
TLS Working Group Y. Nir
Internet-Draft Check Point
Obsoletes: 4492 (if approved) S. Josefsson
Intended status: Standards Track SJD AB
Expires: May 2, 2017 M. Pegourie-Gonnard
 Independent / PolarSSL
 October 29, 2016

Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS) Versions 1.2 and Earlier

draft-ietf-tls-rfc4492bis-09

Abstract

 This document describes key exchange algorithms based on Elliptic
 Curve Cryptography (ECC) for the Transport Layer Security (TLS)
 protocol. In particular, it specifies the use of Ephemeral Elliptic
 Curve Diffie-Hellman (ECDHE) key agreement in a TLS handshake and the
 use of Elliptic Curve Digital Signature Algorithm (ECDSA) and Edwards
 Digital Signature Algorithm (EdDSA) as new authentication mechanisms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 2, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Nir, et al. Expires May 2, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft ECC Cipher Suites for TLS October 2016

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Conventions Used in This Document 4

2. Key Exchange Algorithm 4
2.1. ECDHE_ECDSA . 6
2.2. ECDHE_RSA . 6
2.3. ECDH_anon . 6

3. Client Authentication . 7
3.1. ECDSA_sign . 7

4. TLS Extensions for ECC 8
5. Data Structures and Computations 8
5.1. Client Hello Extensions 9
5.1.1. Supported Elliptic Curves Extension 10
5.1.2. Supported Point Formats Extension 11

5.2. Server Hello Extension 12
5.3. Server Certificate 13
5.4. Server Key Exchange 14
5.4.1. Uncompressed Point Format for NIST curves 17

5.5. Certificate Request 18
5.6. Client Certificate 19
5.7. Client Key Exchange 20
5.8. Certificate Verify 21
5.9. Elliptic Curve Certificates 23
5.10. ECDH, ECDSA, and RSA Computations 23
5.11. Public Key Validation 24

6. Cipher Suites . 25
7. Security Considerations 26
8. IANA Considerations . 27
9. Acknowledgements . 27
10. Version History for This Draft 28
11. References . 28
11.1. Normative References 28
11.2. Informative References 30

Appendix A. Equivalent Curves (Informative) 30
Appendix B. Differences from RFC 4492 31

 Authors' Addresses . 32

https://datatracker.ietf.org/doc/html/rfc4492

Nir, et al. Expires May 2, 2017 [Page 2]

Internet-Draft ECC Cipher Suites for TLS October 2016

1. Introduction

 Elliptic Curve Cryptography (ECC) has emerged as an attractive
 public-key cryptosystem, in particular for mobile (i.e., wireless)
 environments. Compared to currently prevalent cryptosystems such as
 RSA, ECC offers equivalent security with smaller key sizes. This is
 illustrated in the following table, based on [Lenstra_Verheul], which
 gives approximate comparable key sizes for symmetric- and asymmetric-
 key cryptosystems based on the best-known algorithms for attacking
 them.

 +-----------+-------+------------+
 | Symmetric | ECC | DH/DSA/RSA |
 +-----------+-------+------------+
 | 80 | >=158 | 1024 |
 | 112 | >=221 | 2048 |
 | 128 | >=252 | 3072 |
 | 192 | >=379 | 7680 |
 | 256 | >=506 | 15360 |
 +-----------+-------+------------+

 Table 1: Comparable Key Sizes (in bits)

 Smaller key sizes result in savings for power, memory, bandwidth, and
 computational cost that make ECC especially attractive for
 constrained environments.

 This document describes additions to TLS to support ECC, applicable
 to TLS versions 1.0 [RFC2246], 1.1 [RFC4346], and 1.2 [RFC5246]. The
 use of ECC in TLS 1.3 is defined in [I-D.ietf-tls-tls13], and is
 explicitly out of scope for this document. In particular, this
 document defines:

 o the use of the Elliptic Curve Diffie-Hellman key agreement scheme
 with ephemeral keys to establish the TLS premaster secret, and
 o the use of ECDSA certificates for authentication of TLS peers.

 The remainder of this document is organized as follows. Section 2
 provides an overview of ECC-based key exchange algorithms for TLS.

Section 3 describes the use of ECC certificates for client
 authentication. TLS extensions that allow a client to negotiate the
 use of specific curves and point formats are presented in Section 4.

Section 5 specifies various data structures needed for an ECC-based
 handshake, their encoding in TLS messages, and the processing of
 those messages. Section 6 defines ECC-based cipher suites and
 identifies a small subset of these as recommended for all
 implementations of this specification. Section 7 discusses security
 considerations. Section 8 describes IANA considerations for the name

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246

Nir, et al. Expires May 2, 2017 [Page 3]

Internet-Draft ECC Cipher Suites for TLS October 2016

 spaces created by this document's predecessor. Section 9 gives
 acknowledgements. Appendix B provides differences from [RFC4492],
 the document that this one replaces.

 Implementation of this specification requires familiarity with TLS,
 TLS extensions [RFC4366], and ECC.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Key Exchange Algorithm

 This document defines three new ECC-based key exchange algorithms for
 TLS. All of them use Ephemeral ECDH (ECDHE) to compute the TLS
 premaster secret, and they differ only in the mechanism (if any) used
 to authenticate them. The derivation of the TLS master secret from
 the premaster secret and the subsequent generation of bulk
 encryption/MAC keys and initialization vectors is independent of the
 key exchange algorithm and not impacted by the introduction of ECC.

 Table 2 summarizes the new key exchange algorithms. All of these key
 exchange algorithms provide forward secrecy.

 +-------------+--+
 | Algorithm | Description |
 +-------------+--+
 | ECDHE_ECDSA | Ephemeral ECDH with ECDSA or EdDSA signatures. |
 | ECDHE_RSA | Ephemeral ECDH with RSA signatures. |
 | ECDH_anon | Anonymous ephemeral ECDH, no signatures. |
 +-------------+--+

 Table 2: ECC Key Exchange Algorithms

 These key exchanges are analogous to DHE_DSS, DHE_RSA, and DH_anon,
 respectively.

 With ECDHE_RSA, a server can reuse its existing RSA certificate and
 easily comply with a constrained client's elliptic curve preferences
 (see Section 4). However, the computational cost incurred by a
 server is higher for ECDHE_RSA than for the traditional RSA key
 exchange, which does not provide forward secrecy.

 The anonymous key exchange algorithm does not provide authentication
 of the server or the client. Like other anonymous TLS key exchanges,

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc2119

Nir, et al. Expires May 2, 2017 [Page 4]

Internet-Draft ECC Cipher Suites for TLS October 2016

 it is subject to man-in-the-middle attacks. Implementations of this
 algorithm SHOULD provide authentication by other means.

 Note that there is no structural difference between ECDH and ECDSA
 keys. A certificate issuer may use X.509 v3 keyUsage and
 extendedKeyUsage extensions to restrict the use of an ECC public key
 to certain computations. This document refers to an ECC key as ECDH-
 capable if its use in ECDH is permitted. ECDSA-capable and EdDSA-
 capable are defined similarly.

