workgroup: Transport Layer Security
Internet-Draft: draft-ietf-tls-rfc8446bis-10
Obsoletes: 8446 (if approved)
Updates: 5705, 6066, 7627, 8422 (if approved)
Published: 3 March 2024
Intended Status: Standards Track
Expires: 4 September 2024
Authors: E. Rescorla
wWindy Hill Systems, LLC
The Transport Layer Security (TLS) Protocol Version 1.3

Abstract

This document specifies version 1.3 of the Transport Layer Security
(TLS) protocol. TLS allows client/server applications to communicate
over the Internet in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

This document updates RFCs 5705, 6066, 7627, and 8422 and obsoletes
RFCs 5077, 5246, 6961, and 8446. This document also specifies new
requirements for TLS 1.2 implementations.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 September 2024.
Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with

https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc5705
https://www.rfc-editor.org/rfc/rfc6066
https://www.rfc-editor.org/rfc/rfc7627
https://www.rfc-editor.org/rfc/rfc8422
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
wWithout obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. Introduction
1.1. Conventions and Terminology
1.2. Relationship to RFC 8446
1.3 Major Differences from TLS 1.2
1.4. Updates Affecting TLS 1.2
2. Protocol Overview
2.1 Incorrect DHE Share
2.2 Resumption and Pre-Shared Key (PSK)
2.3 O-RTT Data
3. Presentation Language
3.1. Basic Block Size
3.2. Miscellaneous
3.3 Numbers
3.4. Vectors
3.5. Enumerateds
3.6. Constructed Types
3.7. Constants
3.8. Variants
4. Handshake Protocol
4.1 Key Exchange Messages
4.1.1. Cryptographic Negotiation
4.1.2. Client Hello
4.1.3. Server Hello
4.1.4. Hello Retry Request
4.2. Extensions
4.2.1. Supported Versions
4.2.2. Cookie
4.2.3. Signature Algorithms
4.2.4. Certificate Authorities
4.2.5. 0ID Filters

4.2.6 Post-Handshake Certificate-Based Client Authentication
4.2.7. Supported Groups
4.2.8. Key Share
4.2.9. Pre-Shared Key Exchange Modes
4.2.10. Early Data Indication
4.2.11. Pre-Shared Key Extension
4.3. Server Parameters
4.3.1. Encrypted Extensions
4.3.2. Certificate Request
4.4. Authentication Messages
4.4.1. The Transcript Hash
4.4.2. Certificate
4.4.3. Certificate Verify
4.4.4. Finished
4.5 End of Early Data
4.6. Post-Handshake Messages
4.6.1. New Session Ticket Message
4.6.2. Post-Handshake Authentication
4.6.3. Key and Initialization Vector Update
5. Record Protocol
5.1 Record Layer
5.2. Record Payload Protection
5.3. Per-Record Nonce
5.4. Record Padding
5.5. Limits on Key Usage
6. Alert Protocol
6.1 Closure Alerts
6.2. Error Alerts
7. Cryptographic Computations
7.1 Key Schedule
7.2 Updating Traffic Secrets
7.3. Traffic Key Calculation
7.4. (EC)DHE Shared Secret Calculation
7.4.1. Finite Field Diffie-Hellman
7.4.2. Elliptic Curve Diffie-Hellman
7.5. Exporters
8. O-RTT and Anti-Replay
8.1. Single-Use Tickets
8.2 Client Hello Recording
8.3. Freshness Checks
9. Compliance Requirements
9.1 Mandatory-to-Implement Cipher Suites
9.2 Mandatory-to-Implement Extensions
9.3 Protocol Invariants

10. Security Considerations
11. IANA Considerations

11.1. Changes for this RFC
12. References

12.1. Normative References

12.2. Informative References
Appendix A. State Machine
A.1. Client
A.2. Server
Appendix B. Protocol Data Structures and Constant Values

B.1. Record Layer

B.2 Alert Messages

B.3. Handshake Protocol
B.3.1 Key Exchange Messages
B.3.2 Server Parameters Messages
B.3.3. Authentication Messages
B.3.4 Ticket Establishment
B.3.5 Updating Keys

B.4. Cipher Suites
Appendix C. Implementation Notes
C.1. Random Number Generation and Seeding

