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Abstract

This document specifies version 1.3 of the Transport Layer Security

(TLS) protocol. TLS allows client/server applications to communicate

over the Internet in a way that is designed to prevent

eavesdropping, tampering, and message forgery.

This document updates RFCs 5705 and 6066 and obsoletes RFCs 5077,

5246, and 6961. This document also specifies new requirements for

TLS 1.2 implementations.
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carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling
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1. Introduction

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for

this draft is maintained in GitHub. Suggested changes should be

submitted as pull requests at https://github.com/ekr/tls13-spec.

Instructions are on that page as well.

The primary goal of TLS is to provide a secure channel between two

communicating peers; the only requirement from the underlying

transport is a reliable, in-order, data stream. Specifically, the

secure channel should provide the following properties:

Authentication: The server side of the channel is always

authenticated; the client side is optionally authenticated.

Authentication can happen via asymmetric cryptography (e.g., RSA 

[RSA], the Elliptic Curve Digital Signature Algorithm (ECDSA) 

[ECDSA], or the Edwards-Curve Digital Signature Algorithm

(EdDSA) [RFC8032]) or a symmetric pre-shared key (PSK).

Confidentiality: Data sent over the channel after establishment

is only visible to the endpoints. TLS does not hide the length of

the data it transmits, though endpoints are able to pad TLS

records in order to obscure lengths and improve protection

against traffic analysis techniques.

Integrity: Data sent over the channel after establishment cannot

be modified by attackers without detection.

These properties should be true even in the face of an attacker who

has complete control of the network, as described in [RFC3552]. See 

Appendix E for a more complete statement of the relevant security

properties.

TLS consists of two primary components:

A handshake protocol (Section 4) that authenticates the

communicating parties, negotiates cryptographic modes and

parameters, and establishes shared keying material. The handshake

protocol is designed to resist tampering; an active attacker

should not be able to force the peers to negotiate different

parameters than they would if the connection were not under

attack.

A record protocol (Section 5) that uses the parameters

established by the handshake protocol to protect traffic between

the communicating peers. The record protocol divides traffic up

into a series of records, each of which is independently

protected using the traffic keys.
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TLS is application protocol independent; higher-level protocols can

layer on top of TLS transparently. The TLS standard, however, does

not specify how protocols add security with TLS; how to initiate TLS

handshaking and how to interpret the authentication certificates

exchanged are left to the judgment of the designers and implementors

of protocols that run on top of TLS.

This document defines TLS version 1.3. While TLS 1.3 is not directly

compatible with previous versions, all versions of TLS incorporate a

versioning mechanism which allows clients and servers to

interoperably negotiate a common version if one is supported by both

peers.

This document supersedes and obsoletes previous versions of TLS,

including version 1.2 [RFC5246]. It also obsoletes the TLS ticket

mechanism defined in [RFC5077] and replaces it with the mechanism

defined in Section 2.2. Because TLS 1.3 changes the way keys are

derived, it updates [RFC5705] as described in Section 7.5. It also

changes how Online Certificate Status Protocol (OCSP) messages are

carried and therefore updates [RFC6066] and obsoletes [RFC6961] as

described in Section 4.4.2.1.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used:

client: The endpoint initiating the TLS connection.

connection: A transport-layer connection between two endpoints.

endpoint: Either the client or server of the connection.

handshake: An initial negotiation between client and server that

establishes the parameters of their subsequent interactions within

TLS.

peer: An endpoint. When discussing a particular endpoint, "peer"

refers to the endpoint that is not the primary subject of

discussion.

receiver: An endpoint that is receiving records.

sender: An endpoint that is transmitting records.
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server: The endpoint that did not initiate the TLS connection.

1.2. Relationship to RFC 8446

TLS 1.3 was originally specified in [RFC8446]. This document is

solely an editorial update. It contains updated text in areas which

were found to be unclear as well as other editorial improvements. In

addition, it removes the use of the term "master" as applied to

secrets in favor of the term "main".

1.3. Major Differences from TLS 1.2

The following is a list of the major functional differences between

TLS 1.2 and TLS 1.3. It is not intended to be exhaustive, and there

are many minor differences.

The list of supported symmetric encryption algorithms has been

pruned of all algorithms that are considered legacy. Those that

remain are all Authenticated Encryption with Associated Data

(AEAD) algorithms. The cipher suite concept has been changed to

separate the authentication and key exchange mechanisms from the

record protection algorithm (including secret key length) and a

hash to be used with both the key derivation function and

handshake message authentication code (MAC).

A zero round-trip time (0-RTT) mode was added, saving a round

trip at connection setup for some application data, at the cost

of certain security properties.

Static RSA and Diffie-Hellman cipher suites have been removed;

all public-key based key exchange mechanisms now provide forward

secrecy.

All handshake messages after the ServerHello are now encrypted.

The newly introduced EncryptedExtensions message allows various

extensions previously sent in the clear in the ServerHello to

also enjoy confidentiality protection.

The key derivation function has been redesigned. The new design

allows easier analysis by cryptographers due to their improved

key separation properties. The HMAC-based Extract-and-Expand Key

Derivation Function (HKDF) is used as an underlying primitive.

The handshake state machine has been significantly restructured

to be more consistent and to remove superfluous messages such as

ChangeCipherSpec (except when needed for middlebox

compatibility).

Elliptic curve algorithms are now in the base spec, and new

signature algorithms, such as EdDSA, are included. TLS 1.3
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removed point format negotiation in favor of a single point

format for each curve.

Other cryptographic improvements were made, including changing

the RSA padding to use the RSA Probabilistic Signature Scheme

(RSASSA-PSS), and the removal of compression, the Digital

Signature Algorithm (DSA), and custom Ephemeral Diffie-Hellman

(DHE) groups.

The TLS 1.2 version negotiation mechanism has been deprecated in

favor of a version list in an extension. This increases

compatibility with existing servers that incorrectly implemented

version negotiation.

Session resumption with and without server-side state as well as

the PSK-based cipher suites of earlier TLS versions have been

replaced by a single new PSK exchange.

References have been updated to point to the updated versions of

RFCs, as appropriate (e.g., RFC 5280 rather than RFC 3280).

1.4. Updates Affecting TLS 1.2

This document defines several changes that optionally affect

implementations of TLS 1.2, including those which do not also

support TLS 1.3:

A version downgrade protection mechanism is described in Section

4.1.3.

RSASSA-PSS signature schemes are defined in Section 4.2.3.

The "supported_versions" ClientHello extension can be used to

negotiate the version of TLS to use, in preference to the

legacy_version field of the ClientHello.

The "signature_algorithms_cert" extension allows a client to

indicate which signature algorithms it can validate in X.509

certificates.

Additionally, this document clarifies some compliance requirements

for earlier versions of TLS; see Section 9.3.

2. Protocol Overview

The cryptographic parameters used by the secure channel are produced

by the TLS handshake protocol. This sub-protocol of TLS is used by

the client and server when first communicating with each other. The

handshake protocol allows peers to negotiate a protocol version,

select cryptographic algorithms, authenticate each other (with
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client authentication being optional), and establish shared secret

keying material. Once the handshake is complete, the peers use the

established keys to protect the application-layer traffic.

A failure of the handshake or other protocol error triggers the

termination of the connection, optionally preceded by an alert

message (Section 6).

TLS supports three basic key exchange modes:

(EC)DHE (Diffie-Hellman over either finite fields or elliptic

curves)

PSK-only

PSK with (EC)DHE

Figure 1 below shows the basic full TLS handshake:
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Figure 1: Message Flow for Full TLS Handshake

The handshake can be thought of as having three phases (indicated in

the diagram above):

Key Exchange: Establish shared keying material and select the

cryptographic parameters. Everything after this phase is

encrypted.

Server Parameters: Establish other handshake parameters (whether

the client is authenticated, application-layer protocol support,

etc.).

Authentication: Authenticate the server (and, optionally, the

client) and provide key confirmation and handshake integrity.

       Client                                              Server

Key  ^ ClientHello

Exch | + key_share*

     | + signature_algorithms*

     | + psk_key_exchange_modes*

     v + pre_shared_key*         -------->

                                                       ServerHello  ^ Key

                                                      + key_share*  | Exch

                                                 + pre_shared_key*  v

                                             {EncryptedExtensions}  ^  Server

                                             {CertificateRequest*}  v  Params

                                                    {Certificate*}  ^

                                              {CertificateVerify*}  | Auth

                                                        {Finished}  v

                                 <--------     [Application Data*]

     ^ {Certificate*}

Auth | {CertificateVerify*}

     v {Finished}                -------->

       [Application Data]        <------->      [Application Data]

              +  Indicates noteworthy extensions sent in the

                 previously noted message.

              *  Indicates optional or situation-dependent

                 messages/extensions that are not always sent.

              {} Indicates messages protected using keys

                 derived from a [sender]_handshake_traffic_secret.

              [] Indicates messages protected using keys

                 derived from [sender]_application_traffic_secret_N.
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EncryptedExtensions:

CertificateRequest:

Certificate:

In the Key Exchange phase, the client sends the ClientHello (Section

4.1.2) message, which contains a random nonce (ClientHello.random);

its offered protocol versions; a list of symmetric cipher/HKDF hash

pairs; either a list of Diffie-Hellman key shares (in the

"key_share" (Section 4.2.8) extension), a list of pre-shared key

labels (in the "pre_shared_key" (Section 4.2.11) extension), or

both; and potentially additional extensions. Additional fields and/

or messages may also be present for middlebox compatibility.

The server processes the ClientHello and determines the appropriate

cryptographic parameters for the connection. It then responds with

its own ServerHello (Section 4.1.3), which indicates the negotiated

connection parameters. The combination of the ClientHello and the

ServerHello determines the shared keys. If (EC)DHE key establishment

is in use, then the ServerHello contains a "key_share" extension

with the server's ephemeral Diffie-Hellman share; the server's share

MUST be in the same group as one of the client's shares. If PSK key

establishment is in use, then the ServerHello contains a

"pre_shared_key" extension indicating which of the client's offered

PSKs was selected. Note that implementations can use (EC)DHE and PSK

together, in which case both extensions will be supplied.

The server then sends two messages to establish the Server

Parameters:

responses to ClientHello extensions that are

not required to determine the cryptographic parameters, other

than those that are specific to individual certificates. [Section

4.3.1]

if certificate-based client authentication is

desired, the desired parameters for that certificate. This

message is omitted if client authentication is not desired.

[Section 4.3.2]

Finally, the client and server exchange Authentication messages. TLS

uses the same set of messages every time that certificate-based

authentication is needed. (PSK-based authentication happens as a

side effect of key exchange.) Specifically:

The certificate of the endpoint and any per-

certificate extensions. This message is omitted by the server if

not authenticating with a certificate and by the client if the

server did not send CertificateRequest (thus indicating that the

client should not authenticate with a certificate). Note that if

raw public keys [RFC7250] or the cached information extension 

[RFC7924] are in use, then this message will not contain a

certificate but rather some other value corresponding to the

server's long-term key. [Section 4.4.2]
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CertificateVerify:

Finished:

A signature over the entire handshake using the

private key corresponding to the public key in the Certificate

message. This message is omitted if the endpoint is not

authenticating via a certificate. [Section 4.4.3]

A MAC (Message Authentication Code) over the entire

handshake. This message provides key confirmation, binds the

endpoint's identity to the exchanged keys, and in PSK mode also

authenticates the handshake. [Section 4.4.4]

Upon receiving the server's messages, the client responds with its

Authentication messages, namely Certificate and CertificateVerify

(if requested), and Finished.

At this point, the handshake is complete, and the client and server

derive the keying material required by the record layer to exchange

application-layer data protected through authenticated encryption.

Application Data MUST NOT be sent prior to sending the Finished

message, except as specified in Section 2.3. Note that while the

server may send Application Data prior to receiving the client's

Authentication messages, any data sent at that point is, of course,

being sent to an unauthenticated peer.

2.1. Incorrect DHE Share

If the client has not provided a sufficient "key_share" extension

(e.g., it includes only DHE or ECDHE groups unacceptable to or

unsupported by the server), the server corrects the mismatch with a

HelloRetryRequest and the client needs to restart the handshake with

an appropriate "key_share" extension, as shown in Figure 2. If no

common cryptographic parameters can be negotiated, the server MUST

abort the handshake with an appropriate alert.
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Figure 2: Message Flow for a Full Handshake with Mismatched Parameters

Note: The handshake transcript incorporates the initial ClientHello/

HelloRetryRequest exchange; it is not reset with the new

ClientHello.

TLS also allows several optimized variants of the basic handshake,

as described in the following sections.

2.2. Resumption and Pre-Shared Key (PSK)

Although TLS PSKs can be established externally, PSKs can also be

established in a previous connection and then used to establish a

new connection ("session resumption" or "resuming" with a PSK). Once

a handshake has completed, the server can send the client a PSK

identity that corresponds to a unique key derived from the initial

handshake (see Section 4.6.1). The client can then use that PSK

identity in future handshakes to negotiate the use of the associated

PSK. If the server accepts the PSK, then the security context of the

new connection is cryptographically tied to the original connection

and the key derived from the initial handshake is used to bootstrap

the cryptographic state instead of a full handshake. In TLS 1.2 and

below, this functionality was provided by "session IDs" and "session

tickets" [RFC5077]. Both mechanisms are obsoleted in TLS 1.3.

PSKs can be used with (EC)DHE key exchange in order to provide

forward secrecy in combination with shared keys, or can be used

         Client                                               Server

         ClientHello

         + key_share             -------->

                                                   HelloRetryRequest

                                 <--------               + key_share

         ClientHello

         + key_share             -------->

                                                         ServerHello

                                                         + key_share

                                               {EncryptedExtensions}

                                               {CertificateRequest*}

                                                      {Certificate*}

                                                {CertificateVerify*}

                                                          {Finished}

                                 <--------       [Application Data*]

         {Certificate*}

         {CertificateVerify*}

         {Finished}              -------->

         [Application Data]      <------->        [Application Data]
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alone, at the cost of losing forward secrecy for the application

data.

Figure 3 shows a pair of handshakes in which the first handshake

establishes a PSK and the second handshake uses it:

Figure 3: Message Flow for Resumption and PSK

As the server is authenticating via a PSK, it does not send a

Certificate or a CertificateVerify message. When a client offers

resumption via a PSK, it SHOULD also supply a "key_share" extension

to the server to allow the server to decline resumption and fall

back to a full handshake, if needed. The server responds with a

"pre_shared_key" extension to negotiate the use of PSK key

establishment and can (as shown here) respond with a "key_share"

¶

¶

       Client                                               Server

Initial Handshake:

       ClientHello

       + key_share               -------->

                                                       ServerHello

                                                       + key_share

                                             {EncryptedExtensions}

                                             {CertificateRequest*}

                                                    {Certificate*}

                                              {CertificateVerify*}

                                                        {Finished}

                                 <--------     [Application Data*]

       {Certificate*}

       {CertificateVerify*}

       {Finished}                -------->

                                 <--------      [NewSessionTicket]

       [Application Data]        <------->      [Application Data]

Subsequent Handshake:

       ClientHello

       + key_share*

       + pre_shared_key          -------->

                                                       ServerHello

                                                  + pre_shared_key

                                                      + key_share*

                                             {EncryptedExtensions}

                                                        {Finished}

                                 <--------     [Application Data*]

       {Finished}                -------->

       [Application Data]        <------->      [Application Data]



Note:

extension to do (EC)DHE key establishment, thus providing forward

secrecy.

When PSKs are provisioned externally, the PSK identity and the KDF

hash algorithm to be used with the PSK MUST also be provisioned.

When using an externally provisioned pre-shared secret, a

critical consideration is using sufficient entropy during the key

generation, as discussed in [RFC4086]. Deriving a shared secret

from a password or other low-entropy sources is not secure. A

low-entropy secret, or password, is subject to dictionary attacks

based on the PSK binder. The specified PSK authentication is not

a strong password-based authenticated key exchange even when used

with Diffie-Hellman key establishment. Specifically, it does not

prevent an attacker that can observe the handshake from

performing a brute-force attack on the password/pre-shared key.

2.3. 0-RTT Data

When clients and servers share a PSK (either obtained externally or

via a previous handshake), TLS 1.3 allows clients to send data on

the first flight ("early data"). The client uses the PSK to

authenticate the server and to encrypt the early data.

As shown in Figure 4, the 0-RTT data is just added to the 1-RTT

handshake in the first flight. The rest of the handshake uses the

same messages as for a 1-RTT handshake with PSK resumption.
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Figure 4: Message Flow for a 0-RTT Handshake

IMPORTANT NOTE: The security properties for 0-RTT data are weaker

than those for other kinds of TLS data. Specifically:

This data is not forward secret, as it is encrypted solely

under keys derived using the offered PSK.

There are no guarantees of non-replay between connections.

Protection against replay for ordinary TLS 1.3 1-RTT data is

provided via the server's Random value, but 0-RTT data does not

depend on the ServerHello and therefore has weaker guarantees.

This is especially relevant if the data is authenticated either

with TLS client authentication or inside the application

protocol. The same warnings apply to any use of the

early_exporter_main_secret.

         Client                                               Server

         ClientHello

         + early_data

         + key_share*

         + psk_key_exchange_modes

         + pre_shared_key

         (Application Data*)     -------->

                                                         ServerHello

                                                    + pre_shared_key

                                                        + key_share*

                                               {EncryptedExtensions}

                                                       + early_data*

                                                          {Finished}

                                 <--------       [Application Data*]

         (EndOfEarlyData)

         {Finished}              -------->

         [Application Data]      <------->        [Application Data]

               +  Indicates noteworthy extensions sent in the

                  previously noted message.

               *  Indicates optional or situation-dependent

                  messages/extensions that are not always sent.

               () Indicates messages protected using keys

                  derived from a client_early_traffic_secret.

               {} Indicates messages protected using keys

                  derived from a [sender]_handshake_traffic_secret.

               [] Indicates messages protected using keys

                  derived from [sender]_application_traffic_secret_N.

¶

1. 

¶

2. 

¶



0-RTT data cannot be duplicated within a connection (i.e., the

server will not process the same data twice for the same

connection), and an attacker will not be able to make 0-RTT data

appear to be 1-RTT data (because it is protected with different

keys). Appendix E.5 contains a description of potential attacks, and 

Section 8 describes mechanisms which the server can use to limit the

impact of replay.

3. Presentation Language

This document deals with the formatting of data in an external

representation. The following very basic and somewhat casually

defined presentation syntax will be used.

3.1. Basic Block Size

The representation of all data items is explicitly specified. The

basic data block size is one byte (i.e., 8 bits). Multiple-byte data

items are concatenations of bytes, from left to right, from top to

bottom. From the byte stream, a multi-byte item (a numeric in the

following example) is formed (using C notation) by:

This byte ordering for multi-byte values is the commonplace network

byte order or big-endian format.

3.2. Miscellaneous

Comments begin with "/*" and end with "*/".

Optional components are denoted by enclosing them in "[[ ]]" (double

brackets).

Single-byte entities containing uninterpreted data are of type

opaque.

A type alias T' for an existing type T is defined by:

3.3. Numbers

The basic numeric data type is an unsigned byte (uint8). All larger

numeric data types are constructed from a fixed-length series of

bytes concatenated as described in Section 3.1 and are also

unsigned. The following numeric types are predefined.

¶

¶

¶

   value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |

           ... | byte[n-1];

¶

¶

¶

¶

¶

¶

   T T';¶

¶



All values, here and elsewhere in the specification, are transmitted

in network byte (big-endian) order; the uint32 represented by the

hex bytes 01 02 03 04 is equivalent to the decimal value 16909060.

3.4. Vectors

A vector (single-dimensioned array) is a stream of homogeneous data

elements. For presentation purposes, this specification refers to

vectors as lists. The size of the vector may be specified at

documentation time or left unspecified until runtime. In either

case, the length declares the number of bytes, not the number of

elements, in the vector. The syntax for specifying a new type, T',

that is a fixed-length vector of type T is

Here, T' occupies n bytes in the data stream, where n is a multiple

of the size of T. The length of the vector is not included in the

encoded stream.

In the following example, Datum is defined to be three consecutive

bytes that the protocol does not interpret, while Data is three

consecutive Datum, consuming a total of nine bytes.

Variable-length vectors are defined by specifying a subrange of

legal lengths, inclusively, using the notation <floor..ceiling>.

When these are encoded, the actual length precedes the vector's

contents in the byte stream. The length will be in the form of a

number consuming as many bytes as required to hold the vector's

specified maximum (ceiling) length. A variable-length vector with an

actual length field of zero is referred to as an empty vector.

In the following example, "mandatory" is a vector that must contain

between 300 and 400 bytes of type opaque. It can never be empty. The

actual length field consumes two bytes, a uint16, which is

sufficient to represent the value 400 (see Section 3.3). Similarly,

"longer" can represent up to 800 bytes of data, or 400 uint16

elements, and it may be empty. Its encoding will include a two-byte

actual length field prepended to the vector. The length of an

   uint8 uint16[2];

   uint8 uint24[3];

   uint8 uint32[4];

   uint8 uint64[8];

¶

¶

¶

   T T'[n];¶

¶

¶

   opaque Datum[3];      /* three uninterpreted bytes */

   Datum Data[9];        /* three consecutive 3-byte vectors */

¶

¶

   T T'<floor..ceiling>;¶



encoded vector must be an exact multiple of the length of a single

element (e.g., a 17-byte vector of uint16 would be illegal).

3.5. Enumerateds

An additional sparse data type, called "enum" or "enumerated", is

available. Each definition is a different type. Only enumerateds of

the same type may be assigned or compared. Every element of an

enumerated must be assigned a value, as demonstrated in the

following example. Since the elements of the enumerated are not

ordered, they can be assigned any unique value, in any order.

Future extensions or additions to the protocol may define new

values. Implementations need to be able to parse and ignore unknown

values unless the definition of the field states otherwise.

An enumerated occupies as much space in the byte stream as would its

maximal defined ordinal value. The following definition would cause

one byte to be used to carry fields of type Color.

One may optionally specify a value without its associated tag to

force the width definition without defining a superfluous element.

In the following example, Taste will consume two bytes in the data

stream but can only assume the values 1, 2, or 4 in the current

version of the protocol.

The names of the elements of an enumeration are scoped within the

defined type. In the first example, a fully qualified reference to

the second element of the enumeration would be Color.blue. Such

qualification is not required if the target of the assignment is

well specified.

The names assigned to enumerateds do not need to be unique. The

numerical value can describe a range over which the same name

applies. The value includes the minimum and maximum inclusive values

¶

   opaque mandatory<300..400>;

         /* length field is two bytes, cannot be empty */

   uint16 longer<0..800>;

         /* zero to 400 16-bit unsigned integers */

¶

¶

   enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;¶

¶

¶

   enum { red(3), blue(5), white(7) } Color;¶

¶

¶

   enum { sweet(1), sour(2), bitter(4), (32000) } Taste;¶

¶

   Color color = Color.blue;     /* overspecified, legal */

   Color color = blue;           /* correct, type implicit */

¶



in that range, separated by two period characters. This is

principally useful for reserving regions of the space.

3.6. Constructed Types

Structure types may be constructed from primitive types for

convenience. Each specification declares a new, unique type. The

syntax used for definitions is much like that of C.

Fixed- and variable-length list (vector) fields are allowed using

the standard list syntax. Structures V1 and V2 in the variants

example (Section 3.8) demonstrate this.

The fields within a structure may be qualified using the type's

name, with a syntax much like that available for enumerateds. For

example, T.f2 refers to the second field of the previous

declaration.

3.7. Constants

Fields and variables may be assigned a fixed value using "=", as in:

3.8. Variants

Defined structures may have variants based on some knowledge that is

available within the environment. The selector must be an enumerated

type that defines the possible variants the structure defines. Each

arm of the select (below) specifies the type of that variant's field

and an optional field label. The mechanism by which the variant is

selected at runtime is not prescribed by the presentation language.

¶

   enum { sad(0), meh(1..254), happy(255) } Mood;¶

¶

   struct {

       T1 f1;

       T2 f2;

       ...

       Tn fn;

   } T;

¶

¶

¶

¶

   struct {

       T1 f1 = 8;  /* T.f1 must always be 8 */

       T2 f2;

   } T;

¶

¶



For example:

4. Handshake Protocol

The handshake protocol is used to negotiate the security parameters

of a connection. Handshake messages are supplied to the TLS record

layer, where they are encapsulated within one or more TLSPlaintext

or TLSCiphertext structures which are processed and transmitted as

specified by the current active connection state.

   struct {

       T1 f1;

       T2 f2;

       ....

       Tn fn;

       select (E) {

           case e1: Te1 [[fe1]];

           case e2: Te2 [[fe2]];

           ....

           case en: Ten [[fen]];

       };

   } Tv;

¶

¶

   enum { apple(0), orange(1) } VariantTag;

   struct {

       uint16 number;

       opaque string<0..10>; /* variable length */

   } V1;

   struct {

       uint32 number;

       opaque string[10];    /* fixed length */

   } V2;

   struct {

       VariantTag type;

       select (VariantRecord.type) {

           case apple:  V1;

           case orange: V2;

       };

   } VariantRecord;

¶

¶



Protocol messages MUST be sent in the order defined in Section 4.4.1

and shown in the diagrams in Section 2. A peer which receives a

handshake message in an unexpected order MUST abort the handshake

with an "unexpected_message" alert.

New handshake message types are assigned by IANA as described in 

Section 11.

4.1. Key Exchange Messages

The key exchange messages are used to determine the security

capabilities of the client and the server and to establish shared

secrets, including the traffic keys used to protect the rest of the

handshake and the data.

   enum {

       client_hello(1),

       server_hello(2),

       new_session_ticket(4),

       end_of_early_data(5),

       encrypted_extensions(8),

       certificate(11),

       certificate_request(13),

       certificate_verify(15),

       finished(20),

       key_update(24),

       message_hash(254),

       (255)

   } HandshakeType;

   struct {

       HandshakeType msg_type;    /* handshake type */

       uint24 length;             /* remaining bytes in message */

       select (Handshake.msg_type) {

           case client_hello:          ClientHello;

           case server_hello:          ServerHello;

           case end_of_early_data:     EndOfEarlyData;

           case encrypted_extensions:  EncryptedExtensions;

           case certificate_request:   CertificateRequest;

           case certificate:           Certificate;

           case certificate_verify:    CertificateVerify;

           case finished:              Finished;

           case new_session_ticket:    NewSessionTicket;

           case key_update:            KeyUpdate;

       };

   } Handshake;

¶

¶

¶

¶



4.1.1. Cryptographic Negotiation

In TLS, the cryptographic negotiation proceeds by the client

offering the following four sets of options in its ClientHello:

A list of cipher suites which indicates the AEAD algorithm/HKDF

hash pairs which the client supports.