 Client Server
 ------ ------
 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*+
 <-------- ServerHelloDone
 Certificate*+
 ClientKeyExchange
 CertificateVerify*+
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data
 * message is not sent under some conditions
 + message is not sent unless client authentication
 is desired

 Figure 1: Message flow in a full TLS 1.2 handshake

 Figure 1 shows all messages involved in the TLS key establishment
 protocol (aka full handshake). The addition of ECC has direct impact
 only on the ClientHello, the ServerHello, the server's Certificate
 message, the ServerKeyExchange, the ClientKeyExchange, the
 CertificateRequest, the client's Certificate message, and the
 CertificateVerify. Next, we describe the ECC key exchange algorithm
 in greater detail in terms of the content and processing of these
 messages. For ease of exposition, we defer discussion of client
 authentication and associated messages (identified with a + in
 Figure 1) until Section 3 and of the optional ECC-specific extensions
 (which impact the Hello messages) until Section 4.

Nir, et al. Expires May 2, 2017 [Page 5]

Internet-Draft ECC Cipher Suites for TLS October 2016

2.1. ECDHE_ECDSA

 In ECDHE_ECDSA, the server's certificate MUST contain an ECDSA- or
 EdDSA-capable public key.

 The server sends its ephemeral ECDH public key and a specification of
 the corresponding curve in the ServerKeyExchange message. These
 parameters MUST be signed with ECDSA or EdDSA using the private key
 corresponding to the public key in the server's Certificate.

 The client generates an ECDH key pair on the same curve as the
 server's ephemeral ECDH key and sends its public key in the
 ClientKeyExchange message.

 Both client and server perform an ECDH operation Section 5.10 and use
 the resultant shared secret as the premaster secret.

2.2. ECDHE_RSA

 This key exchange algorithm is the same as ECDHE_ECDSA except that
 the server's certificate MUST contain an RSA public key authorized
 for signing, and that the signature in the ServerKeyExchange message
 must be computed with the corresponding RSA private key.

2.3. ECDH_anon

 NOTE: Despite the name beginning with "ECDH_" (no E), the key used in
 ECDH_anon is ephemeral just like the key in ECDHE_RSA and
 ECDHE_ECDSA. The naming follows the example of DH_anon, where the
 key is also ephemeral but the name does not reflect it.

 In ECDH_anon, the server's Certificate, the CertificateRequest, the
 client's Certificate, and the CertificateVerify messages MUST NOT be
 sent.

 The server MUST send an ephemeral ECDH public key and a specification
 of the corresponding curve in the ServerKeyExchange message. These
 parameters MUST NOT be signed.

 The client generates an ECDH key pair on the same curve as the
 server's ephemeral ECDH key and sends its public key in the
 ClientKeyExchange message.

 Both client and server perform an ECDH operation and use the
 resultant shared secret as the premaster secret. All ECDH
 calculations are performed as specified in Section 5.10.

Nir, et al. Expires May 2, 2017 [Page 6]

Internet-Draft ECC Cipher Suites for TLS October 2016

 This specification does not impose restrictions on signature schemes
 used anywhere in the certificate chain. The previous version of this
 document required the signatures to match, but this restriction,
 originating in previous TLS versions is lifted here as it had been in

RFC 5246.

3. Client Authentication

 This document defines a client authentication mechanism, named after
 the type of client certificate involved: ECDSA_sign. The ECDSA_sign
 mechanism is usable with any of the non-anonymous ECC key exchange
 algorithms described in Section 2 as well as other non-anonymous
 (non-ECC) key exchange algorithms defined in TLS.

 The server can request ECC-based client authentication by including
 this certificate type in its CertificateRequest message. The client
 must check if it possesses a certificate appropriate for the method
 suggested by the server and is willing to use it for authentication.

 If these conditions are not met, the client should send a client
 Certificate message containing no certificates. In this case, the
 ClientKeyExchange should be sent as described in Section 2, and the
 CertificateVerify should not be sent. If the server requires client
 authentication, it may respond with a fatal handshake failure alert.

 If the client has an appropriate certificate and is willing to use it
 for authentication, it must send that certificate in the client's
 Certificate message (as per Section 5.6) and prove possession of the
 private key corresponding to the certified key. The process of
 determining an appropriate certificate and proving possession is
 different for each authentication mechanism and described below.

 NOTE: It is permissible for a server to request (and the client to
 send) a client certificate of a different type than the server
 certificate.

3.1. ECDSA_sign

 To use this authentication mechanism, the client MUST possess a
 certificate containing an ECDSA- or EdDSA-capable public key.

 The client proves possession of the private key corresponding to the
 certified key by including a signature in the CertificateVerify
 message as described in Section 5.8.

https://datatracker.ietf.org/doc/html/rfc5246

Nir, et al. Expires May 2, 2017 [Page 7]

Internet-Draft ECC Cipher Suites for TLS October 2016

4. TLS Extensions for ECC

 Two new TLS extensions are defined in this specification: (i) the
 Supported Elliptic Curves Extension, and (ii) the Supported Point
 Formats Extension. These allow negotiating the use of specific
 curves and point formats (e.g., compressed vs. uncompressed,
 respectively) during a handshake starting a new session. These
 extensions are especially relevant for constrained clients that may
 only support a limited number of curves or point formats. They
 follow the general approach outlined in [RFC4366]; message details
 are specified in Section 5. The client enumerates the curves it
 supports and the point formats it can parse by including the
 appropriate extensions in its ClientHello message. The server
 similarly enumerates the point formats it can parse by including an
 extension in its ServerHello message.

 A TLS client that proposes ECC cipher suites in its ClientHello
 message SHOULD include these extensions. Servers implementing ECC
 cipher suites MUST support these extensions, and when a client uses
 these extensions, servers MUST NOT negotiate the use of an ECC cipher
 suite unless they can complete the handshake while respecting the
 choice of curves and compression techniques specified by the client.
 This eliminates the possibility that a negotiated ECC handshake will
 be subsequently aborted due to a client's inability to deal with the
 server's EC key.

 The client MUST NOT include these extensions in the ClientHello
 message if it does not propose any ECC cipher suites. A client that
 proposes ECC cipher suites may choose not to include these
 extensions. In this case, the server is free to choose any one of
 the elliptic curves or point formats listed in Section 5. That
 section also describes the structure and processing of these
 extensions in greater detail.

 In the case of session resumption, the server simply ignores the
 Supported Elliptic Curves Extension and the Supported Point Formats
 Extension appearing in the current ClientHello message. These
 extensions only play a role during handshakes negotiating a new
 session.

5. Data Structures and Computations

 This section specifies the data structures and computations used by
 ECC-based key mechanisms specified in the previous three sections.
 The presentation language used here is the same as that used in TLS.
 Since this specification extends TLS, these descriptions should be
 merged with those in the TLS specification and any others that extend
 TLS. This means that enum types may not specify all possible values,

https://datatracker.ietf.org/doc/html/rfc4366

Nir, et al. Expires May 2, 2017 [Page 8]

Internet-Draft ECC Cipher Suites for TLS October 2016

 and structures with multiple formats chosen with a select() clause
 may not indicate all possible cases.

5.1. Client Hello Extensions

 This section specifies two TLS extensions that can be included with
 the ClientHello message as described in [RFC4366], the Supported
 Elliptic Curves Extension and the Supported Point Formats Extension.