C.2. Certificates and Authentication

C.3 Implementation Pitfalls

C.4. Client and Server Tracking Prevention
C.5 Unauthenticated Operation

Appendix D. Updates to TLS 1.2
Appendix E. Backward Compatibility
E.1. Negotiating with an Older Server

E.2 Negotiating with an Older Client

E.3 O-RTT Backward Compatibility

E.4 Middlebox Compatibility Mode

E.5 Security Restrictions Related to Backward Compatibility

Appendix F. Overview of Security Properties
F.1. Handshake

F.1.1. Key Derivation and HKDF
F.1.2. Certificate-Based Client Authentication
F.1.3. 0O-RTT
F.1.4. Exporter Independence
F.1.5. Post-Compromise Security
F.1.6. External References

E.2. Record Layer
F.2.1. External References

F.3. Traffic Analysis

F.4. Side Channel Attacks

F.5. Replay Attacks on O-RTT
F.5.1. Replay and Exporters

F.6 PSK Identity Exposure

EF.7 Sharing PSKs

F.8 Attacks on Static RSA

Appendix G. Change Log
Contributors
Author's Address

1.

Introduction

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for
this draft is maintained in GitHub. Suggested changes should be
submitted as pull requests at https://github.com/ekr/t1ls13-spec.
Instructions are on that page as well.

The primary goal of TLS is to provide a secure channel between two
communicating peers; the only requirement from the underlying
transport is a reliable, in-order data stream. Specifically, the
secure channel should provide the following properties:

*Authentication: The server side of the channel is always
authenticated; the client side is optionally authenticated.
Authentication can happen via asymmetric cryptography (e.g., RSA
[RSA], the Elliptic Curve Digital Signature Algorithm (ECDSA)
[DSS], or the Edwards-Curve Digital Signature Algorithm (EdDSA)
[REC8032]) or a symmetric pre-shared key (PSK).

*Confidentiality: Data sent over the channel after establishment
is only visible to the endpoints. TLS does not hide the length of
the data it transmits, though endpoints are able to pad TLS
records in order to obscure lengths and improve protection
against traffic analysis techniques.

*Integrity: Data sent over the channel after establishment cannot
be modified by attackers without detection.

These properties should be true even in the face of an attacker who
has complete control of the network, as described in [RFC3552]. See
Appendix F for a more complete statement of the relevant security
properties.

TLS consists of two primary components:

*A handshake protocol (Section 4) that authenticates the
communicating parties, negotiates cryptographic modes and
parameters, and establishes shared keying material. The handshake
protocol is designed to resist tampering; an active attacker
should not be able to force the peers to negotiate different
parameters than they would if the connection were not under
attack.

*A record protocol (Section 5) that uses the parameters
established by the handshake protocol to protect traffic between
the communicating peers. The record protocol divides traffic up
into a series of records, each of which is independently
protected using the traffic keys.

TLS is application protocol independent; higher-level protocols can
layer on top of TLS transparently. The TLS standard, however, does
not specify how protocols add security with TLS; how to initiate TLS
handshaking and how to interpret the authentication certificates
exchanged are left to the judgment of the designers and implementors
of protocols that run on top of TLS. Application protocols using TLS
MUST specify how TLS works with their application protocol,
including how and when handshaking occurs, and how to do identity
verification. [I-D.ietf-uta-rfc6125bis] provides useful guidance on
integrating TLS with application protocols.

This document defines TLS version 1.3. While TLS 1.3 is not directly
compatible with previous versions, all versions of TLS incorporate a
versioning mechanism which allows clients and servers to
interoperably negotiate a common version if one is supported by both
peers.

