur in this protocol between new features and
 existing features which may result in a significant reduction in
 overall security, new values SHALL be defined only through the IETF
 Consensus process specified in [IANA].

 (This means that new assignments can be made only via RFCs approved
 by the IESG.)

 The following considerations should be taken into account when
 designing new extensions:

 - All of the extensions defined in this document follow the
 convention that for each extension that a client requests and that
 the server understands, the server replies with an extension of
 the same type.

 - Some cases where a server does not agree to an extension are error
 conditions, and some simply a refusal to support a particular
 feature. In general error alerts should be used for the former,
 and a field in the server extension response for the latter.

 - Extensions should as far as possible be designed to prevent any
 attack that forces use (or non-use) of a particular feature by
 manipulation of handshake messages. This principle should be
 followed regardless of whether the feature is believed to cause a
 security problem.

 Often the fact that the extension fields are included in the
 inputs to the Finished message hashes will be sufficient, but
 extreme care is needed when the extension changes the meaning of
 messages sent in the handshake phase. Designers and implementors
 should be aware of the fact that until the handshake has been
 authenticated, active attackers can modify messages and insert,
 remove, or replace extensions.

 - It would be technically possible to use extensions to change major
 aspects of the design of TLS; for example the design of cipher

Dierks & Rescorla Standards Track [Page 51]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 suite negotiation. This is not recommended; it would be more
 appropriate to define a new version of TLS - particularly since
 the TLS handshake algorithms have specific protection against
 version rollback attacks based on the version number, and the
 possibility of version rollback should be a significant
 consideration in any major design change.

7.4.2. Server certificate

 When this message will be sent:
 The server MUST send a certificate whenever the agreed-upon key
 exchange method is not an anonymous one. This message will
 always immediately follow the server hello message.

 Meaning of this message:
 The certificate type MUST be appropriate for the selected cipher
 suite's key exchange algorithm, and is generally an X.509v3
 certificate. It MUST contain a key which matches the key
 exchange method, as follows. Unless otherwise specified, the
 signing
 algorithm for the certificate MUST be the same as the
 algorithm for the certificate key. Unless otherwise specified,
 the public key MAY be of any length.

 Key Exchange Algorithm Certificate Key Type

 RSA RSA public key; the certificate MUST
 allow the key to be used for encryption.

 DHE_DSS DSS public key.

 DHE_RSA RSA public key which can be used for
 signing.

 DH_DSS Diffie-Hellman key. The algorithm used
 to sign the certificate MUST be DSS.

 DH_RSA Diffie-Hellman key. The algorithm used
 to sign the certificate MUST be RSA.

 All certificate profiles, key and cryptographic formats are defined
 by the IETF PKIX working group [PKIX]. When a key usage extension is
 present, the digitalSignature bit MUST be set for the key to be
 eligible for signing, as described above, and the keyEncipherment bit
 MUST be present to allow encryption, as described above. The
 keyAgreement bit must be set on Diffie-Hellman certificates.

Dierks & Rescorla Standards Track [Page 52]draft-

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

ietf-tls-rfc4346-bis-02.txt TLS October 2006

 As CipherSuites which specify new key exchange methods are specified
 for the TLS Protocol, they will imply certificate format and the
 required encoded keying information.

 Structure of this message:
 opaque ASN.1Cert<1..2^24-1>;

 struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 } Certificate;

 certificate_list
 This is a sequence (chain) of X.509v3 certificates. The sender's
 certificate must come first in the list. Each following
 certificate must directly certify the one preceding it. Because
 certificate validation requires that root keys be distributed
 independently, the self-signed certificate which specifies the
 root certificate authority may optionally be omitted from the
 chain, under the assumption that the remote end must already
 possess it in order to validate it in any case.

 The same message type and structure will be used for the client's
 response to a certificate request message. Note that a client MAY
 send no certificates if it does not have an appropriate certificate
 to send in response to the server's authentication request.

 Note: PKCS #7 [PKCS7] is not used as the format for the certificate
 vector because PKCS #6 [PKCS6] extended certificates are not
 used. Also PKCS #7 defines a SET rather than a SEQUENCE, making
 the task of parsing the list more difficult.

7.4.3. Server key exchange message

 When this message will be sent:
 This message will be sent immediately after the server
 certificate message (or the server hello message, if this is an
 anonymous negotiation).

 The server key exchange message is sent by the server only when
 the server certificate message (if sent) does not contain enough
 data to allow the client to exchange a premaster secret. This is
 true for the following key exchange methods:

 DHE_DSS
 DHE_RSA
 DH_anon

 It is not legal to send the server key exchange message for the

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 53]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 following key exchange methods:

 RSA
 DH_DSS
 DH_RSA

 Meaning of this message:
 This message conveys cryptographic information to allow the
 client to communicate the premaster secret: either an RSA public
 key to encrypt the premaster secret with, or a Diffie-Hellman
 public key with which the client can complete a key exchange
 (with the result being the premaster secret.)

 As additional CipherSuites are defined for TLS which include new key
 exchange algorithms, the server key exchange message will be sent if
 and only if the certificate type associated with the key exchange
 algorithm does not provide enough information for the client to
 exchange a premaster secret.

 If the SignatureAlgorithm being used to sign the ServerKeyExchange
 message is DSA, the hash function used MUST be SHA-1. If the
 SignatureAlgorithm it must be the same hash function used in the
 signature of the server's certificate (found in the Certificate)
 message. This algorithm is denoted Hash below. Hash.length is the
 length of the output of that algorithm.

 Structure of this message:
 enum { rsa, diffie_hellman } KeyExchangeAlgorithm;

 struct {
 opaque rsa_modulus<1..2^16-1>;
 opaque rsa_exponent<1..2^16-1>;
 } ServerRSAParams;

 rsa_modulus
 The modulus of the server's temporary RSA key.

 rsa_exponent
 The public exponent of the server's temporary RSA key.

 struct {
 opaque dh_p<1..2^16-1>;
 opaque dh_g<1..2^16-1>;
 opaque dh_Ys<1..2^16-1>;
 } ServerDHParams; /* Ephemeral DH parameters */

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 dh_p
 The prime modulus used for the Diffie-Hellman operation.

Dierks & Rescorla Standards Track [Page 54]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 dh_g
 The generator used for the Diffie-Hellman operation.

 dh_Ys
 The server's Diffie-Hellman public value (g^X mod p).

 struct {
 select (KeyExchangeAlgorithm) {
 case diffie_hellman:
 ServerDHParams params;
 Signature signed_params;
 case rsa:
 ServerRSAParams params;
 Signature signed_params;
 };
 } ServerKeyExchange;

 struct {
 select (KeyExchangeAlgorithm) {
 case diffie_hellman:
 ServerDHParams params;
 case rsa:
 ServerRSAParams params;
 };
 } ServerParams;

 params
 The server's key exchange parameters.

 signed_params
 For non-anonymous key exchanges, a hash of the corresponding
 params value, with the signature appropriate to that hash
 applied.

 hash
 Hash(ClientHello.random + ServerHello.random + ServerParams)

 sha_hash
 SHA1(ClientHello.random + ServerHello.random + ServerParams)

 enum { anonymous, rsa, dsa } SignatureAlgorithm;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 struct {
 select (SignatureAlgorithm) {
 case anonymous: struct { };
 case rsa:
 digitally-signed struct {

Dierks & Rescorla Standards Track [Page 55]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 opaque hash[Hash.length];
 };
 case dsa:
 digitally-signed struct {
 opaque sha_hash[20];
 };
 };
 };
 } Signature;

7.4.4. CertificateStatus

 If a server returns a
 "CertificateStatus" message, then the server MUST have included an
 extension of type "status_request" with empty "extension_data" in the
 extended server hello.

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPResponse;
 } response;
 } CertificateStatus;

 opaque OCSPResponse<1..2^24-1>;

 An "ocsp_response" contains a complete, DER-encoded OCSP response
 (using the ASN.1 type OCSPResponse defined in [OCSP]). Note that
 only one OCSP response may be sent.

 The "CertificateStatus" message is conveyed using the handshake
 message type "certificate_status".

 Note that a server MAY also choose not to send a "CertificateStatus"
 message, even if it receives a "status_request" extension in the
 client hello message.

 Note in addition that servers MUST NOT send the "CertificateStatus"
 message unless it received a "status_request" extension in the client
 hello message.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Clients requesting an OCSP response, and receiving an OCSP response
 in a "CertificateStatus" message MUST check the OCSP response and
 abort the handshake if the response is not satisfactory.

7.4.5. Certificate request

Dierks & Rescorla Standards Track [Page 56]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 When this message will be sent:
 A non-anonymous server can optionally request a certificate from
 the client, if appropriate for the selected cipher suite. This
 message, if sent, will immediately follow the Server Key Exchange
 message (if it is sent; otherwise, the Server Certificate
 message).

 Structure of this message:
 enum {
 rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
 fortezza_dms_RESERVED(20),
 (255)
 } ClientCertificateType;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 HashType certificate_hash<1..2^8-1>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest;

 certificate_types
 This field is a list of the types of certificates requested,
 sorted in order of the server's preference.

 certificate_types
 A list of the types of certificate types which the client may
 offer.
 rsa_sign a certificate containing an RSA key
 dss_sign a certificate containing a DSS key
 rsa_fixed_dh a certificate signed with RSA and containing
 a static DH key.
 dss_fixed_dh a certificate signed with DSS and containing
 a static DH key

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Certificate types rsa_sign and dss_sign SHOULD contain
 certificates signed with the same algorithm. However, this is
 not required. This is a holdover from TLS 1.0 and 1.1.

 certificate_hash
 A list of acceptable hash algorithms to be used in
 certificate signatures.

 certificate_authorities

Dierks & Rescorla Standards Track [Page 57]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 A list of the distinguished names of acceptable certificate
 authorities. These distinguished names may specify a desired
 distinguished name for a root CA or for a subordinate CA;
 thus, this message can be used both to describe known roots
 and a desired authorization space. If the
 certificate_authorities list is empty then the client MAY
 send any certificate of the appropriate
 ClientCertificateType, unless there is some external
 arrangement to the contrary.

 ClientCertificateType values are divided into three groups:

 1. Values from 0 (zero) through 63 decimal (0x3F) inclusive are
 reserved for IETF Standards Track protocols.

 2. Values from 64 decimal (0x40) through 223 decimal (0xDF)
 inclusive are reserved for assignment for non-Standards
 Track methods.

 3. Values from 224 decimal (0xE0) through 255 decimal (0xFF)
 inclusive are reserved for private use.

 Additional information describing the role of IANA in the
 allocation of ClientCertificateType code points is described
 in Section 11.

 Note: Values listed as RESERVED may not be used. They were used in
 SSLv3.

 Note: DistinguishedName is derived from [X501]. DistinguishedNames are
 represented in DER-encoded format.

 Note: It is a fatal handshake_failure alert for an anonymous server to

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 request client authentication.

7.4.6. Server hello done

 When this message will be sent:
 The server hello done message is sent by the server to indicate
 the end of the server hello and associated messages. After
 sending this message the server will wait for a client response.

 Meaning of this message:
 This message means that the server is done sending messages to
 support the key exchange, and the client can proceed with its
 phase of the key exchange.

Dierks & Rescorla Standards Track [Page 58]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Upon receipt of the server hello done message the client SHOULD
 verify that the server provided a valid certificate if required
 and check that the server hello parameters are acceptable.

 Structure of this message:
 struct { } ServerHelloDone;

7.4.7. Client certificate

 When this message will be sent:
 This is the first message the client can send after receiving a
 server hello done message. This message is only sent if the
 server requests a certificate. If no suitable certificate is
 available, the client SHOULD send a certificate message
 containing no certificates. That is, the certificate_list
 structure has a length of zero. If client authentication is
 required by the server for the handshake to continue, it may
 respond with a fatal handshake failure alert. Client certificates
 are sent using the Certificate structure defined in Section

7.4.2.

 Note: When using a static Diffie-Hellman based key exchange method
 (DH_DSS or DH_RSA), if client authentication is requested, the
 Diffie-Hellman group and generator encoded in the client's
 certificate MUST match the server specified Diffie-Hellman
 parameters if the client's parameters are to be used for the key
 exchange.