A "supported_groups" (Section 4.2.7) extension which indicates

the (EC)DHE groups which the client supports and a "key_share"

(Section 4.2.8) extension which contains (EC)DHE shares for some

or all of these groups.

A "signature_algorithms" (Section 4.2.3) extension which

indicates the signature algorithms which the client can accept. A

"signature_algorithms_cert" extension (Section 4.2.3) may also be

added to indicate certificate-specific signature algorithms.

A "pre_shared_key" (Section 4.2.11) extension which contains a

list of symmetric key identities known to the client and a

"psk_key_exchange_modes" (Section 4.2.9) extension which

indicates the key exchange modes that may be used with PSKs.

If the server does not select a PSK, then the first three of these

options are entirely orthogonal: the server independently selects a

cipher suite, an (EC)DHE group and key share for key establishment,

and a signature algorithm/certificate pair to authenticate itself to

the client. If there is no overlap between the received

"supported_groups" and the groups supported by the server, then the

server MUST abort the handshake with a "handshake_failure" or an

"insufficient_security" alert.

If the server selects a PSK, then it MUST also select a key

establishment mode from the list indicated by the client's

"psk_key_exchange_modes" extension (at present, PSK alone or with

(EC)DHE). Note that if the PSK can be used without (EC)DHE, then

non-overlap in the "supported_groups" parameters need not be fatal,

as it is in the non-PSK case discussed in the previous paragraph.

If the server selects an (EC)DHE group and the client did not offer

a compatible "key_share" extension in the initial ClientHello, the

server MUST respond with a HelloRetryRequest (Section 4.1.4)

message.

If the server successfully selects parameters and does not require a

HelloRetryRequest, it indicates the selected parameters in the

ServerHello as follows:

If PSK is being used, then the server will send a

"pre_shared_key" extension indicating the selected key.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶



When (EC)DHE is in use, the server will also provide a

"key_share" extension. If PSK is not being used, then (EC)DHE and

certificate-based authentication are always used.

When authenticating via a certificate, the server will send the

Certificate (Section 4.4.2) and CertificateVerify (Section 4.4.3)

messages. In TLS 1.3 as defined by this document, either a PSK or

a certificate is always used, but not both. Future documents may

define how to use them together.

If the server is unable to negotiate a supported set of parameters

(i.e., there is no overlap between the client and server

parameters), it MUST abort the handshake with either a

"handshake_failure" or "insufficient_security" fatal alert (see 

Section 6).

4.1.2. Client Hello

When a client first connects to a server, it is REQUIRED to send the

ClientHello as its first TLS message. The client will also send a

ClientHello when the server has responded to its ClientHello with a

HelloRetryRequest. In that case, the client MUST send the same

ClientHello without modification, except as follows:

If a "key_share" extension was supplied in the HelloRetryRequest,

replacing the list of shares with a list containing a single

KeyShareEntry from the indicated group.

Removing the "early_data" extension (Section 4.2.10) if one was

present. Early data is not permitted after a HelloRetryRequest.

Including a "cookie" extension if one was provided in the

HelloRetryRequest.

Updating the "pre_shared_key" extension if present by recomputing

the "obfuscated_ticket_age" and binder values and (optionally)

removing any PSKs which are incompatible with the server's

indicated cipher suite.

Optionally adding, removing, or changing the length of the

"padding" extension [RFC7685].

Other modifications that may be allowed by an extension defined

in the future and present in the HelloRetryRequest.

Because TLS 1.3 forbids renegotiation, if a server has negotiated

TLS 1.3 and receives a ClientHello at any other time, it MUST

terminate the connection with an "unexpected_message" alert.

*

¶

*

¶

¶

¶
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¶

*

¶

*

¶

*
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¶
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¶

¶



legacy_version:

random:

legacy_session_id:

If a server established a TLS connection with a previous version of

TLS and receives a TLS 1.3 ClientHello in a renegotiation, it MUST

retain the previous protocol version. In particular, it MUST NOT

negotiate TLS 1.3.

Structure of this message:

In previous versions of TLS, this field was used

for version negotiation and represented the highest version

number supported by the client. Experience has shown that many

servers do not properly implement version negotiation, leading to

"version intolerance" in which the server rejects an otherwise

acceptable ClientHello with a version number higher than it

supports. In TLS 1.3, the client indicates its version

preferences in the "supported_versions" extension (Section 4.2.1)

and the legacy_version field MUST be set to 0x0303, which is the

version number for TLS 1.2. TLS 1.3 ClientHellos are identified

as having a legacy_version of 0x0303 and a supported_versions

extension present with 0x0304 as the highest version indicated

therein. (See Appendix D for details about backward

compatibility.) A server which receives a legacy_version value

not equal to 0x0303 MUST abort the handshake with an

"illegal_parameter" alert.

32 bytes generated by a secure random number generator. See

Appendix C for additional information.

Versions of TLS before TLS 1.3 supported a

"session resumption" feature which has been merged with pre-

shared keys in this version (see Section 2.2). A client which has

a cached session ID set by a pre-TLS 1.3 server SHOULD set this

field to that value. In compatibility mode (see Appendix D.4),

this field MUST be non-empty, so a client not offering a pre-TLS

1.3 session MUST generate a new 32-byte value. This value need

not be random but SHOULD be unpredictable to avoid

¶

¶

   uint16 ProtocolVersion;

   opaque Random[32];

   uint8 CipherSuite[2];    /* Cryptographic suite selector */

   struct {

       ProtocolVersion legacy_version = 0x0303;    /* TLS v1.2 */

       Random random;

       opaque legacy_session_id<0..32>;

       CipherSuite cipher_suites<2..2^16-2>;

       opaque legacy_compression_methods<1..2^8-1>;

       Extension extensions<8..2^16-1>;

   } ClientHello;

¶

¶

¶



cipher_suites:

legacy_compression_methods:

extensions:

implementations fixating on a specific value (also known as

ossification). Otherwise, it MUST be set as a zero-length list

(i.e., a zero-valued single byte length field).

A list of the symmetric cipher options supported by

the client, specifically the record protection algorithm

(including secret key length) and a hash to be used with HKDF, in

descending order of client preference. Values are defined in 

Appendix B.4. If the list contains cipher suites that the server

does not recognize, support, or wish to use, the server MUST

ignore those cipher suites and process the remaining ones as

usual. If the client is attempting a PSK key establishment, it

SHOULD advertise at least one cipher suite indicating a Hash

associated with the PSK.

Versions of TLS before 1.3 supported

compression with the list of supported compression methods being

sent in this field. For every TLS 1.3 ClientHello, this list MUST

contain exactly one byte, set to zero, which corresponds to the

"null" compression method in prior versions of TLS. If a TLS 1.3

ClientHello is received with any other value in this field, the

server MUST abort the handshake with an "illegal_parameter"

alert. Note that TLS 1.3 servers might receive TLS 1.2 or prior

ClientHellos which contain other compression methods and (if

negotiating such a prior version) MUST follow the procedures for

the appropriate prior version of TLS.

Clients request extended functionality from servers by

sending data in the extensions field. The actual "Extension"

format is defined in Section 4.2. In TLS 1.3, the use of certain

extensions is mandatory, as functionality has moved into

extensions to preserve ClientHello compatibility with previous

versions of TLS. Servers MUST ignore unrecognized extensions.

All versions of TLS allow an extensions field to optionally follow

the compression_methods field. TLS 1.3 ClientHello messages always

contain extensions (minimally "supported_versions", otherwise, they

will be interpreted as TLS 1.2 ClientHello messages). However, TLS

1.3 servers might receive ClientHello messages without an extensions

field from prior versions of TLS. The presence of extensions can be

detected by determining whether there are bytes following the

compression_methods field at the end of the ClientHello. Note that

this method of detecting optional data differs from the normal TLS

method of having a variable-length field, but it is used for

compatibility with TLS before extensions were defined. TLS 1.3

servers will need to perform this check first and only attempt to

negotiate TLS 1.3 if the "supported_versions" extension is present.

If negotiating a version of TLS prior to 1.3, a server MUST check

that the message either contains no data after

¶

¶

¶

¶



legacy_version:

random:

legacy_session_id_echo:

legacy_compression_methods or that it contains a valid extensions

block with no data following. If not, then it MUST abort the

handshake with a "decode_error" alert.

In the event that a client requests additional functionality using

extensions and this functionality is not supplied by the server, the

client MAY abort the handshake.

After sending the ClientHello message, the client waits for a

ServerHello or HelloRetryRequest message. If early data is in use,

the client may transmit early Application Data (Section 2.3) while

waiting for the next handshake message.

4.1.3. Server Hello

The server will send this message in response to a ClientHello

message to proceed with the handshake if it is able to negotiate an

acceptable set of handshake parameters based on the ClientHello.

Structure of this message:

In previous versions of TLS, this field was used

for version negotiation and represented the selected version

number for the connection. Unfortunately, some middleboxes fail

when presented with new values. In TLS 1.3, the TLS server

indicates its version using the "supported_versions" extension

(Section 4.2.1), and the legacy_version field MUST be set to

0x0303, which is the version number for TLS 1.2. (See Appendix D

for details about backward compatibility.)

32 bytes generated by a secure random number generator. See

Appendix C for additional information. The last 8 bytes MUST be

overwritten as described below if negotiating TLS 1.2 or TLS 1.1,

but the remaining bytes MUST be random. This structure is

generated by the server and MUST be generated independently of

the ClientHello.random.

The contents of the client's

legacy_session_id field. Note that this field is echoed even if

the client's value corresponded to a cached pre-TLS 1.3 session

which the server has chosen not to resume. A client which

¶

¶

¶

¶

¶

   struct {

       ProtocolVersion legacy_version = 0x0303;    /* TLS v1.2 */

       Random random;

       opaque legacy_session_id_echo<0..32>;

       CipherSuite cipher_suite;

       uint8 legacy_compression_method = 0;

       Extension extensions<6..2^16-1>;

   } ServerHello;

¶

¶

¶



cipher_suite:

legacy_compression_method:

extensions:

receives a legacy_session_id_echo field that does not match what

it sent in the ClientHello MUST abort the handshake with an

"illegal_parameter" alert.

The single cipher suite selected by the server from

the ClientHello.cipher_suites list. A client which receives a

cipher suite that was not offered MUST abort the handshake with

an "illegal_parameter" alert.

A single byte which MUST have the value

0.

A list of extensions. The ServerHello MUST only include

extensions which are required to establish the cryptographic

context and negotiate the protocol version. All TLS 1.3

ServerHello messages MUST contain the "supported_versions"

extension. Current ServerHello messages additionally contain

either the "pre_shared_key" extension or the "key_share"

extension, or both (when using a PSK with (EC)DHE key

establishment). Other extensions (see Section 4.2) are sent

separately in the EncryptedExtensions message.

For reasons of backward compatibility with middleboxes (see Appendix

D.4), the HelloRetryRequest message uses the same structure as the

ServerHello, but with Random set to the special value of the SHA-256

of "HelloRetryRequest":

Upon receiving a message with type server_hello, implementations

MUST first examine the Random value and, if it matches this value,

process it as described in Section 4.1.4).

TLS 1.3 has a downgrade protection mechanism embedded in the

server's random value. TLS 1.3 servers which negotiate TLS 1.2 or

below in response to a ClientHello MUST set the last 8 bytes of

their Random value specially in their ServerHello.

If negotiating TLS 1.2, TLS 1.3 servers MUST set the last 8 bytes of

their Random value to the bytes:

If negotiating TLS 1.1 or below, TLS 1.3 servers MUST, and TLS 1.2

servers SHOULD, set the last 8 bytes of their ServerHello.Random

value to the bytes:

¶

¶

¶

¶

¶

  CF 21 AD 74 E5 9A 61 11 BE 1D 8C 02 1E 65 B8 91

  C2 A2 11 16 7A BB 8C 5E 07 9E 09 E2 C8 A8 33 9C

¶

¶

¶

¶

  44 4F 57 4E 47 52 44 01¶

¶

  44 4F 57 4E 47 52 44 00¶



TLS 1.3 clients receiving a ServerHello indicating TLS 1.2 or below

MUST check that the last 8 bytes are not equal to either of these

values. TLS 1.2 clients SHOULD also check that the last 8 bytes are

not equal to the second value if the ServerHello indicates TLS 1.1

or below. If a match is found, the client MUST abort the handshake

with an "illegal_parameter" alert. This mechanism provides limited

protection against downgrade attacks over and above what is provided

by the Finished exchange: because the ServerKeyExchange, a message

present in TLS 1.2 and below, includes a signature over both random

values, it is not possible for an active attacker to modify the

random values without detection as long as ephemeral ciphers are

used. It does not provide downgrade protection when static RSA is

used.

Note: This is a change from [RFC5246], so in practice many TLS 1.2

clients and servers will not behave as specified above.

A legacy TLS client performing renegotiation with TLS 1.2 or prior

and which receives a TLS 1.3 ServerHello during renegotiation MUST

abort the handshake with a "protocol_version" alert. Note that

renegotiation is not possible when TLS 1.3 has been negotiated.

4.1.4. Hello Retry Request

The server will send this message in response to a ClientHello

message if it is able to find an acceptable set of parameters but

the ClientHello does not contain sufficient information to proceed

with the handshake. As discussed in Section 4.1.3, the

HelloRetryRequest has the same format as a ServerHello message, and

the legacy_version, legacy_session_id_echo, cipher_suite, and

legacy_compression_method fields have the same meaning. However, for

convenience we discuss "HelloRetryRequest" throughout this document

as if it were a distinct message.

The server's extensions MUST contain "supported_versions".

Additionally, it SHOULD contain the minimal set of extensions

necessary for the client to generate a correct ClientHello pair. As

with the ServerHello, a HelloRetryRequest MUST NOT contain any

extensions that were not first offered by the client in its

ClientHello, with the exception of optionally the "cookie" (see 

Section 4.2.2) extension.

Upon receipt of a HelloRetryRequest, the client MUST check the

legacy_version, legacy_session_id_echo, cipher_suite, and

legacy_compression_method as specified in Section 4.1.3 and then

process the extensions, starting with determining the version using

"supported_versions". Clients MUST abort the handshake with an

"illegal_parameter" alert if the HelloRetryRequest would not result

in any change in the ClientHello. If a client receives a second

¶
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HelloRetryRequest in the same connection (i.e., where the

ClientHello was itself in response to a HelloRetryRequest), it MUST

abort the handshake with an "unexpected_message" alert.

Otherwise, the client MUST process all extensions in the

HelloRetryRequest and send a second updated ClientHello. The

HelloRetryRequest extensions defined in this specification are:

supported_versions (see Section 4.2.1)

cookie (see Section 4.2.2)

key_share (see Section 4.2.8)

A client which receives a cipher suite that was not offered MUST

abort the handshake. Servers MUST ensure that they negotiate the

same cipher suite when receiving a conformant updated ClientHello

(if the server selects the cipher suite as the first step in the

negotiation, then this will happen automatically). Upon receiving

the ServerHello, clients MUST check that the cipher suite supplied

in the ServerHello is the same as that in the HelloRetryRequest and

otherwise abort the handshake with an "illegal_parameter" alert.

In addition, in its updated ClientHello, the client SHOULD NOT offer

any pre-shared keys associated with a hash other than that of the

selected cipher suite. This allows the client to avoid having to

compute partial hash transcripts for multiple hashes in the second

ClientHello.

The value of selected_version in the HelloRetryRequest

"supported_versions" extension MUST be retained in the ServerHello,

and a client MUST abort the handshake with an "illegal_parameter"

alert if the value changes.

4.2. Extensions

A number of TLS messages contain tag-length-value encoded extensions

structures.
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Here:

"extension_type" identifies the particular extension type.

"extension_data" contains information specific to the particular

extension type.

The list of extension types is maintained by IANA as described in 

Section 11.

Extensions are generally structured in a request/response fashion,

though some extensions are just indications with no corresponding

response. The client sends its extension requests in the ClientHello

message, and the server sends its extension responses in the

ServerHello, EncryptedExtensions, HelloRetryRequest, and Certificate

messages. The server sends extension requests in the

CertificateRequest message which a client MAY respond to with a

Certificate message. The server MAY also send unsolicited extensions

   struct {

       ExtensionType extension_type;

       opaque extension_data<0..2^16-1>;

   } Extension;

   enum {

       server_name(0),                             /* RFC 6066 */

       max_fragment_length(1),                     /* RFC 6066 */

       status_request(5),                          /* RFC 6066 */

       supported_groups(10),                       /* RFC 8422, 7919 */

       signature_algorithms(13),                   /* RFC 8446 */

       use_srtp(14),                               /* RFC 5764 */

       heartbeat(15),                              /* RFC 6520 */

       application_layer_protocol_negotiation(16), /* RFC 7301 */

       signed_certificate_timestamp(18),           /* RFC 6962 */

       client_certificate_type(19),                /* RFC 7250 */

       server_certificate_type(20),                /* RFC 7250 */

       padding(21),                                /* RFC 7685 */

       pre_shared_key(41),                         /* RFC 8446 */

       early_data(42),                             /* RFC 8446 */

       supported_versions(43),                     /* RFC 8446 */

       cookie(44),                                 /* RFC 8446 */

       psk_key_exchange_modes(45),                 /* RFC 8446 */

       certificate_authorities(47),                /* RFC 8446 */

       oid_filters(48),                            /* RFC 8446 */

       post_handshake_auth(49),                    /* RFC 8446 */

       signature_algorithms_cert(50),              /* RFC 8446 */

       key_share(51),                              /* RFC 8446 */

       (65535)

   } ExtensionType;
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in the NewSessionTicket, though the client does not respond directly

to these.

Implementations MUST NOT send extension responses if the remote

endpoint did not send the corresponding extension requests, with the

exception of the "cookie" extension in the HelloRetryRequest. Upon

receiving such an extension, an endpoint MUST abort the handshake

with an "unsupported_extension" alert.

The table below indicates the messages where a given extension may

appear, using the following notation: CH (ClientHello), SH

(ServerHello), EE (EncryptedExtensions), CT (Certificate), CR

(CertificateRequest), NST (NewSessionTicket), and HRR

(HelloRetryRequest). If an implementation receives an extension

which it recognizes and which is not specified for the message in

which it appears, it MUST abort the handshake with an

"illegal_parameter" alert.

Extension TLS 1.3

server_name [RFC6066] CH, EE

max_fragment_length [RFC6066] CH, EE

status_request [RFC6066] CH, CR, CT

supported_groups [RFC7919] CH, EE

signature_algorithms (RFC8446) CH, CR

use_srtp [RFC5764] CH, EE

heartbeat [RFC6520] CH, EE

application_layer_protocol_negotiation [RFC7301] CH, EE

signed_certificate_timestamp [RFC6962] CH, CR, CT

client_certificate_type [RFC7250] CH, EE

server_certificate_type [RFC7250] CH, EE

padding [RFC7685] CH

key_share (RFC 8446) CH, SH, HRR

pre_shared_key (RFC 8446) CH, SH

psk_key_exchange_modes (RFC 8446) CH

early_data (RFC 8446) CH, EE, NST

cookie (RFC 8446) CH, HRR

supported_versions (RFC 8446) CH, SH, HRR

certificate_authorities (RFC 8446) CH, CR

oid_filters (RFC 8446) CR

post_handshake_auth (RFC 8446) CH

signature_algorithms_cert (RFC 8446) CH, CR

Table 1: TLS Extensions

When multiple extensions of different types are present, the

extensions MAY appear in any order, with the exception of

"pre_shared_key" (Section 4.2.11) which MUST be the last extension

in the ClientHello (but can appear anywhere in the ServerHello

¶

¶

¶



extensions block). There MUST NOT be more than one extension of the

same type in a given extension block.

In TLS 1.3, unlike TLS 1.2, extensions are negotiated for each

handshake even when in resumption-PSK mode. However, 0-RTT

parameters are those negotiated in the previous handshake;

mismatches may require rejecting 0-RTT (see Section 4.2.10).

There are subtle (and not so subtle) interactions that may occur in

this protocol between new features and existing features which may

result in a significant reduction in overall security. The following

considerations should be taken into account when designing new

extensions:

Some cases where a server does not agree to an extension are

error conditions (e.g., the handshake cannot continue), and some

are simply refusals to support particular features. In general,

error alerts should be used for the former and a field in the

server extension response for the latter.

Extensions should, as far as possible, be designed to prevent any

attack that forces use (or non-use) of a particular feature by

manipulation of handshake messages. This principle should be

followed regardless of whether the feature is believed to cause a

security problem. Often the fact that the extension fields are

included in the inputs to the Finished message hashes will be

sufficient, but extreme care is needed when the extension changes

the meaning of messages sent in the handshake phase. Designers

and implementors should be aware of the fact that until the

handshake has been authenticated, active attackers can modify

messages and insert, remove, or replace extensions.

4.2.1. Supported Versions

The "supported_versions" extension is used by the client to indicate

which versions of TLS it supports and by the server to indicate

which version it is using. The extension contains a list of

supported versions in preference order, with the most preferred

version first. Implementations of this specification MUST send this

extension in the ClientHello containing all versions of TLS which

¶
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   struct {

       select (Handshake.msg_type) {

           case client_hello:

                ProtocolVersion versions<2..254>;

           case server_hello: /* and HelloRetryRequest */

                ProtocolVersion selected_version;

       };

   } SupportedVersions;

¶



they are prepared to negotiate (for this specification, that means

minimally 0x0304, but if previous versions of TLS are allowed to be

negotiated, they MUST be present as well).

If this extension is not present, servers which are compliant with

this specification and which also support TLS 1.2 MUST negotiate TLS

1.2 or prior as specified in [RFC5246], even if

ClientHello.legacy_version is 0x0304 or later. Servers MAY abort the

handshake upon receiving a ClientHello with legacy_version 0x0304 or

later.

If this extension is present in the ClientHello, servers MUST NOT

use the ClientHello.legacy_version value for version negotiation and

MUST use only the "supported_versions" extension to determine client

preferences. Servers MUST only select a version of TLS present in

that extension and MUST ignore any unknown versions that are present

in that extension. Note that this mechanism makes it possible to

negotiate a version prior to TLS 1.2 if one side supports a sparse

range. Implementations of TLS 1.3 which choose to support prior

versions of TLS SHOULD support TLS 1.2. Servers MUST be prepared to

receive ClientHellos that include this extension but do not include

0x0304 in the list of versions.

A server which negotiates a version of TLS prior to TLS 1.3 MUST set

ServerHello.version and MUST NOT send the "supported_versions"

extension. A server which negotiates TLS 1.3 MUST respond by sending

a "supported_versions" extension containing the selected version

value (0x0304). It MUST set the ServerHello.legacy_version field to

0x0303 (TLS 1.2).

After checking ServerHello.random to determine if the server

handshake message is a ServerHello or HelloRetryRequest, clients

MUST check for this extension prior to processing the rest of the

ServerHello. This will require clients to parse the ServerHello in

order to read the extension. If this extension is present, clients

MUST ignore the ServerHello.legacy_version value and MUST use only

the "supported_versions" extension to determine the selected

version. If the "supported_versions" extension in the ServerHello

contains a version not offered by the client or contains a version

prior to TLS 1.3, the client MUST abort the handshake with an

"illegal_parameter" alert.

4.2.2. Cookie
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   struct {

       opaque cookie<1..2^16-1>;

   } Cookie;

¶



Cookies serve two primary purposes:

Allowing the server to force the client to demonstrate

reachability at their apparent network address (thus providing a

measure of DoS protection). This is primarily useful for non-

connection-oriented transports (see [RFC6347] for an example of

this).

Allowing the server to offload state to the client, thus allowing

it to send a HelloRetryRequest without storing any state. The

server can do this by storing the hash of the ClientHello in the

HelloRetryRequest cookie (protected with some suitable integrity

protection algorithm).

When sending a HelloRetryRequest, the server MAY provide a "cookie"

extension to the client (this is an exception to the usual rule that

the only extensions that may be sent are those that appear in the

ClientHello). When sending the new ClientHello, the client MUST copy

the contents of the extension received in the HelloRetryRequest into

a "cookie" extension in the new ClientHello. Clients MUST NOT use

cookies in their initial ClientHello in subsequent connections.

When a server is operating statelessly, it may receive an

unprotected record of type change_cipher_spec between the first and

second ClientHello (see Section 5). Since the server is not storing

any state, this will appear as if it were the first message to be

received. Servers operating statelessly MUST ignore these records.

4.2.3. Signature Algorithms

TLS 1.3 provides two extensions for indicating which signature

algorithms may be used in digital signatures. The

"signature_algorithms_cert" extension applies to signatures in

certificates, and the "signature_algorithms" extension, which

originally appeared in TLS 1.2, applies to signatures in

CertificateVerify messages. The keys found in certificates MUST also

be of appropriate type for the signature algorithms they are used

with. This is a particular issue for RSA keys and PSS signatures, as

described below. If no "signature_algorithms_cert" extension is

present, then the "signature_algorithms" extension also applies to

signatures appearing in certificates. Clients which desire the

server to authenticate itself via a certificate MUST send the

"signature_algorithms" extension. If a server is authenticating via

a certificate and the client has not sent a "signature_algorithms"

extension, then the server MUST abort the handshake with a

"missing_extension" alert (see Section 9.2).

The "signature_algorithms_cert" extension was added to allow

implementations which supported different sets of algorithms for
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certificates and in TLS itself to clearly signal their capabilities.

TLS 1.2 implementations SHOULD also process this extension.

Implementations which have the same policy in both cases MAY omit

the "signature_algorithms_cert" extension.

The "extension_data" field of these extensions contains a

SignatureSchemeList value:

Note: This enum is named "SignatureScheme" because there is already

a "SignatureAlgorithm" type in TLS 1.2, which this replaces. We use

the term "signature algorithm" throughout the text.