This document supersedes and obsoletes previous versions of TLS,
including version 1.2 [RFEC5246]. It also obsoletes the TLS ticket
mechanism defined in [RFC5077] and replaces it with the mechanism
defined in Section 2.2. Because TLS 1.3 changes the way keys are
derived, it updates [REC5705] as described in Section 7.5. It also
changes how Online Certificate Status Protocol (OCSP) messages are
carried and therefore updates [RFC6066] and obsoletes [REC6961] as
described in Section 4.4.2.1.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

The following terms are used:

client: The endpoint initiating the TLS connection.

connection: A transport-layer connection between two endpoints.
endpoint: Either the client or server of the connection.
handshake: An initial negotiation between client and server that
establishes the parameters of their subsequent interactions within
TLS.

peer: An endpoint. When discussing a particular endpoint, "peer"

refers to the endpoint that is not the primary subject of
discussion.

receiver: An endpoint that is receiving records.

sender: An endpoint that is transmitting records.

server: The endpoint that did not initiate the TLS connection.
1.2. Relationship to RFC 8446

TLS 1.3 was originally specified in [RFC8446]. This document is a
minor update to TLS 1.3 that retains the same version number and is
backward compatible. It tightens some requirements and contains
updated text in areas which were found to be unclear as well as
other editorial improvements. In addition, it removes the use of the
term "master" as applied to secrets in favor of the term "main" or
shorter names where no term was necessary. This document makes the
following specific technical changes:

*Forbid negotiating TLS 1.0 and 1.1 as they are now deprecated by
[RFC8996].

*Removes ambiguity around which hash is used with PreSharedKeys
and HelloRetryRequest.

*Require that clients ignore NewSessionTicket if they do not
support resumption.

*Upgrade the requirement to initiate key update before exceeding
key usage limits to MUST.

*Limit the number of permitted KeyUpdate messages.

*Restore text defining the level of "close_notify" to "warning".
Clarify behavior around "user_canceled", requiring that
"close_notify" be sent and that "user_canceled" should be
ignored.

*Add a "general_error" generic alert.
*Corrected the lower bound on CertificateRequest.extensions to be
0 bytes. This was an error in the syntax as it is possible to

send no extensions, which results in length 0.

In addition, there have been some improvements to the security
considerations, especially around privacy.

1.3.

Major Differences from TLS 1.2

The following is a list of the major functional differences between
TLS 1.2 and TLS 1.3. It is not intended to be exhaustive, and there
are many minor differences.

*The list of supported symmetric encryption algorithms has been
pruned of all algorithms that are considered legacy. Those that
remain are all Authenticated Encryption with Associated Data
(AEAD) algorithms. The cipher suite concept has been changed to
separate the authentication and key exchange mechanisms from the
record protection algorithm (including secret key length) and a
hash to be used with both the key derivation function and
handshake message authentication code (MAC).

*A zero round-trip time (O-RTT) mode was added, saving a round
trip at connection setup for some application data, at the cost
of certain security properties.

*Static RSA and Diffie-Hellman cipher suites have been removed;
all public-key based key exchange mechanisms now provide forward
secrecy.

*All handshake messages after the ServerHello are now encrypted.
The newly introduced EncryptedExtensions message allows various
extensions previously sent in the clear in the ServerHello to
also enjoy confidentiality protection.

*The key derivation function has been redesigned. The new design
allows easier analysis by cryptographers due to their improved
key separation properties. The HMAC-based Extract-and-Expand Key
Derivation Function (HKDF) is used as an underlying primitive.

*The handshake state machine has been significantly restructured
to be more consistent and to remove superfluous messages such as
ChangeCipherSpec (except when needed for middlebox
compatibility).

*Elliptic curve algorithms are now in the base spec, and new
signature algorithms, such as EdDSA, are included. TLS 1.3
removed point format negotiation in favor of a single point
format for each curve.

*Other cryptographic improvements were made, including changing
the RSA padding to use the RSA Probabilistic Signature Scheme
(RSASSA-PSS), and the removal of compression, the Digital
Signature Algorithm (DSA), and custom Ephemeral Diffie-Hellman
(DHE) groups.

*The TLS 1.2 version negotiation mechanism has been deprecated in
favor of a version list in an extension. This increases
compatibility with existing servers that incorrectly implemented
version negotiation.

*Session resumption with and without server-side state as well as
the PSK-based cipher suites of earlier TLS versions have been
replaced by a single new PSK exchange.

*References have been updated to point to the updated versions of
RFCs, as appropriate (e.g., RFC 5280 rather than RFC 3280).

1.4. Updates Affecting TLS 1.2

This document defines several changes that optionally affect
implementations of TLS 1.2, including those which do not also
support TLS 1.3:

*A version downgrade protection mechanism is described in
Section 4.1.3.

*RSASSA-PSS signature schemes are defined in Section 4.2.3.