7.4.8. Client Certificate URLs

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 After negotiation of the use of client certificate URLs has been
 successfully completed (by exchanging hellos including
 "client_certificate_url" extensions), clients MAY send a
 "CertificateURL" message in place of a "Certificate" message.

 enum {
 individual_certs(0), pkipath(1), (255)
 } CertChainType;

 enum {
 false(0), true(1)
 } Boolean;

 struct {
 CertChainType type;
 URLAndOptionalHash url_and_hash_list<1..2^16-1>;
 } CertificateURL;

Dierks & Rescorla Standards Track [Page 59]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 struct {
 opaque url<1..2^16-1>;
 Boolean hash_present;
 select (hash_present) {
 case false: struct {};
 case true: SHA1Hash;
 } hash;
 } URLAndOptionalHash;

 opaque SHA1Hash[20];

 Here "url_and_hash_list" contains a sequence of URLs and optional
 hashes.

 When X.509 certificates are used, there are two possibilities:

 - if CertificateURL.type is "individual_certs", each URL refers to
 a single DER-encoded X.509v3 certificate, with the URL for the
 client's certificate first, or

 - if CertificateURL.type is "pkipath", the list contains a single
 URL referring to a DER-encoded certificate chain, using the type
 PkiPath described in Section 8.

 When any other certificate format is used, the specification that
 describes use of that format in TLS should define the encoding format
 of certificates or certificate chains, and any constraint on their
 ordering.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 The hash corresponding to each URL at the client's discretion is
 either not present or is the SHA-1 hash of the certificate or
 certificate chain (in the case of X.509 certificates, the DER-encoded
 certificate or the DER-encoded PkiPath).

 Note that when a list of URLs for X.509 certificates is used, the
 ordering of URLs is the same as that used in the TLS Certificate
 message (see [TLS] Section 7.4.2), but opposite to the order in which
 certificates are encoded in PkiPath. In either case, the self-signed
 root certificate MAY be omitted from the chain, under the assumption
 that the server must already possess it in order to validate it.

 Servers receiving "CertificateURL" SHALL attempt to retrieve the
 client's certificate chain from the URLs, and then process the
 certificate chain as usual. A cached copy of the content of any URL
 in the chain MAY be used, provided that a SHA-1 hash is present for
 that URL and it matches the hash of the cached copy.

 Servers that support this extension MUST support the http: URL scheme

Dierks & Rescorla Standards Track [Page 60]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 for certificate URLs, and MAY support other schemes. Use of other
 schemes than "http", "https", or "ftp" may create unexpected
 problems.

 If the protocol used is HTTP, then the HTTP server can be configured
 to use the Cache-Control and Expires directives described in [HTTP]
 to specify whether and for how long certificates or certificate
 chains should be cached.

 The TLS server is not required to follow HTTP redirects when
 retrieving the certificates or certificate chain. The URLs used in
 this extension SHOULD therefore be chosen not to depend on such
 redirects.

 If the protocol used to retrieve certificates or certificate chains
 returns a MIME formatted response (as HTTP does), then the following
 MIME Content-Types SHALL be used: when a single X.509v3 certificate
 is returned, the Content-Type is "application/pkix-cert" [PKIOP], and
 when a chain of X.509v3 certificates is returned, the Content-Type is
 "application/pkix-pkipath" (see Section XXX).

 If a SHA-1 hash is present for an URL, then the server MUST check
 that the SHA-1 hash of the contents of the object retrieved from that
 URL (after decoding any MIME Content-Transfer-Encoding) matches the
 given hash. If any retrieved object does not have the correct SHA-1

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 hash, the server MUST abort the handshake with a
 "bad_certificate_hash_value" alert.

 Note that clients may choose to send either "Certificate" or
 "CertificateURL" after successfully negotiating the option to send
 certificate URLs. The option to send a certificate is included to
 provide flexibility to clients possessing multiple certificates.

 If a server encounters an unreasonable delay in obtaining
 certificates in a given CertificateURL, it SHOULD time out and signal
 a "certificate_unobtainable" error alert.

7.4.9. Client key exchange message

 When this message will be sent:
 This message is always sent by the client. It MUST immediately follow
 the client certificate message, if it is sent. Otherwise it MUST be
 the first message sent by the client after it receives the server
 hello done message.

 Meaning of this message:
 With this message, the premaster secret is set, either though direct
 transmission of the RSA-encrypted secret, or by the transmission of

Dierks & Rescorla Standards Track [Page 61]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Diffie-Hellman parameters which will allow each side to agree upon
 the same premaster secret. When the key exchange method is DH_RSA or
 DH_DSS, client certification has been requested, and the client was
 able to respond with a certificate which contained a Diffie-Hellman
 public key whose parameters (group and generator) matched those
 specified by the server in its certificate, this message MUST not
 contain any data.

 Structure of this message:
 The choice of messages depends on which key exchange method has been
 selected. See Section 7.4.3 for the KeyExchangeAlgorithm definition.

 struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 } exchange_keys;
 } ClientKeyExchange;

7.4.9.1. RSA encrypted premaster secret message

 Meaning of this message:

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 If RSA is being used for key agreement and authentication, the client
 generates a 48-byte premaster secret, encrypts it using the public
 key from the server's certificate or the temporary RSA key provided
 in a server key exchange message, and sends the result in an
 encrypted premaster secret message. This structure is a variant of
 the client key exchange message, not a message in itself.

 Structure of this message:
 struct {
 ProtocolVersion client_version;
 opaque random[46];
 } PreMasterSecret;

 client_version
 The latest (newest) version supported by the client. This is
 used to detect version roll-back attacks. Upon receiving the
 premaster secret, the server SHOULD check that this value
 matches the value transmitted by the client in the client
 hello message.

 random
 46 securely-generated random bytes.

 struct {
 public-key-encrypted PreMasterSecret pre_master_secret;
 } EncryptedPreMasterSecret;

Dierks & Rescorla Standards Track [Page 62]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 pre_master_secret
 This random value is generated by the client and is used to
 generate the master secret, as specified in Section 8.1.

 Note: An attack discovered by Daniel Bleichenbacher [BLEI] can be used
 to attack a TLS server which is using PKCS#1 v 1.5 encoded RSA.
 The attack takes advantage of the fact that by failing in
 different ways, a TLS server can be coerced into revealing
 whether a particular message, when decrypted, is properly PKCS#1
 v1.5 formatted or not.

 The best way to avoid vulnerability to this attack is to treat
 incorrectly formatted messages in a manner indistinguishable from
 correctly formatted RSA blocks. Thus, when it receives an
 incorrectly formatted RSA block, a server should generate a
 random 48-byte value and proceed using it as the premaster
 secret. Thus, the server will act identically whether the
 received RSA block is correctly encoded or not.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 [PKCS1B] defines a newer version of PKCS#1 encoding that is more
 secure against the Bleichenbacher attack. However, for maximal
 compatibility with TLS 1.0, TLS 1.1 retains the original
 encoding. No variants of the Bleichenbacher attack are known to
 exist provided that the above recommendations are followed.

 Implementation Note: public-key-encrypted data is represented as an
 opaque vector <0..2^16-1> (see section 4.7). Thus the RSA-
 encrypted PreMasterSecret in a ClientKeyExchange is preceded by
 two length bytes. These bytes are redundant in the case of RSA
 because the EncryptedPreMasterSecret is the only data in the
 ClientKeyExchange and its length can therefore be unambiguously
 determined. The SSLv3 specification was not clear about the
 encoding of public-key-encrypted data and therefore many SSLv3
 implementations do not include the the length bytes, encoding the
 RSA encrypted data directly in the ClientKeyExchange message.

 This specification requires correct encoding of the
 EncryptedPreMasterSecret complete with length bytes. The
 resulting PDU is incompatible with many SSLv3 implementations.
 Implementors upgrading from SSLv3 must modify their
 implementations to generate and accept the correct encoding.
 Implementors who wish to be compatible with both SSLv3 and TLS
 should make their implementation's behavior dependent on the
 protocol version.

 Implementation Note: It is now known that remote timing-based attacks
 on SSL are possible, at least when the client and server are on
 the same LAN. Accordingly, implementations which use static RSA

Dierks & Rescorla Standards Track [Page 63]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 keys SHOULD use RSA blinding or some other anti-timing technique,
 as described in [TIMING].

 Note: The version number in the PreMasterSecret MUST be the version
 offered by the client in the ClientHello.version, not the version
 negotiated for the connection. This feature is designed to
 prevent rollback attacks. Unfortunately, many implementations use
 the negotiated version instead and therefore checking the version
 number may lead to failure to interoperate with such incorrect
 client implementations. Client implementations MUST and Server
 implementations MAY check the version number. In practice, since
 the TLS handshake MACs prevent downgrade and no good attacks are
 known on those MACs, ambiguity is not considered a serious
 security risk. Note that if servers choose to to check the
 version number, they should randomize the PreMasterSecret in case

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 of error, rather than generate an alert, in order to avoid
 variants on the Bleichenbacher attack. [KPR03]

7.4.9.2. Client Diffie-Hellman public value

 Meaning of this message:
 This structure conveys the client's Diffie-Hellman public value
 (Yc) if it was not already included in the client's certificate.
 The encoding used for Yc is determined by the enumerated
 PublicValueEncoding. This structure is a variant of the client
 key exchange message, not a message in itself.

 Structure of this message:
 enum { implicit, explicit } PublicValueEncoding;

 implicit
 If the client certificate already contains a suitable Diffie-
 Hellman key, then Yc is implicit and does not need to be sent
 again. In this case, the client key exchange message will be
 sent, but MUST be empty.

 explicit
 Yc needs to be sent.

 struct {
 select (PublicValueEncoding) {
 case implicit: struct { };
 case explicit: opaque dh_Yc<1..2^16-1>;
 } dh_public;
 } ClientDiffieHellmanPublic;

 dh_Yc
 The client's Diffie-Hellman public value (Yc).

Dierks & Rescorla Standards Track [Page 64]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

7.4.10. Certificate verify

 When this message will be sent:
 This message is used to provide explicit verification of a client
 certificate. This message is only sent following a client
 certificate that has signing capability (i.e. all certificates
 except those containing fixed Diffie-Hellman parameters). When
 sent, it MUST immediately follow the client key exchange message.

 Structure of this message:
 struct {
 Signature signature;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 } CertificateVerify;

 The Signature type is defined in 7.4.3. If the SignatureAlgorithm
 is DSA, then the sha_hash value must be used. If it is RSA,
 the same function (denoted Hash) must be used as was used to
 create the signature for the client's certificate.

 CertificateVerify.signature.hash
 Hash(handshake_messages);

 CertificateVerify.signature.sha_hash
 SHA(handshake_messages);

 Here handshake_messages refers to all handshake messages sent or
 received starting at client hello up to but not including this
 message, including the type and length fields of the handshake
 messages. This is the concatenation of all the Handshake structures
 as defined in 7.4 exchanged thus far.

7.4.10. Finished

 When this message will be sent:
 A finished message is always sent immediately after a change
 cipher spec message to verify that the key exchange and
 authentication processes were successful. It is essential that a
 change cipher spec message be received between the other
 handshake messages and the Finished message.

 Meaning of this message:
 The finished message is the first protected with the just-
 negotiated algorithms, keys, and secrets. Recipients of finished
 messages MUST verify that the contents are correct. Once a side
 has sent its Finished message and received and validated the
 Finished message from its peer, it may begin to send and receive
 application data over the connection.

Dierks & Rescorla Standards Track [Page 65]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 struct {
 opaque verify_data[12];
 } Finished;

 verify_data
 PRF(master_secret, finished_label, Hash(handshake_messages))[0..11];

 finished_label
 For Finished messages sent by the client, the string "client

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 finished". For Finished messages sent by the server, the
 string "server finished".

 Hash denotes the negotiated hash used for the PRF. If a new
 PRF is defined, then this hash MUST be specified.

 handshake_messages
 All of the data from all messages in this handshake (not
 including any HelloRequest messages) up to but not including
 this message. This is only data visible at the handshake
 layer and does not include record layer headers. This is the
 concatenation of all the Handshake structures as defined in
 7.4 exchanged thus far.