¶

¶

   enum {

       /* RSASSA-PKCS1-v1_5 algorithms */

       rsa_pkcs1_sha256(0x0401),

       rsa_pkcs1_sha384(0x0501),

       rsa_pkcs1_sha512(0x0601),

       /* ECDSA algorithms */

       ecdsa_secp256r1_sha256(0x0403),

       ecdsa_secp384r1_sha384(0x0503),

       ecdsa_secp521r1_sha512(0x0603),

       /* RSASSA-PSS algorithms with public key OID rsaEncryption */

       rsa_pss_rsae_sha256(0x0804),

       rsa_pss_rsae_sha384(0x0805),

       rsa_pss_rsae_sha512(0x0806),

       /* EdDSA algorithms */

       ed25519(0x0807),

       ed448(0x0808),

       /* RSASSA-PSS algorithms with public key OID RSASSA-PSS */

       rsa_pss_pss_sha256(0x0809),

       rsa_pss_pss_sha384(0x080a),

       rsa_pss_pss_sha512(0x080b),

       /* Legacy algorithms */

       rsa_pkcs1_sha1(0x0201),

       ecdsa_sha1(0x0203),

       /* Reserved Code Points */

       private_use(0xFE00..0xFFFF),

       (0xFFFF)

   } SignatureScheme;

   struct {

       SignatureScheme supported_signature_algorithms<2..2^16-2>;

   } SignatureSchemeList;

¶
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RSASSA-PKCS1-v1_5 algorithms:

ECDSA algorithms:

RSASSA-PSS RSAE algorithms:

EdDSA algorithms:

RSASSA-PSS PSS algorithms:

Each SignatureScheme value lists a single signature algorithm that

the client is willing to verify. The values are indicated in

descending order of preference. Note that a signature algorithm

takes as input an arbitrary-length message, rather than a digest.

Algorithms which traditionally act on a digest should be defined in

TLS to first hash the input with a specified hash algorithm and then

proceed as usual. The code point groups listed above have the

following meanings:

Indicates a signature algorithm using

RSASSA-PKCS1-v1_5 [RFC8017] with the corresponding hash algorithm

as defined in [SHS]. These values refer solely to signatures

which appear in certificates (see Section 4.4.2.2) and are not

defined for use in signed TLS handshake messages, although they

MAY appear in "signature_algorithms" and

"signature_algorithms_cert" for backward compatibility with TLS

1.2.

Indicates a signature algorithm using ECDSA 

[ECDSA], the corresponding curve as defined in ANSI X9.62 [ECDSA]

and FIPS 186-4 [DSS], and the corresponding hash algorithm as

defined in [SHS]. The signature is represented as a DER-encoded 

[X690] ECDSA-Sig-Value structure as defined in [RFC4492].

Indicates a signature algorithm using

RSASSA-PSS [RFC8017] with mask generation function 1. The digest

used in the mask generation function and the digest being signed

are both the corresponding hash algorithm as defined in [SHS].

The length of the Salt MUST be equal to the length of the output

of the digest algorithm. If the public key is carried in an X.509

certificate, it MUST use the rsaEncryption OID [RFC5280].

Indicates a signature algorithm using EdDSA as

defined in [RFC8032] or its successors. Note that these

correspond to the "PureEdDSA" algorithms and not the "prehash"

variants.

Indicates a signature algorithm using

RSASSA-PSS [RFC8017] with mask generation function 1. The digest

used in the mask generation function and the digest being signed

are both the corresponding hash algorithm as defined in [SHS].

The length of the Salt MUST be equal to the length of the digest

algorithm. If the public key is carried in an X.509 certificate,

it MUST use the RSASSA-PSS OID [RFC5756]. When used in

certificate signatures, the algorithm parameters MUST be DER

encoded. If the corresponding public key's parameters are

present, then the parameters in the signature MUST be identical

to those in the public key.
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Legacy algorithms:
Indicates algorithms which are being deprecated

because they use algorithms with known weaknesses, specifically

SHA-1 which is used in this context with either (1) RSA using

RSASSA-PKCS1-v1_5 or (2) ECDSA. These values refer solely to

signatures which appear in certificates (see Section 4.4.2.2) and

are not defined for use in signed TLS handshake messages,

although they MAY appear in "signature_algorithms" and

"signature_algorithms_cert" for backward compatibility with TLS

1.2. Endpoints SHOULD NOT negotiate these algorithms but are

permitted to do so solely for backward compatibility. Clients

offering these values MUST list them as the lowest priority

(listed after all other algorithms in SignatureSchemeList). TLS

1.3 servers MUST NOT offer a SHA-1 signed certificate unless no

valid certificate chain can be produced without it (see Section

4.4.2.2).

The signatures on certificates that are self-signed or certificates

that are trust anchors are not validated, since they begin a

certification path (see [RFC5280], Section 3.2). A certificate that

begins a certification path MAY use a signature algorithm that is

not advertised as being supported in the "signature_algorithms"

extension.

Note that TLS 1.2 defines this extension differently. TLS 1.3

implementations willing to negotiate TLS 1.2 MUST behave in

accordance with the requirements of [RFC5246] when negotiating that

version. In particular:

TLS 1.2 ClientHellos MAY omit this extension.

In TLS 1.2, the extension contained hash/signature pairs. The

pairs are encoded in two octets, so SignatureScheme values have

been allocated to align with TLS 1.2's encoding. Some legacy

pairs are left unallocated. These algorithms are deprecated as of

TLS 1.3. They MUST NOT be offered or negotiated by any

implementation. In particular, MD5 [SLOTH], SHA-224, and DSA MUST

NOT be used.

ECDSA signature schemes align with TLS 1.2's ECDSA hash/signature

pairs. However, the old semantics did not constrain the signing

curve. If TLS 1.2 is negotiated, implementations MUST be prepared

to accept a signature that uses any curve that they advertised in

the "supported_groups" extension.

Implementations that advertise support for RSASSA-PSS (which is

mandatory in TLS 1.3) MUST be prepared to accept a signature

using that scheme even when TLS 1.2 is negotiated. In TLS 1.2,

RSASSA-PSS is used with RSA cipher suites.
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authorities:

filters:

4.2.4. Certificate Authorities

The "certificate_authorities" extension is used to indicate the

certificate authorities (CAs) which an endpoint supports and which

SHOULD be used by the receiving endpoint to guide certificate

selection.

The body of the "certificate_authorities" extension consists of a

CertificateAuthoritiesExtension structure.

A list of the distinguished names [X501] of acceptable

certificate authorities, represented in DER-encoded [X690]

format. These distinguished names specify a desired distinguished

name for a trust anchor or subordinate CA; thus, this message can

be used to describe known trust anchors as well as a desired

authorization space.

The client MAY send the "certificate_authorities" extension in the

ClientHello message. The server MAY send it in the

CertificateRequest message.

The "trusted_ca_keys" extension [RFC6066], which serves a similar

purpose, but is more complicated, is not used in TLS 1.3 (although

it may appear in ClientHello messages from clients which are

offering prior versions of TLS).

4.2.5. OID Filters

The "oid_filters" extension allows servers to provide a list of OID/

value pairs which it would like the client's certificate to match.

This extension, if provided by the server, MUST only be sent in the

CertificateRequest message.

A list of certificate extension OIDs [RFC5280] with their

allowed value(s) and represented in DER-encoded [X690] format.

¶
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   opaque DistinguishedName<1..2^16-1>;

   struct {

       DistinguishedName authorities<3..2^16-1>;

   } CertificateAuthoritiesExtension;

¶
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   struct {

       opaque certificate_extension_oid<1..2^8-1>;

       opaque certificate_extension_values<0..2^16-1>;

   } OIDFilter;

   struct {

       OIDFilter filters<0..2^16-1>;

   } OIDFilterExtension;

¶



Some certificate extension OIDs allow multiple values (e.g.,

Extended Key Usage). If the server has included a non-empty

filters list, the client certificate included in the response

MUST contain all of the specified extension OIDs that the client

recognizes. For each extension OID recognized by the client, all

of the specified values MUST be present in the client certificate

(but the certificate MAY have other values as well). However, the

client MUST ignore and skip any unrecognized certificate

extension OIDs. If the client ignored some of the required

certificate extension OIDs and supplied a certificate that does

not satisfy the request, the server MAY at its discretion either

continue the connection without client authentication or abort

the handshake with an "unsupported_certificate" alert. Any given

OID MUST NOT appear more than once in the filters list.

PKIX RFCs define a variety of certificate extension OIDs and their

corresponding value types. Depending on the type, matching

certificate extension values are not necessarily bitwise-equal. It

is expected that TLS implementations will rely on their PKI

libraries to perform certificate selection using certificate

extension OIDs.

This document defines matching rules for two standard certificate

extensions defined in [RFC5280]:

The Key Usage extension in a certificate matches the request when

all key usage bits asserted in the request are also asserted in

the Key Usage certificate extension.

The Extended Key Usage extension in a certificate matches the

request when all key purpose OIDs present in the request are also

found in the Extended Key Usage certificate extension. The

special anyExtendedKeyUsage OID MUST NOT be used in the request.

Separate specifications may define matching rules for other

certificate extensions.

4.2.6. Post-Handshake Client Authentication

The "post_handshake_auth" extension is used to indicate that a

client is willing to perform post-handshake authentication (Section

4.6.2). Servers MUST NOT send a post-handshake CertificateRequest to

clients which do not offer this extension. Servers MUST NOT send

this extension.

The "extension_data" field of the "post_handshake_auth" extension is

zero length.
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   struct {} PostHandshakeAuth;¶
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Elliptic Curve Groups (ECDHE):

Finite Field Groups (DHE):

4.2.7. Supported Groups

When sent by the client, the "supported_groups" extension indicates

the named groups which the client supports for key exchange, ordered

from most preferred to least preferred.

Note: In versions of TLS prior to TLS 1.3, this extension was named

"elliptic_curves" and only contained elliptic curve groups. See 

[RFC8422] and [RFC7919]. This extension was also used to negotiate

ECDSA curves. Signature algorithms are now negotiated independently

(see Section 4.2.3).

The "extension_data" field of this extension contains a

"NamedGroupList" value:

Indicates support for the

corresponding named curve, defined in either FIPS 186-4 [DSS] or

in [RFC7748]. Values 0xFE00 through 0xFEFF are reserved for

Private Use [RFC8126].

Indicates support for the corresponding

finite field group, defined in [RFC7919]. Values 0x01FC through

0x01FF are reserved for Private Use.

Items in "named_group_list" are ordered according to the sender's

preferences (most preferred choice first).

As of TLS 1.3, servers are permitted to send the "supported_groups"

extension to the client. Clients MUST NOT act upon any information

found in "supported_groups" prior to successful completion of the

¶

¶
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   enum {

       /* Elliptic Curve Groups (ECDHE) */

       secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019),

       x25519(0x001D), x448(0x001E),

       /* Finite Field Groups (DHE) */

       ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102),

       ffdhe6144(0x0103), ffdhe8192(0x0104),

       /* Reserved Code Points */

       ffdhe_private_use(0x01FC..0x01FF),

       ecdhe_private_use(0xFE00..0xFEFF),

       (0xFFFF)

   } NamedGroup;

   struct {

       NamedGroup named_group_list<2..2^16-1>;

   } NamedGroupList;
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group:

key_exchange:

client_shares:

handshake but MAY use the information learned from a successfully

completed handshake to change what groups they use in their

"key_share" extension in subsequent connections. If the server has a

group it prefers to the ones in the "key_share" extension but is

still willing to accept the ClientHello, it SHOULD send

"supported_groups" to update the client's view of its preferences;

this extension SHOULD contain all groups the server supports,

regardless of whether they are currently supported by the client.

4.2.8. Key Share

The "key_share" extension contains the endpoint's cryptographic

parameters.

Clients MAY send an empty client_shares list in order to request

group selection from the server, at the cost of an additional round

trip (see Section 4.1.4).

The named group for the key being exchanged.

Key exchange information. The contents of this field

are determined by the specified group and its corresponding

definition. Finite Field Diffie-Hellman [DH76] parameters are

described in Section 4.2.8.1; Elliptic Curve Diffie-Hellman

parameters are described in Section 4.2.8.2.

In the ClientHello message, the "extension_data" field of this

extension contains a "KeyShareClientHello" value:

A list of offered KeyShareEntry values in descending

order of client preference.

This list MAY be empty if the client is requesting a

HelloRetryRequest. Each KeyShareEntry value MUST correspond to a

group offered in the "supported_groups" extension and MUST appear in

the same order. However, the values MAY be a non-contiguous subset

of the "supported_groups" extension and MAY omit the most preferred

groups. Such a situation could arise if the most preferred groups

are new and unlikely to be supported in enough places to make

pregenerating key shares for them efficient.
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   struct {

       NamedGroup group;

       opaque key_exchange<1..2^16-1>;

   } KeyShareEntry;
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   struct {

       KeyShareEntry client_shares<0..2^16-1>;

   } KeyShareClientHello;
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selected_group:

server_share:

Clients can offer as many KeyShareEntry values as the number of

supported groups it is offering, each representing a single set of

key exchange parameters. For instance, a client might offer shares

for several elliptic curves or multiple FFDHE groups. The

key_exchange values for each KeyShareEntry MUST be generated

independently. Clients MUST NOT offer multiple KeyShareEntry values

for the same group. Clients MUST NOT offer any KeyShareEntry values

for groups not listed in the client's "supported_groups" extension.

Servers MAY check for violations of these rules and abort the

handshake with an "illegal_parameter" alert if one is violated.

In a HelloRetryRequest message, the "extension_data" field of this

extension contains a KeyShareHelloRetryRequest value:

The mutually supported group the server intends to

negotiate and is requesting a retried ClientHello/KeyShare for.

Upon receipt of this extension in a HelloRetryRequest, the client

MUST verify that (1) the selected_group field corresponds to a group

which was provided in the "supported_groups" extension in the

original ClientHello and (2) the selected_group field does not

correspond to a group which was provided in the "key_share"

extension in the original ClientHello. If either of these checks

fails, then the client MUST abort the handshake with an

"illegal_parameter" alert. Otherwise, when sending the new

ClientHello, the client MUST replace the original "key_share"

extension with one containing only a new KeyShareEntry for the group

indicated in the selected_group field of the triggering

HelloRetryRequest.

In a ServerHello message, the "extension_data" field of this

extension contains a KeyShareServerHello value:

A single KeyShareEntry value that is in the same

group as one of the client's shares.

If using (EC)DHE key establishment, servers offer exactly one

KeyShareEntry in the ServerHello. This value MUST be in the same

group as the KeyShareEntry value offered by the client that the

server has selected for the negotiated key exchange. Servers MUST

NOT send a KeyShareEntry for any group not indicated in the client's

"supported_groups" extension and MUST NOT send a KeyShareEntry when

¶
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   struct {

       NamedGroup selected_group;

   } KeyShareHelloRetryRequest;

¶
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   struct {

       KeyShareEntry server_share;

   } KeyShareServerHello;

¶
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using the "psk_ke" PskKeyExchangeMode. If using (EC)DHE key

establishment and a HelloRetryRequest containing a "key_share"

extension was received by the client, the client MUST verify that

the selected NamedGroup in the ServerHello is the same as that in

the HelloRetryRequest. If this check fails, the client MUST abort

the handshake with an "illegal_parameter" alert.

4.2.8.1. Diffie-Hellman Parameters

Diffie-Hellman [DH76] parameters for both clients and servers are

encoded in the opaque key_exchange field of a KeyShareEntry in a

KeyShare structure. The opaque value contains the Diffie-Hellman

public value (Y = g^X mod p) for the specified group (see [RFC7919]

for group definitions) encoded as a big-endian integer and padded to

the left with zeros to the size of p in bytes.

Note: For a given Diffie-Hellman group, the padding results in all

public keys having the same length.

Peers MUST validate each other's public key Y by ensuring that 1 < Y

< p-1. This check ensures that the remote peer is properly behaved

and isn't forcing the local system into a small subgroup.

4.2.8.2. ECDHE Parameters

ECDHE parameters for both clients and servers are encoded in the

opaque key_exchange field of a KeyShareEntry in a KeyShare

structure.

For secp256r1, secp384r1, and secp521r1, the contents are the

serialized value of the following struct:

X and Y, respectively, are the binary representations of the x and y

values in network byte order. There are no internal length markers,

so each number representation occupies as many octets as implied by

the curve parameters. For P-256, this means that each of X and Y use

32 octets, padded on the left by zeros if necessary. For P-384, they

take 48 octets each. For P-521, they take 66 octets each.

For the curves secp256r1, secp384r1, and secp521r1, peers MUST

validate each other's public value Q by ensuring that the point is a

valid point on the elliptic curve. The appropriate validation

procedures are defined in Section 4.3.7 of [ECDSA] and alternatively

in Section 5.6.2.3 of [KEYAGREEMENT]. This process consists of three

¶
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   struct {

       uint8 legacy_form = 4;

       opaque X[coordinate_length];

       opaque Y[coordinate_length];

   } UncompressedPointRepresentation;

¶

¶



psk_ke:

psk_dhe_ke:

steps: (1) verify that Q is not the point at infinity (O), (2)

verify that for Q = (x, y) both integers x and y are in the correct

interval, and (3) ensure that (x, y) is a correct solution to the

elliptic curve equation. For these curves, implementors do not need

to verify membership in the correct subgroup.

For X25519 and X448, the contents of the public value is the K_A or

K_B value described in Section 6 of [RFC7748]. This is 32 bytes for

X25519 and 56 bytes for X448.

Note: Versions of TLS prior to 1.3 permitted point format

negotiation; TLS 1.3 removes this feature in favor of a single point

format for each curve.

4.2.9. Pre-Shared Key Exchange Modes

In order to use PSKs, clients MUST also send a

"psk_key_exchange_modes" extension. The semantics of this extension

are that the client only supports the use of PSKs with these modes,

which restricts both the use of PSKs offered in this ClientHello and

those which the server might supply via NewSessionTicket.

A client MUST provide a "psk_key_exchange_modes" extension if it

offers a "pre_shared_key" extension. If clients offer

"pre_shared_key" without a "psk_key_exchange_modes" extension,

servers MUST abort the handshake. Servers MUST NOT select a key

exchange mode that is not listed by the client. This extension also

restricts the modes for use with PSK resumption. Servers SHOULD NOT

send NewSessionTicket with tickets that are not compatible with the

advertised modes; however, if a server does so, the impact will just

be that the client's attempts at resumption fail.

The server MUST NOT send a "psk_key_exchange_modes" extension.

PSK-only key establishment. In this mode, the server MUST

NOT supply a "key_share" value.

PSK with (EC)DHE key establishment. In this mode, the

client and server MUST supply "key_share" values as described in 

Section 4.2.8.

Any future values that are allocated must ensure that the

transmitted protocol messages unambiguously identify which mode was

¶
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   enum { psk_ke(0), psk_dhe_ke(1), (255) } PskKeyExchangeMode;

   struct {

       PskKeyExchangeMode ke_modes<1..255>;

   } PskKeyExchangeModes;

¶
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selected by the server; at present, this is indicated by the

presence of the "key_share" in the ServerHello.

4.2.10. Early Data Indication

When a PSK is used and early data is allowed for that PSK (see for

instance Appendix B.3.4), the client can send Application Data in

its first flight of messages. If the client opts to do so, it MUST

supply both the "pre_shared_key" and "early_data" extensions.

The "extension_data" field of this extension contains an

"EarlyDataIndication" value.

See Section 4.6.1 for details regarding the use of the

max_early_data_size field.

The parameters for the 0-RTT data (version, symmetric cipher suite,

Application-Layer Protocol Negotiation (ALPN) [RFC7301] protocol,

etc.) are those associated with the PSK in use. For externally

provisioned PSKs, the associated values are those provisioned along

with the key. For PSKs established via a NewSessionTicket message,

the associated values are those which were negotiated in the

connection which established the PSK. The PSK used to encrypt the

early data MUST be the first PSK listed in the client's

"pre_shared_key" extension.

For PSKs provisioned via NewSessionTicket, a server MUST validate

that the ticket age for the selected PSK identity (computed by

subtracting ticket_age_add from PskIdentity.obfuscated_ticket_age

modulo 2^32) is within a small tolerance of the time since the

ticket was issued (see Section 8). If it is not, the server SHOULD

proceed with the handshake but reject 0-RTT, and SHOULD NOT take any

other action that assumes that this ClientHello is fresh.

0-RTT messages sent in the first flight have the same (encrypted)

content types as messages of the same type sent in other flights

(handshake and application_data) but are protected under different

keys. After receiving the server's Finished message, if the server

has accepted early data, an EndOfEarlyData message will be sent to
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   struct {} Empty;

   struct {

       select (Handshake.msg_type) {

           case new_session_ticket:   uint32 max_early_data_size;

           case client_hello:         Empty;

           case encrypted_extensions: Empty;

       };

   } EarlyDataIndication;

¶
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indicate the key change. This message will be encrypted with the 0-

RTT traffic keys.

A server which receives an "early_data" extension MUST behave in one

of three ways:

Ignore the extension and return a regular 1-RTT response. The

server then skips past early data by attempting to deprotect

received records using the handshake traffic key, discarding

records which fail deprotection (up to the configured

max_early_data_size). Once a record is deprotected successfully,

it is treated as the start of the client's second flight and the

server proceeds as with an ordinary 1-RTT handshake.

Request that the client send another ClientHello by responding

with a HelloRetryRequest. A client MUST NOT include the

"early_data" extension in its followup ClientHello. The server

then ignores early data by skipping all records with an external

content type of "application_data" (indicating that they are

encrypted), up to the configured max_early_data_size.

Return its own "early_data" extension in EncryptedExtensions,

indicating that it intends to process the early data. It is not

possible for the server to accept only a subset of the early data

messages. Even though the server sends a message accepting early

data, the actual early data itself may already be in flight by

the time the server generates this message.

In order to accept early data, the server MUST have selected the

first key offered in the client's "pre_shared_key" extension. In

addition, it MUST verify that the following values are the same as

those associated with the selected PSK:

The selected TLS version number

The selected cipher suite

The selected ALPN [RFC7301] protocol, if any

These requirements are a superset of those needed to perform a 1-RTT

handshake using the PSK in question.

Future extensions MUST define their interaction with 0-RTT.

If any of these checks fail, the server MUST NOT respond with the

extension and must discard all the first-flight data using one of

the first two mechanisms listed above (thus falling back to 1-RTT or

2-RTT). If the client attempts a 0-RTT handshake but the server

rejects it, the server will generally not have the 0-RTT record

protection keys and must instead use trial decryption (either with
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the 1-RTT handshake keys or by looking for a cleartext ClientHello

in the case of a HelloRetryRequest) to find the first non-0-RTT

message.

If the server chooses to accept the "early_data" extension, then it

MUST comply with the same error-handling requirements specified for

all records when processing early data records. Specifically, if the

server fails to decrypt a 0-RTT record following an accepted

"early_data" extension, it MUST terminate the connection with a

"bad_record_mac" alert as per Section 5.2.

If the server rejects the "early_data" extension, the client

application MAY opt to retransmit the Application Data previously

sent in early data once the handshake has been completed. Note that

automatic retransmission of early data could result in incorrect

assumptions regarding the status of the connection. For instance,

when the negotiated connection selects a different ALPN protocol

from what was used for the early data, an application might need to

construct different messages. Similarly, if early data assumes

anything about the connection state, it might be sent in error after

the handshake completes.

A TLS implementation SHOULD NOT automatically resend early data;

applications are in a better position to decide when retransmission

is appropriate. A TLS implementation MUST NOT automatically resend

early data unless the negotiated connection selects the same ALPN

protocol.

4.2.11. Pre-Shared Key Extension

The "pre_shared_key" extension is used to negotiate the identity of

the pre-shared key to be used with a given handshake in association

with PSK key establishment.

The "extension_data" field of this extension contains a

"PreSharedKeyExtension" value:
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identity:

obfuscated_ticket_age:

identities:

binders:

selected_identity:

A label for a key. For instance, a ticket (as defined in 

Appendix B.3.4) or a label for a pre-shared key established

externally.

An obfuscated version of the age of the key.

Section 4.2.11.1 describes how to form this value for identities

established via the NewSessionTicket message. For identities

established externally, an obfuscated_ticket_age of 0 SHOULD be

used, and servers MUST ignore the value.

A list of the identities that the client is willing to

negotiate with the server. If sent alongside the "early_data"

extension (see Section 4.2.10), the first identity is the one

used for 0-RTT data.

A series of HMAC values, one for each value in the

identities list and in the same order, computed as described

below.

The server's chosen identity expressed as a (0-

based) index into the identities in the client's

"OfferedPsks.identities" list.

Each PSK is associated with a single Hash algorithm. For PSKs

established via the ticket mechanism (Section 4.6.1), this is the

KDF Hash algorithm on the connection where the ticket was

established. For externally established PSKs, the Hash algorithm

MUST be set when the PSK is established or default to SHA-256 if no

such algorithm is defined. The server MUST ensure that it selects a

compatible PSK (if any) and cipher suite.

   struct {

       opaque identity<1..2^16-1>;

       uint32 obfuscated_ticket_age;

   } PskIdentity;

   opaque PskBinderEntry<32..255>;

   struct {

       PskIdentity identities<7..2^16-1>;

       PskBinderEntry binders<33..2^16-1>;

   } OfferedPsks;

   struct {

       select (Handshake.msg_type) {

           case client_hello: OfferedPsks;

           case server_hello: uint16 selected_identity;

       };

   } PreSharedKeyExtension;

¶
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In TLS versions prior to TLS 1.3, the Server Name Indication (SNI)

value was intended to be associated with the session (Section 3 of 

[RFC6066]), with the server being required to enforce that the SNI

value associated with the session matches the one specified in the

resumption handshake. However, in reality the implementations were

not consistent on which of two supplied SNI values they would use,

leading to the consistency requirement being de facto enforced by

the clients. In TLS 1.3, the SNI value is always explicitly

specified in the resumption handshake, and there is no need for the

server to associate an SNI value with the ticket. Clients, however,

SHOULD store the SNI with the PSK to fulfill the requirements of 

Section 4.6.1.

Implementor's note: When session resumption is the primary use case

of PSKs, the most straightforward way to implement the PSK/cipher

suite matching requirements is to negotiate the cipher suite first

and then exclude any incompatible PSKs. Any unknown PSKs (e.g., ones

not in the PSK database or encrypted with an unknown key) SHOULD

simply be ignored. If no acceptable PSKs are found, the server

SHOULD perform a non-PSK handshake if possible. If backward

compatibility is important, client-provided, externally established

PSKs SHOULD influence cipher suite selection.

Prior to accepting PSK key establishment, the server MUST validate

the corresponding binder value (see Section 4.2.11.2 below). If this

value is not present or does not validate, the server MUST abort the

handshake. Servers SHOULD NOT attempt to validate multiple binders;

rather, they SHOULD select a single PSK and validate solely the

binder that corresponds to that PSK. See Section 8.2 and Appendix E.

6 for the security rationale for this requirement. In order to

accept PSK key establishment, the server sends a "pre_shared_key"

extension indicating the selected identity.