*The "supported_versions" ClientHello extension can be used to
negotiate the version of TLS to use, in preference to the
legacy_version field of the ClientHello.

*The "signature_algorithms_cert" extension allows a client to
indicate which signature algorithms it can validate in X.509
certificates.

*The term "master" as applied to secrets has been removed, and the
"extended_master_secret" extension [RFC7627] has been renamed to
"extended_main_secret".

Additionally, this document clarifies some compliance requirements
for earlier versions of TLS; see Section 9.3.

2. Protocol Overview

The cryptographic parameters used by the secure channel are produced
by the TLS handshake protocol. This sub-protocol of TLS is used by
the client and server when first communicating with each other. The
handshake protocol allows peers to negotiate a protocol version,
select cryptographic algorithms, authenticate each other (with
client authentication being optional), and establish shared secret
keying material. Once the handshake is complete, the peers use the
established keys to protect the application-layer traffic.

A failure of the handshake or other protocol error triggers the
termination of the connection, optionally preceded by an alert
message (Section 6).

TLS supports three basic key exchange modes:

*(EC)DHE (Diffie-Hellman over either finite fields or elliptic
curves)

*PSK-only
*PSK with (EC)DHE

Figure 1 below shows the basic full TLS handshake:

Client Server
Kev ClientHello
Exch kev sharex

signature aleorithmsx
psk kev exchange modesx

pre shared kevx —_—>
ServerHello
+ kev sharex
+ pre shared kevx
{EncrvbptedExtensionst
{CertificateReauestx}
{Certificatext}
{CertificateVerifvx}
{Finished?}
<+— [Apbplication Datax]
{Certificatext}
Auth {CertificateVerifvx}
{Finished?} —_—>
lApplication Datal <+“—> lApplication Datal

+ Indicates noteworthv extensions sent in the
previouslv noted messacge.

@® Indicates optional or situation-dependent
messages/extensions that are not alwavs sent.

{1 Indicates messages protected using kevs
derived from a [sender]l handshake traffic secret.

[T Indicates messages protected using kevs
derived from [senderl application traffic secret N.

Figure 1: Message Flow for Full TLS Handshake

Kev
Exch

Server
v Params

Auth

The handshake can be thought of as having three phases (indicated in
the diagram above):

*Key Exchange: Establish shared keying material and select the
cryptographic parameters. Everything after this phase is
encrypted.

*Server Parameters: Establish other handshake parameters (whether
the client is authenticated, application-layer protocol support,
etc.).

*Authentication: Authenticate the server (and, optionally, the
client) and provide key confirmation and handshake integrity.

In the Key Exchange phase, the client sends the ClientHello

(Section 4.1.2) message, which contains a random nonce
(ClientHello.random); its offered protocol versions; a list of
symmetric cipher/HKDF hash pairs; either a list of Diffie-Hellman
key shares (in the "key_share" (Section 4.2.8) extension), a list of
pre-shared key labels (in the "pre_shared_key" (Section 4.2.11)
extension), or both; and potentially additional extensions.
Additional fields and/or messages may also be present for middlebox
compatibility.

The server processes the ClientHello and determines the appropriate
cryptographic parameters for the connection. It then responds with
its own ServerHello (Section 4.1.3), which indicates the negotiated
connection parameters. The combination of the ClientHello and the
ServerHello determines the shared keys. If (EC)DHE key establishment
is in use, then the ServerHello contains a "key_share" extension
with the server's ephemeral Diffie-Hellman share; the server's share
MUST be in the same group as one of the client's shares. If PSK key
establishment is in use, then the ServerHello contains a
"pre_shared_key" extension indicating which of the client's offered
PSKs was selected. Note that implementations can use (EC)DHE and PSK
together, in which case both extensions will be supplied.