 When these extensions are sent:

 The extensions SHOULD be sent along with any ClientHello message that
 proposes ECC cipher suites.

 Meaning of these extensions:

 These extensions allow a client to enumerate the elliptic curves it
 supports and/or the point formats it can parse.

 Structure of these extensions:

 The general structure of TLS extensions is described in [RFC4366],
 and this specification adds two new types to ExtensionType.

 enum {
 elliptic_curves(10),
 ec_point_formats(11)
 } ExtensionType;

 elliptic_curves (Supported Elliptic Curves Extension): Indicates the
 set of elliptic curves supported by the client. For this
 extension, the opaque extension_data field contains
 EllipticCurveList. See Section 5.1.1 for details.
 ec_point_formats (Supported Point Formats Extension): Indicates the
 set of point formats that the client can parse. For this
 extension, the opaque extension_data field contains
 ECPointFormatList. See Section 5.1.2 for details.

 Actions of the sender:

 A client that proposes ECC cipher suites in its ClientHello message
 appends these extensions (along with any others), enumerating the
 curves it supports and the point formats it can parse. Clients
 SHOULD send both the Supported Elliptic Curves Extension and the
 Supported Point Formats Extension. If the Supported Point Formats
 Extension is indeed sent, it MUST contain the value 0 (uncompressed)
 as one of the items in the list of point formats.

https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366

Nir, et al. Expires May 2, 2017 [Page 9]

Internet-Draft ECC Cipher Suites for TLS October 2016

 Actions of the receiver:

 A server that receives a ClientHello containing one or both of these
 extensions MUST use the client's enumerated capabilities to guide its
 selection of an appropriate cipher suite. One of the proposed ECC
 cipher suites must be negotiated only if the server can successfully
 complete the handshake while using the curves and point formats
 supported by the client (cf. Section 5.3 and Section 5.4).

 NOTE: A server participating in an ECDHE_ECDSA key exchange may use
 different curves for the ECDSA or EdDSA key in its certificate, and
 for the ephemeral ECDH key in the ServerKeyExchange message. The
 server MUST consider the extensions in both cases.

 If a server does not understand the Supported Elliptic Curves
 Extension, does not understand the Supported Point Formats Extension,
 or is unable to complete the ECC handshake while restricting itself
 to the enumerated curves and point formats, it MUST NOT negotiate the
 use of an ECC cipher suite. Depending on what other cipher suites
 are proposed by the client and supported by the server, this may
 result in a fatal handshake failure alert due to the lack of common
 cipher suites.

5.1.1. Supported Elliptic Curves Extension

RFC 4492 defined 25 different curves in the NamedCurve registry (now
 renamed the "Supported Groups" registry, although the enumeration
 below is still named NamedCurve) for use in TLS. Only three have
 seen much use. This specification is deprecating the rest (with
 numbers 1-22). This specification also deprecates the explicit
 curves with identifiers 0xFF01 and 0xFF02. It also adds the new
 curves defined in [RFC7748] and [CFRG-EdDSA]. The end result is as
 follows:

 enum {
 deprecated(1..22),
 secp256r1 (23), secp384r1 (24), secp521r1 (25),
 ecdh_x25519(29), ecdh_x448(30),
 eddsa_ed25519(TBD3), eddsa_ed448(TBD4),
 reserved (0xFE00..0xFEFF),
 deprecated(0xFF01..0xFF02),
 (0xFFFF)
 } NamedCurve;

 Note that other specification have since added other values to this
 enumeration.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc7748

Nir, et al. Expires May 2, 2017 [Page 10]

Internet-Draft ECC Cipher Suites for TLS October 2016

 secp256r1, etc: Indicates support of the corresponding named curve or
 class of explicitly defined curves. The named curves secp256r1,
 secp384r1, and secp521r1 are specified in SEC 2 [SECG-SEC2]. These
 curves are also recommended in ANSI X9.62 [ANSI.X9-62.2005] and FIPS
 186-4 [FIPS.186-4]. The rest of this document refers to these three
 curves as the "NIST curves" because they were originally standardized
 by the National Institute of Standards and Technology. The curves
 ecdh_x25519 and ecdh_x448 are defined in [RFC7748]. eddsa_ed25519 and
 eddsa_ed448 are signature-only curves defined in [CFRG-EdDSA].
 Values 0xFE00 through 0xFEFF are reserved for private use.

 The NamedCurve name space is maintained by IANA. See Section 8 for
 information on how new value assignments are added.

 struct {
 NamedCurve elliptic_curve_list<2..2^16-1>
 } EllipticCurveList;

 Items in elliptic_curve_list are ordered according to the client's
 preferences (favorite choice first).

 As an example, a client that only supports secp256r1 (aka NIST P-256;
 value 23 = 0x0017) and secp384r1 (aka NIST P-384; value 24 = 0x0018)
 and prefers to use secp256r1 would include a TLS extension consisting
 of the following octets. Note that the first two octets indicate the
 extension type (Supported Elliptic Curves Extension):

 00 0A 00 06 00 04 00 17 00 18

5.1.2. Supported Point Formats Extension

 enum {
 uncompressed (0),
 deprecated (1..2),
 reserved (248..255)
 } ECPointFormat;
 struct {
 ECPointFormat ec_point_format_list<1..2^8-1>
 } ECPointFormatList;

 Three point formats were included in the definition of ECPointFormat
 above. This specification deprecates all but the uncompressed point
 format. Implementations of this document MUST support the
 uncompressed format for all of their supported curves, and MUST NOT
 support other formats for curves defined in this specification. For
 backwards compatibility purposes, the point format list extension
 MUST still be included, and contain exactly one value: the
 uncompressed point format (0).

https://datatracker.ietf.org/doc/html/rfc7748

Nir, et al. Expires May 2, 2017 [Page 11]

Internet-Draft ECC Cipher Suites for TLS October 2016

 The ECPointFormat name space is maintained by IANA. See Section 8
 for information on how new value assignments are added.

 Items in ec_point_format_list are ordered according to the client's
 preferences (favorite choice first).

 A client compliant with this specification that supports no other
 curves MUST send the following octets; note that the first two octets
 indicate the extension type (Supported Point Formats Extension):

 00 0B 00 02 01 00

5.2. Server Hello Extension

 This section specifies a TLS extension that can be included with the
 ServerHello message as described in [RFC4366], the Supported Point
 Formats Extension.

 When this extension is sent:

 The Supported Point Formats Extension is included in a ServerHello
 message in response to a ClientHello message containing the Supported
 Point Formats Extension when negotiating an ECC cipher suite.

 Meaning of this extension:

 This extension allows a server to enumerate the point formats it can
 parse (for the curve that will appear in its ServerKeyExchange
 message when using the ECDHE_ECDSA, ECDHE_RSA, or ECDH_anon key
 exchange algorithm.

 Structure of this extension:

 The server's Supported Point Formats Extension has the same structure
 as the client's Supported Point Formats Extension (see

Section 5.1.2). Items in ec_point_format_list here are ordered
 according to the server's preference (favorite choice first). Note
 that the server may include items that were not found in the client's
 list (e.g., the server may prefer to receive points in compressed
 format even when a client cannot parse this format: the same client
 may nevertheless be capable of outputting points in compressed
 format).

