
TLS Working Group Donald Eastlake 3rd
INTERNET-DRAFT Motorola Laboratories
Obsoletes: RFC 4366
Updates: RFC 2246, RFC 4346
Intended status: Proposed Standard
Expires: Decmeber 2007 June 2007

Transport Layer Security (TLS) Extensions: Extension Definitions
--------- ----- -------- ----- ----------- --------- -----------

<draft-ietf-tls-rfc4366-bis-00.txt>

Status of This Document

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Distribution of this document is unlimited. Comments should be sent
 to the TLS working group mailing list <tls@ietf.org>.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 This document provides documentation for existing specific TLS
 extensions. It is a companion document for the TLS 1.2 specification,

draft-ietf-tls-rfc4346-bis-03.txt.

https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4366-bis-00.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-03.txt

Donald Eastlake 3rd [Page 1]

INTERNET-DRAFT TLS Extension Definitions

Acknowledgements

 This draft is based on material from RFC 4366 for which the authors
 were S. Blake-Wilson, M. Nystron, D. Hopwood, J. Mikkelsen, and T.
 Wright.

Table of Contents

 Status of This Document....................................1
 Abstract...1

 Acknowledgements...2
 Table of Contents..2

1. Introduction..3
1.1 Specific Extensions Covered............................3
1.2 Conventions Used in This Document......................4

3. Server Name Indication..................................5
4. Maximum Fragment Length Negotiation.....................6
5. Client Certificate URLs.................................7
6. Trusted CA Indication..................................10
7. Truncated HMAC...11
8. Certificate Status Request.............................12

9. IANA Considerations....................................15
10. Security Considerations...............................15
10.1 Security Considerations for server_name..............15
10.2 Security Considerations for max_fragment_length......15
10.3 Security Considerations for client_certificate_url...16
10.4 Security Considerations for trusted_ca_keys..........17
10.5 Security Considerations for truncated_hmac...........17
10.6 Security Considerations for status_request...........18
11. Internationalization Considerations...................18

12. Normative References..................................19
13. Informative References................................19

 Copyright, Disclaimer, and Additional IPR Provisions......21

 Author's Address..22
 Expiration and File Name..................................22

https://datatracker.ietf.org/doc/html/rfc4366

Donald Eastlake 3rd [Page 2]

INTERNET-DRAFT TLS Extension Definitions

1. Introduction

 The TLS (Transport Layer Security) Protocol Version 1.2 is specified
 in [RFCTLS]. That specification includes the framework for extensions
 to TLS, considerations in designing such extensions (see Section

7.4.1.4 of [RFCTLS]), and IANA Considerations for the allocation of
 new extension code points; however, it does not specify any
 particular extensions other than CertHashTypes (see Section

7.4.1.4.1of [RFCTLS]).

 This document provides the specifications for existing TLS
 extensions. It is, for the most part, the mere adaptation and editing
 of material from [RFC4366], which covered all aspects of TLS
 extensions for TLS 1.0 [RFC2246] and TLS 1.1 [RFC4346].

1.1 Specific Extensions Covered

 The extensions described here focus on extending the functionality
 provided by the TLS protocol message formats. Other issues, such as
 the addition of new cipher suites, are deferred.

 Specifically, the extensions described in this document:

 - Allow TLS clients to provide to the TLS server the name of the
 server they are contacting. This functionality is desirable in
 order to facilitate secure connections to servers that host
 multiple 'virtual' servers at a single underlying network address.

 - Allow TLS clients and servers to negotiate the maximum fragment
 length to be sent. This functionality is desirable as a result of
 memory constraints among some clients, and bandwidth constraints
 among some access networks.

 - Allow TLS clients and servers to negotiate the use of client
 certificate URLs. This functionality is desirable in order to
 conserve memory on constrained clients.

 - Allow TLS clients to indicate to TLS servers which CA root keys
 they possess. This functionality is desirable in order to prevent
 multiple handshake failures involving TLS clients that are only
 able to store a small number of CA root keys due to memory
 limitations.