 It is a fatal error if a finished message is not preceded by a change
 cipher spec message at the appropriate point in the handshake.

 The value handshake_messages includes all handshake messages starting
 at client hello up to, but not including, this finished message. This
 may be different from handshake_messages in Section 7.4.10 because it
 would include the certificate verify message (if sent). Also, the
 handshake_messages for the finished message sent by the client will
 be different from that for the finished message sent by the server,
 because the one which is sent second will include the prior one.

 Note: Change cipher spec messages, alerts and any other record types
 are not handshake messages and are not included in the hash
 computations. Also, Hello Request messages are omitted from
 handshake hashes.

8. Cryptographic computations

 In order to begin connection protection, the TLS Record Protocol
 requires specification of a suite of algorithms, a master secret, and
 the client and server random values. The authentication, encryption,
 and MAC algorithms are determined by the cipher_suite selected by the
 server and revealed in the server hello message. The compression
 algorithm is negotiated in the hello messages, and the random values
 are exchanged in the hello messages. All that remains is to calculate

Dierks & Rescorla Standards Track [Page 66]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 the master secret.

8.1. Computing the master secret

 For all key exchange methods, the same algorithm is used to convert
 the pre_master_secret into the master_secret. The pre_master_secret

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 should be deleted from memory once the master_secret has been
 computed.

 master_secret = PRF(pre_master_secret, "master secret",
 ClientHello.random + ServerHello.random)
 [0..47];

 The master secret is always exactly 48 bytes in length. The length of
 the premaster secret will vary depending on key exchange method.

8.1.1. RSA

 When RSA is used for server authentication and key exchange, a
 48-byte pre_master_secret is generated by the client, encrypted under
 the server's public key, and sent to the server. The server uses its
 private key to decrypt the pre_master_secret. Both parties then
 convert the pre_master_secret into the master_secret, as specified
 above.

 RSA digital signatures are performed using PKCS #1 [PKCS1] block type
 1. RSA public key encryption is performed using PKCS #1 block type 2.

8.1.2. Diffie-Hellman

 A conventional Diffie-Hellman computation is performed. The
 negotiated key (Z) is used as the pre_master_secret, and is converted
 into the master_secret, as specified above. Leading bytes of Z that
 contain all zero bits are stripped before it is used as the
 pre_master_secret.

 Note: Diffie-Hellman parameters are specified by the server, and may
 be either ephemeral or contained within the server's certificate.

9. Mandatory Cipher Suites

 In the absence of an application profile standard specifying
 otherwise, a TLS compliant application MUST implement the cipher
 suite TLS_RSA_WITH_3DES_EDE_CBC_SHA.

10. Application data protocol

 Application data messages are carried by the Record Layer and are

Dierks & Rescorla Standards Track [Page 67]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 fragmented, compressed and encrypted based on the current connection
 state. The messages are treated as transparent data to the record
 layer.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

11. IANA Considerations

 This document describes a number of new registries to be created by
 IANA. We recommend that they be placed as individual registries items
 under a common TLS category.

Section 7.4.5 describes a TLS HashType Registry to be maintained by
 the IANA, as defining a number of such code point identifiers.
 HashType identifiers with values in the range 0-63 (decimal)
 inclusive are assigned via RFC 2434 Standards Action. Values from the
 range 64-223 (decimal) inclusive are assigned via [RFC 2434]
 Specification Required. Identifier values from 224-255 (decimal)
 inclusive are reserved for RFC 2434 Private Use. The registry will be
 initially populated with the values in this document, Section 7.4.5.

Section 7.4.5 describes a TLS ClientCertificateType Registry to be
 maintained by the IANA, as defining a number of such code point
 identifiers. ClientCertificateType identifiers with values in the
 range 0-63 (decimal) inclusive are assigned via RFC 2434 Standards
 Action. Values from the range 64-223 (decimal) inclusive are assigned
 via [RFC 2434] Specification Required. Identifier values from
 224-255 (decimal) inclusive are reserved for RFC 2434 Private Use.
 The registry will be initially populated with the values in this
 document, Section 7.4.5.

 Section A.5 describes a TLS Cipher Suite Registry to be maintained by
 the IANA, as well as defining a number of such cipher suite
 identifiers. Cipher suite values with the first byte in the range
 0-191 (decimal) inclusive are assigned via RFC 2434 Standards Action.
 Values with the first byte in the range 192-254 (decimal) are
 assigned via RFC 2434 Specification Required. Values with the first
 byte 255 (decimal) are reserved for RFC 2434 Private Use. The
 registry will be initially populated with the values from Section A.5
 of this document, [TLSAES], and Section 3 of [TLSKRB].

Section 6 requires that all ContentType values be defined by RFC 2434
 Standards Action. IANA SHOULD create a TLS ContentType registry,
 initially populated with values from Section 6.2.1 of this document.
 Future values MUST be allocated via Standards Action as described in
 [RFC 2434].

Section 7.2.2 requires that all Alert values be defined by RFC 2434
 Standards Action. IANA SHOULD create a TLS Alert registry, initially
 populated with values from Section 7.2 of this document and Section 4

Dierks & Rescorla Standards Track [Page 68]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 of [TLSEXT]. Future values MUST be allocated via Standards Action as
 described in [RFC 2434].

Section 7.4 requires that all HandshakeType values be defined by RFC
2434 Standards Action. IANA SHOULD create a TLS HandshakeType

 registry, initially populated with values from Section 7.4 of this
 document and Section 2.4 of [TLSEXT]. Future values MUST be
 allocated via Standards Action as described in [RFC2434].

11.1 Extensions

 Sections XXX and XXX describes a registry of ExtensionType values to
 be maintained by the IANA. ExtensionType values are to be assigned
 via IETF Consensus as defined in RFC 2434 [IANA]. The initial
 registry corresponds to the definition of "ExtensionType" in Section

2.3.

 The MIME type "application/pkix-pkipath" has been registered by the
 IANA with the following template:

 To: ietf-types@iana.org Subject: Registration of MIME media type
 application/pkix-pkipath

 MIME media type name: application
 MIME subtype name: pkix-pkipath

 Optional parameters: version (default value is "1")

 Encoding considerations:
 This MIME type is a DER encoding of the ASN.1 type PkiPath,
 defined as follows:
 PkiPath ::= SEQUENCE OF Certificate
 PkiPath is used to represent a certification path. Within the
 sequence, the order of certificates is such that the subject of
 the first certificate is the issuer of the second certificate,
 etc.

 This is identical to the definition published in [X509-4th-TC1];
 note that it is different from that in [X509-4th].

 All Certificates MUST conform to [PKIX]. (This should be
 interpreted as a requirement to encode only PKIX-conformant
 certificates using this type. It does not necessarily require
 that all certificates that are not strictly PKIX-conformant must
 be rejected by relying parties, although the security consequences
 of accepting any such certificates should be considered
 carefully.)

Dierks & Rescorla Standards Track [Page 69]draft-

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

ietf-tls-rfc4346-bis-02.txt TLS October 2006

 DER (as opposed to BER) encoding MUST be used. If this type is
 sent over a 7-bit transport, base64 encoding SHOULD be used.

 Security considerations:
 The security considerations of [X509-4th] and [PKIX] (or any
 updates to them) apply, as well as those of any protocol that uses
 this type (e.g., TLS).

 Note that this type only specifies a certificate chain that can be
 assessed for validity according to the relying party's existing
 configuration of trusted CAs; it is not intended to be used to
 specify any change to that configuration.

 Interoperability considerations:
 No specific interoperability problems are known with this type,
 but for recommendations relating to X.509 certificates in general,
 see [PKIX].

 Published specification: this memo, and [PKIX].

 Applications which use this media type: TLS. It may also be used by
 other protocols, or for general interchange of PKIX certificate

 Additional information:
 Magic number(s): DER-encoded ASN.1 can be easily recognized.
 Further parsing is required to distinguish from other ASN.1
 types.
 File extension(s): .pkipath
 Macintosh File Type Code(s): not specified

 Person & email address to contact for further information:
 Magnus Nystrom <magnus@rsasecurity.com>

 Intended usage: COMMON

 Change controller:
 IESG <iesg@ietf.org>

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 70]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

A. Protocol constant values

 This section describes protocol types and constants.

A.1. Record layer

 struct {
 uint8 major, minor;
 } ProtocolVersion;

 ProtocolVersion version = { 3, 3 }; /* TLS v1.2*/

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSCompressed.length];
 } TLSCompressed;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 select (CipherSpec.cipher_type) {
 case stream: GenericStreamCipher;
 case block: GenericBlockCipher;
 } fragment;
 } TLSCiphertext;

 stream-ciphered struct {
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 } GenericStreamCipher;

 block-ciphered struct {

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 opaque IV[CipherSpec.block_length];

Dierks & Rescorla Standards Track [Page 71]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 uint8 padding[GenericBlockCipher.padding_length];
 uint8 padding_length;
 } GenericBlockCipher;

 aead-ciphered struct {
 opaque IV[CipherSpec.iv_length];
 opaque aead_output[AEADEncrypted.length];
 } GenericAEADCipher;

A.2. Change cipher specs message

 struct {
 enum { change_cipher_spec(1), (255) } type;
 } ChangeCipherSpec;

A.3. Alert messages

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed(21),
 record_overflow(22),
 decompression_failure(30),
 handshake_failure(40),
 no_certificate_RESERVED (41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction_RESERVED(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 user_canceled(90),
 no_renegotiation(100),
 unsupported_extension(110), /* new */
 certificate_unobtainable(111), /* new */

Dierks & Rescorla Standards Track [Page 72]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 unrecognized_name(112), /* new */
 bad_certificate_status_response(113), /* new */
 bad_certificate_hash_value(114), /* new */
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 73]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

A.4. Handshake protocol

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), certificate_url(21), certificate_status(22),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type;
 uint24 length;
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case certificate: Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done: ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 case certificate_url: CertificateURL;
 case certificate_status: CertificateStatus;
 } body;
 } Handshake;

A.4.1. Hello messages

 struct { } HelloRequest;

 struct {
 uint32 gmt_unix_time;
 opaque random_bytes[28];
 } Random;

 opaque SessionID<0..32>;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 uint8 CipherSuite[2];

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version;
 Random random;

Dierks & Rescorla Standards Track [Page 74]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 Extension client_hello_extension_list<0..2^16-1>;
 } ClientHello;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 Extension client_hello_extension_list<0..2^16-1>;
 } ExtendedClientHello;

 struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 } ServerHello;

 struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 Extension server_hello_extension_list<0..2^16-1>;
 } ExtendedServerHello;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 enum {
 server_name(0), max_fragment_length(1),
 client_certificate_url(2), trusted_ca_keys(3),
 truncated_hmac(4), status_request(5),
 cert_hash_types(6), (65535)
 } ExtensionType;

 struct {
 NameType name_type;
 select (name_type) {
 case host_name: HostName;

Dierks & Rescorla Standards Track [Page 75]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 } name;
 } ServerName;

 enum {
 host_name(0), (255)
 } NameType;

 opaque HostName<1..2^16-1>;

 struct {
 ServerName server_name_list<1..2^16-1>
 } ServerNameList;

 enum{
 2^9(1), 2^10(2), 2^11(3), 2^12(4), (255)
 } MaxFragmentLength;

 struct {
 TrustedAuthority trusted_authorities_list<0..2^16-1>;
 } TrustedAuthorities;

 struct {
 IdentifierType identifier_type;
 select (identifier_type) {
 case pre_agreed: struct {};
 case key_sha1_hash: SHA1Hash;
 case x509_name: DistinguishedName;
 case cert_sha1_hash: SHA1Hash;
 } identifier;
 } TrustedAuthority;

 enum {
 pre_agreed(0), key_sha1_hash(1), x509_name(2),
 cert_sha1_hash(3), (255)

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 } IdentifierType;

