
TLS Working Group Donald Eastlake 3rd
INTERNET-DRAFT Stellar Switches
Obsoletes: 4366
Intended status: Proposed Standard
Expires: March 18, 2011 September 19, 2010

Transport Layer Security (TLS) Extensions: Extension Definitions
<draft-ietf-tls-rfc4366-bis-11.txt>

Abstract

 This document provides specifications for existing TLS extensions. It
 is a companion document for RFC 5246, "The Transport Layer Security
 (TLS) Protocol Version 1.2". The extensions specified are
 server_name, max_fragment_length, client_certificate_url,
 trusted_ca_keys, truncated_hmac, and status_request.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Distribution of this document is unlimited. Comments should be sent
 to the TLS working group mailing list <tls@ietf.org>.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at

https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4366-bis-11.txt
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html

http://www.ietf.org/shadow.html

Donald Eastlake 3rd [Page 1]

http://www.ietf.org/shadow.html

INTERNET-DRAFT TLS Extension Definitions

Acknowledgements

 This draft is based on material from RFC 4366 for which the authors
 were S. Blake-Wilson, M. Nystron, D. Hopwood, J. Mikkelsen, and T.
 Wright. Other contributors include Joseph Salowey, and Alexey
 Melnikov, Peter Saint-Andre, and Adrian Farrel.

Table of Contents

1. Introduction..3
1.1 Specific Extensions Covered............................3
1.2 Conventions Used in This Document......................5

2. Extensions to the Handshake Protocol....................6
3. Server Name Indication..................................7
4. Maximum Fragment Length Negotiation.....................9
5. Client Certificate URLs................................11
6. Trusted CA Indication..................................14
7. Truncated HMAC...16
8. Certificate Status Request.............................17
9. Error Alerts...19

10. IANA Considerations...................................20
10.1 pkipath MIME Type Registration.......................20

11. Security Considerations...............................22
11.1 Security Considerations for server_name..............22
11.2 Security Considerations for max_fragment_length......22
11.3 Security Considerations for client_certificate_url...22
11.4 Security Considerations for trusted_ca_keys..........24
11.5 Security Considerations for truncated_hmac...........24
11.6 Security Considerations for status_request...........24

12. Normative References..................................25
13. Informative References................................25

 Annex A: Changes from RFC 4366............................27

https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366

Donald Eastlake 3rd [Page 2]

INTERNET-DRAFT TLS Extension Definitions

1. Introduction

 The TLS (Transport Layer Security) Protocol Version 1.2 is specified
 in [RFC5246]. That specification includes the framework for
 extensions to TLS, considerations in designing such extensions (see

Section 7.4.1.4 of [RFC5246]), and IANA Considerations for the
 allocation of new extension code points; however, it does not specify
 any particular extensions other than Signature Algorithms (see

Section 7.4.1.4.1 of [RFC5246]).

 This document provides the specifications for existing TLS
 extensions. It is, for the most part, the adaptation and editing of
 material from RFC 4366, which covered TLS extensions for TLS 1.0 (RFC

2246) and TLS 1.1 (RFC 4346).

1.1 Specific Extensions Covered

 The extensions described here focus on extending the functionality
 provided by the TLS protocol message formats. Other issues, such as
 the addition of new cipher suites, are deferred.

 The extension types defined in this document are:

 enum {
 server_name(0), max_fragment_length(1),
 client_certificate_url(2), trusted_ca_keys(3),
 truncated_hmac(4), status_request(5), (65535)
 } ExtensionType;

 Specifically, the extensions described in this document:

 - Allow TLS clients to provide to the TLS server the name of the
 server they are contacting. This functionality is desirable in
 order to facilitate secure connections to servers that host
 multiple 'virtual' servers at a single underlying network address.

 - Allow TLS clients and servers to negotiate the maximum fragment
 length to be sent. This functionality is desirable as a result of
 memory constraints among some clients, and bandwidth constraints
 among some access networks.

 - Allow TLS clients and servers to negotiate the use of client
 certificate URLs. This functionality is desirable in order to
 conserve memory on constrained clients.

 - Allow TLS clients to indicate to TLS servers which CA root keys
 they possess. This functionality is desirable in order to prevent

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4.1
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346

 multiple handshake failures involving TLS clients that are only

Donald Eastlake 3rd [Page 3]

INTERNET-DRAFT TLS Extension Definitions

 able to store a small number of CA root keys due to memory
 limitations.

 - Allow TLS clients and servers to negotiate the use of truncated
 MACs. This functionality is desirable in order to conserve
 bandwidth in constrained access networks.

 - Allow TLS clients and servers to negotiate that the server sends
 the client certificate status information (e.g., an Online
 Certificate Status Protocol (OCSP) [RFC2560] response) during a
 TLS handshake. This functionality is desirable in order to avoid
 sending a Certificate Revocation List (CRL) over a constrained
 access network and therefore save bandwidth.

 TLS clients and servers may use the extensions described in this
 document. The extensions are designed to be backwards compatible,
 meaning that TLS clients that support the extensions can talk to TLS
 servers that do not support the extensions, and vice versa.