 - Allow TLS clients and servers to negotiate the use of truncated
 MACs. This functionality is desirable in order to conserve
 bandwidth in constrained access networks.

https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346

 - Allow TLS clients and servers to negotiate that the server sends

Donald Eastlake 3rd [Page 3]

INTERNET-DRAFT TLS Extension Definitions

 the client certificate status information (e.g., an Online
 Certificate Status Protocol (OCSP) [RFC2560] response) during a
 TLS handshake. This functionality is desirable in order to avoid
 sending a Certificate Revocation List (CRL) over a constrained
 access network and therefore save bandwidth.

 The extensions described in this document may be used by TLS clients
 and servers. The extensions are designed to be backwards compatible,
 meaning that TLS clients that support the extensions can talk to TLS
 servers that do not support the extensions, and vice versa. The
 document therefore updates TLS 1.0 [RFC2246] and TLS 1.1 [RFC4346].

1.2 Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc2119

Donald Eastlake 3rd [Page 4]

INTERNET-DRAFT TLS Extension Definitions

3. Server Name Indication

 TLS does not provide a mechanism for a client to tell a server the
 name of the server it is contacting. It may be desirable for clients
 to provide this information to facilitate secure connections to
 servers that host multiple 'virtual' servers at a single underlying
 network address.

 In order to provide the server name, clients MAY include an extension
 of type "server_name" in the (extended) client hello. The
 "extension_data" field of this extension SHALL contain
 "ServerNameList" where:

 struct {
 NameType name_type;
 select (name_type) {
 case host_name: HostName;
 } name;
 } ServerName;

 enum {
 host_name(0), (255)
 } NameType;

 opaque HostName<1..2^16-1>;

 struct {
 ServerName server_name_list<1..2^16-1>
 } ServerNameList;

 Currently, the only server names supported are DNS hostnames;
 however, this does not imply any dependency of TLS on DNS, and other
 name types may be added in the future (by an RFC that updates this
 document). TLS MAY treat provided server names as opaque data and
 pass the names and types to the application.

 "HostName" contains the fully qualified DNS hostname of the server,
 as understood by the client. The hostname is represented as a byte
 string using UTF-8 encoding [RFC3629], without a trailing dot.

 If the hostname labels contain only US-ASCII characters, then the
 client MUST ensure that labels are separated only by the byte 0x2E,
 representing the dot character U+002E (requirement 1 in Section 3.1
 of [RFC3490] notwithstanding). If the server needs to match the
 HostName against names that contain non-US-ASCII characters, it MUST
 perform the conversion operation described in Section 4 of [RFC3490],
 treating the HostName as a "query string" (i.e., the AllowUnassigned
 flag MUST be set). Note that IDNA allows labels to be separated by
 any of the Unicode characters U+002E, U+3002, U+FF0E, and U+FF61;

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3490#section-3.1
https://datatracker.ietf.org/doc/html/rfc3490#section-3.1
https://datatracker.ietf.org/doc/html/rfc3490#section-4

 therefore, servers MUST accept any of these characters as a label

Donald Eastlake 3rd [Page 5]

INTERNET-DRAFT TLS Extension Definitions

 separator. If the server only needs to match the HostName against
 names containing exclusively ASCII characters, it MUST compare ASCII
 names case-insensitively.

 Literal IPv4 and IPv6 addresses are not permitted in "HostName".

 It is RECOMMENDED that clients include an extension of type
 "server_name" in the client hello whenever they locate a server by a
 supported name type.

 A server that receives a client hello containing the "server_name"
 extension MAY use the information contained in the extension to guide
 its selection of an appropriate certificate to return to the client,
 and/or other aspects of security policy. In this event, the server
 SHALL include an extension of type "server_name" in the (extended)
 server hello. The "extension_data" field of this extension SHALL be
 empty.

 If the server understood the client hello extension but does not
 recognize the server name, it SHOULD send an "unrecognized_name"
 alert (which MAY be fatal).

 If an application negotiates a server name using an application
 protocol and then upgrades to TLS, and if a server_name extension is
 sent, then the extension SHOULD contain the same name that was
 negotiated in the application protocol. If the server_name is
 established in the TLS session handshake, the client SHOULD NOT
 attempt to request a different server name at the application layer.