 Actions of the sender:

 A server that selects an ECC cipher suite in response to a
 ClientHello message including a Supported Point Formats Extension
 appends this extension (along with others) to its ServerHello

https://datatracker.ietf.org/doc/html/rfc4366

Nir, et al. Expires May 2, 2017 [Page 12]

Internet-Draft ECC Cipher Suites for TLS October 2016

 message, enumerating the point formats it can parse. The Supported
 Point Formats Extension, when used, MUST contain the value 0
 (uncompressed) as one of the items in the list of point formats.

 Actions of the receiver:

 A client that receives a ServerHello message containing a Supported
 Point Formats Extension MUST respect the server's choice of point
 formats during the handshake (cf. Section 5.6 and Section 5.7). If
 no Supported Point Formats Extension is received with the
 ServerHello, this is equivalent to an extension allowing only the
 uncompressed point format.

5.3. Server Certificate

 When this message is sent:

 This message is sent in all non-anonymous ECC-based key exchange
 algorithms.

 Meaning of this message:

 This message is used to authentically convey the server's static
 public key to the client. The following table shows the server
 certificate type appropriate for each key exchange algorithm. ECC
 public keys MUST be encoded in certificates as described in

Section 5.9.

 NOTE: The server's Certificate message is capable of carrying a chain
 of certificates. The restrictions mentioned in Table 3 apply only to
 the server's certificate (first in the chain).

 +-------------+---+
 | Algorithm | Server Certificate Type |
 +-------------+---+
ECDHE_ECDSA	Certificate MUST contain an ECDSA- or EdDSA-capable
	public key.
ECDHE_RSA	Certificate MUST contain an RSA public key
	authorized for use in digital signatures.
 +-------------+---+

 Table 3: Server Certificate Types

 Structure of this message:

 Identical to the TLS Certificate format.

 Actions of the sender:

Nir, et al. Expires May 2, 2017 [Page 13]

Internet-Draft ECC Cipher Suites for TLS October 2016

 The server constructs an appropriate certificate chain and conveys it
 to the client in the Certificate message. If the client has used a
 Supported Elliptic Curves Extension, the public key in the server's
 certificate MUST respect the client's choice of elliptic curves; in
 particular, the public key MUST employ a named curve (not the same
 curve as an explicit curve) unless the client has indicated support
 for explicit curves of the appropriate type. If the client has used
 a Supported Point Formats Extension, both the server's public key
 point and (in the case of an explicit curve) the curve's base point
 MUST respect the client's choice of point formats. (A server that
 cannot satisfy these requirements MUST NOT choose an ECC cipher suite
 in its ServerHello message.)

 Actions of the receiver:

 The client validates the certificate chain, extracts the server's
 public key, and checks that the key type is appropriate for the
 negotiated key exchange algorithm. (A possible reason for a fatal
 handshake failure is that the client's capabilities for handling
 elliptic curves and point formats are exceeded; cf. Section 5.1.)

5.4. Server Key Exchange

 When this message is sent:

 This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and
 ECDH_anon key exchange algorithms.

 Meaning of this message:

 This message is used to convey the server's ephemeral ECDH public key
 (and the corresponding elliptic curve domain parameters) to the
 client.

 The ECCCurveType enum used to have values for explicit prime and for
 explicit char2 curves. Those values are now deprecated, so only one
 value remains:

 Structure of this message:

 enum {
 deprecated (1..2),
 named_curve (3),
 reserved(248..255)
 } ECCurveType;

 The value named_curve indicates that a named curve is used. This
 option SHOULD be used when applicable.

Nir, et al. Expires May 2, 2017 [Page 14]

Internet-Draft ECC Cipher Suites for TLS October 2016

 Values 248 through 255 are reserved for private use.

 The ECCurveType name space is maintained by IANA. See Section 8 for
 information on how new value assignments are added.

RFC 4492 had a specification for an ECCurve structure and an
 ECBasisType structure. Both of these are omitted now because they
 were only used with the now deprecated explicit curves.

 struct {
 opaque point <1..2^8-1>;
 } ECPoint;

 This is the byte string representation of an elliptic curve point
 following the conversion routine in Section 4.3.6 of
 [ANSI.X9-62.2005]. This byte string may represent an elliptic curve
 point in uncompressed, compressed, or hybrid format, but this
 specification deprecates all but the uncompressed format. For the
 NIST curves, the format is repeated in Section 5.4.1 for convenience.
 For the X25519 and X448 curves, the only valid representation is the
 one specified in [RFC7748] - a 32- or 56-octet representation of the
 u value of the point. This structure MUST NOT be used with Ed25519
 and Ed448 public keys.

 struct {
 ECCurveType curve_type;
 select (curve_type) {
 case named_curve:
 NamedCurve namedcurve;
 };
 } ECParameters;

 This identifies the type of the elliptic curve domain parameters.

 Specifies a recommended set of elliptic curve domain parameters. All
 those values of NamedCurve are allowed that refer to a curve capable
 of Diffie-Hellman. With the deprecation of the explicit curves, this
 now includes all values of NamedCurve except eddsa_ed25519(TBD3) and
 eddsa_ed448(TBD4).

 struct {
 ECParameters curve_params;
 ECPoint public;
 } ServerECDHParams;

 Specifies the elliptic curve domain parameters associated with the
 ECDH public key.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc7748

Nir, et al. Expires May 2, 2017 [Page 15]

Internet-Draft ECC Cipher Suites for TLS October 2016

 The ephemeral ECDH public key.

 The ServerKeyExchange message is extended as follows.

 enum {
 ec_diffie_hellman
 } KeyExchangeAlgorithm;

 ec_diffie_hellman: Indicates the ServerKeyExchange message contains
 an ECDH public key.

 select (KeyExchangeAlgorithm) {
 case ec_diffie_hellman:
 ServerECDHParams params;
 Signature signed_params;
 } ServerKeyExchange;

 params: Specifies the ECDH public key and associated domain
 parameters.
 signed_params: A hash of the params, with the signature appropriate
 to that hash applied. The private key corresponding to the
 certified public key in the server's Certificate message is used
 for signing.

 enum {
 ecdsa(3),
 eddsa(TBD5)
 } SignatureAlgorithm;
 select (SignatureAlgorithm) {
 case ecdsa:
 digitally-signed struct {
 opaque sha_hash[sha_size];
 };
 case eddsa:
 digitally-signed struct {
 opaque rawdata[rawdata_size];
 };
 } Signature;
 ServerKeyExchange.signed_params.sha_hash
 SHA(ClientHello.random + ServerHello.random +
 ServerKeyExchange.params);
 ServerKeyExchange.signed_params.rawdata
 ClientHello.random + ServerHello.random +
 ServerKeyExchange.params;

 NOTE: SignatureAlgorithm is "rsa" for the ECDHE_RSA key exchange
 algorithm and "anonymous" for ECDH_anon. These cases are defined in
 TLS. SignatureAlgorithm is "ecdsa" or "eddsa" for ECDHE_ECDSA.