Clients MUST verify that the server's selected_identity is within

the range supplied by the client, that the server selected a cipher

suite indicating a Hash associated with the PSK, and that a server

"key_share" extension is present if required by the ClientHello

"psk_key_exchange_modes" extension. If these values are not

consistent, the client MUST abort the handshake with an

"illegal_parameter" alert.

If the server supplies an "early_data" extension, the client MUST

verify that the server's selected_identity is 0. If any other value

is returned, the client MUST abort the handshake with an

"illegal_parameter" alert.

The "pre_shared_key" extension MUST be the last extension in the

ClientHello (this facilitates implementation as described below).
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Servers MUST check that it is the last extension and otherwise fail

the handshake with an "illegal_parameter" alert.

4.2.11.1. Ticket Age

The client's view of the age of a ticket is the time since the

receipt of the NewSessionTicket message. Clients MUST NOT attempt to

use tickets which have ages greater than the "ticket_lifetime" value

which was provided with the ticket. The "obfuscated_ticket_age"

field of each PskIdentity contains an obfuscated version of the

ticket age formed by taking the age in milliseconds and adding the

"ticket_age_add" value that was included with the ticket (see 

Section 4.6.1), modulo 2^32. This addition prevents passive

observers from correlating connections unless tickets are reused.

Note that the "ticket_lifetime" field in the NewSessionTicket

message is in seconds but the "obfuscated_ticket_age" is in

milliseconds. Because ticket lifetimes are restricted to a week, 32

bits is enough to represent any plausible age, even in milliseconds.

4.2.11.2. PSK Binder

The PSK binder value forms a binding between a PSK and the current

handshake, as well as a binding between the handshake in which the

PSK was generated (if via a NewSessionTicket message) and the

current handshake. Each entry in the binders list is computed as an

HMAC over a transcript hash (see Section 4.4.1) containing a partial

ClientHello up to and including the PreSharedKeyExtension.identities

field. That is, it includes all of the ClientHello but not the

binders list itself. The length fields for the message (including

the overall length, the length of the extensions block, and the

length of the "pre_shared_key" extension) are all set as if binders

of the correct lengths were present.

The PskBinderEntry is computed in the same way as the Finished

message (Section 4.4.4) but with the BaseKey being the binder_key

derived via the key schedule from the corresponding PSK which is

being offered (see Section 7.1).

If the handshake includes a HelloRetryRequest, the initial

ClientHello and HelloRetryRequest are included in the transcript

along with the new ClientHello. For instance, if the client sends

ClientHello1, its binder will be computed over:

Where Truncate() removes the binders list from the ClientHello.

If the server responds with a HelloRetryRequest and the client then

sends ClientHello2, its binder will be computed over:
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   Transcript-Hash(Truncate(ClientHello1))¶
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extensions:

The full ClientHello1/ClientHello2 is included in all other

handshake hash computations. Note that in the first flight,

Truncate(ClientHello1) is hashed directly, but in the second flight,

ClientHello1 is hashed and then reinjected as a "message_hash"

message, as described in Section 4.4.1.

4.2.11.3. Processing Order

Clients are permitted to "stream" 0-RTT data until they receive the

server's Finished, only then sending the EndOfEarlyData message,

followed by the rest of the handshake. In order to avoid deadlocks,

when accepting "early_data", servers MUST process the client's

ClientHello and then immediately send their flight of messages,

rather than waiting for the client's EndOfEarlyData message before

sending its ServerHello.

4.3. Server Parameters

The next two messages from the server, EncryptedExtensions and

CertificateRequest, contain information from the server that

determines the rest of the handshake. These messages are encrypted

with keys derived from the server_handshake_traffic_secret.

4.3.1. Encrypted Extensions

In all handshakes, the server MUST send the EncryptedExtensions

message immediately after the ServerHello message. This is the first

message that is encrypted under keys derived from the

server_handshake_traffic_secret.

The EncryptedExtensions message contains extensions that can be

protected, i.e., any which are not needed to establish the

cryptographic context but which are not associated with individual

certificates. The client MUST check EncryptedExtensions for the

presence of any forbidden extensions and if any are found MUST abort

the handshake with an "illegal_parameter" alert.

Structure of this message:

A list of extensions. For more information, see the

table in Section 4.2.

   Transcript-Hash(ClientHello1,

                   HelloRetryRequest,

                   Truncate(ClientHello2))
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   struct {

       Extension extensions<0..2^16-1>;

   } EncryptedExtensions;
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certificate_request_context:

extensions:

4.3.2. Certificate Request

A server which is authenticating with a certificate MAY optionally

request a certificate from the client. This message, if sent, MUST

follow EncryptedExtensions.

Structure of this message:

An opaque string which identifies the

certificate request and which will be echoed in the client's

Certificate message. The certificate_request_context MUST be

unique within the scope of this connection (thus preventing

replay of client CertificateVerify messages). This field SHALL be

zero length unless used for the post-handshake authentication

exchanges described in Section 4.6.2. When requesting post-

handshake authentication, the server SHOULD make the context

unpredictable to the client (e.g., by randomly generating it) in

order to prevent an attacker who has temporary access to the

client's private key from pre-computing valid CertificateVerify

messages.

A list of extensions describing the parameters of the

certificate being requested. The "signature_algorithms" extension

MUST be specified, and other extensions may optionally be

included if defined for this message. Clients MUST ignore

unrecognized extensions.

In prior versions of TLS, the CertificateRequest message carried a

list of signature algorithms and certificate authorities which the

server would accept. In TLS 1.3, the former is expressed by sending

the "signature_algorithms" and optionally

"signature_algorithms_cert" extensions. The latter is expressed by

sending the "certificate_authorities" extension (see Section 4.2.4).

Servers which are authenticating with a resumption PSK MUST NOT send

the CertificateRequest message in the main handshake, though they

MAY send it in post-handshake authentication (see Section 4.6.2)

provided that the client has sent the "post_handshake_auth"

extension (see Section 4.2.6). Servers which are authenticating with

an external PSK MUST NOT send the CertificateRequest message either

in the main handshake or request post-handshake authentication.

Future specifications MAY provide an extension to permit this.

¶
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   struct {

       opaque certificate_request_context<0..2^8-1>;

       Extension extensions<0..2^16-1>;

   } CertificateRequest;

¶
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Certificate

CertificateVerify:

Finished:

4.4. Authentication Messages

As discussed in Section 2, TLS generally uses a common set of

messages for authentication, key confirmation, and handshake

integrity: Certificate, CertificateVerify, and Finished. (The PSK

binders also perform key confirmation, in a similar fashion.) These

three messages are always sent as the last messages in their

handshake flight. The Certificate and CertificateVerify messages are

only sent under certain circumstances, as defined below. The

Finished message is always sent as part of the Authentication Block.

These messages are encrypted under keys derived from the

[sender]_handshake_traffic_secret.

The computations for the Authentication messages all uniformly take

the following inputs:

The certificate and signing key to be used.

A Handshake Context consisting of the list of messages to be

included in the transcript hash.

A Base Key to be used to compute a MAC key.

Based on these inputs, the messages then contain:

The certificate to be used for authentication, and any

supporting certificates in the chain. Note that certificate-based

client authentication is not available in PSK handshake flows

(including 0-RTT).

A signature over the value Transcript-

Hash(Handshake Context, Certificate)

A MAC over the value Transcript-Hash(Handshake Context,

Certificate, CertificateVerify) using a MAC key derived from the

Base Key.

The following table defines the Handshake Context and MAC Base Key

for each scenario:

Mode Handshake Context Base Key

Server

ClientHello ... later

of

EncryptedExtensions/

CertificateRequest

server_handshake_traffic_secret

Client

ClientHello ... later

of server Finished/

EndOfEarlyData

client_handshake_traffic_secret

client_application_traffic_secret_N
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Mode Handshake Context Base Key

Post-

Handshake

ClientHello ...

client Finished +

CertificateRequest

Table 2: Authentication Inputs

4.4.1. The Transcript Hash

Many of the cryptographic computations in TLS make use of a

transcript hash. This value is computed by hashing the concatenation

of each included handshake message, including the handshake message

header carrying the handshake message type and length fields, but

not including record layer headers. I.e.,

As an exception to this general rule, when the server responds to a

ClientHello with a HelloRetryRequest, the value of ClientHello1 is

replaced with a special synthetic handshake message of handshake

type "message_hash" containing Hash(ClientHello1). I.e.,

The reason for this construction is to allow the server to do a

stateless HelloRetryRequest by storing just the hash of ClientHello1

in the cookie, rather than requiring it to export the entire

intermediate hash state (see Section 4.2.2).

For concreteness, the transcript hash is always taken from the

following sequence of handshake messages, starting at the first

ClientHello and including only those messages that were sent:

ClientHello, HelloRetryRequest, ClientHello, ServerHello,

EncryptedExtensions, server CertificateRequest, server Certificate,

server CertificateVerify, server Finished, EndOfEarlyData, client

Certificate, client CertificateVerify, client Finished.

In general, implementations can implement the transcript by keeping

a running transcript hash value based on the negotiated hash. Note,

however, that subsequent post-handshake authentications do not

include each other, just the messages through the end of the main

handshake.

4.4.2. Certificate

This message conveys the endpoint's certificate chain to the peer.

¶

 Transcript-Hash(M1, M2, ... Mn) = Hash(M1 || M2 || ... || Mn)¶

¶

 Transcript-Hash(ClientHello1, HelloRetryRequest, ... Mn) =

     Hash(message_hash ||        /* Handshake type */

          00 00 Hash.length  ||   /* Handshake message length (bytes) */

          Hash(ClientHello1) ||  /* Hash of ClientHello1 */

          HelloRetryRequest  || ... || Mn)
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certificate_request_context:

certificate_list:

extensions:

The server MUST send a Certificate message whenever the agreed-upon

key exchange method uses certificates for authentication (this

includes all key exchange methods defined in this document except

PSK).

The client MUST send a Certificate message if and only if the server

has requested client authentication via a CertificateRequest message

(Section 4.3.2). If the server requests client authentication but no

suitable certificate is available, the client MUST send a

Certificate message containing no certificates (i.e., with the

"certificate_list" field having length 0). A Finished message MUST

be sent regardless of whether the Certificate message is empty.

Structure of this message:

If this message is in response to a

CertificateRequest, the value of certificate_request_context in

that message. Otherwise (in the case of server authentication),

this field SHALL be zero length.

A list (chain) of CertificateEntry structures,

each containing a single certificate and list of extensions.

A list of extension values for the CertificateEntry.

The "Extension" format is defined in Section 4.2. Valid

extensions for server certificates at present include the OCSP

Status extension [RFC6066] and the SignedCertificateTimestamp

¶

¶

¶

   enum {

       X509(0),

       RawPublicKey(2),

       (255)

   } CertificateType;

   struct {

       select (certificate_type) {

           case RawPublicKey:

             /* From RFC 7250 ASN.1_subjectPublicKeyInfo */

             opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

           case X509:

             opaque cert_data<1..2^24-1>;

       };

       Extension extensions<0..2^16-1>;

   } CertificateEntry;

   struct {

       opaque certificate_request_context<0..2^8-1>;

       CertificateEntry certificate_list<0..2^24-1>;

   } Certificate;

¶
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extension [RFC6962]; future extensions may be defined for this

message as well. Extensions in the Certificate message from the

server MUST correspond to ones from the ClientHello message.

Extensions in the Certificate message from the client MUST

correspond to extensions in the CertificateRequest message from

the server. If an extension applies to the entire chain, it

SHOULD be included in the first CertificateEntry.

If the corresponding certificate type extension

("server_certificate_type" or "client_certificate_type") was not

negotiated in EncryptedExtensions, or the X.509 certificate type was

negotiated, then each CertificateEntry contains a DER-encoded X.509

certificate. The sender's certificate MUST come in the first

CertificateEntry in the list. Each following certificate SHOULD

directly certify the one immediately preceding it. Because

certificate validation requires that trust anchors be distributed

independently, a certificate that specifies a trust anchor MAY be

omitted from the chain, provided that supported peers are known to

possess any omitted certificates.

Note: Prior to TLS 1.3, "certificate_list" ordering required each

certificate to certify the one immediately preceding it; however,

some implementations allowed some flexibility. Servers sometimes

send both a current and deprecated intermediate for transitional

purposes, and others are simply configured incorrectly, but these

cases can nonetheless be validated properly. For maximum

compatibility, all implementations SHOULD be prepared to handle

potentially extraneous certificates and arbitrary orderings from any

TLS version, with the exception of the end-entity certificate which

MUST be first.

If the RawPublicKey certificate type was negotiated, then the

certificate_list MUST contain no more than one CertificateEntry,

which contains an ASN1_subjectPublicKeyInfo value as defined in 

[RFC7250], Section 3.

The OpenPGP certificate type [RFC6091] MUST NOT be used with TLS

1.3.

The server's certificate_list MUST always be non-empty. A client

will send an empty certificate_list if it does not have an

appropriate certificate to send in response to the server's

authentication request.

4.4.2.1. OCSP Status and SCT Extensions

[RFC6066] and [RFC6961] provide extensions to negotiate the server

sending OCSP responses to the client. In TLS 1.2 and below, the

server replies with an empty extension to indicate negotiation of
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this extension and the OCSP information is carried in a

CertificateStatus message. In TLS 1.3, the server's OCSP information

is carried in an extension in the CertificateEntry containing the

associated certificate. Specifically, the body of the

"status_request" extension from the server MUST be a

CertificateStatus structure as defined in [RFC6066], which is

interpreted as defined in [RFC6960].

Note: The status_request_v2 extension [RFC6961] is deprecated. TLS

1.3 servers MUST NOT act upon its presence or information in it when

processing ClientHello messages; in particular, they MUST NOT send

the status_request_v2 extension in the EncryptedExtensions,

CertificateRequest, or Certificate messages. TLS 1.3 servers MUST be

able to process ClientHello messages that include it, as it MAY be

sent by clients that wish to use it in earlier protocol versions.

A server MAY request that a client present an OCSP response with its

certificate by sending an empty "status_request" extension in its

CertificateRequest message. If the client opts to send an OCSP

response, the body of its "status_request" extension MUST be a

CertificateStatus structure as defined in [RFC6066].

Similarly, [RFC6962] provides a mechanism for a server to send a

Signed Certificate Timestamp (SCT) as an extension in the

ServerHello in TLS 1.2 and below. In TLS 1.3, the server's SCT

information is carried in an extension in the CertificateEntry.

4.4.2.2. Server Certificate Selection

The following rules apply to the certificates sent by the server:

The certificate type MUST be X.509v3 [RFC5280], unless explicitly

negotiated otherwise (e.g., [RFC7250]).

The server's end-entity certificate's public key (and associated

restrictions) MUST be compatible with the selected authentication

algorithm from the client's "signature_algorithms" extension

(currently RSA, ECDSA, or EdDSA).

The certificate MUST allow the key to be used for signing (i.e.,

the digitalSignature bit MUST be set if the Key Usage extension

is present) with a signature scheme indicated in the client's

"signature_algorithms"/"signature_algorithms_cert" extensions

(see Section 4.2.3).

The "server_name" [RFC6066] and "certificate_authorities"

extensions are used to guide certificate selection. As servers

MAY require the presence of the "server_name" extension, clients

SHOULD send this extension when the server is identified by name.
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All certificates provided by the server MUST be signed by a

signature algorithm advertised by the client, if it is able to

provide such a chain (see Section 4.2.3). Certificates that are

self-signed or certificates that are expected to be trust anchors

are not validated as part of the chain and therefore MAY be signed

with any algorithm.

If the server cannot produce a certificate chain that is signed only

via the indicated supported algorithms, then it SHOULD continue the

handshake by sending the client a certificate chain of its choice

that may include algorithms that are not known to be supported by

the client. This fallback chain SHOULD NOT use the deprecated SHA-1

hash algorithm in general, but MAY do so if the client's

advertisement permits it, and MUST NOT do so otherwise.

If the client cannot construct an acceptable chain using the

provided certificates and decides to abort the handshake, then it

MUST abort the handshake with an appropriate certificate-related

alert (by default, "unsupported_certificate"; see Section 6.2 for

more information).

If the server has multiple certificates, it chooses one of them

based on the above-mentioned criteria (in addition to other

criteria, such as transport-layer endpoint, local configuration, and

preferences).

4.4.2.3. Client Certificate Selection

The following rules apply to certificates sent by the client:

The certificate type MUST be X.509v3 [RFC5280], unless explicitly

negotiated otherwise (e.g., [RFC7250]).

If the "certificate_authorities" extension in the

CertificateRequest message was present, at least one of the

certificates in the certificate chain SHOULD be issued by one of

the listed CAs.

The certificates MUST be signed using an acceptable signature

algorithm, as described in Section 4.3.2. Note that this relaxes

the constraints on certificate-signing algorithms found in prior

versions of TLS.

If the CertificateRequest message contained a non-empty

"oid_filters" extension, the end-entity certificate MUST match

the extension OIDs that are recognized by the client, as

described in Section 4.2.5.
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4.4.2.4. Receiving a Certificate Message

In general, detailed certificate validation procedures are out of

scope for TLS (see [RFC5280]). This section provides TLS-specific

requirements.

If the server supplies an empty Certificate message, the client MUST

abort the handshake with a "decode_error" alert.

If the client does not send any certificates (i.e., it sends an

empty Certificate message), the server MAY at its discretion either

continue the handshake without client authentication, or abort the

handshake with a "certificate_required" alert. Also, if some aspect

of the certificate chain was unacceptable (e.g., it was not signed

by a known, trusted CA), the server MAY at its discretion either

continue the handshake (considering the client unauthenticated) or

abort the handshake.

Any endpoint receiving any certificate which it would need to

validate using any signature algorithm using an MD5 hash MUST abort

the handshake with a "bad_certificate" alert. SHA-1 is deprecated

and it is RECOMMENDED that any endpoint receiving any certificate

which it would need to validate using any signature algorithm using

a SHA-1 hash abort the handshake with a "bad_certificate" alert. For

clarity, this means that endpoints can accept these algorithms for

certificates that are self-signed or are trust anchors.

All endpoints are RECOMMENDED to transition to SHA-256 or better as

soon as possible to maintain interoperability with implementations

currently in the process of phasing out SHA-1 support.

Note that a certificate containing a key for one signature algorithm

MAY be signed using a different signature algorithm (for instance,

an RSA key signed with an ECDSA key).

4.4.3. Certificate Verify

This message is used to provide explicit proof that an endpoint

possesses the private key corresponding to its certificate. The

CertificateVerify message also provides integrity for the handshake

up to this point. Servers MUST send this message when authenticating

via a certificate. Clients MUST send this message whenever

authenticating via a certificate (i.e., when the Certificate message

is non-empty). When sent, this message MUST appear immediately after

the Certificate message and immediately prior to the Finished

message.

Structure of this message:
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The algorithm field specifies the signature algorithm used (see 

Section 4.2.3 for the definition of this type). The signature is a

digital signature using that algorithm. The content that is covered

under the signature is the hash output as described in Section

4.4.1, namely:

The digital signature is then computed over the concatenation of:

A string that consists of octet 32 (0x20) repeated 64 times

The context string (defined below)

A single 0 byte which serves as the separator

The content to be signed

This structure is intended to prevent an attack on previous versions

of TLS in which the ServerKeyExchange format meant that attackers

could obtain a signature of a message with a chosen 32-byte prefix

(ClientHello.random). The initial 64-byte pad clears that prefix

along with the server-controlled ServerHello.random.

The context string for a server signature is "TLS 1.3, server

CertificateVerify" The context string for a client signature is "TLS

1.3, client CertificateVerify" It is used to provide separation

between signatures made in different contexts, helping against

potential cross-protocol attacks.

For example, if the transcript hash was 32 bytes of 01 (this length

would make sense for SHA-256), the content covered by the digital

signature for a server CertificateVerify would be:

On the sender side, the process for computing the signature field of

the CertificateVerify message takes as input:

The content covered by the digital signature

   struct {

       SignatureScheme algorithm;

       opaque signature<0..2^16-1>;

   } CertificateVerify;
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The private signing key corresponding to the certificate sent in

the previous message

If the CertificateVerify message is sent by a server, the signature

algorithm MUST be one offered in the client's "signature_algorithms"

extension unless no valid certificate chain can be produced without

unsupported algorithms (see Section 4.2.3).

If sent by a client, the signature algorithm used in the signature

MUST be one of those present in the supported_signature_algorithms

field of the "signature_algorithms" extension in the

CertificateRequest message.

In addition, the signature algorithm MUST be compatible with the key

in the sender's end-entity certificate. RSA signatures MUST use an

RSASSA-PSS algorithm, regardless of whether RSASSA-PKCS1-v1_5

algorithms appear in "signature_algorithms". The SHA-1 algorithm

MUST NOT be used in any signatures of CertificateVerify messages.

All SHA-1 signature algorithms in this specification are defined

solely for use in legacy certificates and are not valid for

CertificateVerify signatures.

The receiver of a CertificateVerify message MUST verify the

signature field. The verification process takes as input:

The content covered by the digital signature

The public key contained in the end-entity certificate found in

the associated Certificate message

The digital signature received in the signature field of the

CertificateVerify message

If the verification fails, the receiver MUST terminate the handshake

with a "decrypt_error" alert.

4.4.4. Finished

The Finished message is the final message in the Authentication

Block. It is essential for providing authentication of the handshake

and of the computed keys.

Recipients of Finished messages MUST verify that the contents are

correct and if incorrect MUST terminate the connection with a

"decrypt_error" alert.

Once a side has sent its Finished message and has received and

validated the Finished message from its peer, it may begin to send

and receive Application Data over the connection. There are two
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settings in which it is permitted to send data prior to receiving

the peer's Finished:

Clients sending 0-RTT data as described in Section 4.2.10.

Servers MAY send data after sending their first flight, but

because the handshake is not yet complete, they have no

assurance of either the peer's identity or its liveness (i.e.,

the ClientHello might have been replayed).

The key used to compute the Finished message is computed from the

Base Key defined in Section 4.4 using HKDF (see Section 7.1).

Specifically:

Structure of this message:

The verify_data value is computed as follows:

HMAC [RFC2104] uses the Hash algorithm for the handshake. As noted

above, the HMAC input can generally be implemented by a running

hash, i.e., just the handshake hash at this point.

In previous versions of TLS, the verify_data was always 12 octets

long. In TLS 1.3, it is the size of the HMAC output for the Hash

used for the handshake.

Note: Alerts and any other non-handshake record types are not

handshake messages and are not included in the hash computations.

Any records following a Finished message MUST be encrypted under the

appropriate application traffic key as described in Section 7.2. In

particular, this includes any alerts sent by the server in response

to client Certificate and CertificateVerify messages.

¶
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2. 
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finished_key =

    HKDF-Expand-Label(BaseKey, "finished", "", Hash.length)

¶

¶

   struct {

       opaque verify_data[Hash.length];

   } Finished;

¶

¶

   verify_data =

       HMAC(finished_key,

            Transcript-Hash(Handshake Context,

                            Certificate*, CertificateVerify*))

   * Only included if present.
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4.5. End of Early Data

If the server sent an "early_data" extension in EncryptedExtensions,

the client MUST send an EndOfEarlyData message after receiving the

server Finished. If the server does not send an "early_data"

extension in EncryptedExtensions, then the client MUST NOT send an

EndOfEarlyData message. This message indicates that all 0-RTT

application_data messages, if any, have been transmitted and that

the following records are protected under handshake traffic keys.

Servers MUST NOT send this message, and clients receiving it MUST

terminate the connection with an "unexpected_message" alert. This

message is encrypted under keys derived from the

client_early_traffic_secret.

4.6. Post-Handshake Messages

TLS also allows other messages to be sent after the main handshake.

These messages use a handshake content type and are encrypted under

the appropriate application traffic key.

4.6.1. New Session Ticket Message

At any time after the server has received the client Finished

message, it MAY send a NewSessionTicket message. This message

creates a unique association between the ticket value and a secret

PSK derived from the resumption main secret (see Section 7).

The client MAY use this PSK for future handshakes by including the

ticket value in the "pre_shared_key" extension in its ClientHello

(Section 4.2.11). Servers MAY send multiple tickets on a single

connection, either immediately after each other or after specific

events (see Appendix C.4). For instance, the server might send a new

ticket after post-handshake authentication in order to encapsulate

the additional client authentication state. Multiple tickets are

useful for clients for a variety of purposes, including:

Opening multiple parallel HTTP connections.

Performing connection racing across interfaces and address

families via (for example) Happy Eyeballs [RFC8305] or related

techniques.

Any ticket MUST only be resumed with a cipher suite that has the

same KDF hash algorithm as that used to establish the original

connection.

Clients MUST only resume if the new SNI value is valid for the

server certificate presented in the original session, and SHOULD

   struct {} EndOfEarlyData;¶
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ticket_lifetime:

ticket_age_add:

only resume if the SNI value matches the one used in the original

session. The latter is a performance optimization: normally, there

is no reason to expect that different servers covered by a single

certificate would be able to accept each other's tickets; hence,

attempting resumption in that case would waste a single-use ticket.

If such an indication is provided (externally or by any other

means), clients MAY resume with a different SNI value.

On resumption, if reporting an SNI value to the calling application,

implementations MUST use the value sent in the resumption

ClientHello rather than the value sent in the previous session. Note

that if a server implementation declines all PSK identities with

different SNI values, these two values are always the same.

Note: Although the resumption main secret depends on the client's

second flight, a server which does not request client authentication

MAY compute the remainder of the transcript independently and then

send a NewSessionTicket immediately upon sending its Finished rather

than waiting for the client Finished. This might be appropriate in

cases where the client is expected to open multiple TLS connections

in parallel and would benefit from the reduced overhead of a

resumption handshake, for example.

Indicates the lifetime in seconds as a 32-bit

unsigned integer in network byte order from the time of ticket

issuance. Servers MUST NOT use any value greater than 604800

seconds (7 days). The value of zero indicates that the ticket

should be discarded immediately. Clients MUST NOT use tickets for

longer than 7 days after issuance, regardless of the

ticket_lifetime, and MAY delete tickets earlier based on local

policy. A server MAY treat a ticket as valid for a shorter period

of time than what is stated in the ticket_lifetime.

A securely generated, random 32-bit value that is

used to obscure the age of the ticket that the client includes in

the "pre_shared_key" extension. The client-side ticket age is

added to this value modulo 2^32 to obtain the value that is

¶

¶
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   struct {

       uint32 ticket_lifetime;

       uint32 ticket_age_add;

       opaque ticket_nonce<0..255>;

       opaque ticket<1..2^16-1>;

       Extension extensions<0..2^16-2>;

   } NewSessionTicket;
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ticket_nonce:

ticket:

extensions:

max_early_data_size:

transmitted by the client. The server MUST generate a fresh value

for each ticket it sends.