4. Maximum Fragment Length Negotiation

 Without this extension, TLS specifies a fixed maximum plaintext
 fragment length of 2^14 bytes. It may be desirable for constrained
 clients to negotiate a smaller maximum fragment length due to memory
 limitations or bandwidth limitations.

 In order to negotiate smaller maximum fragment lengths, clients MAY
 include an extension of type "max_fragment_length" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain:

 enum{
 2^9(1), 2^10(2), 2^11(3), 2^12(4), (255)
 } MaxFragmentLength;

 whose value is the desired maximum fragment length. The allowed
 values for this field are: 2^9, 2^10, 2^11, and 2^12.

Donald Eastlake 3rd [Page 6]

INTERNET-DRAFT TLS Extension Definitions

 Servers that receive an extended client hello containing a
 "max_fragment_length" extension MAY accept the requested maximum
 fragment length by including an extension of type
 "max_fragment_length" in the (extended) server hello. The
 "extension_data" field of this extension SHALL contain a
 "MaxFragmentLength" whose value is the same as the requested maximum
 fragment length.

 If a server receives a maximum fragment length negotiation request
 for a value other than the allowed values, it MUST abort the
 handshake with an "illegal_parameter" alert. Similarly, if a client
 receives a maximum fragment length negotiation response that differs
 from the length it requested, it MUST also abort the handshake with
 an "illegal_parameter" alert.

 Once a maximum fragment length other than 2^14 has been successfully
 negotiated, the client and server MUST immediately begin fragmenting
 messages (including handshake messages), to ensure that no fragment
 larger than the negotiated length is sent. Note that TLS already
 requires clients and servers to support fragmentation of handshake
 messages.

 The negotiated length applies for the duration of the session
 including session resumptions.

 The negotiated length limits the input that the record layer may
 process without fragmentation (that is, the maximum value of
 TLSPlaintext.length; see [RFCTLS], Section 6.2.1). Note that the
 output of the record layer may be larger. For example, if the
 negotiated length is 2^9=512, then for currently defined cipher
 suites (those defined in [RFCTLS], [RFC2712], and [RFC3268]), and
 when null compression is used, the record layer output can be at most
 793 bytes: 5 bytes of headers, 512 bytes of application data, 256
 bytes of padding, and 20 bytes of MAC. This means that in this event
 a TLS record layer peer receiving a TLS record layer message larger
 than 793 bytes may discard the message and send a "record_overflow"
 alert, without decrypting the message.

5. Client Certificate URLs

 Without this extension, TLS specifies that when client authentication
 is performed, client certificates are sent by clients to servers
 during the TLS handshake. It may be desirable for constrained clients
 to send certificate URLs in place of certificates, so that they do
 not need to store their certificates and can therefore save memory.

 In order to negotiate sending certificate URLs to a server, clients

https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc3268

 MAY include an extension of type "client_certificate_url" in the

Donald Eastlake 3rd [Page 7]

INTERNET-DRAFT TLS Extension Definitions

 (extended) client hello. The "extension_data" field of this extension
 SHALL be empty.

 (Note that it is necessary to negotiate use of client certificate
 URLs in order to avoid "breaking" existing TLS servers.)

 Servers that receive an extended client hello containing a
 "client_certificate_url" extension MAY indicate that they are willing
 to accept certificate URLs by including an extension of type
 "client_certificate_url" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

 After negotiation of the use of client certificate URLs has been
 successfully completed (by exchanging hellos including
 "client_certificate_url" extensions), clients MAY send a
 "CertificateURL" message in place of a "Certificate" message:

 enum {
 individual_certs(0), pkipath(1), (255)
 } CertChainType;

 enum {
 false(0), true(1)
 } Boolean;

 struct {
 CertChainType type;
 URLAndOptionalHash url_and_hash_list<1..2^16-1>;
 } CertificateURL;

 struct {
 opaque url<1..2^16-1>;
 Boolean hash_present;
 select (hash_present) {
 case false: struct {};
 case true: SHA1Hash;
 } hash;
 } URLAndOptionalHash;

 opaque SHA1Hash[20];

 Here "url_and_hash_list" contains a sequence of URLs and optional
 hashes.