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPStatusRequest;
 } request;
 } CertificateStatusRequest;

 enum { ocsp(1), (255) } CertificateStatusType;

 struct {
 ResponderID responder_id_list<0..2^16-1>;
 Extensions request_extensions;

Dierks & Rescorla Standards Track [Page 76]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 } OCSPStatusRequest;

 opaque ResponderID<1..2^16-1>;
A.4.2. Server authentication and key exchange messages

 opaque ASN.1Cert<2^24-1>;

 struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 } Certificate;

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPResponse;
 } response;
 } CertificateStatus;

 opaque OCSPResponse<1..2^24-1>;

 enum { rsa, diffie_hellman } KeyExchangeAlgorithm;

 struct {
 opaque rsa_modulus<1..2^16-1>;
 opaque rsa_exponent<1..2^16-1>;
 } ServerRSAParams;

 struct {
 opaque dh_p<1..2^16-1>;
 opaque dh_g<1..2^16-1>;
 opaque dh_Ys<1..2^16-1>;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 } ServerDHParams;

 struct {
 select (KeyExchangeAlgorithm) {
 case diffie_hellman:
 ServerDHParams params;
 Signature signed_params;
 case rsa:
 ServerRSAParams params;
 Signature signed_params;
 };
 } ServerKeyExchange;

 enum { anonymous, rsa, dsa } SignatureAlgorithm;

 struct {
 select (KeyExchangeAlgorithm) {

Dierks & Rescorla Standards Track [Page 77]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 case diffie_hellman:
 ServerDHParams params;
 case rsa:
 ServerRSAParams params;
 };
 } ServerParams;

 struct {
 select (SignatureAlgorithm) {
 case anonymous: struct { };
 case rsa:
 digitally-signed struct {
 opaque hash[Hash.length];
 };
 case dsa:
 digitally-signed struct {
 opaque sha_hash[20];
 };
 };
 };
 } Signature;

 enum {
 rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
 fortezza_dms_RESERVED(20),
 (255)
 } ClientCertificateType;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest;

 struct { } ServerHelloDone;

A.4.3. Client authentication and key exchange messages

 struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 } exchange_keys;
 } ClientKeyExchange;

 struct {

Dierks & Rescorla Standards Track [Page 78]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 ProtocolVersion client_version;
 opaque random[46];
 } PreMasterSecret;

 struct {
 public-key-encrypted PreMasterSecret pre_master_secret;
 } EncryptedPreMasterSecret;

 enum { implicit, explicit } PublicValueEncoding;

 struct {
 select (PublicValueEncoding) {
 case implicit: struct {};
 case explicit: opaque DH_Yc<1..2^16-1>;
 } dh_public;
 } ClientDiffieHellmanPublic;

 enum {
 individual_certs(0), pkipath(1), (255)
 } CertChainType;

 enum {
 false(0), true(1)
 } Boolean;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 struct {
 CertChainType type;
 URLAndOptionalHash url_and_hash_list<1..2^16-1>;
 } CertificateURL;

 struct {
 opaque url<1..2^16-1>;
 Boolean hash_present;
 select (hash_present) {
 case false: struct {};
 case true: SHA1Hash;
 } hash;
 } URLAndOptionalHash;

 opaque SHA1Hash[20];

 struct {
 Signature signature;
 } CertificateVerify;

A.4.4. Handshake finalization message

 struct {

Dierks & Rescorla Standards Track [Page 79]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 opaque verify_data[12];
 } Finished;

A.5. The CipherSuite

 The following values define the CipherSuite codes used in the client
 hello and server hello messages.

 A CipherSuite defines a cipher specification supported in TLS Version
 1.1.

 TLS_NULL_WITH_NULL_NULL is specified and is the initial state of a
 TLS connection during the first handshake on that channel, but must
 not be negotiated, as it provides no more protection than an
 unsecured connection.

 CipherSuite TLS_NULL_WITH_NULL_NULL = { 0x00,0x00 };

 The following CipherSuite definitions require that the server provide
 an RSA certificate that can be used for key exchange. The server may
 request either an RSA or a DSS signature-capable certificate in the
 certificate request message.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 CipherSuite TLS_RSA_WITH_NULL_MD5 = { 0x00,0x01 };
 CipherSuite TLS_RSA_WITH_NULL_SHA = { 0x00,0x02 };
 CipherSuite TLS_RSA_WITH_RC4_128_MD5 = { 0x00,0x04 };
 CipherSuite TLS_RSA_WITH_RC4_128_SHA = { 0x00,0x05 };
 CipherSuite TLS_RSA_WITH_IDEA_CBC_SHA = { 0x00,0x07 };
 CipherSuite TLS_RSA_WITH_DES_CBC_SHA = { 0x00,0x09 };
 CipherSuite TLS_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0A };
 CipherSuite TLS_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x2F };
 CipherSuite TLS_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x35 };
 The following CipherSuite definitions are used for server-
 authenticated (and optionally client-authenticated) Diffie-Hellman.
 DH denotes cipher suites in which the server's certificate contains
 the Diffie-Hellman parameters signed by the certificate authority
 (CA). DHE denotes ephemeral Diffie-Hellman, where the Diffie-Hellman
 parameters are signed by a DSS or RSA certificate, which has been
 signed by the CA. The signing algorithm used is specified after the
 DH or DHE parameter. The server can request an RSA or DSS signature-
 capable certificate from the client for client authentication or it
 may request a Diffie-Hellman certificate. Any Diffie-Hellman
 certificate provided by the client must use the parameters (group and
 generator) described by the server.

 CipherSuite TLS_DH_DSS_WITH_DES_CBC_SHA = { 0x00,0x0C };
 CipherSuite TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0D };
 CipherSuite TLS_DH_RSA_WITH_DES_CBC_SHA = { 0x00,0x0F };

Dierks & Rescorla Standards Track [Page 80]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 CipherSuite TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x10 };
 CipherSuite TLS_DHE_DSS_WITH_DES_CBC_SHA = { 0x00,0x12 };
 CipherSuite TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x13 };
 CipherSuite TLS_DHE_RSA_WITH_DES_CBC_SHA = { 0x00,0x15 };
 CipherSuite TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x16 };
 CipherSuite TLS_DH_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x30 };
 CipherSuite TLS_DH_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x31 };
 CipherSuite TLS_DHE_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x32 };
 CipherSuite TLS_DHE_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x33 };
 CipherSuite TLS_DH_anon_WITH_AES_128_CBC_SHA = { 0x00, 0x34 };
 CipherSuite TLS_DH_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x36 };
 CipherSuite TLS_DH_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x37 };
 CipherSuite TLS_DHE_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x38 };
 CipherSuite TLS_DHE_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x39 };
 CipherSuite TLS_DH_anon_WITH_AES_256_CBC_SHA = { 0x00, 0x3A };

 The following cipher suites are used for completely anonymous Diffie-
 Hellman communications in which neither party is authenticated. Note

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 that this mode is vulnerable to man-in-the-middle attacks and is
 therefore deprecated.

 CipherSuite TLS_DH_anon_WITH_RC4_128_MD5 = { 0x00,0x18 };
 CipherSuite TLS_DH_anon_WITH_DES_CBC_SHA = { 0x00,0x1A };
 CipherSuite TLS_DH_anon_WITH_3DES_EDE_CBC_SHA = { 0x00,0x1B };

 When SSLv3 and TLS 1.0 were designed, the United States restricted
 the export of cryptographic software containing certain strong
 encryption algorithms. A series of cipher suites were designed to
 operate at reduced key lengths in order to comply with those
 regulations. Due to advances in computer performance, these
 algorithms are now unacceptably weak and export restrictions have
 since been loosened. TLS 1.1 implementations MUST NOT negotiate these
 cipher suites in TLS 1.1 mode. However, for backward compatibility
 they may be offered in the ClientHello for use with TLS 1.0 or SSLv3
 only servers. TLS 1.1 clients MUST check that the server did not
 choose one of these cipher suites during the handshake. These
 ciphersuites are listed below for informational purposes and to
 reserve the numbers.

 CipherSuite TLS_RSA_EXPORT_WITH_RC4_40_MD5 = { 0x00,0x03 };
 CipherSuite TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = { 0x00,0x06 };
 CipherSuite TLS_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x08 };
 CipherSuite TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x0B };
 CipherSuite TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x0E };
 CipherSuite TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x11 };
 CipherSuite TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x14 };
 CipherSuite TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 = { 0x00,0x17 };
 CipherSuite TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x19 };

Dierks & Rescorla Standards Track [Page 81]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 The following cipher suites were defined in [TLSKRB] and are included
 here for completeness. See [TLSKRB] for details:

 CipherSuite TLS_KRB5_WITH_DES_CBC_SHA = { 0x00,0x1E };
 CipherSuite TLS_KRB5_WITH_3DES_EDE_CBC_SHA = { 0x00,0x1F };
 CipherSuite TLS_KRB5_WITH_RC4_128_SHA = { 0x00,0x20 };
 CipherSuite TLS_KRB5_WITH_IDEA_CBC_SHA = { 0x00,0x21 };
 CipherSuite TLS_KRB5_WITH_DES_CBC_MD5 = { 0x00,0x22 };
 CipherSuite TLS_KRB5_WITH_3DES_EDE_CBC_MD5 = { 0x00,0x23 };
 CipherSuite TLS_KRB5_WITH_RC4_128_MD5 = { 0x00,0x24 };
 CipherSuite TLS_KRB5_WITH_IDEA_CBC_MD5 = { 0x00,0x25 };

 The following exportable cipher suites were defined in [TLSKRB] and
 are included here for completeness. TLS 1.1 implementations MUST NOT
 negotiate these cipher suites.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 CipherSuite TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA = { 0x00,0x26
 };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA = { 0x00,0x27
 };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC4_40_SHA = { 0x00,0x28
 };
 CipherSuite TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 = { 0x00,0x29
 };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 = { 0x00,0x2A
 };
 CipherSuite TLS_KRB5_EXPORT_WITH_RC4_40_MD5 = { 0x00,0x2B
 };

 The cipher suite space is divided into three regions:

 1. Cipher suite values with first byte 0x00 (zero)
 through decimal 191 (0xBF) inclusive are reserved for the IETF
 Standards Track protocols.

 2. Cipher suite values with first byte decimal 192 (0xC0)
 through decimal 254 (0xFE) inclusive are reserved
 for assignment for non-Standards Track methods.

 3. Cipher suite values with first byte 0xFF are
 reserved for private use.
 Additional information describing the role of IANA in the allocation
 of cipher suite code points is described in Section 11.

 Note: The cipher suite values { 0x00, 0x1C } and { 0x00, 0x1D } are
 reserved to avoid collision with Fortezza-based cipher suites in SSL
 3.

Dierks & Rescorla Standards Track [Page 82]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

A.6. The Security Parameters

 These security parameters are determined by the TLS Handshake
 Protocol and provided as parameters to the TLS Record Layer in order
 to initialize a connection state. SecurityParameters includes:

 enum { null(0), (255) } CompressionMethod;

 enum { server, client } ConnectionEnd;

 enum { null, rc4, rc2, des, 3des, des40, aes, idea }
 BulkCipherAlgorithm;

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 enum { stream, block } CipherType;

 enum { null, md5, sha } MACAlgorithm;

 /* The algorithms specified in CompressionMethod,
 BulkCipherAlgorithm, and MACAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 BulkCipherAlgorithm bulk_cipher_algorithm;
 CipherType cipher_type;
 uint8 key_size;
 uint8 key_material_length;
 MACAlgorithm mac_algorithm;
 uint8 hash_size;
 CompressionMethod compression_algorithm;
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

Dierks & Rescorla Standards Track [Page 83]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

B. Glossary

 Advanced Encryption Standard (AES)
 AES is a widely used symmetric encryption algorithm.
 AES is
 a block cipher with a 128, 192, or 256 bit keys and a 16 byte
 block size. [AES] TLS currently only supports the 128 and 256
 bit key sizes.

 application protocol

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 An application protocol is a protocol that normally layers
 directly on top of the transport layer (e.g., TCP/IP). Examples
 include HTTP, TELNET, FTP, and SMTP.

 asymmetric cipher
 See public key cryptography.

 authentication
 Authentication is the ability of one entity to determine the
 identity of another entity.

 block cipher
 A block cipher is an algorithm that operates on plaintext in
 groups of bits, called blocks. 64 bits is a common block size.

 bulk cipher
 A symmetric encryption algorithm used to encrypt large quantities
 of data.

 cipher block chaining (CBC)
 CBC is a mode in which every plaintext block encrypted with a
 block cipher is first exclusive-ORed with the previous ciphertext
 block (or, in the case of the first block, with the
 initialization vector). For decryption, every block is first
 decrypted, then exclusive-ORed with the previous ciphertext block
 (or IV).

 certificate
 As part of the X.509 protocol (a.k.a. ISO Authentication
 framework), certificates are assigned by a trusted Certificate
 Authority and provide a strong binding between a party's identity
 or some other attributes and its public key.

 client
 The application entity that initiates a TLS connection to a
 server. This may or may not imply that the client initiated the
 underlying transport connection. The primary operational
 difference between the server and client is that the server is

Dierks & Rescorla Standards Track [Page 84]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 generally authenticated, while the client is only optionally
 authenticated.

 client write key
 The key used to encrypt data written by the client.

 client write MAC secret

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 The secret data used to authenticate data written by the client.

 connection
 A connection is a transport (in the OSI layering model
 definition) that provides a suitable type of service. For TLS,
 such connections are peer to peer relationships. The connections
 are transient. Every connection is associated with one session.