A per-ticket value that is unique across all tickets

issued on this connection.

The value of the ticket to be used as the PSK identity. The

ticket itself is an opaque label. It MAY be either a database

lookup key or a self-encrypted and self-authenticated value.

A list of extension values for the ticket. The

"Extension" format is defined in Section 4.2. Clients MUST ignore

unrecognized extensions.

The sole extension currently defined for NewSessionTicket is

"early_data", indicating that the ticket may be used to send 0-RTT

data (Section 4.2.10). It contains the following value:

The maximum amount of 0-RTT data that the

client is allowed to send when using this ticket, in bytes. Only

Application Data payload (i.e., plaintext but not padding or the

inner content type byte) is counted. A server receiving more than

max_early_data_size bytes of 0-RTT data SHOULD terminate the

connection with an "unexpected_message" alert. Note that servers

that reject early data due to lack of cryptographic material will

be unable to differentiate padding from content, so clients

SHOULD NOT depend on being able to send large quantities of

padding in early data records.

The PSK associated with the ticket is computed as:

Because the ticket_nonce value is distinct for each NewSessionTicket

message, a different PSK will be derived for each ticket.

Note that in principle it is possible to continue issuing new

tickets which indefinitely extend the lifetime of the keying

material originally derived from an initial non-PSK handshake (which

was most likely tied to the peer's certificate). It is RECOMMENDED

that implementations place limits on the total lifetime of such

keying material; these limits should take into account the lifetime

of the peer's certificate, the likelihood of intervening revocation,

and the time since the peer's online CertificateVerify signature.

4.6.2. Post-Handshake Authentication

When the client has sent the "post_handshake_auth" extension (see 

Section 4.2.6), a server MAY request client authentication at any
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    HKDF-Expand-Label(resumption_main_secret,

                     "resumption", ticket_nonce, Hash.length)
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request_update:

time after the handshake has completed by sending a

CertificateRequest message. The client MUST respond with the

appropriate Authentication messages (see Section 4.4). If the client

chooses to authenticate, it MUST send Certificate,

CertificateVerify, and Finished. If it declines, it MUST send a

Certificate message containing no certificates followed by Finished.

All of the client's messages for a given response MUST appear

consecutively on the wire with no intervening messages of other

types.

A client that receives a CertificateRequest message without having

sent the "post_handshake_auth" extension MUST send an

"unexpected_message" fatal alert.

Note: Because client authentication could involve prompting the

user, servers MUST be prepared for some delay, including receiving

an arbitrary number of other messages between sending the

CertificateRequest and receiving a response. In addition, clients

which receive multiple CertificateRequests in close succession MAY

respond to them in a different order than they were received (the

certificate_request_context value allows the server to disambiguate

the responses).

4.6.3. Key and Initialization Vector Update

The KeyUpdate handshake message is used to indicate that the sender

is updating its sending cryptographic keys. This message can be sent

by either peer after it has sent a Finished message. Implementations

that receive a KeyUpdate message prior to receiving a Finished

message MUST terminate the connection with an "unexpected_message"

alert. After sending a KeyUpdate message, the sender SHALL send all

its traffic using the next generation of keys, computed as described

in Section 7.2. Upon receiving a KeyUpdate, the receiver MUST update

its receiving keys.

Indicates whether the recipient of the KeyUpdate

should respond with its own KeyUpdate. If an implementation

receives any other value, it MUST terminate the connection with

an "illegal_parameter" alert.

If the request_update field is set to "update_requested", then the

receiver MUST send a KeyUpdate of its own with request_update set to

¶
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   enum {

       update_not_requested(0), update_requested(1), (255)

   } KeyUpdateRequest;

   struct {

       KeyUpdateRequest request_update;

   } KeyUpdate;
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"update_not_requested" prior to sending its next Application Data

record. This mechanism allows either side to force an update to the

entire connection, but causes an implementation which receives

multiple KeyUpdates while it is silent to respond with a single

update. Note that implementations may receive an arbitrary number of

messages between sending a KeyUpdate with request_update set to

"update_requested" and receiving the peer's KeyUpdate, because those

messages may already be in flight. However, because send and receive

keys are derived from independent traffic secrets, retaining the

receive traffic secret does not threaten the forward secrecy of data

sent before the sender changed keys.

If implementations independently send their own KeyUpdates with

request_update set to "update_requested", and they cross in flight,

then each side will also send a response, with the result that each

side increments by two generations.

Both sender and receiver MUST encrypt their KeyUpdate messages with

the old keys. Additionally, both sides MUST enforce that a KeyUpdate

with the old key is received before accepting any messages encrypted

with the new key. Failure to do so may allow message truncation

attacks.

5. Record Protocol

The TLS record protocol takes messages to be transmitted, fragments

the data into manageable blocks, protects the records, and transmits

the result. Received data is verified, decrypted, reassembled, and

then delivered to higher-level clients.

TLS records are typed, which allows multiple higher-level protocols

to be multiplexed over the same record layer. This document

specifies four content types: handshake, application_data, alert,

and change_cipher_spec. The change_cipher_spec record is used only

for compatibility purposes (see Appendix D.4).

An implementation may receive an unencrypted record of type

change_cipher_spec consisting of the single byte value 0x01 at any

time after the first ClientHello message has been sent or received

and before the peer's Finished message has been received and MUST

simply drop it without further processing. Note that this record may

appear at a point at the handshake where the implementation is

expecting protected records, and so it is necessary to detect this

condition prior to attempting to deprotect the record. An

implementation which receives any other change_cipher_spec value or

which receives a protected change_cipher_spec record MUST abort the

handshake with an "unexpected_message" alert. If an implementation

detects a change_cipher_spec record received before the first

ClientHello message or after the peer's Finished message, it MUST be
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treated as an unexpected record type (though stateless servers may

not be able to distinguish these cases from allowed cases).

Implementations MUST NOT send record types not defined in this

document unless negotiated by some extension. If a TLS

implementation receives an unexpected record type, it MUST terminate

the connection with an "unexpected_message" alert. New record

content type values are assigned by IANA in the TLS ContentType

registry as described in Section 11.

5.1. Record Layer

The record layer fragments information blocks into TLSPlaintext

records carrying data in chunks of 2^14 bytes or less. Message

boundaries are handled differently depending on the underlying

ContentType. Any future content types MUST specify appropriate

rules. Note that these rules are stricter than what was enforced in

TLS 1.2.

Handshake messages MAY be coalesced into a single TLSPlaintext

record or fragmented across several records, provided that:

Handshake messages MUST NOT be interleaved with other record

types. That is, if a handshake message is split over two or more

records, there MUST NOT be any other records between them.

Handshake messages MUST NOT span key changes. Implementations

MUST verify that all messages immediately preceding a key change

align with a record boundary; if not, then they MUST terminate

the connection with an "unexpected_message" alert. Because the

ClientHello, EndOfEarlyData, ServerHello, Finished, and KeyUpdate

messages can immediately precede a key change, implementations

MUST send these messages in alignment with a record boundary.

Implementations MUST NOT send zero-length fragments of Handshake

types, even if those fragments contain padding.

Alert messages (Section 6) MUST NOT be fragmented across records,

and multiple alert messages MUST NOT be coalesced into a single

TLSPlaintext record. In other words, a record with an Alert type

MUST contain exactly one message.

Application Data messages contain data that is opaque to TLS.

Application Data messages are always protected. Zero-length

fragments of Application Data MAY be sent, as they are potentially

useful as a traffic analysis countermeasure. Application Data

fragments MAY be split across multiple records or coalesced into a

single record.
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type:

legacy_record_version:

length:

fragment

The higher-level protocol used to process the enclosed

fragment.

MUST be set to 0x0303 for all records

generated by a TLS 1.3 implementation other than an initial

ClientHello (i.e., one not generated after a HelloRetryRequest),

where it MAY also be 0x0301 for compatibility purposes. This

field is deprecated and MUST be ignored for all purposes.

Previous versions of TLS would use other values in this field

under some circumstances.

The length (in bytes) of the following

TLSPlaintext.fragment. The length MUST NOT exceed 2^14 bytes. An

endpoint that receives a record that exceeds this length MUST

terminate the connection with a "record_overflow" alert.

The data being transmitted. This value is transparent and

is treated as an independent block to be dealt with by the

higher-level protocol specified by the type field.

This document describes TLS 1.3, which uses the version 0x0304. This

version value is historical, deriving from the use of 0x0301 for TLS

1.0 and 0x0300 for SSL 3.0. In order to maximize backward

compatibility, a record containing an initial ClientHello SHOULD

have version 0x0301 (reflecting TLS 1.0) and a record containing a

second ClientHello or a ServerHello MUST have version 0x0303

(reflecting TLS 1.2). When negotiating prior versions of TLS,

endpoints follow the procedure and requirements provided in Appendix

D.

When record protection has not yet been engaged, TLSPlaintext

structures are written directly onto the wire. Once record

protection has started, TLSPlaintext records are protected and sent

   enum {

       invalid(0),

       change_cipher_spec(20),

       alert(21),

       handshake(22),

       application_data(23),

       (255)

   } ContentType;

   struct {

       ContentType type;

       ProtocolVersion legacy_record_version;

       uint16 length;

       opaque fragment[TLSPlaintext.length];

   } TLSPlaintext;
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content:

type:

zeros:

opaque_type:

legacy_record_version:

as described in the following section. Note that Application Data

records MUST NOT be written to the wire unprotected (see Section 2

for details).

5.2. Record Payload Protection

The record protection functions translate a TLSPlaintext structure

into a TLSCiphertext structure. The deprotection functions reverse

the process. In TLS 1.3, as opposed to previous versions of TLS, all

ciphers are modeled as "Authenticated Encryption with Associated

Data" (AEAD) [RFC5116]. AEAD functions provide a unified encryption

and authentication operation which turns plaintext into

authenticated ciphertext and back again. Each encrypted record

consists of a plaintext header followed by an encrypted body, which

itself contains a type and optional padding.

The TLSPlaintext.fragment value, containing the byte

encoding of a handshake or an alert message, or the raw bytes of

the application's data to send.

The TLSPlaintext.type value containing the content type of

the record.

An arbitrary-length run of zero-valued bytes may appear in

the cleartext after the type field. This provides an opportunity

for senders to pad any TLS record by a chosen amount as long as

the total stays within record size limits. See Section 5.4 for

more details.

The outer opaque_type field of a TLSCiphertext record

is always set to the value 23 (application_data) for outward

compatibility with middleboxes accustomed to parsing previous

versions of TLS. The actual content type of the record is found

in TLSInnerPlaintext.type after decryption.

The legacy_record_version field is always

0x0303. TLS 1.3 TLSCiphertexts are not generated until after TLS

¶
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   struct {

       opaque content[TLSPlaintext.length];

       ContentType type;

       uint8 zeros[length_of_padding];

   } TLSInnerPlaintext;

   struct {

       ContentType opaque_type = application_data; /* 23 */

       ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */

       uint16 length;

       opaque encrypted_record[TLSCiphertext.length];

   } TLSCiphertext;

¶
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¶

¶

¶



length:

encrypted_record:

1.3 has been negotiated, so there are no historical compatibility

concerns where other values might be received. Note that the

handshake protocol, including the ClientHello and ServerHello

messages, authenticates the protocol version, so this value is

redundant.

The length (in bytes) of the following

TLSCiphertext.encrypted_record, which is the sum of the lengths

of the content and the padding, plus one for the inner content

type, plus any expansion added by the AEAD algorithm. The length

MUST NOT exceed 2^14 + 256 bytes. An endpoint that receives a

record that exceeds this length MUST terminate the connection

with a "record_overflow" alert.

The AEAD-encrypted form of the serialized

TLSInnerPlaintext structure.

AEAD algorithms take as input a single key, a nonce, a plaintext,

and "additional data" to be included in the authentication check, as

described in Section 2.1 of [RFC5116]. The key is either the

client_write_key or the server_write_key, the nonce is derived from

the sequence number and the client_write_iv or server_write_iv (see 

Section 5.3), and the additional data input is the record header.

I.e.,

The plaintext input to the AEAD algorithm is the encoded

TLSInnerPlaintext structure. Derivation of traffic keys is defined

in Section 7.3.

The AEAD output consists of the ciphertext output from the AEAD

encryption operation. The length of the plaintext is greater than

the corresponding TLSPlaintext.length due to the inclusion of

TLSInnerPlaintext.type and any padding supplied by the sender. The

length of the AEAD output will generally be larger than the

plaintext, but by an amount that varies with the AEAD algorithm.

Since the ciphers might incorporate padding, the amount of overhead

could vary with different lengths of plaintext. Symbolically,

The encrypted_record field of TLSCiphertext is set to AEADEncrypted.

In order to decrypt and verify, the cipher takes as input the key,

nonce, additional data, and the AEADEncrypted value. The output is

¶

¶

¶

¶

   additional_data = TLSCiphertext.opaque_type ||

                     TLSCiphertext.legacy_record_version ||

                     TLSCiphertext.length

¶

¶

¶

   AEADEncrypted =

       AEAD-Encrypt(write_key, nonce, additional_data, plaintext)

¶

¶



either the plaintext or an error indicating that the decryption

failed. There is no separate integrity check. Symbolically,

If the decryption fails, the receiver MUST terminate the connection

with a "bad_record_mac" alert.

An AEAD algorithm used in TLS 1.3 MUST NOT produce an expansion

greater than 255 octets. An endpoint that receives a record from its

peer with TLSCiphertext.length larger than 2^14 + 256 octets MUST

terminate the connection with a "record_overflow" alert. This limit

is derived from the maximum TLSInnerPlaintext length of 2^14 octets

+ 1 octet for ContentType + the maximum AEAD expansion of 255

octets.

5.3. Per-Record Nonce

A 64-bit sequence number is maintained separately for reading and

writing records. The appropriate sequence number is incremented by

one after reading or writing each record. Each sequence number is

set to zero at the beginning of a connection and whenever the key is

changed; the first record transmitted under a particular traffic key

MUST use sequence number 0.

Because the size of sequence numbers is 64-bit, they should not

wrap. If a TLS implementation would need to wrap a sequence number,

it MUST either rekey (Section 4.6.3) or terminate the connection.

Each AEAD algorithm will specify a range of possible lengths for the

per-record nonce, from N_MIN bytes to N_MAX bytes of input 

[RFC5116]. The length of the TLS per-record nonce (iv_length) is set

to the larger of 8 bytes and N_MIN for the AEAD algorithm (see 

[RFC5116], Section 4). An AEAD algorithm where N_MAX is less than 8

bytes MUST NOT be used with TLS. The per-record nonce for the AEAD

construction is formed as follows:

The 64-bit record sequence number is encoded in network byte

order and padded to the left with zeros to iv_length.

The padded sequence number is XORed with either the static

client_write_iv or server_write_iv (depending on the role).

The resulting quantity (of length iv_length) is used as the per-

record nonce.

Note: This is a different construction from that in TLS 1.2, which

specified a partially explicit nonce.

¶

   plaintext of encrypted_record =

       AEAD-Decrypt(peer_write_key, nonce, additional_data, AEADEncrypted)

¶
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5.4. Record Padding

All encrypted TLS records can be padded to inflate the size of the

TLSCiphertext. This allows the sender to hide the size of the

traffic from an observer.

When generating a TLSCiphertext record, implementations MAY choose

to pad. An unpadded record is just a record with a padding length of

zero. Padding is a string of zero-valued bytes appended to the

ContentType field before encryption. Implementations MUST set the

padding octets to all zeros before encrypting.

Application Data records may contain a zero-length

TLSInnerPlaintext.content if the sender desires. This permits

generation of plausibly sized cover traffic in contexts where the

presence or absence of activity may be sensitive. Implementations

MUST NOT send Handshake and Alert records that have a zero-length

TLSInnerPlaintext.content; if such a message is received, the

receiving implementation MUST terminate the connection with an

"unexpected_message" alert.

The padding sent is automatically verified by the record protection

mechanism; upon successful decryption of a

TLSCiphertext.encrypted_record, the receiving implementation scans

the field from the end toward the beginning until it finds a non-

zero octet. This non-zero octet is the content type of the message.

This padding scheme was selected because it allows padding of any

encrypted TLS record by an arbitrary size (from zero up to TLS

record size limits) without introducing new content types. The

design also enforces all-zero padding octets, which allows for quick

detection of padding errors.

Implementations MUST limit their scanning to the cleartext returned

from the AEAD decryption. If a receiving implementation does not

find a non-zero octet in the cleartext, it MUST terminate the

connection with an "unexpected_message" alert.

The presence of padding does not change the overall record size

limitations: the full encoded TLSInnerPlaintext MUST NOT exceed 2^14

+ 1 octets. If the maximum fragment length is reduced - as for

example by the record_size_limit extension from [RFC8449] - then the

reduced limit applies to the full plaintext, including the content

type and padding.

Selecting a padding policy that suggests when and how much to pad is

a complex topic and is beyond the scope of this specification. If

the application-layer protocol on top of TLS has its own padding, it

may be preferable to pad Application Data TLS records within the

application layer. Padding for encrypted Handshake or Alert records
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must still be handled at the TLS layer, though. Later documents may

define padding selection algorithms or define a padding policy

request mechanism through TLS extensions or some other means.

5.5. Limits on Key Usage

There are cryptographic limits on the amount of plaintext which can

be safely encrypted under a given set of keys. [AEAD-LIMITS]

provides an analysis of these limits under the assumption that the

underlying primitive (AES or ChaCha20) has no weaknesses.

Implementations SHOULD do a key update as described in Section 4.6.3

prior to reaching these limits.

For AES-GCM, up to 2^24.5 full-size records (about 24 million) may

be encrypted on a given connection while keeping a safety margin of

approximately 2^-57 for Authenticated Encryption (AE) security. For

ChaCha20/Poly1305, the record sequence number would wrap before the

safety limit is reached.

6. Alert Protocol

TLS provides an Alert content type to indicate closure information

and errors. Like other messages, alert messages are encrypted as

specified by the current connection state.

Alert messages convey a description of the alert and a legacy field

that conveyed the severity level of the message in previous versions

of TLS. Alerts are divided into two classes: closure alerts and

error alerts. In TLS 1.3, the severity is implicit in the type of

alert being sent, and the "level" field can safely be ignored. The

"close_notify" alert is used to indicate orderly closure of one

direction of the connection. Upon receiving such an alert, the TLS

implementation SHOULD indicate end-of-data to the application.

Error alerts indicate abortive closure of the connection (see 

Section 6.2). Upon receiving an error alert, the TLS implementation

SHOULD indicate an error to the application and MUST NOT allow any

further data to be sent or received on the connection. Servers and

clients MUST forget the secret values and keys established in failed

connections, with the exception of the PSKs associated with session

tickets, which SHOULD be discarded if possible.

All the alerts listed in Section 6.2 MUST be sent with

AlertLevel=fatal and MUST be treated as error alerts when received

regardless of the AlertLevel in the message. Unknown Alert types

MUST be treated as error alerts.

Note: TLS defines two generic alerts (see Section 6) to use upon

failure to parse a message. Peers which receive a message which

cannot be parsed according to the syntax (e.g., have a length
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extending beyond the message boundary or contain an out-of-range

length) MUST terminate the connection with a "decode_error" alert.

Peers which receive a message which is syntactically correct but

semantically invalid (e.g., a DHE share of p - 1, or an invalid

enum) MUST terminate the connection with an "illegal_parameter"

alert.

6.1. Closure Alerts

The client and the server must share knowledge that the connection

is ending in order to avoid a truncation attack.

¶

   enum { warning(1), fatal(2), (255) } AlertLevel;

   enum {

       close_notify(0),

       unexpected_message(10),

       bad_record_mac(20),

       record_overflow(22),

       handshake_failure(40),

       bad_certificate(42),

       unsupported_certificate(43),

       certificate_revoked(44),

       certificate_expired(45),

       certificate_unknown(46),

       illegal_parameter(47),

       unknown_ca(48),

       access_denied(49),

       decode_error(50),

       decrypt_error(51),

       protocol_version(70),

       insufficient_security(71),

       internal_error(80),

       inappropriate_fallback(86),

       user_canceled(90),

       missing_extension(109),

       unsupported_extension(110),

       unrecognized_name(112),

       bad_certificate_status_response(113),

       unknown_psk_identity(115),

       certificate_required(116),

       no_application_protocol(120),

       (255)

   } AlertDescription;

   struct {

       AlertLevel level;

       AlertDescription description;

   } Alert;

¶
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close_notify:

user_canceled:

This alert notifies the recipient that the sender

will not send any more messages on this connection. Any data

received after a closure alert has been received MUST be ignored.

This alert notifies the recipient that the sender is

canceling the handshake for some reason unrelated to a protocol

failure. If a user cancels an operation after the handshake is

complete, just closing the connection by sending a "close_notify"

is more appropriate. This alert SHOULD be followed by a

"close_notify". This alert generally has AlertLevel=warning.

Either party MAY initiate a close of its write side of the

connection by sending a "close_notify" alert. Any data received

after a closure alert has been received MUST be ignored. If a

transport-level close is received prior to a "close_notify", the

receiver cannot know that all the data that was sent has been

received.

Each party MUST send a "close_notify" alert before closing its write

side of the connection, unless it has already sent some error alert.

This does not have any effect on its read side of the connection.

Note that this is a change from versions of TLS prior to TLS 1.3 in

which implementations were required to react to a "close_notify" by

discarding pending writes and sending an immediate "close_notify"

alert of their own. That previous requirement could cause truncation

in the read side. Both parties need not wait to receive a

"close_notify" alert before closing their read side of the

connection, though doing so would introduce the possibility of

truncation.

If the application protocol using TLS provides that any data may be

carried over the underlying transport after the TLS connection is

closed, the TLS implementation MUST receive a "close_notify" alert

before indicating end-of-data to the application layer. No part of

this standard should be taken to dictate the manner in which a usage

profile for TLS manages its data transport, including when

connections are opened or closed.

Note: It is assumed that closing the write side of a connection

reliably delivers pending data before destroying the transport.

6.2. Error Alerts

Error handling in TLS is very simple. When an error is detected, the

detecting party sends a message to its peer. Upon transmission or

receipt of a fatal alert message, both parties MUST immediately

close the connection.
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unexpected_message:

bad_record_mac:

record_overflow:

handshake_failure:

bad_certificate:

unsupported_certificate:

certificate_revoked:

certificate_expired:

Whenever an implementation encounters a fatal error condition, it

SHOULD send an appropriate fatal alert and MUST close the connection

without sending or receiving any additional data. Throughout this

specification, when the phrases "terminate the connection" and

"abort the handshake" are used without a specific alert it means

that the implementation SHOULD send the alert indicated by the

descriptions below. The phrases "terminate the connection with an X

alert" and "abort the handshake with an X alert" mean that the

implementation MUST send alert X if it sends any alert. All alerts

defined below in this section, as well as all unknown alerts, are

universally considered fatal as of TLS 1.3 (see Section 6). The

implementation SHOULD provide a way to facilitate logging the

sending and receiving of alerts.

The following error alerts are defined:

An inappropriate message (e.g., the wrong

handshake message, premature Application Data, etc.) was

received. This alert should never be observed in communication

between proper implementations.

This alert is returned if a record is received

which cannot be deprotected. Because AEAD algorithms combine

decryption and verification, and also to avoid side-channel

attacks, this alert is used for all deprotection failures. This

alert should never be observed in communication between proper

implementations, except when messages were corrupted in the

network.

A TLSCiphertext record was received that had a

length more than 2^14 + 256 bytes, or a record decrypted to a

TLSPlaintext record with more than 2^14 bytes (or some other

negotiated limit). This alert should never be observed in

communication between proper implementations, except when

messages were corrupted in the network.

Receipt of a "handshake_failure" alert message

indicates that the sender was unable to negotiate an acceptable

set of security parameters given the options available.

A certificate was corrupt, contained signatures

that did not verify correctly, etc.

A certificate was of an unsupported type.

A certificate was revoked by its signer.

A certificate has expired or is not currently

valid.
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certificate_unknown:

illegal_parameter:

unknown_ca:

access_denied:

decode_error:

decrypt_error:

protocol_version:

insufficient_security:

internal_error:

inappropriate_fallback:

missing_extension:

unsupported_extension:

Some other (unspecified) issue arose in

processing the certificate, rendering it unacceptable.

A field in the handshake was incorrect or

inconsistent with other fields. This alert is used for errors

which conform to the formal protocol syntax but are otherwise

incorrect.

A valid certificate chain or partial chain was

received, but the certificate was not accepted because the CA

certificate could not be located or could not be matched with a

known trust anchor.

A valid certificate or PSK was received, but when

access control was applied, the sender decided not to proceed

with negotiation.

A message could not be decoded because some field was

out of the specified range or the length of the message was

incorrect. This alert is used for errors where the message does

not conform to the formal protocol syntax. This alert should

never be observed in communication between proper

implementations, except when messages were corrupted in the

network.

A handshake (not record layer) cryptographic

operation failed, including being unable to correctly verify a

signature or validate a Finished message or a PSK binder.

The protocol version the peer has attempted to

negotiate is recognized but not supported (see Appendix D).

Returned instead of "handshake_failure" when

a negotiation has failed specifically because the server requires

parameters more secure than those supported by the client.

An internal error unrelated to the peer or the

correctness of the protocol (such as a memory allocation failure)

makes it impossible to continue.

Sent by a server in response to an invalid

connection retry attempt from a client (see [RFC7507]).

Sent by endpoints that receive a handshake

message not containing an extension that is mandatory to send for

the offered TLS version or other negotiated parameters.

Sent by endpoints receiving any handshake

message containing an extension known to be prohibited for
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unrecognized_name:

bad_certificate_status_response:

unknown_psk_identity:

certificate_required:

no_application_protocol:

inclusion in the given handshake message, or including any

extensions in a ServerHello or Certificate not first offered in

the corresponding ClientHello or CertificateRequest.

Sent by servers when no server exists identified

by the name provided by the client via the "server_name"

extension (see [RFC6066]).

Sent by clients when an invalid or

unacceptable OCSP response is provided by the server via the

"status_request" extension (see [RFC6066]).

Sent by servers when PSK key establishment is

desired but no acceptable PSK identity is provided by the client.

Sending this alert is OPTIONAL; servers MAY instead choose to

send a "decrypt_error" alert to merely indicate an invalid PSK

identity.

Sent by servers when a client certificate is

desired but none was provided by the client.

Sent by servers when a client

"application_layer_protocol_negotiation" extension advertises

only protocols that the server does not support (see [RFC7301]).