 When X.509 certificates are used, there are two possibilities:

 - If CertificateURL.type is "individual_certs", each URL refers to a
 single DER-encoded X.509v3 certificate, with the URL for the client's
 certificate first.

Donald Eastlake 3rd [Page 8]

INTERNET-DRAFT TLS Extension Definitions

 - If CertificateURL.type is "pkipath", the list contains a single
 URL referring to a DER-encoded certificate chain, using the type
 PkiPath described in Section 8 of [RFCTLS].

 When any other certificate format is used, the specification that
 describes use of that format in TLS should define the encoding format
 of certificates or certificate chains, and any constraint on their
 ordering.

 The hash corresponding to each URL at the client's discretion either
 is not present or is the SHA-1 hash of the certificate or certificate
 chain (in the case of X.509 certificates, the DER-encoded certificate
 or the DER-encoded PkiPath).

 Note that when a list of URLs for X.509 certificates is used, the
 ordering of URLs is the same as that used in the TLS Certificate
 message (see [RFCTLS], Section 7.4.2), but opposite to the order in
 which certificates are encoded in PkiPath. In either case, the self-
 signed root certificate MAY be omitted from the chain, under the
 assumption that the server must already possess it in order to
 validate it.

 Servers receiving "CertificateURL" SHALL attempt to retrieve the
 client's certificate chain from the URLs and then process the
 certificate chain as usual. A cached copy of the content of any URL
 in the chain MAY be used, provided that a SHA-1 hash is present for
 that URL and it matches the hash of the cached copy.

 Servers that support this extension MUST support the http: URL scheme
 for certificate URLs, and MAY support other schemes. Use of other
 schemes than "http", "https", or "ftp" may create unexpected
 problems.

 If the protocol used is HTTP, then the HTTP server can be configured
 to use the Cache-Control and Expires directives described in
 [RFC2616] to specify whether and for how long certificates or
 certificate chains should be cached.

 The TLS server is not required to follow HTTP redirects when
 retrieving the certificates or certificate chain. The URLs used in
 this extension SHOULD therefore be chosen not to depend on such
 redirects.

 If the protocol used to retrieve certificates or certificate chains
 returns a MIME-formatted response (as HTTP does), then the following
 MIME Content-Types SHALL be used: when a single X.509v3 certificate
 is returned, the Content-Type is "application/pkix-cert" [RFC2585],
 and when a chain of X.509v3 certificates is returned, the Content-
 Type is "application/pkix-pkipath" (see Section 8 of [RFCTLS]).

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2585

Donald Eastlake 3rd [Page 9]

INTERNET-DRAFT TLS Extension Definitions

 If a SHA-1 hash is present for an URL, then the server MUST check
 that the SHA-1 hash of the contents of the object retrieved from that
 URL (after decoding any MIME Content-Transfer-Encoding) matches the
 given hash. If any retrieved object does not have the correct SHA-1
 hash, the server MUST abort the handshake with a
 "bad_certificate_hash_value" alert.

 Note that clients may choose to send either "Certificate" or
 "CertificateURL" after successfully negotiating the option to send
 certificate URLs. The option to send a certificate is included to
 provide flexibility to clients possessing multiple certificates.

 If a server encounters an unreasonable delay in obtaining
 certificates in a given CertificateURL, it SHOULD time out and signal
 a "certificate_unobtainable" error alert.

6. Trusted CA Indication

 Constrained clients that, due to memory limitations, possess only a
 small number of CA root keys may wish to indicate to servers which
 root keys they possess, in order to avoid repeated handshake
 failures.

 In order to indicate which CA root keys they possess, clients MAY
 include an extension of type "trusted_ca_keys" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain "TrustedAuthorities" where:

 struct {
 TrustedAuthority trusted_authorities_list<0..2^16-1>;
 } TrustedAuthorities;

 struct {
 IdentifierType identifier_type;
 select (identifier_type) {
 case pre_agreed: struct {};
 case key_sha1_hash: SHA1Hash;
 case x509_name: DistinguishedName;
 case cert_sha1_hash: SHA1Hash;
 } identifier;
 } TrustedAuthority;

 enum {
 pre_agreed(0), key_sha1_hash(1), x509_name(2),
 cert_sha1_hash(3), (255)
 } IdentifierType;

 opaque DistinguishedName<1..2^16-1>;

Donald Eastlake 3rd [Page 10]

INTERNET-DRAFT TLS Extension Definitions

 Here "TrustedAuthorities" provides a list of CA root key identifiers
 that the client possesses. Each CA root key is identified via either:

 - "pre_agreed": no CA root key identity supplied.