The server then sends two messages to establish the Server
Parameters:

EncryptedExtensions: responses to ClientHello extensions that are
not required to determine the cryptographic parameters, other
than those that are specific to individual certificates.
[Section 4.3.1]

CertificateRequest: if certificate-based client authentication is
desired, the desired parameters for that certificate. This
message is omitted if client authentication is not desired.
[Section 4.3.2]

Finally, the client and server exchange Authentication messages. TLS
uses the same set of messages every time that certificate-based
authentication is needed. (PSK-based authentication happens as a
side effect of key exchange.) Specifically:

Certificate: The certificate of the endpoint and any per-
certificate extensions. This message is omitted by the server if
not authenticating with a certificate and by the client if the
server did not send CertificateRequest (thus indicating that the
client should not authenticate with a certificate). Note that if
raw public keys [REC7250] or the cached information extension
[REC7924] are in use, then this message will not contain a
certificate but rather some other value corresponding to the
server's long-term key. [Section 4.4.2]

CertificatevVerify: A signature over the entire handshake using the
private key corresponding to the public key in the Certificate
message. This message is omitted if the endpoint is not
authenticating via a certificate. [Section 4.4.3]

Finished: A MAC (Message Authentication Code) over the entire
handshake. This message provides key confirmation, binds the
endpoint's identity to the exchanged keys, and in PSK mode also
authenticates the handshake. [Section 4.4.4]

Upon receiving the server's messages, the client responds with its
Authentication messages, namely Certificate and CertificateVerify
(if requested), and Finished.

At this point, the handshake is complete, and the client and server
derive the keying material required by the record layer to exchange
application-layer data protected through authenticated encryption.
Application Data MUST NOT be sent prior to sending the Finished
message, except as specified in Section 2.3. Note that while the
server may send Application Data prior to receiving the client's
Authentication messages, any data sent at that point is, of course,
being sent to an unauthenticated peer.

2.1. Incorrect DHE Share

If the client has not provided a sufficient "key_share" extension
(e.g., it includes only DHE or ECDHE groups unacceptable to or
unsupported by the server), the server corrects the mismatch with a
HelloRetryRequest and the client needs to restart the handshake with
an appropriate "key_share" extension, as shown in Figure 2. If no
common cryptographic parameters can be negotiated, the server MUST
abort the handshake with an appropriate alert.

Client Server

ClientHello
+ kev share E——
HelloRetrvReauest
44— + kev share
ClientHello
+ kev share E——
ServerHello
+ kev share
{EncrvotedExtensions?}
{CertificateReauestx}
{Certificatex?}
{CertificateVerifvx}
{Finished?}
44— [Apbplication Datax]
{Certificatex}
{CertificateVerifvx}
{Finished? E——
[Abplication Datal 4> [Abplication Datal

Figure 2: Message Flow for a Full Handshake with Mismatched Parameters

Note: The handshake transcript incorporates the initial ClientHello/
HelloRetryRequest exchange; it is not reset with the new
ClientHello.

TLS also allows several optimized variants of the basic handshake,
as described in the following sections.

2.2. Resumption and Pre-Shared Key (PSK)

Although TLS PSKs can be established externally, PSKs can also be
established in a previous connection and then used to establish a
new connection ("session resumption" or "resuming" with a PSK). Once
a handshake has completed, the server can send the client a PSK
identity that corresponds to a unique key derived from the initial
handshake (see Section 4.6.1). The client can then use that PSK
identity in future handshakes to negotiate the use of the associated
PSK. If the server accepts the PSK, then the security context of the
new connection is cryptographically tied to the original connection
and the key derived from the initial handshake is used to bootstrap
the cryptographic state instead of a full handshake. In TLS 1.2 and
below, this functionality was provided by "session IDs" and "session
tickets" [RFC5077]. Both mechanisms are obsoleted in TLS 1.3.

PSKs can be used with (EC)DHE key exchange in order to provide
forward secrecy in combination with shared keys, or can be used

alone, at the cost of losing forward secrecy for the application

data.

Figure 3 shows a pair of handshakes in which the first handshake
establishes a PSK and the second handshake uses it:

Client

Initial Handshake:
ClientHello
+ kev share

{Certificatex?
{CertificateVerifvxt}
{Finished?