Nir, et al. Expires May 2, 2017 [Page 16]

Internet-Draft ECC Cipher Suites for TLS October 2016

 ECDSA signatures are generated and verified as described in
Section 5.10, and SHA in the above template for sha_hash accordingly

 may denote a hash algorithm other than SHA-1. As per ANSI X9.62, an
 ECDSA signature consists of a pair of integers, r and s. The
 digitally-signed element is encoded as an opaque vector <0..2^16-1>,
 the contents of which are the DER encoding corresponding to the
 following ASN.1 notation.

 Ecdsa-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER
 }

 EdDSA signatures in both the protocol and in certificates that
 conform to [PKIX-EdDSA] are generated and verified according to
 [CFRG-EdDSA]. The digitally-signed element is encoded as an opaque
 vector<0..2^16-1>, the contents of which is the octet string output
 of the EdDSA signing algorithm.

 Actions of the sender:

 The server selects elliptic curve domain parameters and an ephemeral
 ECDH public key corresponding to these parameters according to the
 ECKAS-DH1 scheme from IEEE 1363 [IEEE.P1363.1998]. It conveys this
 information to the client in the ServerKeyExchange message using the
 format defined above.

 Actions of the receiver:

 The client verifies the signature (when present) and retrieves the
 server's elliptic curve domain parameters and ephemeral ECDH public
 key from the ServerKeyExchange message. (A possible reason for a
 fatal handshake failure is that the client's capabilities for
 handling elliptic curves and point formats are exceeded; cf.

Section 5.1.)

5.4.1. Uncompressed Point Format for NIST curves

 The following represents the wire format for representing ECPoint in
 ServerKeyExchange records. The first octet of the representation
 indicates the form, which may be compressed, uncompressed, or hybrid.
 This specification supports only the uncompressed format for these
 curves. This is followed by the binary representation of the X value
 in "big-endian" or "network" format, followed by the binary
 representation of the Y value in "big-endian" or "network" format.
 There are no internal length markers, so each number representation
 occupies as many octets as implied by the curve parameters. For
 P-256 this means that each of X and Y use 32 octets, padded on the

Nir, et al. Expires May 2, 2017 [Page 17]

Internet-Draft ECC Cipher Suites for TLS October 2016

 left by zeros if necessary. For P-384 they take 48 octets each, and
 for P-521 they take 66 octets each.

 Here's a more formal representation:

 enum {
 uncompressed(4),
 (255)
 } PointConversionForm;

 struct {
 PointConversionForm form;
 opaque X[coordinate_length];
 opaque Y[coordinate_length];
 } UncompressedPointRepresentation;

5.5. Certificate Request

 When this message is sent:

 This message is sent when requesting client authentication.

 Meaning of this message:

 The server uses this message to suggest acceptable client
 authentication methods.

 Structure of this message:

 The TLS CertificateRequest message is extended as follows.

 enum {
 ecdsa_sign(64),
 rsa_fixed_ecdh(65),
 ecdsa_fixed_ecdh(66),
 (255)
 } ClientCertificateType;

 ecdsa_sign, etc. Indicates that the server would like to use the
 corresponding client authentication method specified in Section 3.

 Actions of the sender:

 The server decides which client authentication methods it would like
 to use, and conveys this information to the client using the format
 defined above.

 Actions of the receiver:

Nir, et al. Expires May 2, 2017 [Page 18]

Internet-Draft ECC Cipher Suites for TLS October 2016

 The client determines whether it has a suitable certificate for use
 with any of the requested methods and whether to proceed with client
 authentication.

5.6. Client Certificate

 When this message is sent:

 This message is sent in response to a CertificateRequest when a
 client has a suitable certificate and has decided to proceed with
 client authentication. (Note that if the server has used a Supported
 Point Formats Extension, a certificate can only be considered
 suitable for use with the ECDSA_sign, RSA_fixed_ECDH, and
 ECDSA_fixed_ECDH authentication methods if the public key point
 specified in it respects the server's choice of point formats. If no
 Supported Point Formats Extension has been used, a certificate can
 only be considered suitable for use with these authentication methods
 if the point is represented in uncompressed point format.)

 Meaning of this message:

 This message is used to authentically convey the client's static
 public key to the server. The following table summarizes what client
 certificate types are appropriate for the ECC-based client
 authentication mechanisms described in Section 3. ECC public keys
 must be encoded in certificates as described in Section 5.9.

 NOTE: The client's Certificate message is capable of carrying a chain
 of certificates. The restrictions mentioned in Table 4 apply only to
 the client's certificate (first in the chain).

 +------------------+--+
Client	Client Certificate Type
Authentication	
Method	
+------------------+--+	
ECDSA_sign	Certificate MUST contain an ECDSA- or EdDSA-
	capable public key.
ECDSA_fixed_ECDH	Certificate MUST contain an ECDH-capable
	public key on the same elliptic curve as the
	server's long-term ECDH key.
RSA_fixed_ECDH	The same as ECDSA_fixed_ECDH. The codepoints
	meant different things, but due to changes in
	TLS 1.2, both mean the same thing now.
 +------------------+--+

 Table 4: Client Certificate Types

Nir, et al. Expires May 2, 2017 [Page 19]

Internet-Draft ECC Cipher Suites for TLS October 2016

 Structure of this message:

 Identical to the TLS client Certificate format.

 Actions of the sender:

 The client constructs an appropriate certificate chain, and conveys
 it to the server in the Certificate message.

 Actions of the receiver:

 The TLS server validates the certificate chain, extracts the client's
 public key, and checks that the key type is appropriate for the
 client authentication method.

5.7. Client Key Exchange

 When this message is sent:

 This message is sent in all key exchange algorithms. If client
 authentication with ECDSA_fixed_ECDH or RSA_fixed_ECDH is used, this
 message is empty. Otherwise, it contains the client's ephemeral ECDH
 public key.

 Meaning of the message:

 This message is used to convey ephemeral data relating to the key
 exchange belonging to the client (such as its ephemeral ECDH public
 key).

 Structure of this message:

 The TLS ClientKeyExchange message is extended as follows.

 enum {
 implicit,
 explicit
 } PublicValueEncoding;

 implicit, explicit: For ECC cipher suites, this indicates whether
 the client's ECDH public key is in the client's certificate
 ("implicit") or is provided, as an ephemeral ECDH public key, in
 the ClientKeyExchange message ("explicit"). (This is "explicit"
 in ECC cipher suites except when the client uses the
 ECDSA_fixed_ECDH or RSA_fixed_ECDH client authentication
 mechanism.)

Nir, et al. Expires May 2, 2017 [Page 20]

Internet-Draft ECC Cipher Suites for TLS October 2016

 struct {
 select (PublicValueEncoding) {
 case implicit: struct { };
 case explicit: ECPoint ecdh_Yc;
 } ecdh_public;
 } ClientECDiffieHellmanPublic;
 ecdh_Yc: Contains the client's ephemeral ECDH public key as a byte
 string ECPoint.point, which may represent an elliptic curve point
 in uncompressed or compressed format. Curves eddsa_ed25519 and
 eddsa_ed448 MUST NOT be used here. Here, the format MUST conform
 to what the server has requested through a Supported Point Formats
 Extension if this extension was used, and MUST be uncompressed if
 this extension was not used.

 struct {
 select (KeyExchangeAlgorithm) {
 case ec_diffie_hellman: ClientECDiffieHellmanPublic;
 } exchange_keys;
 } ClientKeyExchange;

 Actions of the sender:

 The client selects an ephemeral ECDH public key corresponding to the
 parameters it received from the server according to the ECKAS-DH1
 scheme from IEEE 1363. It conveys this information to the client in
 the ClientKeyExchange message using the format defined above.