 Data Encryption Standard
 DES is a very widely used symmetric encryption algorithm. DES is
 a block cipher with a 56 bit key and an 8 byte block size. Note
 that in TLS, for key generation purposes, DES is treated as
 having an 8 byte key length (64 bits), but it still only provides
 56 bits of protection. (The low bit of each key byte is presumed
 to be set to produce odd parity in that key byte.) DES can also
 be operated in a mode where three independent keys and three
 encryptions are used for each block of data; this uses 168 bits
 of key (24 bytes in the TLS key generation method) and provides
 the equivalent of 112 bits of security. [DES], [3DES]

 Digital Signature Standard (DSS)
 A standard for digital signing, including the Digital Signing
 Algorithm, approved by the National Institute of Standards and
 Technology, defined in NIST FIPS PUB 186, "Digital Signature
 Standard," published May, 1994 by the U.S. Dept. of Commerce.
 [DSS]

 digital signatures
 Digital signatures utilize public key cryptography and one-way
 hash functions to produce a signature of the data that can be
 authenticated, and is difficult to forge or repudiate.

 handshake
 An initial negotiation between client and server that establishes
 the parameters of their transactions.

 Initialization Vector (IV)
 When a block cipher is used in CBC mode, the initialization
 vector is exclusive-ORed with the first plaintext block prior to
 encryption.

Dierks & Rescorla Standards Track [Page 85]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 IDEA
 A 64-bit block cipher designed by Xuejia Lai and James Massey.
 [IDEA]

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Message Authentication Code (MAC)
 A Message Authentication Code is a one-way hash computed from a
 message and some secret data. It is difficult to forge without
 knowing the secret data. Its purpose is to detect if the message
 has been altered.

 master secret
 Secure secret data used for generating encryption keys, MAC
 secrets, and IVs.

 MD5
 MD5 is a secure hashing function that converts an arbitrarily
 long data stream into a digest of fixed size (16 bytes). [MD5]

 public key cryptography
 A class of cryptographic techniques employing two-key ciphers.
 Messages encrypted with the public key can only be decrypted with
 the associated private key. Conversely, messages signed with the
 private key can be verified with the public key.

 one-way hash function
 A one-way transformation that converts an arbitrary amount of
 data into a fixed-length hash. It is computationally hard to
 reverse the transformation or to find collisions. MD5 and SHA are
 examples of one-way hash functions.

 RC2
 A block cipher developed by Ron Rivest at RSA Data Security, Inc.
 [RSADSI] described in [RC2].

 RC4
 A stream cipher invented by Ron Rivest. A compatible cipher is
 described in [SCH].

 RSA
 A very widely used public-key algorithm that can be used for
 either encryption or digital signing. [RSA]

 server
 The server is the application entity that responds to requests
 for connections from clients. See also under client.

Dierks & Rescorla Standards Track [Page 86]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 session

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 A TLS session is an association between a client and a server.
 Sessions are created by the handshake protocol. Sessions define a
 set of cryptographic security parameters, which can be shared
 among multiple connections. Sessions are used to avoid the
 expensive negotiation of new security parameters for each
 connection.

 session identifier
 A session identifier is a value generated by a server that
 identifies a particular session.

 server write key
 The key used to encrypt data written by the server.

 server write MAC secret
 The secret data used to authenticate data written by the server.

 SHA
 The Secure Hash Algorithm is defined in FIPS PUB 180-2. It
 produces a 20-byte output. Note that all references to SHA
 actually use the modified SHA-1 algorithm. [SHA]

 SSL
 Netscape's Secure Socket Layer protocol [SSL3]. TLS is based on
 SSL Version 3.0

 stream cipher
 An encryption algorithm that converts a key into a
 cryptographically-strong keystream, which is then exclusive-ORed
 with the plaintext.

 symmetric cipher
 See bulk cipher.

 Transport Layer Security (TLS)
 This protocol; also, the Transport Layer Security working group
 of the Internet Engineering Task Force (IETF). See "Comments" at
 the end of this document.

Dierks & Rescorla Standards Track [Page 87]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

C. CipherSuite definitions

CipherSuite Key Cipher Hash
 Exchange

TLS_NULL_WITH_NULL_NULL NULL NULL NULL
TLS_RSA_WITH_NULL_MD5 RSA NULL MD5
TLS_RSA_WITH_NULL_SHA RSA NULL SHA
TLS_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5
TLS_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA
TLS_RSA_WITH_IDEA_CBC_SHA RSA IDEA_CBC SHA
TLS_RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA
TLS_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA
TLS_RSA_WITH_AES_256_SHA RSA AES_256_CBC SHA
TLS_DH_DSS_WITH_DES_CBC_SHA DH_DSS DES_CBC SHA
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS 3DES_EDE_CBC SHA
TLS_DH_RSA_WITH_DES_CBC_SHA DH_RSA DES_CBC SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES_EDE_CBC SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA DHE_DSS DES_CBC SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE_DSS 3DES_EDE_CBC SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA DHE_RSA DES_CBC SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES_EDE_CBC SHA
TLS_DH_anon_WITH_RC4_128_MD5 DH_anon RC4_128 MD5
TLS_DH_anon_WITH_DES_CBC_SHA DH_anon DES_CBC SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA DH_anon 3DES_EDE_CBC SHA
TLS_DH_DSS_WITH_AES_128_CBC_SHA DH_DSS AES_128_CBC SHA
TLS_DH_RSA_WITH_AES_128_CBC_SHA DH_RSA AES_128_CBC SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA DHE_DSS AES_128_CBC SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA DHE_RSA AES_128_CBC SHA
TLS_DH_anon_WITH_AES_128_CBC_SHA DH_anon AES_128_CBC SHA
TLS_DH_DSS_WITH_AES_256_CBC_SHA DH_DSS AES_256_CBC SHA
TLS_DH_RSA_WITH_AES_256_CBC_SHA DH_RSA AES_256_CBC SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE_DSS AES_256_CBC SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE_RSA AES_256_CBC SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA DH_anon AES_256_CBC SHA

 Key
 Exchange
 Algorithm Description Key size limit

 DHE_DSS Ephemeral DH with DSS signatures None
 DHE_RSA Ephemeral DH with RSA signatures None
 DH_anon Anonymous DH, no signatures None
 DH_DSS DH with DSS-based certificates None
 DH_RSA DH with RSA-based certificates None
 RSA = none
 NULL No key exchange N/A

Dierks & Rescorla Standards Track [Page 88]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 RSA RSA key exchange None

 Key Expanded IV Block
 Cipher Type Material Key Material Size Size

 NULL Stream 0 0 0 N/A
 IDEA_CBC Block 16 16 8 8
 RC2_CBC_40 Block 5 16 8 8
 RC4_40 Stream 5 16 0 N/A
 RC4_128 Stream 16 16 0 N/A
 DES40_CBC Block 5 8 8 8
 DES_CBC Block 8 8 8 8
 3DES_EDE_CBC Block 24 24 8 8

 Type
 Indicates whether this is a stream cipher or a block cipher
 running in CBC mode.

 Key Material
 The number of bytes from the key_block that are used for
 generating the write keys.

 Expanded Key Material
 The number of bytes actually fed into the encryption algorithm

 IV Size
 How much data needs to be generated for the initialization
 vector. Zero for stream ciphers; equal to the block size for
 block ciphers.

 Block Size
 The amount of data a block cipher enciphers in one chunk; a
 block cipher running in CBC mode can only encrypt an even
 multiple of its block size.

 Hash Hash Padding
 function Size Size
 NULL 0 0
 MD5 16 48
 SHA 20 40

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 89]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

D. Implementation Notes

 The TLS protocol cannot prevent many common security mistakes. This
 section provides several recommendations to assist implementors.

D.1 Random Number Generation and Seeding

 TLS requires a cryptographically-secure pseudorandom number generator
 (PRNG). Care must be taken in designing and seeding PRNGs. PRNGs
 based on secure hash operations, most notably MD5 and/or SHA, are
 acceptable, but cannot provide more security than the size of the
 random number generator state. (For example, MD5-based PRNGs usually
 provide 128 bits of state.)

 To estimate the amount of seed material being produced, add the
 number of bits of unpredictable information in each seed byte. For
 example, keystroke timing values taken from a PC compatible's 18.2 Hz
 timer provide 1 or 2 secure bits each, even though the total size of
 the counter value is 16 bits or more. To seed a 128-bit PRNG, one
 would thus require approximately 100 such timer values.

 [RANDOM] provides guidance on the generation of random values.

D.2 Certificates and authentication

 Implementations are responsible for verifying the integrity of
 certificates and should generally support certificate revocation
 messages. Certificates should always be verified to ensure proper
 signing by a trusted Certificate Authority (CA). The selection and
 addition of trusted CAs should be done very carefully. Users should
 be able to view information about the certificate and root CA.

D.3 CipherSuites

 TLS supports a range of key sizes and security levels, including some
 which provide no or minimal security. A proper implementation will
 probably not support many cipher suites. For example, 40-bit
 encryption is easily broken, so implementations requiring strong
 security should not allow 40-bit keys. Similarly, anonymous Diffie-
 Hellman is strongly discouraged because it cannot prevent man-in-the-
 middle attacks. Applications should also enforce minimum and maximum
 key sizes. For example, certificate chains containing 512-bit RSA
 keys or signatures are not appropriate for high-security
 applications.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 90]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

E. Backward Compatibility

 For historical reasons and in order to avoid a profligate consumption
 of reserved port numbers, application protocols which are secured by
 TLS, SSL 3.0, and SSL 2.0 all frequently share the same connection
 port: for example, the https protocol (HTTP secured by SSL or TLS)
 uses port 443 regardless of which security protocol it is using.
 Thus, some mechanism must be determined to distinguish and negotiate
 among the various protocols.

 TLS versions 1.2, 1.1, 1.0, and SSL 3.0 are very similar; thus,
 supporting them all at the same time is relatively easy. TLS clients
 who wish to negotiate with such older servers SHOULD send client
 hello messages using the SSL 3.0 record format and client hello
 structure, sending {3, 3} for the client version field to note that
 they support TLS 1.2 and {3, 0} for the record version field (because
 the SSLv3 record format is being used--although the cleartext record
 format is the same for all versions). If the server supports only a
 downrev version it will respond with a downrev 3.0 server hello; if
 it supports TLS 1.2 it will respond with a TLS 1.2 server hello. The
 negotiation then proceeds as appropriate for the negotiated protocol.

 Similarly, a TLS 1.2 server which wishes to interoperate with
 downrev clients SHOULD accept downrev client hello messages and
 respond with appropriate version fields. Note that the version in the
 server hello message and in the record header are the same.