 Note that any messages associated with these extensions that are sent
 during the TLS handshake MUST be included in the hash calculations
 involved in "Finished" messages.

 Note also that all the extensions defined in this document are
 relevant only when a session is initiated. A client that requests
 session resumption does not in general know whether the server will
 accept this request, and therefore it SHOULD send the same extensions
 as it would send if it were not attempting resumption. When a client
 includes one or more of the defined extension types in an extended
 client hello while requesting session resumption:

 - The server name indication extension MAY be used by the server
 when deciding whether or not to resume a session as described
 in section 3.

 - If the resumption request is denied, the use of the extensions
 is negotiated as normal.

 - If, on the other hand, the older session is resumed, then the
 server MUST ignore the extensions and send a server hello
 containing none of the extension types. In this case, the
 functionality of these extensions negotiated during the
 original session initiation is applied to the resumed session.

https://datatracker.ietf.org/doc/html/rfc2560

Donald Eastlake 3rd [Page 4]

INTERNET-DRAFT TLS Extension Definitions

1.2 Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Donald Eastlake 3rd [Page 5]

INTERNET-DRAFT TLS Extension Definitions

2. Extensions to the Handshake Protocol

 This document specifies the use of two new handshake messages,
 "CertificateURL" and "CertificateStatus". These messages are
 described in Section 5 and Section 8, respectively. The new
 handshake message structure therefore becomes:

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), certificate_url(21), certificate_status(22),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case certificate: Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done: ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 case certificate_url: CertificateURL;
 case certificate_status: CertificateStatus;
 } body;
 } Handshake;

Donald Eastlake 3rd [Page 6]

INTERNET-DRAFT TLS Extension Definitions

3. Server Name Indication

 TLS does not provide a mechanism for a client to tell a server the
 name of the server it is contacting. It may be desirable for clients
 to provide this information to facilitate secure connections to
 servers that host multiple 'virtual' servers at a single underlying
 network address.

 In order to provide any of the server names, clients MAY include an
 extension of type "server_name" in the (extended) client hello. The
 "extension_data" field of this extension SHALL contain
 "ServerNameList" where:

 struct {
 NameType name_type;
 select (name_type) {
 case host_name: HostName;
 } name;
 } ServerName;

 enum {
 host_name(0), (255)
 } NameType;

 opaque HostName<1..2^16-1>;

 struct {
 ServerName server_name_list<1..2^16-1>
 } ServerNameList;

 The ServerNameList MUST NOT contain more than one name of the same
 name_type. If the server understood the ClientHello extension but
 does not recognize the server name, the server SHOULD take one of two
 actions: either abort the handshake by sending a fatal-level
 unrecognized_name(112) alert, or continue the handshake. It is NOT
 RECOMMENDED to send a warning-level unrecognized_name(112) alert,
 because the client's behavior in response to warning-level alerts is
 unpredictable. If there is a mismatch between the server name used by
 the client application and the server name of the credential chosen
 by the server, this mismatch will become apparent when the client
 application performs the server endpoint identification, at which
 point the client application will have to decide whether to proceed
 with the communication. TLS implementations are encouraged to make
 information available to application callers about warning-level
 alerts that were received or sent during a TLS handshake. Such
 information can be useful for diagnostic purposes..

 Note: Earlier versions of this specification permitted multiple
 names of the same name_type. In practice, current client

 implementations only send one name, and the client cannot

Donald Eastlake 3rd [Page 7]

INTERNET-DRAFT TLS Extension Definitions

 necessarily find out which name the server selected. Multiple
 names of the same name_type are therefore now prohibited.

 Currently, the only server names supported are DNS hostnames;
 however, this does not imply any dependency of TLS on DNS, and other
 name types may be added in the future (by an RFC that updates this
 document). The data structure associated with the host_name NameType
 is a variable-length vector that begins with a 16-bit length. For
 backward compatibility, all future data structures associated with
 new NameTypes MUST begin with a 16-bit length field TLS MAY treat
 provided server names as opaque data and pass the names and types to
 the application.

 "HostName" contains the fully qualified DNS hostname of the server,
 as understood by the client. The hostname is represented as a byte
 string using ASCII encoding without a trailing dot. This allows the
 support of internationalized domain names through the use of A-labels
 defined in [RFC5890].

 Literal IPv4 and IPv6 addresses are not permitted in "HostName".

 It is RECOMMENDED that clients include an extension of type
 "server_name" in the client hello whenever they locate a server by a
 supported name type.

 A server that receives a client hello containing the "server_name"
 extension MAY use the information contained in the extension to guide
 its selection of an appropriate certificate to return to the client,
 and/or other aspects of security policy. In this event, the server
 SHALL include an extension of type "server_name" in the (extended)
 server hello. The "extension_data" field of this extension SHALL be
 empty.

 When the server is deciding whether or not to accept a request to
 resume a session, the contents of a server_name extension MAY be used
 in the lookup of the session in the session cache. The client SHOULD
 include the same server_name extension in session resumption request
 as it did in the full handshake that established the session. A
 server that implements this extension MUST NOT accept the request to
 resume the session if the server_name extension contains a different
 name. Instead, it proceeds with a full handshake to establish a new
 session. When resuming a session, the server MUST NOT include a
 server_name extension in the server hello.