 Actions of the receiver:

 The server retrieves the client's ephemeral ECDH public key from the
 ClientKeyExchange message and checks that it is on the same elliptic
 curve as the server's ECDH key.

5.8. Certificate Verify

 When this message is sent:

 This message is sent when the client sends a client certificate
 containing a public key usable for digital signatures, e.g., when the
 client is authenticated using the ECDSA_sign mechanism.

 Meaning of the message:

 This message contains a signature that proves possession of the
 private key corresponding to the public key in the client's
 Certificate message.

 Structure of this message:

Nir, et al. Expires May 2, 2017 [Page 21]

Internet-Draft ECC Cipher Suites for TLS October 2016

 The TLS CertificateVerify message and the underlying Signature type
 are defined in the TLS base specifications, and the latter is
 extended here in Section 5.4. For the ecdsa and eddsa cases, the
 signature field in the CertificateVerify message contains an ECDSA or
 EdDSA (respectively) signature computed over handshake messages
 exchanged so far, exactly similar to CertificateVerify with other
 signing algorithms:

 CertificateVerify.signature.sha_hash
 SHA(handshake_messages);
 CertificateVerify.signature.rawdata
 handshake_messages;

 ECDSA signatures are computed as described in Section 5.10, and SHA
 in the above template for sha_hash accordingly may denote a hash
 algorithm other than SHA-1. As per ANSI X9.62, an ECDSA signature
 consists of a pair of integers, r and s. The digitally-signed
 element is encoded as an opaque vector <0..2^16-1>, the contents of
 which are the DER encoding [CCITT.X690] corresponding to the
 following ASN.1 notation [CCITT.X680].

 Ecdsa-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER
 }

 EdDSA signatures are generated and verified according to
 [CFRG-EdDSA]. The digitally-signed element is encoded as an opaque
 vector<0..2^16-1>, the contents of which is the octet string output
 of the EdDSA signing algorithm.

 Actions of the sender:

 The client computes its signature over all handshake messages sent or
 received starting at client hello and up to but not including this
 message. It uses the private key corresponding to its certified
 public key to compute the signature, which is conveyed in the format
 defined above.

 Actions of the receiver:

 The server extracts the client's signature from the CertificateVerify
 message, and verifies the signature using the public key it received
 in the client's Certificate message.

Nir, et al. Expires May 2, 2017 [Page 22]

Internet-Draft ECC Cipher Suites for TLS October 2016

5.9. Elliptic Curve Certificates

 X.509 certificates containing ECC public keys or signed using ECDSA
 MUST comply with [RFC3279] or another RFC that replaces or extends
 it. X.509 certificates containing ECC public keys or signed using
 EdDSA MUST comply with [PKIX-EdDSA]. Clients SHOULD use the elliptic
 curve domain parameters recommended in ANSI X9.62, FIPS 186-4, and
 SEC 2 [SECG-SEC2] or in [CFRG-EdDSA].

 EdDSA keys using Ed25519 and Ed25519ph algorithms MUST use the
 eddsa_ed25519 curve, and Ed448 and Ed448ph keys MUST use the
 eddsa_ed448 curve. Curves ecdh_x25519, ecdh_x448, eddsa_ed25519 and
 eddsa_ed448 MUST NOT be used for ECDSA.

5.10. ECDH, ECDSA, and RSA Computations

 All ECDH calculations for the NIST curves (including parameter and
 key generation as well as the shared secret calculation) are
 performed according to [IEEE.P1363.1998] using the ECKAS-DH1 scheme
 with the identity map as key derivation function (KDF), so that the
 premaster secret is the x-coordinate of the ECDH shared secret
 elliptic curve point represented as an octet string. Note that this
 octet string (Z in IEEE 1363 terminology) as output by FE2OSP, the
 Field Element to Octet String Conversion Primitive, has constant
 length for any given field; leading zeros found in this octet string
 MUST NOT be truncated.

 (Note that this use of the identity KDF is a technicality. The
 complete picture is that ECDH is employed with a non-trivial KDF
 because TLS does not directly use the premaster secret for anything
 other than for computing the master secret. In TLS 1.0 and 1.1, this
 means that the MD5- and SHA-1-based TLS PRF serves as a KDF; in TLS
 1.2 the KDF is determined by ciphersuite; it is conceivable that
 future TLS versions or new TLS extensions introduced in the future
 may vary this computation.)

 An ECDHE key exchange using X25519 (curve ecdh_x25519) goes as
 follows: Each party picks a secret key d uniformly at random and
 computes the corresponding public key x = X25519(d, G). Parties
 exchange their public keys, and compute a shared secret as x_S =
 X25519(d, x_peer). If either party obtains all-zeroes x_S, it MUST
 abort the handshake (as required by definition of X25519 and X448).
 ECDHE for X448 works similarily, replacing X25519 with X448, and
 ecdh_x25519 with ecdh_x448. The derived shared secret is used
 directly as the premaster secret, which is always exactly 32 bytes
 when ECDHE with X25519 is used and 56 bytes when ECDHE with X448 is
 used.

https://datatracker.ietf.org/doc/html/rfc3279

Nir, et al. Expires May 2, 2017 [Page 23]

Internet-Draft ECC Cipher Suites for TLS October 2016

 All ECDSA computations MUST be performed according to ANSI X9.62 or
 its successors. Data to be signed/verified is hashed, and the result
 run directly through the ECDSA algorithm with no additional hashing.
 The default hash function is SHA-1 [FIPS.180-2], and sha_size (see

Section 5.4 and Section 5.8) is 20. However, an alternative hash
 function, such as one of the new SHA hash functions specified in FIPS
 180-2 [FIPS.180-2], SHOULD be used instead.

 All EdDSA computations MUST be performed according to [CFRG-EdDSA] or
 its succesors. Data to be signed/verified is run through the EdDSA
 algorithm wih no hashing (EdDSA will internally run the data through
 the PH function).

RFC 4492 anticipated the standardization of a mechanism for
 specifying the required hash function in the certificate, perhaps in
 the parameters field of the subjectPublicKeyInfo. Such
 standardization never took place, and as a result, SHA-1 is used in
 TLS 1.1 and earlier (except for EdDSA, which uses identity function).
 TLS 1.2 added a SignatureAndHashAlgorithm parameter to the
 DigitallySigned struct, thus allowing agility in choosing the
 signature hash. EdDSA signatures MUST have HashAlgorithm of 0
 (None).

 All RSA signatures must be generated and verified according to
 [PKCS1] block type 1.

5.11. Public Key Validation

 With the NIST curves, each party must validate the public key sent by
 its peer. A receiving party MUST check that the x and y parameters
 from the peer's public value satisfy the curve equation, y^2 = x^3 +
 ax + b mod p. See section 2.3 of [Menezes] for details. Failing to
 do so allows attackers to gain information about the private key, to
 the point that they may recover the entire private key in a few
 requests, if that key is not really ephemeral.