 Whenever a client already knows the highest protocol known to a
 server (for example, when resuming a session), it SHOULD initiate the
 connection in that native protocol.

 TLS 1.1 clients that support SSL Version 2.0 servers MUST send SSL
 Version 2.0 client hello messages [SSL2]. TLS servers SHOULD accept
 either client hello format if they wish to support SSL 2.0 clients on
 the same connection port. The only deviations from the Version 2.0
 specification are the ability to specify a version with a value of
 three and the support for more ciphering types in the CipherSpec.

 Warning: The ability to send Version 2.0 client hello messages will be
 phased out with all due haste. Implementors SHOULD make every
 effort to move forward as quickly as possible. Version 3.0

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 provides better mechanisms for moving to newer versions.

 The following cipher specifications are carryovers from SSL Version
 2.0. These are assumed to use RSA for key exchange and
 authentication.

 V2CipherSpec TLS_RC4_128_WITH_MD5 = { 0x01,0x00,0x80 };

Dierks & Rescorla Standards Track [Page 91]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 V2CipherSpec TLS_RC4_128_EXPORT40_WITH_MD5 = { 0x02,0x00,0x80 };
 V2CipherSpec TLS_RC2_CBC_128_CBC_WITH_MD5 = { 0x03,0x00,0x80 };
 V2CipherSpec TLS_RC2_CBC_128_CBC_EXPORT40_WITH_MD5
 = { 0x04,0x00,0x80 };
 V2CipherSpec TLS_IDEA_128_CBC_WITH_MD5 = { 0x05,0x00,0x80 };
 V2CipherSpec TLS_DES_64_CBC_WITH_MD5 = { 0x06,0x00,0x40 };
 V2CipherSpec TLS_DES_192_EDE3_CBC_WITH_MD5 = { 0x07,0x00,0xC0 };

 Cipher specifications native to TLS can be included in Version 2.0
 client hello messages using the syntax below. Any V2CipherSpec
 element with its first byte equal to zero will be ignored by Version
 2.0 servers. Clients sending any of the above V2CipherSpecs SHOULD
 also include the TLS equivalent (see Appendix A.5):

 V2CipherSpec (see TLS name) = { 0x00, CipherSuite };

 Note: TLS 1.2 clients may generate the SSLv2 EXPORT cipher suites in
 handshakes for backward compatibility but MUST NOT negotiate them in
 TLS 1.2 mode.

E.1. Version 2 client hello

 The Version 2.0 client hello message is presented below using this
 document's presentation model. The true definition is still assumed
 to be the SSL Version 2.0 specification. Note that this message MUST
 be sent directly on the wire, not wrapped as an SSLv3 record

 uint8 V2CipherSpec[3];

 struct {
 uint16 msg_length;
 uint8 msg_type;
 Version version;
 uint16 cipher_spec_length;
 uint16 session_id_length;
 uint16 challenge_length;
 V2CipherSpec cipher_specs[V2ClientHello.cipher_spec_length];
 opaque session_id[V2ClientHello.session_id_length];

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 opaque challenge[V2ClientHello.challenge_length;
 } V2ClientHello;

 msg_length
 This field is the length of the following data in bytes. The high
 bit MUST be 1 and is not part of the length.

 msg_type
 This field, in conjunction with the version field, identifies a
 version 2 client hello message. The value SHOULD be one (1).

Dierks & Rescorla Standards Track [Page 92]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 version
 The highest version of the protocol supported by the client
 (equals ProtocolVersion.version, see Appendix A.1).

 cipher_spec_length
 This field is the total length of the field cipher_specs. It
 cannot be zero and MUST be a multiple of the V2CipherSpec length
 (3).

 session_id_length
 This field MUST have a value of zero.

 challenge_length
 The length in bytes of the client's challenge to the server to
 authenticate itself. When using the SSLv2 backward compatible
 handshake the client MUST use a 32-byte challenge.

 cipher_specs
 This is a list of all CipherSpecs the client is willing and able
 to use. There MUST be at least one CipherSpec acceptable to the
 server.

 session_id
 This field MUST be empty.

 challenge
 The client challenge to the server for the server to identify
 itself is a (nearly) arbitrary length random. The TLS server will
 right justify the challenge data to become the ClientHello.random
 data (padded with leading zeroes, if necessary), as specified in
 this protocol specification. If the length of the challenge is
 greater than 32 bytes, only the last 32 bytes are used. It is
 legitimate (but not necessary) for a V3 server to reject a V2
 ClientHello that has fewer than 16 bytes of challenge data.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Note: Requests to resume a TLS session MUST use a TLS client hello.

E.2. Avoiding man-in-the-middle version rollback

 When TLS clients fall back to Version 2.0 compatibility mode, they
 SHOULD use special PKCS #1 block formatting. This is done so that TLS
 servers will reject Version 2.0 sessions with TLS-capable clients.

 When TLS clients are in Version 2.0 compatibility mode, they set the
 right-hand (least-significant) 8 random bytes of the PKCS padding
 (not including the terminal null of the padding) for the RSA
 encryption of the ENCRYPTED-KEY-DATA field of the CLIENT-MASTER-KEY
 to 0x03 (the other padding bytes are random). After decrypting the

Dierks & Rescorla Standards Track [Page 93]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 ENCRYPTED-KEY-DATA field, servers that support TLS SHOULD issue an
 error if these eight padding bytes are 0x03. Version 2.0 servers
 receiving blocks padded in this manner will proceed normally.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 94]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

F. Security analysis

 The TLS protocol is designed to establish a secure connection between
 a client and a server communicating over an insecure channel. This
 document makes several traditional assumptions, including that
 attackers have substantial computational resources and cannot obtain
 secret information from sources outside the protocol. Attackers are
 assumed to have the ability to capture, modify, delete, replay, and
 otherwise tamper with messages sent over the communication channel.
 This appendix outlines how TLS has been designed to resist a variety
 of attacks.

F.1. Handshake protocol

 The handshake protocol is responsible for selecting a CipherSpec and
 generating a Master Secret, which together comprise the primary
 cryptographic parameters associated with a secure session. The
 handshake protocol can also optionally authenticate parties who have
 certificates signed by a trusted certificate authority.

F.1.1. Authentication and key exchange

 TLS supports three authentication modes: authentication of both
 parties, server authentication with an unauthenticated client, and
 total anonymity. Whenever the server is authenticated, the channel is
 secure against man-in-the-middle attacks, but completely anonymous
 sessions are inherently vulnerable to such attacks. Anonymous
 servers cannot authenticate clients. If the server is authenticated,
 its certificate message must provide a valid certificate chain
 leading to an acceptable certificate authority. Similarly,
 authenticated clients must supply an acceptable certificate to the
 server. Each party is responsible for verifying that the other's

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 certificate is valid and has not expired or been revoked.

 The general goal of the key exchange process is to create a
 pre_master_secret known to the communicating parties and not to
 attackers. The pre_master_secret will be used to generate the
 master_secret (see Section 8.1). The master_secret is required to
 generate the finished messages, encryption keys, and MAC secrets (see
 Sections 7.4.10, 7.4.11 and 6.3). By sending a correct finished
 message, parties thus prove that they know the correct
 pre_master_secret.

F.1.1.1. Anonymous key exchange

 Completely anonymous sessions can be established using RSA or Diffie-
 Hellman for key exchange. With anonymous RSA, the client encrypts a
 pre_master_secret with the server's uncertified public key extracted

Dierks & Rescorla Standards Track [Page 95]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 from the server key exchange message. The result is sent in a client
 key exchange message. Since eavesdroppers do not know the server's
 private key, it will be infeasible for them to decode the
 pre_master_secret.

 Note: No anonymous RSA Cipher Suites are defined in this document.

 With Diffie-Hellman, the server's public parameters are contained in
 the server key exchange message and the client's are sent in the
 client key exchange message. Eavesdroppers who do not know the
 private values should not be able to find the Diffie-Hellman result
 (i.e. the pre_master_secret).

 Warning: Completely anonymous connections only provide protection
 against passive eavesdropping. Unless an independent tamper-
 proof channel is used to verify that the finished messages
 were not replaced by an attacker, server authentication is
 required in environments where active man-in-the-middle
 attacks are a concern.

F.1.1.2. RSA key exchange and authentication

 With RSA, key exchange and server authentication are combined. The
 public key may be either contained in the server's certificate or may
 be a temporary RSA key sent in a server key exchange message. When
 temporary RSA keys are used, they are signed by the server's RSA
 certificate. The signature includes the current ClientHello.random,
 so old signatures and temporary keys cannot be replayed. Servers may
 use a single temporary RSA key for multiple negotiation sessions.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Note: The temporary RSA key option is useful if servers need large
 certificates but must comply with government-imposed size limits
 on keys used for key exchange.

 Note that if ephemeral RSA is not used, compromise of the server's
 static RSA key results in a loss of confidentiality for all sessions
 protected under that static key. TLS users desiring Perfect Forward
 Secrecy should use DHE cipher suites. The damage done by exposure of
 a private key can be limited by changing one's private key (and
 certificate) frequently.

 After verifying the server's certificate, the client encrypts a
 pre_master_secret with the server's public key. By successfully
 decoding the pre_master_secret and producing a correct finished
 message, the server demonstrates that it knows the private key
 corresponding to the server certificate.

 When RSA is used for key exchange, clients are authenticated using

Dierks & Rescorla Standards Track [Page 96]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 the certificate verify message (see Section 7.4.10). The client signs
 a value derived from the master_secret and all preceding handshake
 messages. These handshake messages include the server certificate,
 which binds the signature to the server, and ServerHello.random,
 which binds the signature to the current handshake process.

F.1.1.3. Diffie-Hellman key exchange with authentication

 When Diffie-Hellman key exchange is used, the server can either
 supply a certificate containing fixed Diffie-Hellman parameters or
 can use the server key exchange message to send a set of temporary
 Diffie-Hellman parameters signed with a DSS or RSA certificate.
 Temporary parameters are hashed with the hello.random values before
 signing to ensure that attackers do not replay old parameters. In
 either case, the client can verify the certificate or signature to
 ensure that the parameters belong to the server.

 If the client has a certificate containing fixed Diffie-Hellman
 parameters, its certificate contains the information required to
 complete the key exchange. Note that in this case the client and
 server will generate the same Diffie-Hellman result (i.e.,
 pre_master_secret) every time they communicate. To prevent the
 pre_master_secret from staying in memory any longer than necessary,
 it should be converted into the master_secret as soon as possible.
 Client Diffie-Hellman parameters must be compatible with those
 supplied by the server for the key exchange to work.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 If the client has a standard DSS or RSA certificate or is
 unauthenticated, it sends a set of temporary parameters to the server
 in the client key exchange message, then optionally uses a
 certificate verify message to authenticate itself.

 If the same DH keypair is to be used for multiple handshakes, either
 because the client or server has a certificate containing a fixed DH
 keypair or because the server is reusing DH keys, care must be taken
 to prevent small subgroup attacks. Implementations SHOULD follow the
 guidelines found in [SUBGROUP].

 Small subgroup attacks are most easily avoided by using one of the
 DHE ciphersuites and generating a fresh DH private key (X) for each
 handshake. If a suitable base (such as 2) is chosen, g^X mod p can be
 computed very quickly so the performance cost is minimized.
 Additionally, using a fresh key for each handshake provides Perfect
 Forward Secrecy. Implementations SHOULD generate a new X for each
 handshake when using DHE ciphersuites.

F.1.2. Version rollback attacks

Dierks & Rescorla Standards Track [Page 97]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Because TLS includes substantial improvements over SSL Version 2.0,
 attackers may try to make TLS-capable clients and servers fall back
 to Version 2.0. This attack can occur if (and only if) two TLS-
 capable parties use an SSL 2.0 handshake.

 Although the solution using non-random PKCS #1 block type 2 message
 padding is inelegant, it provides a reasonably secure way for Version
 3.0 servers to detect the attack. This solution is not secure against
 attackers who can brute force the key and substitute a new ENCRYPTED-
 KEY-DATA message containing the same key (but with normal padding)
 before the application specified wait threshold has expired. Parties
 concerned about attacks of this scale should not be using 40-bit
 encryption keys anyway. Altering the padding of the least-significant
 8 bytes of the PKCS padding does not impact security for the size of
 the signed hashes and RSA key lengths used in the protocol, since
 this is essentially equivalent to increasing the input block size by
 8 bytes.