 If an application negotiates a server name using an application
 protocol and then upgrades to TLS, and if a server_name extension is
 sent, then the extension SHOULD contain the same name that was
 negotiated in the application protocol. If the server_name is

https://datatracker.ietf.org/doc/html/rfc5890

 established in the TLS session handshake, the client SHOULD NOT
 attempt to request a different server name at the application layer.

Donald Eastlake 3rd [Page 8]

INTERNET-DRAFT TLS Extension Definitions

4. Maximum Fragment Length Negotiation

 Without this extension, TLS specifies a fixed maximum plaintext
 fragment length of 2^14 bytes. It may be desirable for constrained
 clients to negotiate a smaller maximum fragment length due to memory
 limitations or bandwidth limitations.

 In order to negotiate smaller maximum fragment lengths, clients MAY
 include an extension of type "max_fragment_length" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain:

 enum{
 2^9(1), 2^10(2), 2^11(3), 2^12(4), (255)
 } MaxFragmentLength;

 whose value is the desired maximum fragment length. The allowed
 values for this field are: 2^9, 2^10, 2^11, and 2^12.

 Servers that receive an extended client hello containing a
 "max_fragment_length" extension MAY accept the requested maximum
 fragment length by including an extension of type
 "max_fragment_length" in the (extended) server hello. The
 "extension_data" field of this extension SHALL contain a
 "MaxFragmentLength" whose value is the same as the requested maximum
 fragment length.

 If a server receives a maximum fragment length negotiation request
 for a value other than the allowed values, it MUST abort the
 handshake with an "illegal_parameter" alert. Similarly, if a client
 receives a maximum fragment length negotiation response that differs
 from the length it requested, it MUST also abort the handshake with
 an "illegal_parameter" alert.

 Once a maximum fragment length other than 2^14 has been successfully
 negotiated, the client and server MUST immediately begin fragmenting
 messages (including handshake messages), to ensure that no fragment
 larger than the negotiated length is sent. Note that TLS already
 requires clients and servers to support fragmentation of handshake
 messages.

 The negotiated length applies for the duration of the session
 including session resumptions.

 The negotiated length limits the input that the record layer may
 process without fragmentation (that is, the maximum value of
 TLSPlaintext.length; see [RFC5246], Section 6.2.1). Note that the
 output of the record layer may be larger. For example, if the
 negotiated length is 2^9=512, then for currently defined cipher

https://datatracker.ietf.org/doc/html/rfc5246#section-6.2.1

 suites (those defined in [RFC5246] and [RFC2712]), and when null

Donald Eastlake 3rd [Page 9]

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2712

INTERNET-DRAFT TLS Extension Definitions

 compression is used, the record layer output can be at most 805
 bytes: 5 bytes of headers, 512 bytes of application data, 256 bytes
 of padding, and 32 bytes of MAC. This means that in this event a TLS
 record layer peer receiving a TLS record layer message larger than
 805 bytes MUST discard the message and send a "record_overflow"
 alert, without decrypting the message. When this extension is used
 with DTLS implementations SHOULD NOT generate record_overflow alerts
 unless the packet passes message authentication.

Donald Eastlake 3rd [Page 10]

INTERNET-DRAFT TLS Extension Definitions

5. Client Certificate URLs

 Without this extension, TLS specifies that when client authentication
 is performed, client certificates are sent by clients to servers
 during the TLS handshake. It may be desirable for constrained clients
 to send certificate URLs in place of certificates, so that they do
 not need to store their certificates and can therefore save memory.

 In order to negotiate sending certificate URLs to a server, clients
 MAY include an extension of type "client_certificate_url" in the
 (extended) client hello. The "extension_data" field of this extension
 SHALL be empty.

 (Note that it is necessary to negotiate use of client certificate
 URLs in order to avoid "breaking" existing TLS servers.)

 Servers that receive an extended client hello containing a
 "client_certificate_url" extension MAY indicate that they are willing
 to accept certificate URLs by including an extension of type
 "client_certificate_url" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

 After negotiation of the use of client certificate URLs has been
 successfully completed (by exchanging hellos including
 "client_certificate_url" extensions), clients MAY send a
 "CertificateURL" message in place of a "Certificate" message as
 follows (see also Section 2):

 enum {
 individual_certs(0), pkipath(1), (255)
 } CertChainType;

 struct {
 CertChainType type;
 URLAndHash url_and_hash_list<1..2^16-1>;
 } CertificateURL;

 struct {
 opaque url<1..2^16-1>;
 unint8 padding;
 opaque SHA1Hash[20];
 } URLAndHash;

 Here "url_and_hash_list" contains a sequence of URLs and hashes.
 Each "url" MUST be an absolute URI reference according to [RFC3986]
 that can be immediately used to fetch the certificate(s).

 When X.509 certificates are used, there are two possibilities:

https://datatracker.ietf.org/doc/html/rfc3986

 - If CertificateURL.type is "individual_certs", each URL refers to a

Donald Eastlake 3rd [Page 11]

INTERNET-DRAFT TLS Extension Definitions

 single DER-encoded X.509v3 certificate, with the URL for the client's
 certificate first.