 X25519 was designed in a way that the result of X25519(x, d) will
 never reveal information about d, provided it was chosen as
 prescribed, for any value of x (the same holds true for X448).

 All-zeroes output from X25519 or X448 MUST NOT be used for premaster
 secret (as required by definition of X25519 and X448). If the
 premaster secret would be all zeroes, the handshake MUST be aborted
 (most probably by sending a fatal alert).

 Let's define legitimate values of x as the values that can be
 obtained as x = X25519(G, d') for some d', and call the other values
 illegitimate. The definition of the X25519 function shows that

https://datatracker.ietf.org/doc/html/rfc4492

Nir, et al. Expires May 2, 2017 [Page 24]

Internet-Draft ECC Cipher Suites for TLS October 2016

 legitimate values all share the following property: the high-order
 bit of the last byte is not set (for X448, any bit can be set).

 Since there are some implementation of the X25519 function that
 impose this restriction on their input and others that don't,
 implementations of X25519 in TLS SHOULD reject public keys when the
 high-order bit of the final byte is set (in other words, when the
 value of the rightmost byte is greater than 0x7F) in order to prevent
 implementation fingerprinting. Note that this deviates from RFC 7748
 which suggests that This value be masked.

 Ed25519 and Ed448 internally do public key validation as part of
 signature verification.

 Other than this recommended check, implementations do not need to
 ensure that the public keys they receive are legitimate: this is not
 necessary for security with X25519.

6. Cipher Suites

 The table below defines new ECC cipher suites that use the key
 exchange algorithms specified in Section 2.

 +---------------------------------------+----------------+
 | CipherSuite | Identifier |
 +---------------------------------------+----------------+
 | TLS_ECDHE_ECDSA_WITH_NULL_SHA | { 0xC0, 0x06 } |
 | TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA | { 0xC0, 0x08 } |
 | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA | { 0xC0, 0x09 } |
 | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA | { 0xC0, 0x0A } |
 | | |
 | TLS_ECDHE_RSA_WITH_NULL_SHA | { 0xC0, 0x10 } |
 | TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA | { 0xC0, 0x12 } |
 | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA | { 0xC0, 0x13 } |
 | TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA | { 0xC0, 0x14 } |
 | | |
 | TLS_ECDH_anon_WITH_NULL_SHA | { 0xC0, 0x15 } |
 | TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA | { 0xC0, 0x17 } |
 | TLS_ECDH_anon_WITH_AES_128_CBC_SHA | { 0xC0, 0x18 } |
 | TLS_ECDH_anon_WITH_AES_256_CBC_SHA | { 0xC0, 0x19 } |
 +---------------------------------------+----------------+

 Table 5: TLS ECC cipher suites

 The key exchange method, cipher, and hash algorithm for each of these
 cipher suites are easily determined by examining the name. Ciphers
 (other than AES ciphers) and hash algorithms are defined in [RFC2246]
 and [RFC4346]. AES ciphers are defined in [RFC5246].

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246

Nir, et al. Expires May 2, 2017 [Page 25]

Internet-Draft ECC Cipher Suites for TLS October 2016

 Server implementations SHOULD support all of the following cipher
 suites, and client implementations SHOULD support at least one of
 them:

 o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 o TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 o TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

7. Security Considerations

 Security issues are discussed throughout this memo.

 For TLS handshakes using ECC cipher suites, the security
 considerations in appendices D of all three TLS base documemts apply
 accordingly.

 Security discussions specific to ECC can be found in
 [IEEE.P1363.1998] and [ANSI.X9-62.2005]. One important issue that
 implementers and users must consider is elliptic curve selection.
 Guidance on selecting an appropriate elliptic curve size is given in
 Table 1. Security considerations specific to X25519 and X448 are
 discussed in section 7 of [RFC7748].

 Beyond elliptic curve size, the main issue is elliptic curve
 structure. As a general principle, it is more conservative to use
 elliptic curves with as little algebraic structure as possible.
 Thus, random curves are more conservative than special curves such as
 Koblitz curves, and curves over F_p with p random are more
 conservative than curves over F_p with p of a special form, and
 curves over F_p with p random are considered more conservative than
 curves over F_2^m as there is no choice between multiple fields of
 similar size for characteristic 2.

 NEED TO ADD A PARAGRAPH HERE ABOUT WHY X25519/X448 ARE PREFERRABLE TO
 NIST CURVES.

 Another issue is the potential for catastrophic failures when a
 single elliptic curve is widely used. In this case, an attack on the
 elliptic curve might result in the compromise of a large number of
 keys. Again, this concern may need to be balanced against efficiency
 and interoperability improvements associated with widely-used curves.
 Substantial additional information on elliptic curve choice can be
 found in [IEEE.P1363.1998], [ANSI.X9-62.2005], and [FIPS.186-4].

 All of the key exchange algorithms defined in this document provide
 forward secrecy. Some of the deprecated key exchange algorithms do
 not.

https://datatracker.ietf.org/doc/html/rfc7748#section-7

Nir, et al. Expires May 2, 2017 [Page 26]

Internet-Draft ECC Cipher Suites for TLS October 2016

8. IANA Considerations

 [RFC4492], the predecessor of this document has already defined the
 IANA registries for the following:

 o Supported Groups Section 5.1
 o ECPointFormat Section 5.1
 o ECCurveType Section 5.4

 For each name space, this document defines the initial value
 assignments and defines a range of 256 values (NamedCurve) or eight
 values (ECPointFormat and ECCurveType) reserved for Private Use. The
 policy for any additional assignments is "Specification Required".
 The previous version of this document required IETF review.

 NOTE: IANA, please update the registries to reflect the new policy.

 NOTE: RFC editor please delete these two notes prior to publication.

 IANA, please update these two registries to refer to this document.

 IANA is requested to assign two values from the NamedCurve registry
 with names eddsa_ed25519(TBD3) and eddsa_ed448(TBD4) with this
 document as reference. IANA has already assigned the value 29 to
 ecdh_x25519, and the value 30 to ecdh_x448.

 IANA is requested to assign one value from SignatureAlgorithm
 Registry with name eddsa(TBD5) with this document as reference.

9. Acknowledgements

 Most of the text is this document is taken from [RFC4492], the
 predecessor of this document. The authors of that document were:

 o Simon Blake-Wilson
 o Nelson Bolyard
 o Vipul Gupta
 o Chris Hawk
 o Bodo Moeller

 In the predecessor document, the authors acknowledged the
 contributions of Bill Anderson and Tim Dierks.

 The author would like to thank Nikos Mavrogiannopoulos, Martin
 Thomson, and Tanja Lange for contributions to this document.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492

Nir, et al. Expires May 2, 2017 [Page 27]

Internet-Draft ECC Cipher Suites for TLS October 2016

10. Version History for This Draft

 NOTE TO RFC EDITOR: PLEASE REMOVE THIS SECTION

 Changes from draft-ietf-tls-rfc4492bis-03 to draft-nir-tls-
rfc4492bis-05:

 o Add support for CFRG curves and signatures work.