F.1.3. Detecting attacks against the handshake protocol

 An attacker might try to influence the handshake exchange to make the
 parties select different encryption algorithms than they would
 normally chooses.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 For this attack, an attacker must actively change one or more
 handshake messages. If this occurs, the client and server will
 compute different values for the handshake message hashes. As a
 result, the parties will not accept each others' finished messages.
 Without the master_secret, the attacker cannot repair the finished
 messages, so the attack will be discovered.

F.1.4. Resuming sessions

 When a connection is established by resuming a session, new
 ClientHello.random and ServerHello.random values are hashed with the
 session's master_secret. Provided that the master_secret has not been
 compromised and that the secure hash operations used to produce the
 encryption keys and MAC secrets are secure, the connection should be
 secure and effectively independent from previous connections.
 Attackers cannot use known encryption keys or MAC secrets to
 compromise the master_secret without breaking the secure hash
 operations (which use both SHA and MD5).

 Sessions cannot be resumed unless both the client and server agree.
 If either party suspects that the session may have been compromised,
 or that certificates may have expired or been revoked, it should
 force a full handshake. An upper limit of 24 hours is suggested for
 session ID lifetimes, since an attacker who obtains a master_secret

Dierks & Rescorla Standards Track [Page 98]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 may be able to impersonate the compromised party until the
 corresponding session ID is retired. Applications that may be run in
 relatively insecure environments should not write session IDs to
 stable storage.

F.1.5 Extensions

 Security considerations for the extension mechanism in general, and
 the design of new extensions, are described in the previous section.
 A security analysis of each of the extensions defined in this
 document is given below.

 In general, implementers should continue to monitor the state of the
 art, and address any weaknesses identified.

F.1.5.1 Security of server_name

 If a single server hosts several domains, then clearly it is
 necessary for the owners of each domain to ensure that this satisfies

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 their security needs. Apart from this, server_name does not appear
 to introduce significant security issues.

 Implementations MUST ensure that a buffer overflow does not occur
 whatever the values of the length fields in server_name.

 Although this document specifies an encoding for internationalized
 hostnames in the server_name extension, it does not address any
 security issues associated with the use of internationalized
 hostnames in TLS - in particular, the consequences of "spoofed" names
 that are indistinguishable from another name when displayed or
 printed. It is recommended that server certificates not be issued
 for internationalized hostnames unless procedures are in place to
 mitigate the risk of spoofed hostnames.

 6.2. Security of max_fragment_length

 The maximum fragment length takes effect immediately, including for
 handshake messages. However, that does not introduce any security
 complications that are not already present in TLS, since [TLS]
 requires implementations to be able to handle fragmented handshake
 messages.

 Note that as described in section XXX, once a non-null cipher suite
 has been activated, the effective maximum fragment length depends on
 the cipher suite and compression method, as well as on the negotiated
 max_fragment_length. This must be taken into account when sizing
 buffers, and checking for buffer overflow.

Dierks & Rescorla Standards Track [Page 99]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

F.1.5.2 Security of client_certificate_url

 There are two major issues with this extension.

 The first major issue is whether or not clients should include
 certificate hashes when they send certificate URLs.

 When client authentication is used *without* the
 client_certificate_url extension, the client certificate chain is
 covered by the Finished message hashes. The purpose of including
 hashes and checking them against the retrieved certificate chain, is
 to ensure that the same property holds when this extension is used -
 i.e., that all of the information in the certificate chain retrieved
 by the server is as the client intended.

 On the other hand, omitting certificate hashes enables functionality
 that is desirable in some circumstances - for example clients can be

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 issued daily certificates that are stored at a fixed URL and need not
 be provided to the client. Clients that choose to omit certificate
 hashes should be aware of the possibility of an attack in which the
 attacker obtains a valid certificate on the client's key that is
 different from the certificate the client intended to provide.
 Although TLS uses both MD5 and SHA-1 hashes in several other places,
 this was not believed to be necessary here. The property required of
 SHA-1 is second pre-image resistance.

 The second major issue is that support for client_certificate_url
 involves the server acting as a client in another URL protocol. The
 server therefore becomes subject to many of the same security
 concerns that clients of the URL scheme are subject to, with the
 added concern that the client can attempt to prompt the server to
 connect to some, possibly weird-looking URL.

 In general this issue means that an attacker might use the server to
 indirectly attack another host that is vulnerable to some security
 flaw. It also introduces the possibility of denial of service
 attacks in which an attacker makes many connections to the server,
 each of which results in the server attempting a connection to the
 target of the attack.

 Note that the server may be behind a firewall or otherwise able to
 access hosts that would not be directly accessible from the public
 Internet; this could exacerbate the potential security and denial of
 service problems described above, as well as allowing the existence
 of internal hosts to be confirmed when they would otherwise be
 hidden.

 The detailed security concerns involved will depend on the URL

Dierks & Rescorla Standards Track [Page 100]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 schemes supported by the server. In the case of HTTP, the concerns
 are similar to those that apply to a publicly accessible HTTP proxy
 server. In the case of HTTPS, the possibility for loops and
 deadlocks to be created exists and should be addressed. In the case
 of FTP, attacks similar to FTP bounce attacks arise.

 As a result of this issue, it is RECOMMENDED that the
 client_certificate_url extension should have to be specifically
 enabled by a server administrator, rather than being enabled by
 default. It is also RECOMMENDED that URI protocols be enabled by the
 administrator individually, and only a minimal set of protocols be
 enabled, with unusual protocols offering limited security or whose
 security is not well-understood being avoided.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 As discussed in [URI], URLs that specify ports other than the default
 may cause problems, as may very long URLs (which are more likely to
 be useful in exploiting buffer overflow bugs).

 Also note that HTTP caching proxies are common on the Internet, and
 some proxies do not check for the latest version of an object
 correctly. If a request using HTTP (or another caching protocol)
 goes through a misconfigured or otherwise broken proxy, the proxy may
 return an out-of-date response.

F.1.5.4. Security of trusted_ca_keys

 It is possible that which CA root keys a client possesses could be
 regarded as confidential information. As a result, the CA root key
 indication extension should be used with care.

 The use of the SHA-1 certificate hash alternative ensures that each
 certificate is specified unambiguously. As for the previous
 extension, it was not believed necessary to use both MD5 and SHA-1
 hashes.

F.1.5.5. Security of truncated_hmac

 It is possible that truncated MACs are weaker than "un-truncated"
 MACs. However, no significant weaknesses are currently known or
 expected to exist for HMAC with MD5 or SHA-1, truncated to 80 bits.

 Note that the output length of a MAC need not be as long as the
 length of a symmetric cipher key, since forging of MAC values cannot
 be done off-line: in TLS, a single failed MAC guess will cause the
 immediate termination of the TLS session.

 Since the MAC algorithm only takes effect after the handshake
 messages have been authenticated by the hashes in the Finished

Dierks & Rescorla Standards Track [Page 101]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 messages, it is not possible for an active attacker to force
 negotiation of the truncated HMAC extension where it would not
 otherwise be used (to the extent that the handshake authentication is
 secure). Therefore, in the event that any security problem were
 found with truncated HMAC in future, if either the client or the
 server for a given session were updated to take into account the
 problem, they would be able to veto use of this extension.

F.1.5.6. Security of status_request

 If a client requests an OCSP response, it must take into account that

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 an attacker's server using a compromised key could (and probably
 would) pretend not to support the extension. A client that requires
 OCSP validation of certificates SHOULD either contact the OCSP server
 directly in this case, or abort the handshake.

 Use of the OCSP nonce request extension (id-pkix-ocsp-nonce) may
 improve security against attacks that attempt to replay OCSP
 responses; see section 4.4.1 of [OCSP] for further details.

F.2. Protecting application data

 The master_secret is hashed with the ClientHello.random and
 ServerHello.random to produce unique data encryption keys and MAC
 secrets for each connection.

 Outgoing data is protected with a MAC before transmission. To prevent
 message replay or modification attacks, the MAC is computed from the
 MAC secret, the sequence number, the message length, the message
 contents, and two fixed character strings. The message type field is
 necessary to ensure that messages intended for one TLS Record Layer
 client are not redirected to another. The sequence number ensures
 that attempts to delete or reorder messages will be detected. Since
 sequence numbers are 64-bits long, they should never overflow.
 Messages from one party cannot be inserted into the other's output,
 since they use independent MAC secrets. Similarly, the server-write
 and client-write keys are independent so stream cipher keys are used
 only once.

 If an attacker does break an encryption key, all messages encrypted
 with it can be read. Similarly, compromise of a MAC key can make
 message modification attacks possible. Because MACs are also
 encrypted, message-alteration attacks generally require breaking the
 encryption algorithm as well as the MAC.

 Note: MAC secrets may be larger than encryption keys, so messages can
 remain tamper resistant even if encryption keys are broken.

Dierks & Rescorla Standards Track [Page 102]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

F.3. Explicit IVs

 [CBCATT] describes a chosen plaintext attack on TLS that depends
 on knowing the IV for a record. Previous versions of TLS [TLS1.0]
 used the CBC residue of the previous record as the IV and
 therefore enabled this attack. This version uses an explicit IV
 in order to protect against this attack.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

F.4 Security of Composite Cipher Modes

 TLS secures transmitted application data via the use of symmetric
 encryption and authentication functions defined in the negotiated
 ciphersuite. The objective is to protect both the integrity and
 confidentiality of the transmitted data from malicious actions by
 active attackers in the network. It turns out that the order in
 which encryption and authentication functions are applied to the
 data plays an important role for achieving this goal [ENCAUTH].

 The most robust method, called encrypt-then-authenticate, first
 applies encryption to the data and then applies a MAC to the
 ciphertext. This method ensures that the integrity and
 confidentiality goals are obtained with ANY pair of encryption
 and MAC functions provided that the former is secure against
 chosen plaintext attacks and the MAC is secure against chosen-
 message attacks. TLS uses another method, called authenticate-
 then-encrypt, in which first a MAC is computed on the plaintext
 and then the concatenation of plaintext and MAC is encrypted.
 This method has been proven secure for CERTAIN combinations of
 encryption functions and MAC functions, but is not guaranteed to
 be secure in general. In particular, it has been shown that there
 exist perfectly secure encryption functions (secure even in the
 information theoretic sense) that combined with any secure MAC
 function fail to provide the confidentiality goal against an
 active attack. Therefore, new ciphersuites and operation modes
 adopted into TLS need to be analyzed under the authenticate-then-
 encrypt method to verify that they achieve the stated integrity
 and confidentiality goals.

 Currently, the security of the authenticate-then-encrypt method
 has been proven for some important cases. One is the case of
 stream ciphers in which a computationally unpredictable pad of
 the length of the message plus the length of the MAC tag is
 produced using a pseudo-random generator and this pad is xor-ed
 with the concatenation of plaintext and MAC tag. The other is
 the case of CBC mode using a secure block cipher. In this case,
 security can be shown if one applies one CBC encryption pass to
 the concatenation of plaintext and MAC and uses a new,
 independent and unpredictable, IV for each new pair of plaintext

Dierks & Rescorla Standards Track [Page 103]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 and MAC. In previous versions of SSL, CBC mode was used properly
 EXCEPT that it used a predictable IV in the form of the last
 block of the previous ciphertext. This made TLS open to chosen
 plaintext attacks. This verson of the protocol is immune to

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 those attacks. For exact details in the encryption modes proven
 secure see [ENCAUTH].

F.5 Denial of Service

 TLS is susceptible to a number of denial of service (DoS)
 attacks. In particular, an attacker who initiates a large number
 of TCP connections can cause a server to consume large amounts of
 CPU doing RSA decryption. However, because TLS is generally used
 over TCP, it is difficult for the attacker to hide his point of
 origin if proper TCP SYN randomization is used [SEQNUM] by the
 TCP stack.