 - "key_sha1_hash": contains the SHA-1 hash of the CA root key. For
 Digital Signature Algorithm (DSA) and Elliptic Curve Digital
 Signature Algorithm (ECDSA) keys, this is the hash of the
 "subjectPublicKey" value. For RSA keys, the hash is of the big-
 endian byte string representation of the modulus without any
 initial 0-valued bytes. (This copies the key hash formats deployed
 in other environments.)

 - "x509_name": contains the DER-encoded X.509 DistinguishedName of
 the CA.

 - "cert_sha1_hash": contains the SHA-1 hash of a DER-encoded
 Certificate containing the CA root key.

 Note that clients may include none, some, or all of the CA root keys
 they possess in this extension.

 Note also that it is possible that a key hash or a Distinguished Name
 alone may not uniquely identify a certificate issuer (for example, if
 a particular CA has multiple key pairs). However, here we assume this
 is the case following the use of Distinguished Names to identify
 certificate issuers in TLS.

 The option to include no CA root keys is included to allow the client
 to indicate possession of some pre-defined set of CA root keys.

 Servers that receive a client hello containing the "trusted_ca_keys"
 extension MAY use the information contained in the extension to guide
 their selection of an appropriate certificate chain to return to the
 client. In this event, the server SHALL include an extension of type
 "trusted_ca_keys" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

7. Truncated HMAC

 Currently defined TLS cipher suites use the MAC construction HMAC
 with either MD5 or SHA-1 [RFC2104] to authenticate record layer
 communications. In TLS, the entire output of the hash function is
 used as the MAC tag. However, it may be desirable in constrained
 environments to save bandwidth by truncating the output of the hash
 function to 80 bits when forming MAC tags.

https://datatracker.ietf.org/doc/html/rfc2104

 In order to negotiate the use of 80-bit truncated HMAC, clients MAY

Donald Eastlake 3rd [Page 11]

INTERNET-DRAFT TLS Extension Definitions

 include an extension of type "truncated_hmac" in the extended client
 hello. The "extension_data" field of this extension SHALL be empty.

 Servers that receive an extended hello containing a "truncated_hmac"
 extension MAY agree to use a truncated HMAC by including an extension
 of type "truncated_hmac", with empty "extension_data", in the
 extended server hello.

 Note that if new cipher suites are added that do not use HMAC, and
 the session negotiates one of these cipher suites, this extension
 will have no effect. It is strongly recommended that any new cipher
 suites using other MACs consider the MAC size an integral part of the
 cipher suite definition, taking into account both security and
 bandwidth considerations.

 If HMAC truncation has been successfully negotiated during a TLS
 handshake, and the negotiated cipher suite uses HMAC, both the client
 and the server pass this fact to the TLS record layer along with the
 other negotiated security parameters. Subsequently during the
 session, clients and servers MUST use truncated HMACs, calculated as
 specified in [RFC2104]. That is, CipherSpec.hash_size is 10 bytes,
 and only the first 10 bytes of the HMAC output are transmitted and
 checked. Note that this extension does not affect the calculation of
 the pseudo-random function (PRF) as part of handshaking or key
 derivation.

 The negotiated HMAC truncation size applies for the duration of the
 session including session resumptions.

8. Certificate Status Request

 Constrained clients may wish to use a certificate-status protocol
 such as OCSP [RFC2560] to check the validity of server certificates,
 in order to avoid transmission of CRLs and therefore save bandwidth
 on constrained networks. This extension allows for such information
 to be sent in the TLS handshake, saving roundtrips and resources.