[Application Datal

Subseauent Handshake:
ClientHello
kev sharex
pre shared kev

{Finished?
[Application Datal

Server
_—>
ServerHello
+ kev share
{EncrvpotedExtensionst
{CertificateReauestx*}
{Certificatext}
{CertificateVerifvx}
{Finished?}
4— [Apbplication Datax]
_—>
4— [NewSessionTicket]
4> l[Application Datal
_—>
ServerHello
+ pre shared kev
kev sharex
{EncrvpotedExtensionst
{Finished?}
4— [Apbplication Datax]
_—>
4> l[Application Datal

Figure 3: Message Flow for Resumption and PSK

As the server 1is authenticating via a PSK, it does not send a
Certificate or a CertificateVerify message. When a client offers

resumption via a PSK, it SHOULD also supply a "key_share" extension

to the server to allow the server to decline resumption and fall
back to a full handshake, if needed. The server responds with a
"pre_shared_key" extension to negotiate the use of PSK key
establishment and can (as shown here) respond with a "key_share"
extension to do (EC)DHE key establishment, thus providing forward

secrecy.

When PSKs are provisioned externally, the PSK identity and the KDF
hash algorithm to be used with the PSK MUST also be provisioned.

Note: When using an externally provisioned pre-shared secret, a
critical consideration is using sufficient entropy during the key
generation, as discussed in [RFC4086]. Deriving a shared secret
from a password or other low-entropy sources is not secure. A
low-entropy secret, or password, is subject to dictionary attacks
based on the PSK binder. The specified PSK authentication is not
a strong password-based authenticated key exchange even when used
with Diffie-Hellman key establishment. Specifically, it does not
prevent an attacker that can observe the handshake from
performing a brute-force attack on the password/pre-shared key.

0-RTT Data

When clients and servers share a PSK (either obtained externally or
via a previous handshake), TLS 1.3 allows clients to send data on
the first flight ("early data"). The client uses the PSK to
authenticate the server and to encrypt the early data.

As shown in Figure 4, the O-RTT data is just added to the 1-RTT
handshake in the first flight. The rest of the handshake uses the
same messages as for a 1-RTT handshake with PSK resumption.

Client Server

ClientHello
earlv data
kev sharex
psk kev exchange modes
pre shared kev

(Apbplication Datax) E——
ServerHello
+ pre shared kev
kev sharex
{EncrvotedExtensions?}
+ earlv datax
{Finished?}
44— [Apbplication Datax]
(EndOfEarlvData)
{Finished? E——
[Abplication Datal 4> [Abplication Datal

+ Indicates noteworthv extensions sent 1in the
previouslv noted messacge.

@® Indicates opbtional or situation-dependent
messages/extensions that are not alwavs sent.

() Indicates messages protected using kevs
derived from a client earlv traffic secret.

{} Indicates messages protected using kevs
derived from a [sender]l handshake traffic secret.

[T Indicates messages protected using kevs
derived from [senderl application traffic secret N.

Figure 4: Message Flow for a O-RTT Handshake

IMPORTANT NOTE: The security properties for 0-RTT data are weaker
than those for other kinds of TLS data. Specifically:

1. The protocol does not provide any forward secrecy guarantees
for this data. The server's behavior determines what forward
secrecy guarantees, if any, apply (see Section 8.1). This
behavior is not communicated to the client as part of the
protocol. Therefore, absent out-of-band knowledge of the
server's behavior, the client should assume that this data is
not forward secret.

2. There are no guarantees of non-replay between connections.
Protection against replay for ordinary TLS 1.3 1-RTT data is
provided via the server's Random value, but O-RTT data does not
depend on the ServerHello and therefore has weaker guarantees.

3.

3.

1.

2.

This is especially relevant if the data is authenticated either
with TLS client authentication or inside the application
protocol. The same warnings apply to any use of the
early_exporter_secret.

O-RTT data cannot be duplicated within a connection (i.e., the
server will not process the same data twice for the same
connection), and an attacker will not be able to make O-RTT data
appear to be 1-RTT data (because it is protected with different
keys). Appendix F.5 contains a description of potential attacks, and
Section 8 describes mechanisms which the server can use to limit the
impact of replay.

Presentation Language
This document deals with the formatting of data in an external
representation. The following very basic and somewhat casually

defined presentation syntax will be used.

In the definitions below, optional components of this syntax are
denoted by enclosing them in "[[]]" (double brackets).

Basic Block Size

The representation of all data items is explicitly specified. The
basic data block size is one byte (i.e., 8 bits). Multiple-byte data
items are concatenations of bytes, from left to right, from top to
bottom. From the byte stream, a multi-byte item (a numeric in the
following example) is formed (using C notation) by:

value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
| byte[n-1];

This byte ordering for multi-byte values is the commonplace network
byte order or big-endian format.