New Alert values are assigned by IANA as described in Section 11.

7. Cryptographic Computations

The TLS handshake establishes one or more input secrets which are

combined to create the actual working keying material, as detailed

below. The key derivation process incorporates both the input

secrets and the handshake transcript. Note that because the

handshake transcript includes the random values from the Hello

messages, any given handshake will have different traffic secrets,

even if the same input secrets are used, as is the case when the

same PSK is used for multiple connections.

7.1. Key Schedule

The key derivation process makes use of the HKDF-Extract and HKDF-

Expand functions as defined for HKDF [RFC5869], as well as the

functions defined below:
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The Hash function used by Transcript-Hash and HKDF is the cipher

suite hash algorithm. Hash.length is its output length in bytes.

Messages is the concatenation of the indicated handshake messages,

including the handshake message type and length fields, but not

including record layer headers. Note that in some cases a zero-

length Context (indicated by "") is passed to HKDF-Expand-Label. The

labels specified in this document are all ASCII strings and do not

include a trailing NUL byte.

Note: With common hash functions, any label longer than 12

characters requires an additional iteration of the hash function to

compute. The labels in this specification have all been chosen to

fit within this limit.

Keys are derived from two input secrets using the HKDF-Extract and

Derive-Secret functions. The general pattern for adding a new secret

is to use HKDF-Extract with the Salt being the current secret state

and the Input Keying Material (IKM) being the new secret to be

added. In this version of TLS 1.3, the two input secrets are:

PSK (a pre-shared key established externally or derived from the

resumption_main_secret value from a previous connection)

(EC)DHE shared secret (Section 7.4)

This produces a full key derivation schedule shown in the diagram

below. In this diagram, the following formatting conventions apply:

HKDF-Extract is drawn as taking the Salt argument from the top

and the IKM argument from the left, with its output to the bottom

and the name of the output on the right.

Derive-Secret's Secret argument is indicated by the incoming

arrow. For instance, the Early Secret is the Secret for

generating the client_early_traffic_secret.

    HKDF-Expand-Label(Secret, Label, Context, Length) =

         HKDF-Expand(Secret, HkdfLabel, Length)

    Where HkdfLabel is specified as:

    struct {

        uint16 length = Length;

        opaque label<7..255> = "tls13 " + Label;

        opaque context<0..255> = Context;

    } HkdfLabel;

    Derive-Secret(Secret, Label, Messages) =

         HKDF-Expand-Label(Secret, Label,

                           Transcript-Hash(Messages), Hash.length)
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"0" indicates a string of Hash.length bytes set to zero.

Note: the key derivation labels use the string "master" even though

the values are referred to as "main" secrets. This mismatch is a

result of renaming the values while retaining compatibility.

[[OPEN ISSUE: Replace the strings with hex value?]]

* ¶

¶

¶



                 0

                 |

                 v

   PSK ->  HKDF-Extract = Early Secret

                 |

                 +-----> Derive-Secret(.,

                 |                     "ext binder" |

                 |                     "res binder",

                 |                     "")

                 |                     = binder_key

                 |

                 +-----> Derive-Secret(., "c e traffic",

                 |                     ClientHello)

                 |                     = client_early_traffic_secret

                 |

                 +-----> Derive-Secret(., "e exp master",

                 |                     ClientHello)

                 |                     = early_exporter_main_secret

                 v

           Derive-Secret(., "derived", "")

                 |

                 v

(EC)DHE -> HKDF-Extract = Handshake Secret

                 |

                 +-----> Derive-Secret(., "c hs traffic",

                 |                     ClientHello...ServerHello)

                 |                     = client_handshake_traffic_secret

                 |

                 +-----> Derive-Secret(., "s hs traffic",

                 |                     ClientHello...ServerHello)

                 |                     = server_handshake_traffic_secret

                 v

           Derive-Secret(., "derived", "")

                 |

                 v

      0 -> HKDF-Extract = Main Secret

                 |

                 +-----> Derive-Secret(., "c ap traffic",

                 |                     ClientHello...server Finished)

                 |                     = client_application_traffic_secret_0

                 |

                 +-----> Derive-Secret(., "s ap traffic",

                 |                     ClientHello...server Finished)

                 |                     = server_application_traffic_secret_0

                 |

                 +-----> Derive-Secret(., "exp master",

                 |                     ClientHello...server Finished)

                 |                     = exporter_main_secret

                 |



                 +-----> Derive-Secret(., "res master",

                                       ClientHello...client Finished)

                                       = resumption_main_secret

¶



The general pattern here is that the secrets shown down the left

side of the diagram are just raw entropy without context, whereas

the secrets down the right side include Handshake Context and

therefore can be used to derive working keys without additional

context. Note that the different calls to Derive-Secret may take

different Messages arguments, even with the same secret. In a 0-RTT

exchange, Derive-Secret is called with four distinct transcripts; in

a 1-RTT-only exchange, it is called with three distinct transcripts.

If a given secret is not available, then the 0-value consisting of a

string of Hash.length bytes set to zeros is used. Note that this

does not mean skipping rounds, so if PSK is not in use, Early Secret

will still be HKDF-Extract(0, 0). For the computation of the

binder_key, the label is "ext binder" for external PSKs (those

provisioned outside of TLS) and "res binder" for resumption PSKs

(those provisioned as the resumption main secret of a previous

handshake). The different labels prevent the substitution of one

type of PSK for the other.

There are multiple potential Early Secret values, depending on which

PSK the server ultimately selects. The client will need to compute

one for each potential PSK; if no PSK is selected, it will then need

to compute the Early Secret corresponding to the zero PSK.

Once all the values which are to be derived from a given secret have

been computed, that secret SHOULD be erased.

7.2. Updating Traffic Secrets

Once the handshake is complete, it is possible for either side to

update its sending traffic keys using the KeyUpdate handshake

message defined in Section 4.6.3. The next generation of traffic

keys is computed by generating client_/

server_application_traffic_secret_N+1 from client_/

server_application_traffic_secret_N as described in this section and

then re-deriving the traffic keys as described in Section 7.3.

The next-generation application_traffic_secret is computed as:

Once client_/server_application_traffic_secret_N+1 and its

associated traffic keys have been computed, implementations SHOULD

delete client_/server_application_traffic_secret_N and its

associated traffic keys.
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    application_traffic_secret_N+1 =

        HKDF-Expand-Label(application_traffic_secret_N,

                          "traffic upd", "", Hash.length)

¶

¶



7.3. Traffic Key Calculation

The traffic keying material is generated from the following input

values:

A secret value

A purpose value indicating the specific value being generated

The length of the key being generated

The traffic keying material is generated from an input traffic

secret value using:

[sender] denotes the sending side. The value of Secret for each

record type is shown in the table below.

Record Type Secret

0-RTT Application client_early_traffic_secret

Handshake [sender]_handshake_traffic_secret

Application Data [sender]_application_traffic_secret_N

Table 3: Secrets for Traffic Keys

All the traffic keying material is recomputed whenever the

underlying Secret changes (e.g., when changing from the handshake to

Application Data keys or upon a key update).

7.4. (EC)DHE Shared Secret Calculation

7.4.1. Finite Field Diffie-Hellman

For finite field groups, a conventional Diffie-Hellman [DH76]

computation is performed. The negotiated key (Z) is converted to a

byte string by encoding in big-endian form and left-padded with

zeros up to the size of the prime. This byte string is used as the

shared secret in the key schedule as specified above.

Note that this construction differs from previous versions of TLS

which remove leading zeros.

7.4.2. Elliptic Curve Diffie-Hellman

For secp256r1, secp384r1 and secp521r1, ECDH calculations (including

parameter and key generation as well as the shared secret

calculation) are performed according to [IEEE1363] using the ECKAS-

DH1 scheme with the identity map as the key derivation function

¶
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    [sender]_write_key = HKDF-Expand-Label(Secret, "key", "", key_length)

    [sender]_write_iv  = HKDF-Expand-Label(Secret, "iv", "", iv_length)
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(KDF), so that the shared secret is the x-coordinate of the ECDH

shared secret elliptic curve point represented as an octet string.

Note that this octet string ("Z" in IEEE 1363 terminology) as output

by FE2OSP (the Field Element to Octet String Conversion Primitive)

has constant length for any given field; leading zeros found in this

octet string MUST NOT be truncated.

(Note that this use of the identity KDF is a technicality. The

complete picture is that ECDH is employed with a non-trivial KDF

because TLS does not directly use this secret for anything other

than for computing other secrets.)

For X25519 and X448, the ECDH calculations are as follows:

The public key to put into the KeyShareEntry.key_exchange

structure is the result of applying the ECDH scalar

multiplication function to the secret key of appropriate length

(into scalar input) and the standard public basepoint (into u-

coordinate point input).

The ECDH shared secret is the result of applying the ECDH scalar

multiplication function to the secret key (into scalar input) and

the peer's public key (into u-coordinate point input). The output

is used raw, with no processing.

For these curves, implementations SHOULD use the approach specified

in [RFC7748] to calculate the Diffie-Hellman shared secret.

Implementations MUST check whether the computed Diffie-Hellman

shared secret is the all-zero value and abort if so, as described in

Section 6 of [RFC7748]. If implementors use an alternative

implementation of these elliptic curves, they SHOULD perform the

additional checks specified in Section 7 of [RFC7748].

7.5. Exporters

[RFC5705] defines keying material exporters for TLS in terms of the

TLS pseudorandom function (PRF). This document replaces the PRF with

HKDF, thus requiring a new construction. The exporter interface

remains the same.

The exporter value is computed as:

Where Secret is either the early_exporter_main_secret or the

exporter_main_secret. Implementations MUST use the

exporter_main_secret unless explicitly specified by the application.

The early_exporter_main_secret is defined for use in settings where
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TLS-Exporter(label, context_value, key_length) =

    HKDF-Expand-Label(Derive-Secret(Secret, label, ""),

                      "exporter", Hash(context_value), key_length)

¶



an exporter is needed for 0-RTT data. A separate interface for the

early exporter is RECOMMENDED; this avoids the exporter user

accidentally using an early exporter when a regular one is desired

or vice versa.

If no context is provided, the context_value is zero length.

Consequently, providing no context computes the same value as

providing an empty context. This is a change from previous versions

of TLS where an empty context produced a different output than an

absent context. As of this document's publication, no allocated

exporter label is used both with and without a context. Future

specifications MUST NOT define a use of exporters that permit both

an empty context and no context with the same label. New uses of

exporters SHOULD provide a context in all exporter computations,

though the value could be empty.

Requirements for the format of exporter labels are defined in

Section 4 of [RFC5705].

8. 0-RTT and Anti-Replay

As noted in Section 2.3 and Appendix E.5, TLS does not provide

inherent replay protections for 0-RTT data. There are two potential

threats to be concerned with:

Network attackers who mount a replay attack by simply duplicating

a flight of 0-RTT data.

Network attackers who take advantage of client retry behavior to

arrange for the server to receive multiple copies of an

application message. This threat already exists to some extent

because clients that value robustness respond to network errors

by attempting to retry requests. However, 0-RTT adds an

additional dimension for any server system which does not

maintain globally consistent server state. Specifically, if a

server system has multiple zones where tickets from zone A will

not be accepted in zone B, then an attacker can duplicate a

ClientHello and early data intended for A to both A and B. At A,

the data will be accepted in 0-RTT, but at B the server will

reject 0-RTT data and instead force a full handshake. If the

attacker blocks the ServerHello from A, then the client will

complete the handshake with B and probably retry the request,

leading to duplication on the server system as a whole.

The first class of attack can be prevented by sharing state to

guarantee that the 0-RTT data is accepted at most once. Servers

SHOULD provide that level of replay safety by implementing one of

the methods described in this section or by equivalent means. It is

understood, however, that due to operational concerns not all
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deployments will maintain state at that level. Therefore, in normal

operation, clients will not know which, if any, of these mechanisms

servers actually implement and hence MUST only send early data which

they deem safe to be replayed.

In addition to the direct effects of replays, there is a class of

attacks where even operations normally considered idempotent could

be exploited by a large number of replays (timing attacks, resource

limit exhaustion and others, as described in Appendix E.5). Those

can be mitigated by ensuring that every 0-RTT payload can be

replayed only a limited number of times. The server MUST ensure that

any instance of it (be it a machine, a thread, or any other entity

within the relevant serving infrastructure) would accept 0-RTT for

the same 0-RTT handshake at most once; this limits the number of

replays to the number of server instances in the deployment. Such a

guarantee can be accomplished by locally recording data from

recently received ClientHellos and rejecting repeats, or by any

other method that provides the same or a stronger guarantee. The "at

most once per server instance" guarantee is a minimum requirement;

servers SHOULD limit 0-RTT replays further when feasible.

The second class of attack cannot be prevented at the TLS layer and

MUST be dealt with by any application. Note that any application

whose clients implement any kind of retry behavior already needs to

implement some sort of anti-replay defense.

8.1. Single-Use Tickets

The simplest form of anti-replay defense is for the server to only

allow each session ticket to be used once. For instance, the server

can maintain a database of all outstanding valid tickets, deleting

each ticket from the database as it is used. If an unknown ticket is

provided, the server would then fall back to a full handshake.

If the tickets are not self-contained but rather are database keys,

and the corresponding PSKs are deleted upon use, then connections

established using PSKs enjoy forward secrecy. This improves security

for all 0-RTT data and PSK usage when PSK is used without (EC)DHE.

Because this mechanism requires sharing the session database between

server nodes in environments with multiple distributed servers, it

may be hard to achieve high rates of successful PSK 0-RTT

connections when compared to self-encrypted tickets. Unlike session

databases, session tickets can successfully do PSK-based session

establishment even without consistent storage, though when 0-RTT is

allowed they still require consistent storage for anti-replay of 0-

RTT data, as detailed in the following section.
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8.2. Client Hello Recording

An alternative form of anti-replay is to record a unique value

derived from the ClientHello (generally either the random value or

the PSK binder) and reject duplicates. Recording all ClientHellos

causes state to grow without bound, but a server can instead record

ClientHellos within a given time window and use the

"obfuscated_ticket_age" to ensure that tickets aren't reused outside

that window.

In order to implement this, when a ClientHello is received, the

server first verifies the PSK binder as described in Section 4.2.11.

It then computes the expected_arrival_time as described in the next

section and rejects 0-RTT if it is outside the recording window,

falling back to the 1-RTT handshake.

If the expected_arrival_time is in the window, then the server

checks to see if it has recorded a matching ClientHello. If one is

found, it either aborts the handshake with an "illegal_parameter"

alert or accepts the PSK but rejects 0-RTT. If no matching

ClientHello is found, then it accepts 0-RTT and then stores the

ClientHello for as long as the expected_arrival_time is inside the

window. Servers MAY also implement data stores with false positives,

such as Bloom filters, in which case they MUST respond to apparent

replay by rejecting 0-RTT but MUST NOT abort the handshake.

The server MUST derive the storage key only from validated sections

of the ClientHello. If the ClientHello contains multiple PSK

identities, then an attacker can create multiple ClientHellos with

different binder values for the less-preferred identity on the

assumption that the server will not verify it (as recommended by 

Section 4.2.11). I.e., if the client sends PSKs A and B but the

server prefers A, then the attacker can change the binder for B

without affecting the binder for A. If the binder for B is part of

the storage key, then this ClientHello will not appear as a

duplicate, which will cause the ClientHello to be accepted, and may

cause side effects such as replay cache pollution, although any 0-

RTT data will not be decryptable because it will use different keys.

If the validated binder or the ClientHello.random is used as the

storage key, then this attack is not possible.

Because this mechanism does not require storing all outstanding

tickets, it may be easier to implement in distributed systems with

high rates of resumption and 0-RTT, at the cost of potentially

weaker anti-replay defense because of the difficulty of reliably

storing and retrieving the received ClientHello messages. In many

such systems, it is impractical to have globally consistent storage

of all the received ClientHellos. In this case, the best anti-replay

protection is provided by having a single storage zone be
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authoritative for a given ticket and refusing 0-RTT for that ticket

in any other zone. This approach prevents simple replay by the

attacker because only one zone will accept 0-RTT data. A weaker

design is to implement separate storage for each zone but allow 0-

RTT in any zone. This approach limits the number of replays to once

per zone. Application message duplication of course remains possible

with either design.

When implementations are freshly started, they SHOULD reject 0-RTT

as long as any portion of their recording window overlaps the

startup time. Otherwise, they run the risk of accepting replays

which were originally sent during that period.

Note: If the client's clock is running much faster than the

server's, then a ClientHello may be received that is outside the

window in the future, in which case it might be accepted for 1-RTT,

causing a client retry, and then acceptable later for 0-RTT. This is

another variant of the second form of attack described in Section 8.

8.3. Freshness Checks

Because the ClientHello indicates the time at which the client sent

it, it is possible to efficiently determine whether a ClientHello

was likely sent reasonably recently and only accept 0-RTT for such a

ClientHello, otherwise falling back to a 1-RTT handshake. This is

necessary for the ClientHello storage mechanism described in Section

8.2 because otherwise the server needs to store an unlimited number

of ClientHellos, and is a useful optimization for self-contained

single-use tickets because it allows efficient rejection of

ClientHellos which cannot be used for 0-RTT.

In order to implement this mechanism, a server needs to store the

time that the server generated the session ticket, offset by an

estimate of the round-trip time between client and server. I.e.,

This value can be encoded in the ticket, thus avoiding the need to

keep state for each outstanding ticket. The server can determine the

client's view of the age of the ticket by subtracting the ticket's

"ticket_age_add" value from the "obfuscated_ticket_age" parameter in

the client's "pre_shared_key" extension. The server can determine

the expected_arrival_time of the ClientHello as:

When a new ClientHello is received, the expected_arrival_time is

then compared against the current server wall clock time and if they

differ by more than a certain amount, 0-RTT is rejected, though the

1-RTT handshake can be allowed to complete.
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    adjusted_creation_time = creation_time + estimated_RTT¶

¶

    expected_arrival_time = adjusted_creation_time + clients_ticket_age¶

¶



There are several potential sources of error that might cause

mismatches between the expected_arrival_time and the measured time.

Variations in client and server clock rates are likely to be

minimal, though potentially the absolute times may be off by large

values. Network propagation delays are the most likely causes of a

mismatch in legitimate values for elapsed time. Both the

NewSessionTicket and ClientHello messages might be retransmitted and

therefore delayed, which might be hidden by TCP. For clients on the

Internet, this implies windows on the order of ten seconds to

account for errors in clocks and variations in measurements; other

deployment scenarios may have different needs. Clock skew

distributions are not symmetric, so the optimal tradeoff may involve

an asymmetric range of permissible mismatch values.

Note that freshness checking alone is not sufficient to prevent

replays because it does not detect them during the error window,

which - depending on bandwidth and system capacity - could include

billions of replays in real-world settings. In addition, this

freshness checking is only done at the time the ClientHello is

received, and not when subsequent early Application Data records are

received. After early data is accepted, records may continue to be

streamed to the server over a longer time period.

9. Compliance Requirements

9.1. Mandatory-to-Implement Cipher Suites

In the absence of an application profile standard specifying

otherwise:

A TLS-compliant application MUST implement the

TLS_AES_128_GCM_SHA256 [GCM] cipher suite and SHOULD implement the

TLS_AES_256_GCM_SHA384 [GCM] and TLS_CHACHA20_POLY1305_SHA256 

[RFC8439] cipher suites (see Appendix B.4).

A TLS-compliant application MUST support digital signatures with

rsa_pkcs1_sha256 (for certificates), rsa_pss_rsae_sha256 (for

CertificateVerify and certificates), and ecdsa_secp256r1_sha256. A

TLS-compliant application MUST support key exchange with secp256r1

(NIST P-256) and SHOULD support key exchange with X25519 [RFC7748].

9.2. Mandatory-to-Implement Extensions

In the absence of an application profile standard specifying

otherwise, a TLS-compliant application MUST implement the following

TLS extensions:

Supported Versions ("supported_versions"; Section 4.2.1)

Cookie ("cookie"; Section 4.2.2)
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Signature Algorithms ("signature_algorithms"; Section 4.2.3)

Signature Algorithms Certificate ("signature_algorithms_cert"; 

Section 4.2.3)

Negotiated Groups ("supported_groups"; Section 4.2.7)

Key Share ("key_share"; Section 4.2.8)

Server Name Indication ("server_name"; Section 3 of [RFC6066])

All implementations MUST send and use these extensions when offering

applicable features:

"supported_versions" is REQUIRED for all ClientHello,

ServerHello, and HelloRetryRequest messages.

"signature_algorithms" is REQUIRED for certificate

authentication.

"supported_groups" is REQUIRED for ClientHello messages using DHE

or ECDHE key exchange.

"key_share" is REQUIRED for DHE or ECDHE key exchange.

"pre_shared_key" is REQUIRED for PSK key agreement.

"psk_key_exchange_modes" is REQUIRED for PSK key agreement.

A client is considered to be attempting to negotiate using this

specification if the ClientHello contains a "supported_versions"

extension with 0x0304 contained in its body. Such a ClientHello

message MUST meet the following requirements:

If not containing a "pre_shared_key" extension, it MUST contain

both a "signature_algorithms" extension and a "supported_groups"

extension.

If containing a "supported_groups" extension, it MUST also

contain a "key_share" extension, and vice versa. An empty

KeyShare.client_shares list is permitted.

Servers receiving a ClientHello which does not conform to these

requirements MUST abort the handshake with a "missing_extension"

alert.

Additionally, all implementations MUST support the use of the

"server_name" extension with applications capable of using it.

Servers MAY require clients to send a valid "server_name" extension.

Servers requiring this extension SHOULD respond to a ClientHello
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lacking a "server_name" extension by terminating the connection with

a "missing_extension" alert.

9.3. Protocol Invariants

This section describes invariants that TLS endpoints and middleboxes

MUST follow. It also applies to earlier versions of TLS.

TLS is designed to be securely and compatibly extensible. Newer

clients or servers, when communicating with newer peers, should

negotiate the most preferred common parameters. The TLS handshake

provides downgrade protection: Middleboxes passing traffic between a

newer client and newer server without terminating TLS should be

unable to influence the handshake (see Appendix E.1). At the same

time, deployments update at different rates, so a newer client or

server MAY continue to support older parameters, which would allow

it to interoperate with older endpoints.

For this to work, implementations MUST correctly handle extensible

fields:

A client sending a ClientHello MUST support all parameters

advertised in it. Otherwise, the server may fail to interoperate

by selecting one of those parameters.

A server receiving a ClientHello MUST correctly ignore all

unrecognized cipher suites, extensions, and other parameters.

Otherwise, it may fail to interoperate with newer clients. In TLS

1.3, a client receiving a CertificateRequest or NewSessionTicket

MUST also ignore all unrecognized extensions.

A middlebox which terminates a TLS connection MUST behave as a

compliant TLS server (to the original client), including having a

certificate which the client is willing to accept, and also as a

compliant TLS client (to the original server), including

verifying the original server's certificate. In particular, it

MUST generate its own ClientHello containing only parameters it

understands, and it MUST generate a fresh ServerHello random

value, rather than forwarding the endpoint's value.

Note that TLS's protocol requirements and security analysis only

apply to the two connections separately. Safely deploying a TLS

terminator requires additional security considerations which are

beyond the scope of this document.

A middlebox which forwards ClientHello parameters it does not

understand MUST NOT process any messages beyond that ClientHello.

It MUST forward all subsequent traffic unmodified. Otherwise, it

may fail to interoperate with newer clients and servers.
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Forwarded ClientHellos may contain advertisements for features

not supported by the middlebox, so the response may include

future TLS additions the middlebox does not recognize. These

additions MAY change any message beyond the ClientHello

arbitrarily. In particular, the values sent in the ServerHello

might change, the ServerHello format might change, and the

TLSCiphertext format might change.

The design of TLS 1.3 was constrained by widely deployed non-

compliant TLS middleboxes (see Appendix D.4); however, it does not

relax the invariants. Those middleboxes continue to be non-

compliant.

10. Security Considerations

Security issues are discussed throughout this memo, especially in 

Appendix C, Appendix D, and Appendix E.

11. IANA Considerations

[[OPEN ISSUE: Should we remove this? I am reluctant to create a

situation where one needs to read 8446 to process this document.]]

This document uses several registries that were originally created

in [RFC4346] and updated in [RFC8447]. IANA has updated these to

reference this document. The registries and their allocation

policies are below:

TLS Cipher Suites registry: values with the first byte in the

range 0-254 (decimal) are assigned via Specification Required 

[RFC8126]. Values with the first byte 255 (decimal) are reserved

for Private Use [RFC8126].

IANA has added the cipher suites listed in Appendix B.4 to the

registry. The "Value" and "Description" columns are taken from

the table. The "DTLS-OK" and "Recommended" columns are both

marked as "Y" for each new cipher suite.

TLS ContentType registry: Future values are allocated via

Standards Action [RFC8126].

TLS Alerts registry: Future values are allocated via Standards

Action [RFC8126]. IANA has populated this registry with the

values from Appendix B.2. The "DTLS-OK" column is marked as "Y"

for all such values. Values marked as "_RESERVED" have comments

describing their previous usage.

TLS HandshakeType registry: Future values are allocated via

Standards Action [RFC8126]. IANA has updated this registry to

rename item 4 from "NewSessionTicket" to "new_session_ticket" and
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populated this registry with the values from Appendix B.3. The

"DTLS-OK" column is marked as "Y" for all such values. Values

marked "_RESERVED" have comments describing their previous or

temporary usage.

This document also uses the TLS ExtensionType Values registry

originally created in [RFC4366]. IANA has updated it to reference

this document. Changes to the registry follow:

IANA has updated the registration policy as follows:

Values with the first byte in the range 0-254 (decimal) are

assigned via Specification Required [RFC8126]. Values with the

first byte 255 (decimal) are reserved for Private Use [RFC8126].

IANA has updated this registry to include the "key_share",

"pre_shared_key", "psk_key_exchange_modes", "early_data",

"cookie", "supported_versions", "certificate_authorities",

"oid_filters", "post_handshake_auth", and

"signature_algorithms_cert" extensions with the values defined in

this document and the "Recommended" value of "Y".

IANA has updated this registry to include a "TLS 1.3" column

which lists the messages in which the extension may appear. This

column has been initially populated from the table in Section

4.2, with any extension not listed there marked as "-" to

indicate that it is not used by TLS 1.3.