 - If CertificateURL.type is "pkipath", the list contains a single
 URL referring to a DER-encoded certificate chain, using the type
 PkiPath described in Section 10.1.

 When any other certificate format is used, the specification that
 describes use of that format in TLS should define the encoding format
 of certificates or certificate chains, and any constraint on their
 ordering.

 The "padding" byte MUST be 0x01. It is present to make the structure
 backwards compatible.

 The hash corresponding to each URL is the SHA-1 hash of the
 certificate or certificate chain (in the case of X.509 certificates,
 the DER-encoded certificate or the DER-encoded PkiPath).

 Note that when a list of URLs for X.509 certificates is used, the
 ordering of URLs is the same as that used in the TLS Certificate
 message (see [RFC5246], Section 7.4.2), but opposite to the order in
 which certificates are encoded in PkiPath. In either case, the self-
 signed root certificate MAY be omitted from the chain, under the
 assumption that the server must already possess it in order to
 validate it.

 Servers receiving "CertificateURL" SHALL attempt to retrieve the
 client's certificate chain from the URLs and then process the
 certificate chain as usual. A cached copy of the content of any URL
 in the chain MAY be used, provided that the SHA-1 hash matches the
 hash of the cached copy.

 Servers that support this extension MUST support the 'http' URI
 scheme for certificate URLs, and MAY support other schemes. Use of
 other schemes than 'http', 'https', or 'ftp' may create unexpected
 problems.

 If the protocol used is HTTP, then the HTTP server can be configured
 to use the Cache-Control and Expires directives described in
 [RFC2616] to specify whether and for how long certificates or
 certificate chains should be cached.

 The TLS server MUST NOT follow HTTP redirects when retrieving the
 certificates or certificate chain. The URLs used in this extension
 MUST NOT be chosen to depend on such redirects.

 If the protocol used to retrieve certificates or certificate chains
 returns a MIME-formatted response (as HTTP does), then the following

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.2
https://datatracker.ietf.org/doc/html/rfc2616

 MIME Content-Types SHALL be used: when a single X.509v3 certificate

Donald Eastlake 3rd [Page 12]

INTERNET-DRAFT TLS Extension Definitions

 is returned, the Content-Type is "application/pkix-cert" [RFC2585],
 and when a chain of X.509v3 certificates is returned, the Content-
 Type is "application/pkix-pkipath" Section 10.1.

 The server MUST check that the SHA-1 hash of the contents of the
 object retrieved from that URL (after decoding any MIME Content-
 Transfer-Encoding) matches the given hash. If any retrieved object
 does not have the correct SHA-1 hash, the server MUST abort the
 handshake with a bad_certificate_hash_value(114) alert. This alert is
 always fatal.

 Clients may choose to send either "Certificate" or "CertificateURL"
 after successfully negotiating the option to send certificate URLs.
 The option to send a certificate is included to provide flexibility
 to clients possessing multiple certificates.

 If a server is unable to obtain certificates in a given
 CertificateURL, it MUST send a fatal certificate_unobtainable(111)
 alert if it requires the certificates to complete the handshake. If
 the server does not require the certificates then the server
 continues the handshake. The server MAY send a warning level alert in
 this case. Clients receiving such an alert SHOULD log the alert and
 continue with the handshake if possible

https://datatracker.ietf.org/doc/html/rfc2585

Donald Eastlake 3rd [Page 13]

INTERNET-DRAFT TLS Extension Definitions

6. Trusted CA Indication

 Constrained clients that, due to memory limitations, possess only a
 small number of CA root keys may wish to indicate to servers which
 root keys they possess, in order to avoid repeated handshake
 failures.

 In order to indicate which CA root keys they possess, clients MAY
 include an extension of type "trusted_ca_keys" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain "TrustedAuthorities" where:

 struct {
 TrustedAuthority trusted_authorities_list<0..2^16-1>;
 } TrustedAuthorities;

 struct {
 IdentifierType identifier_type;
 select (identifier_type) {
 case pre_agreed: struct {};
 case key_sha1_hash: SHA1Hash;
 case x509_name: DistinguishedName;
 case cert_sha1_hash: SHA1Hash;
 } identifier;
 } TrustedAuthority;

 enum {
 pre_agreed(0), key_sha1_hash(1), x509_name(2),
 cert_sha1_hash(3), (255)
 } IdentifierType;

 opaque DistinguishedName<1..2^16-1>;

 Here "TrustedAuthorities" provides a list of CA root key identifiers
 that the client possesses. Each CA root key is identified via either:

 - "pre_agreed": no CA root key identity supplied.

 - "key_sha1_hash": contains the SHA-1 hash of the CA root key. For
 Digital Signature Algorithm (DSA) and Elliptic Curve Digital
 Signature Algorithm (ECDSA) keys, this is the hash of the
 "subjectPublicKey" value. For RSA keys, the hash is of the big-
 endian byte string representation of the modulus without any
 initial 0-valued bytes. (This copies the key hash formats deployed
 in other environments.)

 - "x509_name": contains the DER-encoded X.509 DistinguishedName of
 the CA.