 Changes from draft-ietf-tls-rfc4492bis-01 to draft-nir-tls-
rfc4492bis-03:

 o Removed unused curves.
 o Removed unused point formats (all but uncompressed)

 Changes from draft-nir-tls-rfc4492bis-00 and draft-ietf-tls-
rfc4492bis-00 to draft-nir-tls-rfc4492bis-01:

 o Merged errata
 o Removed ECDH_RSA and ECDH_ECDSA

 Changes from RFC 4492 to draft-nir-tls-rfc4492bis-00:

 o Added TLS 1.2 to references.
 o Moved RFC 4492 authors to acknowledgements.
 o Removed list of required reading for ECC.

11. References

11.1. Normative References

 [ANSI.X9-62.2005]
 American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry, The
 Elliptic Curve Digital Signature Algorithm (ECDSA)",
 ANSI X9.62, 2005.

 [CCITT.X680]
 International Telephone and Telegraph Consultative
 Committee, "Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", CCITT Recommendation
 X.680, July 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4492bis-03
https://datatracker.ietf.org/doc/html/draft-nir-tls-rfc4492bis-05
https://datatracker.ietf.org/doc/html/draft-nir-tls-rfc4492bis-05
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4492bis-01
https://datatracker.ietf.org/doc/html/draft-nir-tls-rfc4492bis-03
https://datatracker.ietf.org/doc/html/draft-nir-tls-rfc4492bis-03
https://datatracker.ietf.org/doc/html/draft-nir-tls-rfc4492bis-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4492bis-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4492bis-00
https://datatracker.ietf.org/doc/html/draft-nir-tls-rfc4492bis-01
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/draft-nir-tls-rfc4492bis-00
https://datatracker.ietf.org/doc/html/rfc4492

Nir, et al. Expires May 2, 2017 [Page 28]

Internet-Draft ECC Cipher Suites for TLS October 2016

 [CCITT.X690]
 International Telephone and Telegraph Consultative
 Committee, "ASN.1 encoding rules: Specification of basic
 encoding Rules (BER), Canonical encoding rules (CER) and
 Distinguished encoding rules (DER)", CCITT Recommendation
 X.690, July 2002.

 [CFRG-EdDSA]
 Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
 Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-08
 (work in progress), August 2016.

 [FIPS.186-4]
 National Institute of Standards and Technology, "Digital
 Signature Standard", FIPS PUB 186-4, 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.186-4.pdf>.

 [PKCS1] RSA Laboratories, "RSA Encryption Standard, Version 1.5",
 PKCS 1, November 1993.

 [PKIX-EdDSA]
 Josefsson, S. and J. Schaad, "Algorithm Identifiers for
 Ed25519, Ed25519ph, Ed448, Ed448ph, X25519 and X448 for
 use in the Internet X.509 Public Key Infrastructure",
 August 2016, <https://tools.ietf.org/html/draft-ietf-

curdle-pkix-01>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 3279, April 2002.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-eddsa-08
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/draft-ietf-curdle-pkix-01
https://tools.ietf.org/html/draft-ietf-curdle-pkix-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc5246

Nir, et al. Expires May 2, 2017 [Page 29]

Internet-Draft ECC Cipher Suites for TLS October 2016

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, January 2016.

 [SECG-SEC2]
 CECG, "Recommended Elliptic Curve Domain Parameters",
 SEC 2, 2000.

11.2. Informative References

 [FIPS.180-2]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-2, August 2002,
 <http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2.pdf>.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-18 (work in progress),
 October 2016.

 [IEEE.P1363.1998]
 Institute of Electrical and Electronics Engineers,
 "Standard Specifications for Public Key Cryptography",
 IEEE Draft P1363, 1998.

 [Lenstra_Verheul]
 Lenstra, A. and E. Verheul, "Selecting Cryptographic Key
 Sizes", Journal of Cryptology 14 (2001) 255-293, 2001.

 [Menezes] Menezes, A. and B. Ustaoglu, "On Reusing Ephemeral Keys In
 Diffie-Hellman Key Agreement Protocols", IACR Menezes2008,
 December 2008.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

Appendix A. Equivalent Curves (Informative)

 All of the NIST curves [FIPS.186-4] and several of the ANSI curves
 [ANSI.X9-62.2005] are equivalent to curves listed in Section 5.1.1.
 In the following table, multiple names in one row represent aliases
 for the same curve.

https://datatracker.ietf.org/doc/html/rfc7748
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-18
https://datatracker.ietf.org/doc/html/rfc4492

Nir, et al. Expires May 2, 2017 [Page 30]

Internet-Draft ECC Cipher Suites for TLS October 2016

 Curve names chosen by different standards organizations

 +-----------+------------+------------+
 | SECG | ANSI X9.62 | NIST |
 +-----------+------------+------------+
 | sect163k1 | | NIST K-163 |
 | sect163r1 | | |
 | sect163r2 | | NIST B-163 |
 | sect193r1 | | |
 | sect193r2 | | |
 | sect233k1 | | NIST K-233 |
 | sect233r1 | | NIST B-233 |
 | sect239k1 | | |
 | sect283k1 | | NIST K-283 |
 | sect283r1 | | NIST B-283 |
 | sect409k1 | | NIST K-409 |
 | sect409r1 | | NIST B-409 |
 | sect571k1 | | NIST K-571 |
 | sect571r1 | | NIST B-571 |
 | secp160k1 | | |
 | secp160r1 | | |
 | secp160r2 | | |
 | secp192k1 | | |
 | secp192r1 | prime192v1 | NIST P-192 |
 | secp224k1 | | |
 | secp224r1 | | NIST P-224 |
 | secp256k1 | | |
 | secp256r1 | prime256v1 | NIST P-256 |
 | secp384r1 | | NIST P-384 |
 | secp521r1 | | NIST P-521 |
 +-----------+------------+------------+

 Table 6: Equivalent curves defined by SECG, ANSI, and NIST

Appendix B. Differences from RFC 4492

 o Added TLS 1.2
 o Merged Errata
 o Removed the ECDH key exchange algorithms: ECDH_RSA and ECDH_ECDSA
 o Deprecated a bunch of ciphersuites:

 TLS_ECDH_ECDSA_WITH_NULL_SHA
 TLS_ECDH_ECDSA_WITH_RC4_128_SHA
 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
 TLS_ECDH_RSA_WITH_NULL_SHA
 TLS_ECDH_RSA_WITH_RC4_128_SHA

https://datatracker.ietf.org/doc/html/rfc4492

Nir, et al. Expires May 2, 2017 [Page 31]

Internet-Draft ECC Cipher Suites for TLS October 2016

 TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
 All the other RC4 ciphersuites

 Removed unused curves and all but the uncompressed point format.

 Added X25519 and X448.

 Deprecated explicit curves.

 Removed restriction on signature algorithm in certificate.

Authors' Addresses

 Yoav Nir
 Check Point Software Technologies Ltd.
 5 Hasolelim st.
 Tel Aviv 6789735
 Israel

 Email: ynir.ietf@gmail.com

 Simon Josefsson
 SJD AB

 Email: simon@josefsson.org

 Manuel Pegourie-Gonnard
 Independent / PolarSSL

 Email: mpg@elzevir.fr

Nir, et al. Expires May 2, 2017 [Page 32]