This document updates an entry in the TLS Certificate Types registry

originally created in [RFC6091] and updated in [RFC8447]. IANA has

updated the entry for value 1 to have the name "OpenPGP_RESERVED",

"Recommended" value "N", and comment "Used in TLS versions prior to

1.3." IANA has updated the entry for value 0 to have the name

"X509", "Recommended" value "Y", and comment "Was X.509 before TLS

1.3".

This document updates an entry in the TLS Certificate Status Types

registry originally created in [RFC6961]. IANA has updated the entry

for value 2 to have the name "ocsp_multi_RESERVED" and comment "Used

in TLS versions prior to 1.3".

This document updates two entries in the TLS Supported Groups

registry (created under a different name by [RFC4492]; now

maintained by [RFC8422]) and updated by [RFC7919] and [RFC8447]. The

entries for values 29 and 30 (x25519 and x448) have been updated to

also refer to this document.
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[DH76]

[ECDSA]

In addition, this document defines two new registries that are

maintained by IANA:

TLS SignatureScheme registry: Values with the first byte in the

range 0-253 (decimal) are assigned via Specification Required 

[RFC8126]. Values with the first byte 254 or 255 (decimal) are

reserved for Private Use [RFC8126]. Values with the first byte in

the range 0-6 or with the second byte in the range 0-3 that are

not currently allocated are reserved for backward compatibility.

This registry has a "Recommended" column. The registry has been

initially populated with the values described in Section 4.2.3.

The following values are marked as "Recommended":

ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,

rsa_pss_rsae_sha256, rsa_pss_rsae_sha384, rsa_pss_rsae_sha512,

rsa_pss_pss_sha256, rsa_pss_pss_sha384, rsa_pss_pss_sha512, and

ed25519. The "Recommended" column is assigned a value of "N"

unless explicitly requested, and adding a value with a

"Recommended" value of "Y" requires Standards Action [RFC8126].

IESG Approval is REQUIRED for a Y->N transition.

TLS PskKeyExchangeMode registry: Values in the range 0-253

(decimal) are assigned via Specification Required [RFC8126]. The

values 254 and 255 (decimal) are reserved for Private Use 

[RFC8126]. This registry has a "Recommended" column. The registry

has been initially populated with psk_ke (0) and psk_dhe_ke (1).

Both are marked as "Recommended". The "Recommended" column is

assigned a value of "N" unless explicitly requested, and adding a

value with a "Recommended" value of "Y" requires Standards Action

[RFC8126]. IESG Approval is REQUIRED for a Y->N transition.
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Appendix A. State Machine

This appendix provides a summary of the legal state transitions for

the client and server handshakes. State names (in all capitals,

e.g., START) have no formal meaning but are provided for ease of

comprehension. Actions which are taken only in certain circumstances

are indicated in []. The notation "K_{send,recv} = foo" means "set

the send/recv key to the given key".

A.1. Client

¶

                           START <----+

            Send ClientHello |        | Recv HelloRetryRequest

       [K_send = early data] |        |

                             v        |

        /                 WAIT_SH ----+

        |                    | Recv ServerHello

        |                    | K_recv = handshake

    Can |                    V

   send |                 WAIT_EE

  early |                    | Recv EncryptedExtensions

   data |           +--------+--------+

        |     Using |                 | Using certificate

        |       PSK |                 v

        |           |            WAIT_CERT_CR

        |           |        Recv |       | Recv CertificateRequest

        |           | Certificate |       v

        |           |             |    WAIT_CERT

        |           |             |       | Recv Certificate

        |           |             v       v

        |           |              WAIT_CV

        |           |                 | Recv CertificateVerify

        |           +> WAIT_FINISHED <+

        |                  | Recv Finished

        \                  | [Send EndOfEarlyData]

                           | K_send = handshake

                           | [Send Certificate [+ CertificateVerify]]

 Can send                  | Send Finished

 app data   -->            | K_send = K_recv = application

 after here                v

                       CONNECTED

¶



Note that with the transitions as shown above, clients may send

alerts that derive from post-ServerHello messages in the clear or

with the early data keys. If clients need to send such alerts, they

SHOULD first rekey to the handshake keys if possible.

A.2. Server

¶

                             START <-----+

              Recv ClientHello |         | Send HelloRetryRequest

                               v         |

                            RECVD_CH ----+

                               | Select parameters

                               v

                            NEGOTIATED

                               | Send ServerHello

                               | K_send = handshake

                               | Send EncryptedExtensions

                               | [Send CertificateRequest]

Can send                       | [Send Certificate + CertificateVerify]

app data                       | Send Finished

after   -->                    | K_send = application

here                  +--------+--------+

             No 0-RTT |                 | 0-RTT

                      |                 |

  K_recv = handshake  |                 | K_recv = early data

[Skip decrypt errors] |    +------> WAIT_EOED -+

                      |    |       Recv |      | Recv EndOfEarlyData

                      |    | early data |      | K_recv = handshake

                      |    +------------+      |

                      |                        |

                      +> WAIT_FLIGHT2 <--------+

                               |

                      +--------+--------+

              No auth |                 | Client auth

                      |                 |

                      |                 v

                      |             WAIT_CERT

                      |        Recv |       | Recv Certificate

                      |       empty |       v

                      | Certificate |    WAIT_CV

                      |             |       | Recv

                      |             v       | CertificateVerify

                      +-> WAIT_FINISHED <---+

                               | Recv Finished

                               | K_recv = application

                               v

                           CONNECTED

¶



Appendix B. Protocol Data Structures and Constant Values

This appendix provides the normative protocol types and the

definitions for constants. Values listed as "_RESERVED" were used in

previous versions of TLS and are listed here for completeness. TLS

1.3 implementations MUST NOT send them but might receive them from

older TLS implementations.

B.1. Record Layer

¶

   enum {

       invalid(0),

       change_cipher_spec(20),

       alert(21),

       handshake(22),

       application_data(23),

       (255)

   } ContentType;

   struct {

       ContentType type;

       ProtocolVersion legacy_record_version;

       uint16 length;

       opaque fragment[TLSPlaintext.length];

   } TLSPlaintext;

   struct {

       opaque content[TLSPlaintext.length];

       ContentType type;

       uint8 zeros[length_of_padding];

   } TLSInnerPlaintext;

   struct {

       ContentType opaque_type = application_data; /* 23 */

       ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */

       uint16 length;

       opaque encrypted_record[TLSCiphertext.length];

   } TLSCiphertext;

¶



B.2. Alert Messages

   enum { warning(1), fatal(2), (255) } AlertLevel;

   enum {

       close_notify(0),

       unexpected_message(10),

       bad_record_mac(20),

       decryption_failed_RESERVED(21),

       record_overflow(22),

       decompression_failure_RESERVED(30),

       handshake_failure(40),

       no_certificate_RESERVED(41),

       bad_certificate(42),

       unsupported_certificate(43),

       certificate_revoked(44),

       certificate_expired(45),

       certificate_unknown(46),

       illegal_parameter(47),

       unknown_ca(48),

       access_denied(49),

       decode_error(50),

       decrypt_error(51),

       export_restriction_RESERVED(60),

       protocol_version(70),

       insufficient_security(71),

       internal_error(80),

       inappropriate_fallback(86),

       user_canceled(90),

       no_renegotiation_RESERVED(100),

       missing_extension(109),

       unsupported_extension(110),

       certificate_unobtainable_RESERVED(111),

       unrecognized_name(112),

       bad_certificate_status_response(113),

       bad_certificate_hash_value_RESERVED(114),

       unknown_psk_identity(115),

       certificate_required(116),

       no_application_protocol(120),

       (255)

   } AlertDescription;

   struct {

       AlertLevel level;

       AlertDescription description;

   } Alert;

¶



B.3. Handshake Protocol

   enum {

       hello_request_RESERVED(0),

       client_hello(1),

       server_hello(2),

       hello_verify_request_RESERVED(3),

       new_session_ticket(4),

       end_of_early_data(5),

       hello_retry_request_RESERVED(6),

       encrypted_extensions(8),

       certificate(11),

       server_key_exchange_RESERVED(12),

       certificate_request(13),

       server_hello_done_RESERVED(14),

       certificate_verify(15),

       client_key_exchange_RESERVED(16),

       finished(20),

       certificate_url_RESERVED(21),

       certificate_status_RESERVED(22),

       supplemental_data_RESERVED(23),

       key_update(24),

       message_hash(254),

       (255)

   } HandshakeType;

   struct {

       HandshakeType msg_type;    /* handshake type */

       uint24 length;             /* remaining bytes in message */

       select (Handshake.msg_type) {

           case client_hello:          ClientHello;

           case server_hello:          ServerHello;

           case end_of_early_data:     EndOfEarlyData;

           case encrypted_extensions:  EncryptedExtensions;

           case certificate_request:   CertificateRequest;

           case certificate:           Certificate;

           case certificate_verify:    CertificateVerify;

           case finished:              Finished;

           case new_session_ticket:    NewSessionTicket;

           case key_update:            KeyUpdate;

       };

   } Handshake;

¶



B.3.1. Key Exchange Messages



   uint16 ProtocolVersion;

   opaque Random[32];

   uint8 CipherSuite[2];    /* Cryptographic suite selector */

   struct {

       ProtocolVersion legacy_version = 0x0303;    /* TLS v1.2 */

       Random random;

       opaque legacy_session_id<0..32>;

       CipherSuite cipher_suites<2..2^16-2>;

       opaque legacy_compression_methods<1..2^8-1>;

       Extension extensions<8..2^16-1>;

   } ClientHello;

   struct {

       ProtocolVersion legacy_version = 0x0303;    /* TLS v1.2 */

       Random random;

       opaque legacy_session_id_echo<0..32>;

       CipherSuite cipher_suite;

       uint8 legacy_compression_method = 0;

       Extension extensions<6..2^16-1>;

   } ServerHello;

   struct {

       ExtensionType extension_type;

       opaque extension_data<0..2^16-1>;

   } Extension;

   enum {

       server_name(0),                             /* RFC 6066 */

       max_fragment_length(1),                     /* RFC 6066 */

       status_request(5),                          /* RFC 6066 */

       supported_groups(10),                       /* RFC 8422, 7919 */

       signature_algorithms(13),                   /* RFC 8446 */

       use_srtp(14),                               /* RFC 5764 */

       heartbeat(15),                              /* RFC 6520 */

       application_layer_protocol_negotiation(16), /* RFC 7301 */

       signed_certificate_timestamp(18),           /* RFC 6962 */

       client_certificate_type(19),                /* RFC 7250 */

       server_certificate_type(20),                /* RFC 7250 */

       padding(21),                                /* RFC 7685 */

       pre_shared_key(41),                         /* RFC 8446 */

       early_data(42),                             /* RFC 8446 */

       supported_versions(43),                     /* RFC 8446 */

       cookie(44),                                 /* RFC 8446 */

       psk_key_exchange_modes(45),                 /* RFC 8446 */

       certificate_authorities(47),                /* RFC 8446 */

       oid_filters(48),                            /* RFC 8446 */

       post_handshake_auth(49),                    /* RFC 8446 */



       signature_algorithms_cert(50),              /* RFC 8446 */

       key_share(51),                              /* RFC 8446 */

       (65535)

   } ExtensionType;

   struct {

       NamedGroup group;

       opaque key_exchange<1..2^16-1>;

   } KeyShareEntry;

   struct {

       KeyShareEntry client_shares<0..2^16-1>;

   } KeyShareClientHello;

   struct {

       NamedGroup selected_group;

   } KeyShareHelloRetryRequest;

   struct {

       KeyShareEntry server_share;

   } KeyShareServerHello;

   struct {

       uint8 legacy_form = 4;

       opaque X[coordinate_length];

       opaque Y[coordinate_length];

   } UncompressedPointRepresentation;

   enum { psk_ke(0), psk_dhe_ke(1), (255) } PskKeyExchangeMode;

   struct {

       PskKeyExchangeMode ke_modes<1..255>;

   } PskKeyExchangeModes;

   struct {} Empty;

   struct {

       select (Handshake.msg_type) {

           case new_session_ticket:   uint32 max_early_data_size;

           case client_hello:         Empty;

           case encrypted_extensions: Empty;

       };

   } EarlyDataIndication;

   struct {

       opaque identity<1..2^16-1>;

       uint32 obfuscated_ticket_age;

   } PskIdentity;

   opaque PskBinderEntry<32..255>;



   struct {

       PskIdentity identities<7..2^16-1>;

       PskBinderEntry binders<33..2^16-1>;

   } OfferedPsks;

   struct {

       select (Handshake.msg_type) {

           case client_hello: OfferedPsks;

           case server_hello: uint16 selected_identity;

       };

   } PreSharedKeyExtension;

¶



B.3.1.1. Version Extension

B.3.1.2. Cookie Extension

   struct {

       select (Handshake.msg_type) {

           case client_hello:

                ProtocolVersion versions<2..254>;

           case server_hello: /* and HelloRetryRequest */

                ProtocolVersion selected_version;

       };

   } SupportedVersions;

¶

   struct {

       opaque cookie<1..2^16-1>;

   } Cookie;

¶



B.3.1.3. Signature Algorithm Extension

   enum {

       /* RSASSA-PKCS1-v1_5 algorithms */

       rsa_pkcs1_sha256(0x0401),

       rsa_pkcs1_sha384(0x0501),

       rsa_pkcs1_sha512(0x0601),

       /* ECDSA algorithms */

       ecdsa_secp256r1_sha256(0x0403),

       ecdsa_secp384r1_sha384(0x0503),

       ecdsa_secp521r1_sha512(0x0603),

       /* RSASSA-PSS algorithms with public key OID rsaEncryption */

       rsa_pss_rsae_sha256(0x0804),

       rsa_pss_rsae_sha384(0x0805),

       rsa_pss_rsae_sha512(0x0806),

       /* EdDSA algorithms */

       ed25519(0x0807),

       ed448(0x0808),

       /* RSASSA-PSS algorithms with public key OID RSASSA-PSS */

       rsa_pss_pss_sha256(0x0809),

       rsa_pss_pss_sha384(0x080a),

       rsa_pss_pss_sha512(0x080b),

       /* Legacy algorithms */

       rsa_pkcs1_sha1(0x0201),

       ecdsa_sha1(0x0203),

       /* Reserved Code Points */

       obsolete_RESERVED(0x0000..0x0200),

       dsa_sha1_RESERVED(0x0202),

       obsolete_RESERVED(0x0204..0x0400),

       dsa_sha256_RESERVED(0x0402),

       obsolete_RESERVED(0x0404..0x0500),

       dsa_sha384_RESERVED(0x0502),

       obsolete_RESERVED(0x0504..0x0600),

       dsa_sha512_RESERVED(0x0602),

       obsolete_RESERVED(0x0604..0x06FF),

       private_use(0xFE00..0xFFFF),

       (0xFFFF)

   } SignatureScheme;

   struct {

       SignatureScheme supported_signature_algorithms<2..2^16-2>;

   } SignatureSchemeList;

¶



B.3.1.4. Supported Groups Extension

Values within "obsolete_RESERVED" ranges are used in previous

versions of TLS and MUST NOT be offered or negotiated by TLS 1.3

implementations. The obsolete curves have various known/theoretical

weaknesses or have had very little usage, in some cases only due to

unintentional server configuration issues. They are no longer

considered appropriate for general use and should be assumed to be

potentially unsafe. The set of curves specified here is sufficient

for interoperability with all currently deployed and properly

configured TLS implementations.

   enum {

       unallocated_RESERVED(0x0000),

       /* Elliptic Curve Groups (ECDHE) */

       obsolete_RESERVED(0x0001..0x0016),

       secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019),

       obsolete_RESERVED(0x001A..0x001C),

       x25519(0x001D), x448(0x001E),

       /* Finite Field Groups (DHE) */

       ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102),

       ffdhe6144(0x0103), ffdhe8192(0x0104),

       /* Reserved Code Points */

       ffdhe_private_use(0x01FC..0x01FF),

       ecdhe_private_use(0xFE00..0xFEFF),

       obsolete_RESERVED(0xFF01..0xFF02),

       (0xFFFF)

   } NamedGroup;

   struct {

       NamedGroup named_group_list<2..2^16-1>;

   } NamedGroupList;

¶

¶



B.3.2. Server Parameters Messages

   opaque DistinguishedName<1..2^16-1>;

   struct {

       DistinguishedName authorities<3..2^16-1>;

   } CertificateAuthoritiesExtension;

   struct {

       opaque certificate_extension_oid<1..2^8-1>;

       opaque certificate_extension_values<0..2^16-1>;

   } OIDFilter;

   struct {

       OIDFilter filters<0..2^16-1>;

   } OIDFilterExtension;

   struct {} PostHandshakeAuth;

   struct {

       Extension extensions<0..2^16-1>;

   } EncryptedExtensions;

   struct {

       opaque certificate_request_context<0..2^8-1>;

       Extension extensions<0..2^16-1>;

   } CertificateRequest;

¶



B.3.3. Authentication Messages

B.3.4. Ticket Establishment

   enum {

       X509(0),

       OpenPGP_RESERVED(1),

       RawPublicKey(2),

       (255)

   } CertificateType;

   struct {

       select (certificate_type) {

           case RawPublicKey:

             /* From RFC 7250 ASN.1_subjectPublicKeyInfo */

             opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

           case X509:

             opaque cert_data<1..2^24-1>;

       };

       Extension extensions<0..2^16-1>;

   } CertificateEntry;

   struct {

       opaque certificate_request_context<0..2^8-1>;

       CertificateEntry certificate_list<0..2^24-1>;

   } Certificate;

   struct {

       SignatureScheme algorithm;

       opaque signature<0..2^16-1>;

   } CertificateVerify;

   struct {

       opaque verify_data[Hash.length];

   } Finished;

¶

   struct {

       uint32 ticket_lifetime;

       uint32 ticket_age_add;

       opaque ticket_nonce<0..255>;

       opaque ticket<1..2^16-1>;

       Extension extensions<0..2^16-2>;

   } NewSessionTicket;

¶



B.3.5. Updating Keys

B.4. Cipher Suites

A cipher suite defines the pair of the AEAD algorithm and hash

algorithm to be used with HKDF. Cipher suite names follow the naming

convention:

Component Contents

TLS The string "TLS"

AEAD The AEAD algorithm used for record protection

HASH The hash algorithm used with HKDF

VALUE The two byte ID assigned for this cipher suite

Table 4: Cipher Suite Name Structure

This specification defines the following cipher suites for use with

TLS 1.3.

Description Value

TLS_AES_128_GCM_SHA256 {0x13,0x01}

TLS_AES_256_GCM_SHA384 {0x13,0x02}

TLS_CHACHA20_POLY1305_SHA256 {0x13,0x03}

TLS_AES_128_CCM_SHA256 {0x13,0x04}

TLS_AES_128_CCM_8_SHA256 {0x13,0x05}

Table 5: Cipher Suite List

The corresponding AEAD algorithms AEAD_AES_128_GCM,

AEAD_AES_256_GCM, and AEAD_AES_128_CCM are defined in [RFC5116].

AEAD_CHACHA20_POLY1305 is defined in [RFC8439]. AEAD_AES_128_CCM_8

is defined in [RFC6655]. The corresponding hash algorithms are

defined in [SHS].

Although TLS 1.3 uses the same cipher suite space as previous

versions of TLS, TLS 1.3 cipher suites are defined differently, only

specifying the symmetric ciphers, and cannot be used for TLS 1.2.

   struct {} EndOfEarlyData;

   enum {

       update_not_requested(0), update_requested(1), (255)

   } KeyUpdateRequest;

   struct {

       KeyUpdateRequest request_update;

   } KeyUpdate;

¶

¶

   CipherSuite TLS_AEAD_HASH = VALUE;¶

¶

¶



Similarly, cipher suites for TLS 1.2 and lower cannot be used with

TLS 1.3.

New cipher suite values are assigned by IANA as described in Section

11.

Appendix C. Implementation Notes

The TLS protocol cannot prevent many common security mistakes. This

appendix provides several recommendations to assist implementors. 

[RFC8448] provides test vectors for TLS 1.3 handshakes.

C.1. Random Number Generation and Seeding

TLS requires a cryptographically secure pseudorandom number

generator (CSPRNG). In most cases, the operating system provides an

appropriate facility such as /dev/urandom, which should be used

absent other (e.g., performance) concerns. It is RECOMMENDED to use

an existing CSPRNG implementation in preference to crafting a new

one. Many adequate cryptographic libraries are already available

under favorable license terms. Should those prove unsatisfactory, 

[RFC4086] provides guidance on the generation of random values.

TLS uses random values (1) in public protocol fields such as the

public Random values in the ClientHello and ServerHello and (2) to

generate keying material. With a properly functioning CSPRNG, this

does not present a security problem, as it is not feasible to

determine the CSPRNG state from its output. However, with a broken

CSPRNG, it may be possible for an attacker to use the public output

to determine the CSPRNG internal state and thereby predict the

keying material, as documented in [CHECKOWAY]. Implementations can

provide extra security against this form of attack by using separate

CSPRNGs to generate public and private values.

C.2. Certificates and Authentication

Implementations are responsible for verifying the integrity of

certificates and should generally support certificate revocation

messages. Absent a specific indication from an application profile,

certificates should always be verified to ensure proper signing by a

trusted certificate authority (CA). The selection and addition of

trust anchors should be done very carefully. Users should be able to

view information about the certificate and trust anchor.

Applications SHOULD also enforce minimum and maximum key sizes. For

example, certification paths containing keys or signatures weaker

than 2048-bit RSA or 224-bit ECDSA are not appropriate for secure

applications.

¶

¶

¶

¶

¶

¶



C.3. Implementation Pitfalls

Implementation experience has shown that certain parts of earlier

TLS specifications are not easy to understand and have been a source

of interoperability and security problems. Many of these areas have

been clarified in this document but this appendix contains a short

list of the most important things that require special attention

from implementors.

TLS protocol issues:

Do you correctly handle handshake messages that are fragmented to

multiple TLS records (see Section 5.1)? Do you correctly handle

corner cases like a ClientHello that is split into several small

fragments? Do you fragment handshake messages that exceed the

maximum fragment size? In particular, the Certificate and

CertificateRequest handshake messages can be large enough to

require fragmentation.

Do you ignore the TLS record layer version number in all

unencrypted TLS records (see Appendix D)?

Have you ensured that all support for SSL, RC4, EXPORT ciphers,

and MD5 (via the "signature_algorithms" extension) is completely

removed from all possible configurations that support TLS 1.3 or

later, and that attempts to use these obsolete capabilities fail

correctly? (see Appendix D)?

Do you handle TLS extensions in ClientHellos correctly, including

unknown extensions?

When the server has requested a client certificate but no

suitable certificate is available, do you correctly send an empty

Certificate message, instead of omitting the whole message (see 

Section 4.4.2)?

When processing the plaintext fragment produced by AEAD-Decrypt

and scanning from the end for the ContentType, do you avoid

scanning past the start of the cleartext in the event that the

peer has sent a malformed plaintext of all zeros?

Do you properly ignore unrecognized cipher suites (Section

4.1.2), hello extensions (Section 4.2), named groups (Section

4.2.7), key shares (Section 4.2.8), supported versions (Section

4.2.1), and signature algorithms (Section 4.2.3) in the

ClientHello?

As a server, do you send a HelloRetryRequest to clients which

support a compatible (EC)DHE group but do not predict it in the

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*



"key_share" extension? As a client, do you correctly handle a

HelloRetryRequest from the server?

Cryptographic details:

What countermeasures do you use to prevent timing attacks 

[TIMING]?

When using Diffie-Hellman key exchange, do you correctly preserve

leading zero bytes in the negotiated key (see Section 7.4.1)?

Does your TLS client check that the Diffie-Hellman parameters

sent by the server are acceptable (see Section 4.2.8.1)?

Do you use a strong and, most importantly, properly seeded random

number generator (see Appendix C.1) when generating Diffie-

Hellman private values, the ECDSA "k" parameter, and other

security-critical values? It is RECOMMENDED that implementations

implement "deterministic ECDSA" as specified in [RFC6979].

Do you zero-pad Diffie-Hellman public key values and shared

secrets to the group size (see Section 4.2.8.1 and Section

7.4.1)?

Do you verify signatures after making them, to protect against

RSA-CRT key leaks [FW15]?

C.4. Client Tracking Prevention

Clients SHOULD NOT reuse a ticket for multiple connections. Reuse of

a ticket allows passive observers to correlate different

connections. Servers that issue tickets SHOULD offer at least as

many tickets as the number of connections that a client might use;

for example, a web browser using HTTP/1.1 [RFC7230] might open six

connections to a server. Servers SHOULD issue new tickets with every

connection. This ensures that clients are always able to use a new

ticket when creating a new connection.

C.5. Unauthenticated Operation

Previous versions of TLS offered explicitly unauthenticated cipher

suites based on anonymous Diffie-Hellman. These modes have been

deprecated in TLS 1.3. However, it is still possible to negotiate

parameters that do not provide verifiable server authentication by

several methods, including:

Raw public keys [RFC7250].

Using a public key contained in a certificate but without

validation of the certificate chain or any of its contents.
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Either technique used alone is vulnerable to man-in-the-middle

attacks and therefore unsafe for general use. However, it is also

possible to bind such connections to an external authentication

mechanism via out-of-band validation of the server's public key,

trust on first use, or a mechanism such as channel bindings (though

the channel bindings described in [RFC5929] are not defined for TLS

1.3). If no such mechanism is used, then the connection has no

protection against active man-in-the-middle attack; applications

MUST NOT use TLS in such a way absent explicit configuration or a

specific application profile.

Appendix D. Backward Compatibility

The TLS protocol provides a built-in mechanism for version

negotiation between endpoints potentially supporting different

versions of TLS.

TLS 1.x and SSL 3.0 use compatible ClientHello messages. Servers can

also handle clients trying to use future versions of TLS as long as

the ClientHello format remains compatible and there is at least one

protocol version supported by both the client and the server.

Prior versions of TLS used the record layer version number

(TLSPlaintext.legacy_record_version and

TLSCiphertext.legacy_record_version) for various purposes. As of TLS

1.3, this field is deprecated. The value of

TLSPlaintext.legacy_record_version MUST be ignored by all

implementations. The value of TLSCiphertext.legacy_record_version is

included in the additional data for deprotection but MAY otherwise

be ignored or MAY be validated to match the fixed constant value.

Version negotiation is performed using only the handshake versions

(ClientHello.legacy_version and ServerHello.legacy_version, as well

as the ClientHello, HelloRetryRequest, and ServerHello

"supported_versions" extensions). In order to maximize

interoperability with older endpoints, implementations that

negotiate the use of TLS 1.0-1.2 SHOULD set the record layer version

number to the negotiated version for the ServerHello and all records

thereafter.