Donald Eastlake 3rd [Page 14]

INTERNET-DRAFT TLS Extension Definitions

 - "cert_sha1_hash": contains the SHA-1 hash of a DER-encoded
 Certificate containing the CA root key.

 Note that clients may include none, some, or all of the CA root keys
 they possess in this extension.

 Note also that it is possible that a key hash or a Distinguished Name
 alone may not uniquely identify a certificate issuer (for example, if
 a particular CA has multiple key pairs). However, here we assume this
 is the case following the use of Distinguished Names to identify
 certificate issuers in TLS.

 The option to include no CA root keys is included to allow the client
 to indicate possession of some pre-defined set of CA root keys.

 Servers that receive a client hello containing the "trusted_ca_keys"
 extension MAY use the information contained in the extension to guide
 their selection of an appropriate certificate chain to return to the
 client. In this event, the server SHALL include an extension of type
 "trusted_ca_keys" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

Donald Eastlake 3rd [Page 15]

INTERNET-DRAFT TLS Extension Definitions

7. Truncated HMAC

 Currently defined TLS cipher suites use the MAC construction HMAC
 [RFC2104] to authenticate record layer communications. In TLS, the
 entire output of the hash function is used as the MAC tag. However,
 it may be desirable in constrained environments to save bandwidth by
 truncating the output of the hash function to 80 bits when forming
 MAC tags.

 In order to negotiate the use of 80-bit truncated HMAC, clients MAY
 include an extension of type "truncated_hmac" in the extended client
 hello. The "extension_data" field of this extension SHALL be empty.

 Servers that receive an extended hello containing a "truncated_hmac"
 extension MAY agree to use a truncated HMAC by including an extension
 of type "truncated_hmac", with empty "extension_data", in the
 extended server hello.

 Note that if new cipher suites are added that do not use HMAC, and
 the session negotiates one of these cipher suites, this extension
 will have no effect. It is strongly recommended that any new cipher
 suites using other MACs consider the MAC size an integral part of the
 cipher suite definition, taking into account both security and
 bandwidth considerations.

 If HMAC truncation has been successfully negotiated during a TLS
 handshake, and the negotiated cipher suite uses HMAC, both the client
 and the server pass this fact to the TLS record layer along with the
 other negotiated security parameters. Subsequently during the
 session, clients and servers MUST use truncated HMACs, calculated as
 specified in [RFC2104]. That is, SecurityParameters.mac_length is 10
 bytes, and only the first 10 bytes of the HMAC output are transmitted
 and checked. Note that this extension does not affect the calculation
 of the pseudo-random function (PRF) as part of handshaking or key
 derivation.

 The negotiated HMAC truncation size applies for the duration of the
 session including session resumptions.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104

Donald Eastlake 3rd [Page 16]

INTERNET-DRAFT TLS Extension Definitions

8. Certificate Status Request

 Constrained clients may wish to use a certificate-status protocol
 such as OCSP [RFC2560] to check the validity of server certificates,
 in order to avoid transmission of CRLs and therefore save bandwidth
 on constrained networks. This extension allows for such information
 to be sent in the TLS handshake, saving roundtrips and resources.

 In order to indicate their desire to receive certificate status
 information, clients MAY include an extension of type
 "status_request" in the (extended) client hello. The "extension_data"
 field of this extension SHALL contain "CertificateStatusRequest"
 where:

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPStatusRequest;
 } request;
 } CertificateStatusRequest;

 enum { ocsp(1), (255) } CertificateStatusType;

 struct {
 ResponderID responder_id_list<0..2^16-1>;
 Extensions request_extensions;
 } OCSPStatusRequest;

 opaque ResponderID<1..2^16-1>;
 opaque Extensions<0..2^16-1>;

 In the OCSPStatusRequest, the "ResponderIDs" provides a list of OCSP
 responders that the client trusts. A zero-length "responder_id_list"
 sequence has the special meaning that the responders are implicitly
 known to the server, e.g., by prior arrangement. "Extensions" is a
 DER encoding of OCSP request extensions.

 Both "ResponderID" and "Extensions" are DER-encoded ASN.1 types as
 defined in [RFC2560]. "Extensions" is imported from [RFC5280]. A
 zero-length "request_extensions" value means that there are no
 extensions (as opposed to a zero-length ASN.1 SEQUENCE, which is not
 valid for the "Extensions" type).

 In the case of the "id-pkix-ocsp-nonce" OCSP extension, [RFC2560] is
 unclear about its encoding; for clarification, the nonce MUST be a
 DER-encoded OCTET STRING, which is encapsulated as another OCTET
 STRING (note that implementations based on an existing OCSP client
 will need to be checked for conformance to this requirement).

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2560

 Servers that receive a client hello containing the "status_request"

Donald Eastlake 3rd [Page 17]

INTERNET-DRAFT TLS Extension Definitions

 extension MAY return a suitable certificate status response to the
 client along with their certificate. If OCSP is requested, they
 SHOULD use the information contained in the extension when selecting
 an OCSP responder and SHOULD include request_extensions in the OCSP
 request.