 In order to indicate their desire to receive certificate status
 information, clients MAY include an extension of type
 "status_request" in the (extended) client hello. The "extension_data"
 field of this extension SHALL contain "CertificateStatusRequest"
 where:

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPStatusRequest;

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2560

 } request;

Donald Eastlake 3rd [Page 12]

INTERNET-DRAFT TLS Extension Definitions

 } CertificateStatusRequest;

 enum { ocsp(1), (255) } CertificateStatusType;

 struct {
 ResponderID responder_id_list<0..2^16-1>;
 Extensions request_extensions;
 } OCSPStatusRequest;

 opaque ResponderID<1..2^16-1>;
 opaque Extensions<0..2^16-1>;

 In the OCSPStatusRequest, the "ResponderIDs" provides a list of OCSP
 responders that the client trusts. A zero-length "responder_id_list"
 sequence has the special meaning that the responders are implicitly
 known to the server, e.g., by prior arrangement. "Extensions" is a
 DER encoding of OCSP request extensions.

 Both "ResponderID" and "Extensions" are DER-encoded ASN.1 types as
 defined in [RFC2560]. "Extensions" is imported from [RFC3280]. A
 zero-length "request_extensions" value means that there are no
 extensions (as opposed to a zero-length ASN.1 SEQUENCE, which is not
 valid for the "Extensions" type).

 In the case of the "id-pkix-ocsp-nonce" OCSP extension, [RFC2560] is
 unclear about its encoding; for clarification, the nonce MUST be a
 DER-encoded OCTET STRING, which is encapsulated as another OCTET
 STRING (note that implementations based on an existing OCSP client
 will need to be checked for conformance to this requirement).

 Servers that receive a client hello containing the "status_request"
 extension MAY return a suitable certificate status response to the
 client along with their certificate. If OCSP is requested, they
 SHOULD use the information contained in the extension when selecting
 an OCSP responder and SHOULD include request_extensions in the OCSP
 request.

 Servers return a certificate response along with their certificate by
 sending a "CertificateStatus" message immediately after the
 "Certificate" message (and before any "ServerKeyExchange" or
 "CertificateRequest" messages). If a server returns a
 "CertificateStatus" message, then the server MUST have included an
 extension of type "status_request" with empty "extension_data" in the
 extended server hello.

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPResponse;

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc2560

 } response;

Donald Eastlake 3rd [Page 13]

INTERNET-DRAFT TLS Extension Definitions

 } CertificateStatus;

 opaque OCSPResponse<1..2^24-1>;

 An "ocsp_response" contains a complete, DER-encoded OCSP response
 (using the ASN.1 type OCSPResponse defined in [RFC2560]). Note that
 only one OCSP response may be sent.

 The "CertificateStatus" message is conveyed using the handshake
 message type "certificate_status".

 Note that a server MAY also choose not to send a "CertificateStatus"
 message, even if it receives a "status_request" extension in the
 client hello message.

 Note in addition that servers MUST NOT send the "CertificateStatus"
 message unless it received a "status_request" extension in the client
 hello message.

 Clients requesting an OCSP response and receiving an OCSP response in
 a "CertificateStatus" message MUST check the OCSP response and abort
 the handshake if the response is not satisfactory.

 certificate_unobtainable(111), /* new */
 unrecognized_name(112), /* new */
 bad_certificate_status_response(113), /* new */
 bad_certificate_hash_value(114), /* new */
 (255)
 } AlertDescription;

https://datatracker.ietf.org/doc/html/rfc2560

Donald Eastlake 3rd [Page 14]

INTERNET-DRAFT TLS Extension Definitions

9. IANA Considerations

 IANA Considerations for TLS Extensions and the creation of a Registry
 therefore are all covered in Section 12 of [RFCTLS]..

10. Security Considerations

 General Security Considerations for TLS Extensions are covered in
 [RFCTLS]. Security Considerations for particular extensions specified
 in this document are given below.

 In general, implementers should continue to monitor the state of the
 art and address any weaknesses identified.

 Additional security considerations are described in the TLS 1.0 RFC
 [RFC2246] and the TLS 1.1 RFC [RFC4346].

10.1 Security Considerations for server_name

 If a single server hosts several domains, then clearly it is
 necessary for the owners of each domain to ensure that this satisfies
 their security needs. Apart from this, server_name does not appear to
 introduce significant security issues.