For maximum compatibility with previously non-standard behavior and

misconfigured deployments, all implementations SHOULD support

validation of certification paths based on the expectations in this

document, even when handling prior TLS versions' handshakes (see 

Section 4.4.2.2).

TLS 1.2 and prior supported an "Extended Master Secret" [RFC7627]

extension which digested large parts of the handshake transcript

into the secret and derived keys. Because TLS 1.3 always hashes in

the transcript up to the server Finished, implementations which
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support both TLS 1.3 and earlier versions SHOULD indicate the use of

the Extended Master Secret extension in their APIs whenever TLS 1.3

is used.

D.1. Negotiating with an Older Server

A TLS 1.3 client who wishes to negotiate with servers that do not

support TLS 1.3 will send a normal TLS 1.3 ClientHello containing

0x0303 (TLS 1.2) in ClientHello.legacy_version but with the correct

version(s) in the "supported_versions" extension. If the server does

not support TLS 1.3, it will respond with a ServerHello containing

an older version number. If the client agrees to use this version,

the negotiation will proceed as appropriate for the negotiated

protocol. A client using a ticket for resumption SHOULD initiate the

connection using the version that was previously negotiated.

Note that 0-RTT data is not compatible with older servers and SHOULD

NOT be sent absent knowledge that the server supports TLS 1.3. See 

Appendix D.3.

If the version chosen by the server is not supported by the client

(or is not acceptable), the client MUST abort the handshake with a

"protocol_version" alert.

Some legacy server implementations are known to not implement the

TLS specification properly and might abort connections upon

encountering TLS extensions or versions which they are not aware of.

Interoperability with buggy servers is a complex topic beyond the

scope of this document. Multiple connection attempts may be required

in order to negotiate a backward-compatible connection; however,

this practice is vulnerable to downgrade attacks and is NOT

RECOMMENDED.

D.2. Negotiating with an Older Client

A TLS server can also receive a ClientHello indicating a version

number smaller than its highest supported version. If the

"supported_versions" extension is present, the server MUST negotiate

using that extension as described in Section 4.2.1. If the

"supported_versions" extension is not present, the server MUST

negotiate the minimum of ClientHello.legacy_version and TLS 1.2. For

example, if the server supports TLS 1.0, 1.1, and 1.2, and

legacy_version is TLS 1.0, the server will proceed with a TLS 1.0

ServerHello. If the "supported_versions" extension is absent and the

server only supports versions greater than

ClientHello.legacy_version, the server MUST abort the handshake with

a "protocol_version" alert.

Note that earlier versions of TLS did not clearly specify the record

layer version number value in all cases
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(TLSPlaintext.legacy_record_version). Servers will receive various

TLS 1.x versions in this field, but its value MUST always be

ignored.

D.3. 0-RTT Backward Compatibility

0-RTT data is not compatible with older servers. An older server

will respond to the ClientHello with an older ServerHello, but it

will not correctly skip the 0-RTT data and will fail to complete the

handshake. This can cause issues when a client attempts to use 0-

RTT, particularly against multi-server deployments. For example, a

deployment could deploy TLS 1.3 gradually with some servers

implementing TLS 1.3 and some implementing TLS 1.2, or a TLS 1.3

deployment could be downgraded to TLS 1.2.

A client that attempts to send 0-RTT data MUST fail a connection if

it receives a ServerHello with TLS 1.2 or older. It can then retry

the connection with 0-RTT disabled. To avoid a downgrade attack, the

client SHOULD NOT disable TLS 1.3, only 0-RTT.

To avoid this error condition, multi-server deployments SHOULD

ensure a uniform and stable deployment of TLS 1.3 without 0-RTT

prior to enabling 0-RTT.

D.4. Middlebox Compatibility Mode

Field measurements [Ben17a] [Ben17b] [Res17a] [Res17b] have found

that a significant number of middleboxes misbehave when a TLS

client/server pair negotiates TLS 1.3. Implementations can increase

the chance of making connections through those middleboxes by making

the TLS 1.3 handshake look more like a TLS 1.2 handshake:

The client always provides a non-empty session ID in the

ClientHello, as described in the legacy_session_id section of 

Section 4.1.2.

If not offering early data, the client sends a dummy

change_cipher_spec record (see the third paragraph of Section 5)

immediately before its second flight. This may either be before

its second ClientHello or before its encrypted handshake flight.

If offering early data, the record is placed immediately after

the first ClientHello.

The server sends a dummy change_cipher_spec record immediately

after its first handshake message. This may either be after a

ServerHello or a HelloRetryRequest.

When put together, these changes make the TLS 1.3 handshake resemble

TLS 1.2 session resumption, which improves the chance of

successfully connecting through middleboxes. This "compatibility
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mode" is partially negotiated: the client can opt to provide a

session ID or not, and the server has to echo it. Either side can

send change_cipher_spec at any time during the handshake, as they

must be ignored by the peer, but if the client sends a non-empty

session ID, the server MUST send the change_cipher_spec as described

in this appendix.

D.5. Security Restrictions Related to Backward Compatibility

Implementations negotiating the use of older versions of TLS SHOULD

prefer forward secret and AEAD cipher suites, when available.

The security of RC4 cipher suites is considered insufficient for the

reasons cited in [RFC7465]. Implementations MUST NOT offer or

negotiate RC4 cipher suites for any version of TLS for any reason.

Old versions of TLS permitted the use of very low strength ciphers.

Ciphers with a strength less than 112 bits MUST NOT be offered or

negotiated for any version of TLS for any reason.

The security of SSL 3.0 [RFC6101] is considered insufficient for the

reasons enumerated in [RFC7568], and it MUST NOT be negotiated for

any reason.

The security of SSL 2.0 [SSL2] is considered insufficient for the

reasons enumerated in [RFC6176], and it MUST NOT be negotiated for

any reason.

Implementations MUST NOT send an SSL version 2.0 compatible CLIENT-

HELLO. Implementations MUST NOT negotiate TLS 1.3 or later using an

SSL version 2.0 compatible CLIENT-HELLO. Implementations are NOT

RECOMMENDED to accept an SSL version 2.0 compatible CLIENT-HELLO in

order to negotiate older versions of TLS.

Implementations MUST NOT send a ClientHello.legacy_version or

ServerHello.legacy_version set to 0x0300 or less. Any endpoint

receiving a Hello message with ClientHello.legacy_version or

ServerHello.legacy_version set to 0x0300 MUST abort the handshake

with a "protocol_version" alert.

Implementations MUST NOT send any records with a version less than

0x0300. Implementations SHOULD NOT accept any records with a version

less than 0x0300 (but may inadvertently do so if the record version

number is ignored completely).

Implementations MUST NOT use the Truncated HMAC extension, defined

in Section 7 of [RFC6066], as it is not applicable to AEAD

algorithms and has been shown to be insecure in some scenarios.
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Establishing the same session keys:

Secrecy of the session keys:

Peer Authentication:

Appendix E. Overview of Security Properties

A complete security analysis of TLS is outside the scope of this

document. In this appendix, we provide an informal description of

the desired properties as well as references to more detailed work

in the research literature which provides more formal definitions.

We cover properties of the handshake separately from those of the

record layer.

E.1. Handshake

The TLS handshake is an Authenticated Key Exchange (AKE) protocol

which is intended to provide both one-way authenticated (server-

only) and mutually authenticated (client and server) functionality.

At the completion of the handshake, each side outputs its view of

the following values:

A set of "session keys" (the various secrets derived from the

main secret) from which can be derived a set of working keys.

A set of cryptographic parameters (algorithms, etc.).

The identities of the communicating parties.

We assume the attacker to be an active network attacker, which means

it has complete control over the network used to communicate between

the parties [RFC3552]. Even under these conditions, the handshake

should provide the properties listed below. Note that these

properties are not necessarily independent, but reflect the protocol

consumers' needs.

The handshake needs to output

the same set of session keys on both sides of the handshake,

provided that it completes successfully on each endpoint (see 

[CK01]; Definition 1, part 1).

The shared session keys should be

known only to the communicating parties and not to the attacker

(see [CK01]; Definition 1, part 2). Note that in a unilaterally

authenticated connection, the attacker can establish its own

session keys with the server, but those session keys are distinct

from those established by the client.

The client's view of the peer identity should

reflect the server's identity. If the client is authenticated,

¶

¶

¶

*

¶

* ¶

* ¶

¶

¶

¶



Uniqueness of the session keys:

Downgrade Protection:

Forward secret with respect to long-term keys:

Key Compromise Impersonation (KCI) resistance:

Protection of endpoint identities:

the server's view of the peer identity should match the client's

identity.

Any two distinct handshakes should

produce distinct, unrelated session keys. Individual session keys

produced by a handshake should also be distinct and independent.

The cryptographic parameters should be the

same on both sides and should be the same as if the peers had

been communicating in the absence of an attack (see [BBFGKZ16];

Definitions 8 and 9).

If the long-term

keying material (in this case the signature keys in certificate-

based authentication modes or the external/resumption PSK in PSK

with (EC)DHE modes) is compromised after the handshake is

complete, this does not compromise the security of the session

key (see [DOW92]), as long as the session key itself has been

erased. The forward secrecy property is not satisfied when PSK is

used in the "psk_ke" PskKeyExchangeMode.

In a mutually

authenticated connection with certificates, compromising the

long-term secret of one actor should not break that actor's

authentication of their peer in the given connection (see 

[HGFS15]). For example, if a client's signature key is

compromised, it should not be possible to impersonate arbitrary

servers to that client in subsequent handshakes.

The server's identity

(certificate) should be protected against passive attackers. The

client's identity should be protected against both passive and

active attackers.

Informally, the signature-based modes of TLS 1.3 provide for the

establishment of a unique, secret, shared key established by an

(EC)DHE key exchange and authenticated by the server's signature

over the handshake transcript, as well as tied to the server's

identity by a MAC. If the client is authenticated by a certificate,

it also signs over the handshake transcript and provides a MAC tied

to both identities. [SIGMA] describes the design and analysis of

this type of key exchange protocol. If fresh (EC)DHE keys are used

for each connection, then the output keys are forward secret.

The external PSK and resumption PSK bootstrap from a long-term

shared secret into a unique per-connection set of short-term session

keys. This secret may have been established in a previous handshake.

If PSK with (EC)DHE key establishment is used, these session keys

will also be forward secret. The resumption PSK has been designed so
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that the resumption main secret computed by connection N and needed

to form connection N+1 is separate from the traffic keys used by

connection N, thus providing forward secrecy between the

connections. In addition, if multiple tickets are established on the

same connection, they are associated with different keys, so

compromise of the PSK associated with one ticket does not lead to

the compromise of connections established with PSKs associated with

other tickets. This property is most interesting if tickets are

stored in a database (and so can be deleted) rather than if they are

self-encrypted.

The PSK binder value forms a binding between a PSK and the current

handshake, as well as between the session where the PSK was

established and the current session. This binding transitively

includes the original handshake transcript, because that transcript

is digested into the values which produce the resumption main

secret. This requires that both the KDF used to produce the

resumption main secret and the MAC used to compute the binder be

collision resistant. See Appendix E.1.1 for more on this. Note: The

binder does not cover the binder values from other PSKs, though they

are included in the Finished MAC.

Note: TLS does not currently permit the server to send a

certificate_request message in non-certificate-based handshakes

(e.g., PSK). If this restriction were to be relaxed in future, the

client's signature would not cover the server's certificate

directly. However, if the PSK was established through a

NewSessionTicket, the client's signature would transitively cover

the server's certificate through the PSK binder. [PSK-FINISHED]

describes a concrete attack on constructions that do not bind to the

server's certificate (see also [Kraw16]). It is unsafe to use

certificate-based client authentication when the client might

potentially share the same PSK/key-id pair with two different

endpoints. Implementations MUST NOT combine external PSKs with

certificate-based authentication of either the client or server.

Future specifications MAY provide an extension to permit this.

If an exporter is used, then it produces values which are unique and

secret (because they are generated from a unique session key).

Exporters computed with different labels and contexts are

computationally independent, so it is not feasible to compute one

from another or the session secret from the exported value. Note:

Exporters can produce arbitrary-length values; if exporters are to

be used as channel bindings, the exported value MUST be large enough

to provide collision resistance. The exporters provided in TLS 1.3

are derived from the same Handshake Contexts as the early traffic

keys and the application traffic keys, respectively, and thus have

similar security properties. Note that they do not include the

client's certificate; future applications which wish to bind to the
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client's certificate may need to define a new exporter that includes

the full handshake transcript.

For all handshake modes, the Finished MAC (and, where present, the

signature) prevents downgrade attacks. In addition, the use of

certain bytes in the random nonces as described in Section 4.1.3

allows the detection of downgrade to previous TLS versions. See 

[BBFGKZ16] for more details on TLS 1.3 and downgrade.

As soon as the client and the server have exchanged enough

information to establish shared keys, the remainder of the handshake

is encrypted, thus providing protection against passive attackers,

even if the computed shared key is not authenticated. Because the

server authenticates before the client, the client can ensure that

if it authenticates to the server, it only reveals its identity to

an authenticated server. Note that implementations must use the

provided record-padding mechanism during the handshake to avoid

leaking information about the identities due to length. The client's

proposed PSK identities are not encrypted, nor is the one that the

server selects.

E.1.1. Key Derivation and HKDF

Key derivation in TLS 1.3 uses HKDF as defined in [RFC5869] and its

two components, HKDF-Extract and HKDF-Expand. The full rationale for

the HKDF construction can be found in [Kraw10] and the rationale for

the way it is used in TLS 1.3 in [KW16]. Throughout this document,

each application of HKDF-Extract is followed by one or more

invocations of HKDF-Expand. This ordering should always be followed

(including in future revisions of this document); in particular, one

SHOULD NOT use an output of HKDF-Extract as an input to another

application of HKDF-Extract without an HKDF-Expand in between.

Multiple applications of HKDF-Expand to some of the same inputs are

allowed as long as these are differentiated via the key and/or the

labels.

Note that HKDF-Expand implements a pseudorandom function (PRF) with

both inputs and outputs of variable length. In some of the uses of

HKDF in this document (e.g., for generating exporters and the

resumption_main_secret), it is necessary that the application of

HKDF-Expand be collision resistant; namely, it should be infeasible

to find two different inputs to HKDF-Expand that output the same

value. This requires the underlying hash function to be collision

resistant and the output length from HKDF-Expand to be of size at

least 256 bits (or as much as needed for the hash function to

prevent finding collisions).
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E.1.2. Client Authentication

A client that has sent authentication data to a server, either

during the handshake or in post-handshake authentication, cannot be

sure whether the server afterwards considers the client to be

authenticated or not. If the client needs to determine if the server

considers the connection to be unilaterally or mutually

authenticated, this has to be provisioned by the application layer.

See [CHHSV17] for details. In addition, the analysis of post-

handshake authentication from [Kraw16] shows that the client

identified by the certificate sent in the post-handshake phase

possesses the traffic key. This party is therefore the client that

participated in the original handshake or one to whom the original

client delegated the traffic key (assuming that the traffic key has

not been compromised).

E.1.3. 0-RTT

The 0-RTT mode of operation generally provides security properties

similar to those of 1-RTT data, with the two exceptions that the 0-

RTT encryption keys do not provide full forward secrecy and that the

server is not able to guarantee uniqueness of the handshake (non-

replayability) without keeping potentially undue amounts of state.

See Section 8 for mechanisms to limit the exposure to replay.

E.1.4. Exporter Independence

The exporter_main_secret and early_exporter_main_secret are derived

to be independent of the traffic keys and therefore do not represent

a threat to the security of traffic encrypted with those keys.

However, because these secrets can be used to compute any exporter

value, they SHOULD be erased as soon as possible. If the total set

of exporter labels is known, then implementations SHOULD pre-compute

the inner Derive-Secret stage of the exporter computation for all

those labels, then erase the [early_]exporter_main_secret, followed

by each inner values as soon as it is known that it will not be

needed again.

E.1.5. Post-Compromise Security

TLS does not provide security for handshakes which take place after

the peer's long-term secret (signature key or external PSK) is

compromised. It therefore does not provide post-compromise security 

[CCG16], sometimes also referred to as backwards or future secrecy.

This is in contrast to KCI resistance, which describes the security

guarantees that a party has after its own long-term secret has been

compromised.
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Confidentiality:

Integrity:

Order protection/non-replayability:

Length concealment:

Forward secrecy after key change:

E.1.6. External References

The reader should refer to the following references for analysis of

the TLS handshake: [DFGS15], [CHSV16], [DFGS16], [KW16], [Kraw16], 

[FGSW16], [LXZFH16], [FG17], and [BBK17].

E.2. Record Layer

The record layer depends on the handshake producing strong traffic

secrets which can be used to derive bidirectional encryption keys

and nonces. Assuming that is true, and the keys are used for no more

data than indicated in Section 5.5, then the record layer should

provide the following guarantees:

An attacker should not be able to determine the

plaintext contents of a given record.

An attacker should not be able to craft a new record

which is different from an existing record which will be accepted

by the receiver.

An attacker should not be able

to cause the receiver to accept a record which it has already

accepted or cause the receiver to accept record N+1 without

having first processed record N.

Given a record with a given external length,

the attacker should not be able to determine the amount of the

record that is content versus padding.

If the traffic key update

mechanism described in Section 4.6.3 has been used and the

previous generation key is deleted, an attacker who compromises

the endpoint should not be able to decrypt traffic encrypted with

the old key.

Informally, TLS 1.3 provides these properties by AEAD-protecting the

plaintext with a strong key. AEAD encryption [RFC5116] provides

confidentiality and integrity for the data. Non-replayability is

provided by using a separate nonce for each record, with the nonce

being derived from the record sequence number (Section 5.3), with

the sequence number being maintained independently at both sides;

thus records which are delivered out of order result in AEAD

deprotection failures. In order to prevent mass cryptanalysis when

the same plaintext is repeatedly encrypted by different users under

the same key (as is commonly the case for HTTP), the nonce is formed

by mixing the sequence number with a secret per-connection

initialization vector derived along with the traffic keys. See 

[BT16] for analysis of this construction.
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The rekeying technique in TLS 1.3 (see Section 7.2) follows the

construction of the serial generator as discussed in [REKEY], which

shows that rekeying can allow keys to be used for a larger number of

encryptions than without rekeying. This relies on the security of

the HKDF-Expand-Label function as a pseudorandom function (PRF). In

addition, as long as this function is truly one way, it is not

possible to compute traffic keys from prior to a key change (forward

secrecy).

TLS does not provide security for data which is communicated on a

connection after a traffic secret of that connection is compromised.

That is, TLS does not provide post-compromise security/future

secrecy/backward secrecy with respect to the traffic secret. Indeed,

an attacker who learns a traffic secret can compute all future

traffic secrets on that connection. Systems which want such

guarantees need to do a fresh handshake and establish a new

connection with an (EC)DHE exchange.

E.2.1. External References

The reader should refer to the following references for analysis of

the TLS record layer: [BMMRT15], [BT16], [BDFKPPRSZZ16], [BBK17],

and [PS18].

E.3. Traffic Analysis

TLS is susceptible to a variety of traffic analysis attacks based on

observing the length and timing of encrypted packets [CLINIC]

[HCJC16]. This is particularly easy when there is a small set of

possible messages to be distinguished, such as for a video server

hosting a fixed corpus of content, but still provides usable

information even in more complicated scenarios.

TLS does not provide any specific defenses against this form of

attack but does include a padding mechanism for use by applications:

The plaintext protected by the AEAD function consists of content

plus variable-length padding, which allows the application to

produce arbitrary-length encrypted records as well as padding-only

cover traffic to conceal the difference between periods of

transmission and periods of silence. Because the padding is

encrypted alongside the actual content, an attacker cannot directly

determine the length of the padding, but may be able to measure it

indirectly by the use of timing channels exposed during record

processing (i.e., seeing how long it takes to process a record or

trickling in records to see which ones elicit a response from the

server). In general, it is not known how to remove all of these

channels because even a constant-time padding removal function will

likely feed the content into data-dependent functions. At minimum, a

fully constant-time server or client would require close cooperation

¶

¶

¶

¶



with the application-layer protocol implementation, including making

that higher-level protocol constant time.

Note: Robust traffic analysis defenses will likely lead to inferior

performance due to delays in transmitting packets and increased

traffic volume.

E.4. Side Channel Attacks

In general, TLS does not have specific defenses against side-channel

attacks (i.e., those which attack the communications via secondary

channels such as timing), leaving those to the implementation of the

relevant cryptographic primitives. However, certain features of TLS

are designed to make it easier to write side-channel resistant code:

Unlike previous versions of TLS which used a composite MAC-then-

encrypt structure, TLS 1.3 only uses AEAD algorithms, allowing

implementations to use self-contained constant-time

implementations of those primitives.

TLS uses a uniform "bad_record_mac" alert for all decryption

errors, which is intended to prevent an attacker from gaining

piecewise insight into portions of the message. Additional

resistance is provided by terminating the connection on such

errors; a new connection will have different cryptographic

material, preventing attacks against the cryptographic primitives

that require multiple trials.

Information leakage through side channels can occur at layers above

TLS, in application protocols and the applications that use them.

Resistance to side-channel attacks depends on applications and

application protocols separately ensuring that confidential

information is not inadvertently leaked.

E.5. Replay Attacks on 0-RTT

Replayable 0-RTT data presents a number of security threats to TLS-

using applications, unless those applications are specifically

engineered to be safe under replay (minimally, this means

idempotent, but in many cases may also require other stronger

conditions, such as constant-time response). Potential attacks

include:

Duplication of actions which cause side effects (e.g., purchasing

an item or transferring money) to be duplicated, thus harming the

site or the user.

Attackers can store and replay 0-RTT messages in order to reorder

them with respect to other messages (e.g., moving a delete to

after a create).
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Exploiting cache timing behavior to discover the content of 0-RTT

messages by replaying a 0-RTT message to a different cache node

and then using a separate connection to measure request latency,

to see if the two requests address the same resource.

If data can be replayed a large number of times, additional attacks

become possible, such as making repeated measurements of the speed

of cryptographic operations. In addition, they may be able to

overload rate-limiting systems. For a further description of these

attacks, see [Mac17].

Ultimately, servers have the responsibility to protect themselves

against attacks employing 0-RTT data replication. The mechanisms

described in Section 8 are intended to prevent replay at the TLS

layer but do not provide complete protection against receiving

multiple copies of client data. TLS 1.3 falls back to the 1-RTT

handshake when the server does not have any information about the

client, e.g., because it is in a different cluster which does not

share state or because the ticket has been deleted as described in 

Section 8.1. If the application-layer protocol retransmits data in

this setting, then it is possible for an attacker to induce message

duplication by sending the ClientHello to both the original cluster

(which processes the data immediately) and another cluster which

will fall back to 1-RTT and process the data upon application-layer

replay. The scale of this attack is limited by the client's

willingness to retry transactions and therefore only allows a

limited amount of duplication, with each copy appearing as a new

connection at the server.

If implemented correctly, the mechanisms described in Section 8.1

and Section 8.2 prevent a replayed ClientHello and its associated 0-

RTT data from being accepted multiple times by any cluster with

consistent state; for servers which limit the use of 0-RTT to one

cluster for a single ticket, then a given ClientHello and its

associated 0-RTT data will only be accepted once. However, if state

is not completely consistent, then an attacker might be able to have

multiple copies of the data be accepted during the replication

window. Because clients do not know the exact details of server

behavior, they MUST NOT send messages in early data which are not

safe to have replayed and which they would not be willing to retry

across multiple 1-RTT connections.

Application protocols MUST NOT use 0-RTT data without a profile that

defines its use. That profile needs to identify which messages or

interactions are safe to use with 0-RTT and how to handle the

situation when the server rejects 0-RTT and falls back to 1-RTT.

In addition, to avoid accidental misuse, TLS implementations MUST

NOT enable 0-RTT (either sending or accepting) unless specifically
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requested by the application and MUST NOT automatically resend 0-RTT

data if it is rejected by the server unless instructed by the

application. Server-side applications may wish to implement special

processing for 0-RTT data for some kinds of application traffic

(e.g., abort the connection, request that data be resent at the

application layer, or delay processing until the handshake

completes). In order to allow applications to implement this kind of

processing, TLS implementations MUST provide a way for the

application to determine if the handshake has completed.

E.5.1. Replay and Exporters

Replays of the ClientHello produce the same early exporter, thus

requiring additional care by applications which use these exporters.

In particular, if these exporters are used as an authentication

channel binding (e.g., by signing the output of the exporter) an

attacker who compromises the PSK can transplant authenticators

between connections without compromising the authentication key.

In addition, the early exporter SHOULD NOT be used to generate

server-to-client encryption keys because that would entail the reuse

of those keys. This parallels the use of the early application

traffic keys only in the client-to-server direction.

E.6. PSK Identity Exposure

Because implementations respond to an invalid PSK binder by aborting

the handshake, it may be possible for an attacker to verify whether

a given PSK identity is valid. Specifically, if a server accepts

both external-PSK and certificate-based handshakes, a valid PSK

identity will result in a failed handshake, whereas an invalid

identity will just be skipped and result in a successful certificate

handshake. Servers which solely support PSK handshakes may be able

to resist this form of attack by treating the cases where there is

no valid PSK identity and where there is an identity but it has an

invalid binder identically.

E.7. Sharing PSKs

TLS 1.3 takes a conservative approach to PSKs by binding them to a

specific KDF. By contrast, TLS 1.2 allows PSKs to be used with any

hash function and the TLS 1.2 PRF. Thus, any PSK which is used with

both TLS 1.2 and TLS 1.3 must be used with only one hash in TLS 1.3,

which is less than optimal if users want to provision a single PSK.

The constructions in TLS 1.2 and TLS 1.3 are different, although

they are both based on HMAC. While there is no known way in which

the same PSK might produce related output in both versions, only

limited analysis has been done. Implementations can ensure safety
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from cross-protocol related output by not reusing PSKs between TLS

1.3 and TLS 1.2.

E.8. Attacks on Static RSA

Although TLS 1.3 does not use RSA key transport and so is not

directly susceptible to Bleichenbacher-type attacks [Blei98]if TLS

1.3 servers also support static RSA in the context of previous

versions of TLS, then it may be possible to impersonate the server

for TLS 1.3 connections [JSS15]. TLS 1.3 implementations can prevent

this attack by disabling support for static RSA across all versions

of TLS. In principle, implementations might also be able to separate

certificates with different keyUsage bits for static RSA decryption

and RSA signature, but this technique relies on clients refusing to

accept signatures using keys in certificates that do not have the

digitalSignature bit set, and many clients do not enforce this

restriction.
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