 Servers return a certificate response along with their certificate by
 sending a "CertificateStatus" message immediately after the
 "Certificate" message (and before any "ServerKeyExchange" or
 "CertificateRequest" messages). If a server returns a
 "CertificateStatus" message, then the server MUST have included an
 extension of type "status_request" with empty "extension_data" in the
 extended server hello. The "CertificateStatus" message is conveyed
 using the handshake message type "certificate_status" as follows (see
 also Section 2):

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPResponse;
 } response;
 } CertificateStatus;

 opaque OCSPResponse<1..2^24-1>;

 An "ocsp_response" contains a complete, DER-encoded OCSP response
 (using the ASN.1 type OCSPResponse defined in [RFC2560]). Only one
 OCSP response may be sent.

 Note that a server MAY also choose not to send a "CertificateStatus"
 message, even if has received a "status_request" extension in the
 client hello message and has sent a "status_request" extension in the
 server hello message.

 Note in addition that a server MUST NOT send the "CertificateStatus"
 message unless it received a "status_request" extension in the client
 hello message and sent a "status_request" extension in the server
 hello message.

 Clients requesting an OCSP response and receiving an OCSP response in
 a "CertificateStatus" message MUST check the OCSP response and abort
 the handshake if the response is not satisfactory with
 bad_certificate_status_response(113) alert. This alert is always
 fatal.

https://datatracker.ietf.org/doc/html/rfc2560

Donald Eastlake 3rd [Page 18]

INTERNET-DRAFT TLS Extension Definitions

9. Error Alerts

 Four new error alerts are defined for use with the TLS extensions
 defined in this document. To avoid "breaking" existing clients and
 servers, these alerts MUST NOT be sent unless the sending party has
 received an extended hello message from the party they are
 communicating with. These error alerts are conveyed using the
 following syntax. The new alerts are the last four, as indicated by
 the comments on the same line as the error alert number.

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed(21),
 record_overflow(22),
 decompression_failure(30),
 handshake_failure(40),
 /* 41 is not defined, for historical reasons */
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 user_canceled(90),
 no_renegotiation(100),
 unsupported_extension(110),
 certificate_unobtainable(111), /* new */
 unrecognized_name(112), /* new */
 bad_certificate_status_response(113), /* new */
 bad_certificate_hash_value(114), /* new */
 (255)
 } AlertDescription;

 "certificate_unobtainable" is described in Section 5.
 "unrecognized_name" is described in Section 3.
 "bad_certificate_status_response" is described in Section 8.
 "bad_certificate_hash_value" is described in Section 5.

Donald Eastlake 3rd [Page 19]

INTERNET-DRAFT TLS Extension Definitions

10. IANA Considerations

 IANA Considerations for TLS Extensions and the creation of a Registry
 therefore are covered in Section 12 of [RFC5246] except for the
 registration of MIME type application/pkix-pkipath which appears
 below.

 The IANA TLS extensions and MIME type application/pkix-pkipath
 registry entries that reference RFC 4366 should be updated to
 reference this document on its publication as an RFC.

10.1 pkipath MIME Type Registration

 MIME media type name: application
 MIME subtype name: pkix-pkipath
 Required parameters: none

 Optional parameters: version (default value is "1")

 Encoding considerations:
 This MIME type is a DER encoding of the ASN.1 type PkiPath,
 defined as follows:
 PkiPath ::= SEQUENCE OF Certificate
 PkiPath is used to represent a certification path. Within the
 sequence, the order of certificates is such that the subject of
 the first certificate is the issuer of the second certificate,
 etc.
 This is identical to the definition published in [X509-4th-TC1];
 note that it is different from that in [X509-4th].

 All Certificates MUST conform to [RFC5280]. (This should be
 interpreted as a requirement to encode only PKIX-conformant
 certificates using this type. It does not necessarily require
 that all certificates that are not strictly PKIX-conformant must
 be rejected by relying parties, although the security consequences
 of accepting any such certificates should be considered
 carefully.)

 DER (as opposed to BER) encoding MUST be used. If this type is
 sent over a 7-bit transport, base64 encoding SHOULD be used.

 Security considerations:
 The security considerations of [X509-4th] and [RFC5280] (or any
 updates to them) apply, as well as those of any protocol that uses
 this type (e.g., TLS).

https://datatracker.ietf.org/doc/html/rfc5246#section-12
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Donald Eastlake 3rd [Page 20]

INTERNET-DRAFT TLS Extension Definitions

 Note that this type only specifies a certificate chain that can be
 assessed for validity according to the relying party's existing
 configuration of trusted CAs; it is not intended to be used to
 specify any change to that configuration.

 Interoperability considerations:
 No specific interoperability problems are known with this type,
 but for recommendations relating to X.509 certificates in general,
 see [RFC5280].

 Published specification: This document and [RFC5280].

 Applications which use this media type: TLS. It may also be used by
 other protocols, or for general interchange of PKIX certificate
 chains.