 Implementations MUST ensure that a buffer overflow does not occur,
 whatever the values of the length fields in server_name.

 Although this document specifies an encoding for internationalized
 hostnames in the server_name extension, it does not address any
 security issues associated with the use of internationalized
 hostnames in TLS (in particular, the consequences of "spoofed" names
 that are indistinguishable from another name when displayed or
 printed). It is recommended that server certificates not be issued
 for internationalized hostnames unless procedures are in place to
 mitigate the risk of spoofed hostnames.

10.2 Security Considerations for max_fragment_length

 The maximum fragment length takes effect immediately, including for
 handshake messages. However, that does not introduce any security
 complications that are not already present in TLS, since TLS requires
 implementations to be able to handle fragmented handshake messages.

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346

 Note that as described in Section 4, once a non-null cipher suite has

Donald Eastlake 3rd [Page 15]

INTERNET-DRAFT TLS Extension Definitions

 been activated, the effective maximum fragment length depends on the
 cipher suite and compression method, as well as on the negotiated
 max_fragment_length. This must be taken into account when sizing
 buffers, and checking for buffer overflow.

10.3 Security Considerations for client_certificate_url

 There are two major issues with this extension.

 The first major issue is whether or not clients should include
 certificate hashes when they send certificate URLs.

 When client authentication is used *without* the
 client_certificate_url extension, the client certificate chain is
 covered by the Finished message hashes. The purpose of including
 hashes and checking them against the retrieved certificate chain is
 to ensure that the same property holds when this extension is used,
 i.e., that all of the information in the certificate chain retrieved
 by the server is as the client intended.

 On the other hand, omitting certificate hashes enables functionality
 that is desirable in some circumstances; for example, clients can be
 issued daily certificates that are stored at a fixed URL and need not
 be provided to the client. Clients that choose to omit certificate
 hashes should be aware of the possibility of an attack in which the
 attacker obtains a valid certificate on the client's key that is
 different from the certificate the client intended to provide.
 Although TLS uses both MD5 and SHA-1 hashes in several other places,
 this was not believed to be necessary here. The property required of
 SHA-1 is second pre-image resistance.

 The second major issue is that support for client_certificate_url
 involves the server's acting as a client in another URL protocol.
 The server therefore becomes subject to many of the same security
 concerns that clients of the URL scheme are subject to, with the
 added concern that the client can attempt to prompt the server to
 connect to some (possibly weird-looking) URL.

 In general, this issue means that an attacker might use the server to
 indirectly attack another host that is vulnerable to some security
 flaw. It also introduces the possibility of denial of service attacks
 in which an attacker makes many connections to the server, each of
 which results in the server's attempting a connection to the target
 of the attack.

 Note that the server may be behind a firewall or otherwise able to
 access hosts that would not be directly accessible from the public

 Internet. This could exacerbate the potential security and denial of

Donald Eastlake 3rd [Page 16]

INTERNET-DRAFT TLS Extension Definitions

 service problems described above, as well as allow the existence of
 internal hosts to be confirmed when they would otherwise be hidden.

 The detailed security concerns involved will depend on the URL
 schemes supported by the server. In the case of HTTP, the concerns
 are similar to those that apply to a publicly accessible HTTP proxy
 server. In the case of HTTPS, loops and deadlocks may be created, and
 this should be addressed. In the case of FTP, attacks arise that are
 similar to FTP bounce attacks.

 As a result of this issue, it is RECOMMENDED that the
 client_certificate_url extension should have to be specifically
 enabled by a server administrator, rather than be enabled by default.
 It is also RECOMMENDED that URI protocols be enabled by the
 administrator individually, and only a minimal set of protocols be
 enabled. Unusual protocols that offer limited security or whose
 security is not well-understood SHOULD be avoided.

 As discussed in [RFC3986], URLs that specify ports other than the
 default may cause problems, as may very long URLs (which are more
 likely to be useful in exploiting buffer overflow bugs).

 Also note that HTTP caching proxies are common on the Internet, and
 some proxies do not check for the latest version of an object
 correctly. If a request using HTTP (or another caching protocol) goes
 through a misconfigured or otherwise broken proxy, the proxy may
 return an out-of-date response.