 Because TLS runs over TCP, it is also susceptible to a number of
 denial of service attacks on individual connections. In
 particular, attackers can forge RSTs, terminating connections, or
 forge partial TLS records, causing the connection to stall.
 These attacks cannot in general be defended against by a TCP-
 using protocol. Implementors or users who are concerned with this
 class of attack should use IPsec AH [AH] or ESP [ESP].

F.6. Final notes

 For TLS to be able to provide a secure connection, both the client
 and server systems, keys, and applications must be secure. In
 addition, the implementation must be free of security errors.

 The system is only as strong as the weakest key exchange and
 authentication algorithm supported, and only trustworthy
 cryptographic functions should be used. Short public keys, 40-bit
 bulk encryption keys, and anonymous servers should be used with great
 caution. Implementations and users must be careful when deciding
 which certificates and certificate authorities are acceptable; a
 dishonest certificate authority can do tremendous damage.

Dierks & Rescorla Standards Track [Page 104]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

Security Considerations

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Security issues are discussed throughout this memo, especially in
 Appendices D, E, and F.

Normative References
 [AES] National Institute of Standards and Technology,
 "Specification for the Advanced Encryption Standard (AES)"
 FIPS 197. November 26, 2001.

 [3DES] W. Tuchman, "Hellman Presents No Shortcut Solutions To DES,"
 IEEE Spectrum, v. 16, n. 7, July 1979, pp40-41.

 [DES] ANSI X3.106, "American National Standard for Information
 Systems-Data Link Encryption," American National Standards
 Institute, 1983.

 [DSS] NIST FIPS PUB 186-2, "Digital Signature Standard," National
 Institute of Standards and Technology, U.S. Department of
 Commerce, 2000.

 [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication," RFC 2104, February
 1997.

 [HTTP] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P. and T. Berners-Lee, "Hypertext Transfer
 Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [IDEA] X. Lai, "On the Design and Security of Block Ciphers," ETH
 Series in Information Processing, v. 1, Konstanz: Hartung-
 Gorre Verlag, 1992.

 [IDNA] Faltstrom, P., Hoffman, P. and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",

RFC 3490, March 2003.

 [MD5] Rivest, R., "The MD5 Message Digest Algorithm", RFC 1321,
 April 1992.

 [OCSP] Myers, M., Ankney, R., Malpani, A., Galperin, S. and C.
 Adams, "Internet X.509 Public Key Infrastructure: Online
 Certificate Status Protocol - OCSP", RFC 2560, June 1999.

 [PKCS1A] B. Kaliski, "Public-Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 1.5", RFC 2313,
 March 1998.

Dierks & Rescorla Standards Track [Page 105]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 [PKCS1B] J. Jonsson, B. Kaliski, "Public-Key Cryptography Standards
 (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC

3447, February 2003.

 [PKIOP] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure - Operation Protocols: FTP and HTTP", RFC

2585, May 1999.

 [PKIX] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
 Public Key Infrastructure: Part I: X.509 Certificate and CRL
 Profile", RFC 3280, April 2002.

 [RC2] Rivest, R., "A Description of the RC2(r) Encryption
 Algorithm", RFC 2268, January 1998.

 [SCH] B. Schneier. "Applied Cryptography: Protocols, Algorithms,
 and Source Code in C, 2ed", Published by John Wiley & Sons,
 Inc. 1996.

 [SHA] NIST FIPS PUB 180-2, "Secure Hash Standard," National
 Institute of Standards and Technology, U.S. Department of
 Commerce., August 2001.

 [REQ] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] T. Narten, H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", RFC 3434, October 1998.

 [TLSAES] Chown, P. "Advanced Encryption Standard (AES) Ciphersuites
 for Transport Layer Security (TLS)", RFC 3268, June 2002.

 [TLSEXT] Blake-Wilson, S., Nystrom, M, Hopwood, D., Mikkelsen, J.,
 Wright, T., "Transport Layer Security (TLS) Extensions", RFC

3546, June 2003.
 [TLSKRB] A. Medvinsky, M. Hur, "Addition of Kerberos Cipher Suites to
 Transport Layer Security (TLS)", RFC 2712, October 1999.

 [URI] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [UTF8] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
RFC 3629, November 2003.

 [X509-4th] ITU-T Recommendation X.509 (2000) | ISO/IEC 9594- 8:2001,

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc2585
https://datatracker.ietf.org/doc/html/rfc2585
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc2268
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3434
https://datatracker.ietf.org/doc/html/rfc3268
https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc3629

Dierks & Rescorla Standards Track [Page 106]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 "Information Systems - Open Systems Interconnection - The
 Directory: Public key and Attribute certificate
 frameworks."

 [X509-4th-TC1] ITU-T Recommendation X.509(2000) Corrigendum 1(2001) |
 ISO/IEC 9594-8:2001/Cor.1:2002, Technical Corrigendum 1 to
 ISO/IEC 9594:8:2001.

Informative References

 [AEAD] Mcgrew, D., "Authenticated Encryption", July 2006, draft-
mcgrew-auth-enc-00.txt.

 [AH] Kent, S., and Atkinson, R., "IP Authentication Header", RFC
2402, November 1998.

 [BLEI] Bleichenbacher D., "Chosen Ciphertext Attacks against
 Protocols Based on RSA Encryption Standard PKCS #1" in
 Advances in Cryptology -- CRYPTO'98, LNCS vol. 1462, pages:
 1-12, 1998.

 [CBCATT] Moeller, B., "Security of CBC Ciphersuites in SSL/TLS:
 Problems and Countermeasures",

http://www.openssl.org/~bodo/tls-cbc.txt.

 [CBCTIME] Canvel, B., "Password Interception in a SSL/TLS Channel",
http://lasecwww.epfl.ch/memo_ssl.shtml, 2003.

 [CCM] "NIST Special Publication 800-38C: The CCM Mode for
 Authentication and Confidentiality",

http://csrc.nist.gov/publications/nistpubs/SP800-38C.pdf.

 [ENCAUTH] Krawczyk, H., "The Order of Encryption and Authentication
 for Protecting Communications (Or: How Secure is SSL?)",
 Crypto 2001.

 [ESP] Kent, S., and Atkinson, R., "IP Encapsulating Security
 Payload (ESP)", RFC 2406, November 1998.

 [GCM] "NIST Special Publication 800-38C: The CCM Mode for
 Authentication and Confidentiality",

http://csrc.nist.gov/publications/nistpubs/SP800-38C.pdf.

 [KPR03] Klima, V., Pokorny, O., Rosa, T., "Attacking RSA-based
 Sessions in SSL/TLS", http://eprint.iacr.org/2003/052/,
 March 2003.

 [PKCS6] RSA Laboratories, "PKCS #6: RSA Extended Certificate Syntax

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-mcgrew-auth-enc-00.txt
https://datatracker.ietf.org/doc/html/draft-mcgrew-auth-enc-00.txt
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2402
http://www.openssl.org/~bodo/tls-cbc.txt
http://lasecwww.epfl.ch/memo_ssl.shtml
http://csrc.nist.gov/publications/nistpubs/SP800-38C.pdf
https://datatracker.ietf.org/doc/html/rfc2406
http://csrc.nist.gov/publications/nistpubs/SP800-38C.pdf
http://eprint.iacr.org/2003/052/

Dierks & Rescorla Standards Track [Page 107]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Standard," version 1.5, November 1993.

 [PKCS7] RSA Laboratories, "PKCS #7: RSA Cryptographic Message Syntax
 Standard," version 1.5, November 1993.

 [RANDOM] D. Eastlake 3rd, S. Crocker, J. Schiller. "Randomness
 Recommendations for Security", RFC 1750, December 1994.

 [RSA] R. Rivest, A. Shamir, and L. M. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key Cryptosystems,"
 Communications of the ACM, v. 21, n. 2, Feb 1978, pp.
 120-126.

 [SEQNUM] Bellovin. S., "Defending Against Sequence Number Attacks",
RFC 1948, May 1996.

 [SSL2] Hickman, Kipp, "The SSL Protocol", Netscape Communications
 Corp., Feb 9, 1995.

 [SSL3] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol",
 Netscape Communications Corp., Nov 18, 1996.

 [SUBGROUP] R. Zuccherato, "Methods for Avoiding the Small-Subgroup
 Attacks on the Diffie-Hellman Key Agreement Method for
 S/MIME", RFC 2785, March 2000.

 [TCP] Postel, J., "Transmission Control Protocol," STD 7, RFC 793,
 September 1981.

 [TIMING] Boneh, D., Brumley, D., "Remote timing attacks are
 practical", USENIX Security Symposium 2003.

 [TLS1.0] Dierks, T., and Allen, C., "The TLS Protocol, Version 1.0",
RFC 2246, January 1999.

 [TLS1.1] Dierks, T., and Rescorla, E., "The TLS Protocol, Version
 1.1", RFC 4346, April, 2006.

 [X501] ITU-T Recommendation X.501: Information Technology - Open
 Systems Interconnection - The Directory: Models, 1993.

 [X509] ITU-T Recommendation X.509 (1997 E): Information Technology -
 Open Systems Interconnection - "The Directory -
 Authentication Framework". 1988.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1948
https://datatracker.ietf.org/doc/html/rfc2785
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346

 [XDR] R. Srinivansan, Sun Microsystems, "XDR: External Data
 Representation Standard", RFC 1832, August 1995.

Dierks & Rescorla Standards Track [Page 108]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

Credits

 Working Group Chairs
 Eric Rescorla
 EMail: ekr@networkresonance.com

 Pasi Eronen
 pasi.eronen@nokia.com

 Editors

 Tim Dierks Eric Rescorla
 Independent Network Resonance, Inc.

 EMail: tim@dierks.org EMail: ekr@networkresonance.com

 Other contributors

 Christopher Allen (co-editor of TLS 1.0)
 Alacrity Ventures
 ChristopherA@AlacrityManagement.com

 Martin Abadi
 University of California, Santa Cruz
 abadi@cs.ucsc.edu

 Steven M. Bellovin
 Columbia University
 smb@cs.columbia.edu

 Simon Blake-Wilson
 BCI
 EMail: sblakewilson@bcisse.com

 Ran Canetti
 IBM
 canetti@watson.ibm.com

 Pete Chown
 Skygate Technology Ltd

https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 pc@skygate.co.uk

 Taher Elgamal
 taher@securify.com
 Securify

Dierks & Rescorla Standards Track [Page 109]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Anil Gangolli
 anil@busybuddha.org

 Kipp Hickman

 David Hopwood
 Independent Consultant
 EMail: david.hopwood@blueyonder.co.uk

 Phil Karlton (co-author of SSLv3)

 Paul Kocher (co-author of SSLv3)
 Cryptography Research
 paul@cryptography.com

 Hugo Krawczyk
 Technion Israel Institute of Technology
 hugo@ee.technion.ac.il

 Jan Mikkelsen
 Transactionware
 EMail: janm@transactionware.com

 Magnus Nystrom
 RSA Security
 EMail: magnus@rsasecurity.com

 Robert Relyea
 Netscape Communications
 relyea@netscape.com

 Jim Roskind
 Netscape Communications
 jar@netscape.com

 Michael Sabin

 Dan Simon
 Microsoft, Inc.
 dansimon@microsoft.com

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

 Tom Weinstein

 Tim Wright
 Vodafone
 EMail: timothy.wright@vodafone.com

Comments

Dierks & Rescorla Standards Track [Page 110]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 The discussion list for the IETF TLS working group is located at the
 e-mail address <tls@ietf.org>. Information on the group and
 information on how to subscribe to the list is at
 <https://www1.ietf.org/mailman/listinfo/tls>

 Archives of the list can be found at:
 <http://www.ietf.org/mail-archive/web/tls/current/index.html>

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://www1.ietf.org/mailman/listinfo/tls
http://www.ietf.org/mail-archive/web/tls/current/index.html

Dierks & Rescorla Standards Track [Page 111]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

 Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

 Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 Copyright Statement

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Dierks & Rescorla Standards Track [Page 112]draft-
ietf-tls-rfc4346-bis-02.txt TLS October 2006

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-02.txt

Dierks & Rescorla Standards Track [Page 113]