 Additional information:
 Magic number(s): DER-encoded ASN.1 can be easily recognized.
 Further parsing is required to distinguish it from other ASN.1
 types.
 File extension(s): .pkipath
 Macintosh File Type Code(s): not specified

 Person & email address to contact for further information:
 Magnus Nystrom <mnystrom@microsoft.com>

 Intended usage: COMMON

 Change controller: IESG <iesg@ietf.org>

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Donald Eastlake 3rd [Page 21]

INTERNET-DRAFT TLS Extension Definitions

11. Security Considerations

 General Security Considerations for TLS Extensions are covered in
 [RFC5246]. Security Considerations for particular extensions
 specified in this document are given below.

 In general, implementers should continue to monitor the state of the
 art and address any weaknesses identified.

11.1 Security Considerations for server_name

 If a single server hosts several domains, then clearly it is
 necessary for the owners of each domain to ensure that this satisfies
 their security needs. Apart from this, server_name does not appear to
 introduce significant security issues.

 Since it is possible for a client to present a different server_name
 in the application protocol, application server implementations that
 rely upon these names being the same MUST check to make sure the
 client did not present a different name in the application protocol.

 Implementations MUST ensure that a buffer overflow does not occur,
 whatever the values of the length fields in server_name.

11.2 Security Considerations for max_fragment_length

 The maximum fragment length takes effect immediately, including for
 handshake messages. However, that does not introduce any security
 complications that are not already present in TLS, since TLS requires
 implementations to be able to handle fragmented handshake messages.

 Note that as described in Section 4, once a non-null cipher suite has
 been activated, the effective maximum fragment length depends on the
 cipher suite and compression method, as well as on the negotiated
 max_fragment_length. This must be taken into account when sizing
 buffers, and checking for buffer overflow.

11.3 Security Considerations for client_certificate_url

 Support for client_certificate_url involves the server's acting as a
 client in another URI scheme dependent protocol. The server
 therefore becomes subject to many of the same security concerns that

https://datatracker.ietf.org/doc/html/rfc5246

 clients of the URI scheme are subject to, with the added concern that

Donald Eastlake 3rd [Page 22]

INTERNET-DRAFT TLS Extension Definitions

 the client can attempt to prompt the server to connect to some
 (possibly weird-looking) URL.

 In general, this issue means that an attacker might use the server to
 indirectly attack another host that is vulnerable to some security
 flaw. It also introduces the possibility of denial of service attacks
 in which an attacker makes many connections to the server, each of
 which results in the server's attempting a connection to the target
 of the attack.

 Note that the server may be behind a firewall or otherwise able to
 access hosts that would not be directly accessible from the public
 Internet. This could exacerbate the potential security and denial of
 service problems described above, as well as allow the existence of
 internal hosts to be confirmed when they would otherwise be hidden.

 The detailed security concerns involved will depend on the URI
 schemes supported by the server. In the case of HTTP, the concerns
 are similar to those that apply to a publicly accessible HTTP proxy
 server. In the case of HTTPS, loops and deadlocks may be created, and
 this should be addressed. In the case of FTP, attacks arise that are
 similar to FTP bounce attacks.

 As a result of this issue, it is RECOMMENDED that the
 client_certificate_url extension should have to be specifically
 enabled by a server administrator, rather than be enabled by default.
 It is also RECOMMENDED that URI schemes be enabled by the
 administrator individually, and only a minimal set of schemes be
 enabled. Unusual protocols that offer limited security or whose
 security is not well understood SHOULD be avoided.

 As discussed in [RFC3986], URLs that specify ports other than the
 default may cause problems, as may very long URLs (which are more
 likely to be useful in exploiting buffer overflow bugs).

 This extension continues to use SHA-1 (as in RFC 4366) and does not
 provide algorithm agility. The property required of SHA-1 in this
 case is second pre-image resistance, not collision resistance.
 Furthermore, even if second pre-image attacks against SHA-1 are found
 in the future, an attack against client_certificate_url would require
 a second pre-image that is accepted as a valid certificate by the
 server, and contains the same public key.

 Also note that HTTP caching proxies are common on the Internet, and
 some proxies do not check for the latest version of an object
 correctly. If a request using HTTP (or another caching protocol) goes
 through a misconfigured or otherwise broken proxy, the proxy may
 return an out-of-date response.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4366

Donald Eastlake 3rd [Page 23]

INTERNET-DRAFT TLS Extension Definitions

11.4 Security Considerations for trusted_ca_keys

 It is possible that which CA root keys a client possesses could be
 regarded as confidential information. As a result, the CA root key
 indication extension should be used with care.

 The use of the SHA-1 certificate hash alternative ensures that each
 certificate is specified unambiguously. This context does not require
 a cryptographic hash function, so the use of SHA-1 is considered
 acceptable, and no algorithm agility is provided.

11.5 Security Considerations for truncated_hmac

 It is possible that truncated MACs are weaker than "un-truncated"
 MACs. However, no significant weaknesses are currently known or
 expected to exist for HMAC with MD5 or SHA-1, truncated to 80 bits.

 Note that the output length of a MAC need not be as long as the
 length of a symmetric cipher key, since forging of MAC values cannot
 be done off-line: in TLS, a single failed MAC guess will cause the
 immediate termination of the TLS session.