10.4 Security Considerations for trusted_ca_keys

 It is possible that which CA root keys a client possesses could be
 regarded as confidential information. As a result, the CA root key
 indication extension should be used with care.

 The use of the SHA-1 certificate hash alternative ensures that each
 certificate is specified unambiguously. As for the previous
 extension, it was not believed necessary to use both MD5 and SHA-1
 hashes.

10.5 Security Considerations for truncated_hmac

 It is possible that truncated MACs are weaker than "un-truncated"
 MACs. However, no significant weaknesses are currently known or
 expected to exist for HMAC with MD5 or SHA-1, truncated to 80 bits.

https://datatracker.ietf.org/doc/html/rfc3986

 Note that the output length of a MAC need not be as long as the

Donald Eastlake 3rd [Page 17]

INTERNET-DRAFT TLS Extension Definitions

 length of a symmetric cipher key, since forging of MAC values cannot
 be done off-line: in TLS, a single failed MAC guess will cause the
 immediate termination of the TLS session.

 Since the MAC algorithm only takes effect after all handshake
 messages that affect extension parameters have been authenticated by
 the hashes in the Finished messages, it is not possible for an active
 attacker to force negotiation of the truncated HMAC extension where
 it would not otherwise be used (to the extent that the handshake
 authentication is secure). Therefore, in the event that any security
 problem were found with truncated HMAC in the future, if either the
 client or the server for a given session were updated to take the
 problem into account, it would be able to veto use of this extension.

10.6 Security Considerations for status_request

 If a client requests an OCSP response, it must take into account that
 an attacker's server using a compromised key could (and probably
 would) pretend not to support the extension. In this case, a client
 that requires OCSP validation of certificates SHOULD either contact
 the OCSP server directly or abort the handshake.

 Use of the OCSP nonce request extension (id-pkix-ocsp-nonce) may
 improve security against attacks that attempt to replay OCSP
 responses; see Section 4.4.1 of [RFC2560] for further details.

11. Internationalization Considerations

 None of the extensions defined here directly use strings subject to
 localization. Domain Name System (DNS) hostnames are encoded using
 UTF-8. If future extensions use text strings, then
 internationalization should be considered in their design.

https://datatracker.ietf.org/doc/html/rfc2560#section-4.4.1

Donald Eastlake 3rd [Page 18]

INTERNET-DRAFT TLS Extension Definitions

12. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online Certificate
 Status Protocol - OCSP", RFC 2560, June 1999.

 [RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure Operational Protocols: FTP and HTTP", RFC 2585, May
 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and Certificate
 Revocation List (CRL) Profile", RFC 3280, April 2002.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)", RFC 3490,
 March 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January
 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFCTLS] Dierks, T. and E. Rescorla, "The TLS Protocol Version 1.2",
draft-ietf-tls-rfc4346-bis-03.txt, March 2007.

13. Informative References

 [RFC2712] Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2585
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-03.txt

 Suites to Transport Layer Security (TLS)", RFC 2712, October 1999.

Donald Eastlake 3rd [Page 19]

https://datatracker.ietf.org/doc/html/rfc2712

INTERNET-DRAFT TLS Extension Definitions

 [RFC3268] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites
 for Transport Layer Security (TLS)", RFC 3268, June 2002.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS) Extensions", RFC 4366,
 April 2006.

https://datatracker.ietf.org/doc/html/rfc3268
https://datatracker.ietf.org/doc/html/rfc4366

Donald Eastlake 3rd [Page 20]

INTERNET-DRAFT TLS Extension Definitions

Copyright, Disclaimer, and Additional IPR Provisions

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Donald Eastlake 3rd [Page 21]

INTERNET-DRAFT TLS Extension Definitions

Author's Address

 Donald Eastlake 3rd
 Motorola Laboratories
 111 Locke Drive
 Marlborough, MA 01752

 Tel: +1-508-786-7554
 Email: Donald.Eastlake@motorola.com

Expiration and File Name

 This draft expires in December 2007.

 Its file name is draft-ietf-tls-rfc4366-bis-00.txt.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4366-bis-00.txt

Donald Eastlake 3rd [Page 22]