 Since the MAC algorithm only takes effect after all handshake
 messages that affect extension parameters have been authenticated by
 the hashes in the Finished messages, it is not possible for an active
 attacker to force negotiation of the truncated HMAC extension where
 it would not otherwise be used (to the extent that the handshake
 authentication is secure). Therefore, in the event that any security
 problem were found with truncated HMAC in the future, if either the
 client or the server for a given session were updated to take the
 problem into account, it would be able to veto use of this extension.

11.6 Security Considerations for status_request

 If a client requests an OCSP response, it must take into account that
 an attacker's server using a compromised key could (and probably
 would) pretend not to support the extension. In this case, a client
 that requires OCSP validation of certificates SHOULD either contact
 the OCSP server directly or abort the handshake.

 Use of the OCSP nonce request extension (id-pkix-ocsp-nonce) may
 improve security against attacks that attempt to replay OCSP
 responses; see Section 4.4.1 of [RFC2560] for further details.

https://datatracker.ietf.org/doc/html/rfc2560#section-4.4.1

Donald Eastlake 3rd [Page 24]

INTERNET-DRAFT TLS Extension Definitions

12. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560, June 1999.

 [RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure Operational Protocols: FTP and HTTP", RFC 2585,
 May 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol
 -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework", RFC

5890, August 2010.

13. Informative References

 [RFC2712] Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher
 Suites to Transport Layer Security (TLS)", RFC 2712, October
 1999.

 [X509-4th] ITU-T Recommendation X.509 (2000) | ISO/IEC 9594-8:2001,
 "Information Systems - Open Systems Interconnection - The
 Directory: Public key and attribute certificate frameworks."

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2585
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc2712

Donald Eastlake 3rd [Page 25]

INTERNET-DRAFT TLS Extension Definitions

 [X509-4th-TC1] ITU-T Recommendation X.509(2000) Corrigendum 1(2001) |
 ISO/IEC 9594-8:2001/Cor.1:2002, Technical Corrigendum 1 to
 ISO/IEC 9594:8:2001.

Donald Eastlake 3rd [Page 26]

INTERNET-DRAFT TLS Extension Definitions

Annex A: Changes from RFC 4366

 The significant changes between RFC 4366 and this document are
 described below.

RFC 4366 described both general extension mechanisms (for the TLS
 handshake and client and server hellos) as well as specific
 extensions. RFC 4366 was associated with RFC 4346, TLS 1.1. The
 client and server Hello extension mechanisms have been moved into RFC

5246, TLS 1.2, so this document, which is associated with RFC 5246,
 includes only the handshake extension mechanisms and the specific
 extensions from RFC 4366. RFC 5246 also specifies the unknown
 extension error and new extension specification considerations so
 that material has been removed from this document.

 The Server Name extension now specifies only ASCII representation,
 eliminating UTF-8. It is provided that the ServerNameList can contain
 more only one name of any particular name_type. If a server name is
 provided but not recognized, the server should either continue the
 handshake without an error or send a fatal error. Sending a warning
 level message is not recommended because client behavior will be
 unpredictable. Provision was added for the user using the server_name
 extension in deciding whether or not to resume a session.
 Furthermores, this extension should be the same in a session
 resumption request as it was in the full handshake that established
 the session. Such a resumption request must not be accepted if the
 server_name extension is different but instead a full handshake must
 be done to possibly establish a new session.

 The Client Certificate URLs extension has been changed to make the
 presence of a hash mandatory.

 For the case of DTLS, the requirement to report an overflow of the
 negotiated maximum fragment length is made conditional on passing
 authentication.

 TLS servers are now prohibited from following HTTP redirects when
 retrieving certificates.

 The material was also re-organized in minor ways. For example,
 information as to which errors are fatal is moved from the one "Error
 Alerts" section to the individual extension specifications.

https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc5246

Donald Eastlake 3rd [Page 27]

INTERNET-DRAFT TLS Extension Definitions

Author's Address

 Donald Eastlake 3rd
 Stellar Switches, Inc.
 155 Beaver Street
 Milford, MA 01757 USA

 Tel: +1-508-333-2270
 Email: d3e3e3@gmail.com

Donald Eastlake 3rd [Page 28]

INTERNET-DRAFT TLS Extension Definitions

Copyright and IPR Provisions

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License. The definitive version of an IETF
 Document is that published by, or under the auspices of, the IETF.
 Versions of IETF Documents that are published by third parties,
 including those that are translated into other languages, should not
 be considered to be definitive versions of IETF Documents. The
 definitive version of these Legal Provisions is that published by, or
 under the auspices of, the IETF. Versions of these Legal Provisions
 that are published by third parties, including those that are
 translated into other languages, should not be considered to be
 definitive versions of these Legal Provisions. For the avoidance of
 doubt, each Contributor to the IETF Standards Process licenses each
 Contribution that he or she makes as part of the IETF Standards
 Process to the IETF Trust pursuant to the provisions of RFC 5378. No
 language to the contrary, or terms, conditions or rights that differ
 from or are inconsistent with the rights and licenses granted under

RFC 5378, shall have any effect and shall be null and void, whether
 published or posted by such Contributor, or included with or in such
 Contribution.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5378
https://datatracker.ietf.org/doc/html/rfc5378

Donald Eastlake 3rd [Page 29]