Miscellaneous
Comments begin with "/*" and end with "*/".

Single-byte entities containing uninterpreted data are of type
opaque.

A type alias T' for an existing type T is defined by:

TT',;

3.

3.

3.

Numbers

The basic numeric data type is an unsigned byte (uint8). All larger
numeric data types are constructed from a fixed-length series of
bytes concatenated as described in Section 3.1 and are also
unsigned. The following numeric types are predefined.

uint8 uinti16[2];
uint8 uint24[3];
uint8 uint32[4];
uint8 uint64[8];

All values, here and elsewhere in the specification, are transmitted
in network byte (big-endian) order; the uint32 represented by the
hex bytes 01 02 03 04 is equivalent to the decimal value 16909060.

4. Vectors

A vector (single-dimensioned array) is a stream of homogeneous data
elements. For presentation purposes, this specification refers to
vectors as lists. The size of the vector may be specified at
documentation time or left unspecified until runtime. In either
case, the length declares the number of bytes, not the number of
elements, in the vector. The syntax for specifying a new type, T',
that is a fixed-length vector of type T is

T T'[n];

Here, T' occupies n bytes in the data stream, where n is a multiple
of the size of T. The length of the vector is not included in the
encoded stream.

In the following example, Datum is defined to be three consecutive
bytes that the protocol does not interpret, while Data is three
consecutive Datum, consuming a total of nine bytes.

opaque Datum[3]; /* three uninterpreted bytes */
Datum Data[9]; /* three consecutive 3-byte vectors */

Variable-length vectors are defined by specifying a subrange of
legal lengths, inclusively, using the notation <floor..ceiling>.
When these are encoded, the actual length precedes the vector's
contents in the byte stream. The length will be in the form of a
number consuming as many bytes as required to hold the vector's
specified maximum (ceiling) length. A variable-length vector with an
actual length field of zero is referred to as an empty vector.

T T'<floor..ceiling>;

In the following example, "mandatory" is a vector that must contain
between 300 and 400 bytes of type opaque. It can never be empty. The
actual length field consumes two bytes, a uintl16, which is
sufficient to represent the value 400 (see Section 3.3). Similarly,
"longer" can represent up to 800 bytes of data, or 400 uintil6
elements, and it may be empty. Its encoding will include a two-byte
actual length field prepended to the vector. The length of an
encoded vector must be an exact multiple of the length of a single
element (e.g., a 17-byte vector of uint16 would be illegal).

opaque mandatory<300..400>;

/* length field is two bytes, cannot be empty */
uintl6 longer<o..800>;

/* zero to 400 16-bit unsigned integers */

3.5. Enumerateds

An additional sparse data type, called "enum" or "enumerated", is
available. Each definition is a different type. Only enumerateds of
the same type may be assigned or compared. Every element of an
enumerated must be assigned a value, as demonstrated in the
following example. Since the elements of the enumerated are not
ordered, they can be assigned any unique value, in any order.

enum { el(v1l), e2(v2), ... , en(vn) [[, (n)]] } Te;

Future extensions or additions to the protocol may define new
values. Implementations need to be able to parse and ignore unknown
values unless the definition of the field states otherwise.

An enumerated occupies as much space in the byte stream as would its
maximal defined ordinal value. The following definition would cause
one byte to be used to carry fields of type Color.

enum { red(3), blue(5), white(7) } Color;

One may optionally specify a value without its associated tag to
force the width definition without defining a superfluous element.

In the following example, Taste will consume two bytes in the data
stream but can only assume the values 1, 2, or 4 in the current
version of the protocol.

enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

The names of the elements of an enumeration are scoped within the
defined type. In the first example, a fully qualified reference to
the second element of the enumeration would be Color.blue. Such
qualification is not required if the target of the assignment is
well specified.

Color color Color.blue; /* overspecified, legal */
Color color = blue; /* correct, type implicit */

The names assigned to enumerateds do not need to be unique. The
numerical value can describe a range over which the same name
applies. The value includes the minimum and maximum inclusive values
in that range, separated by two period characters. This is
principally useful for reserving regions of the space.

enum { sad(©), meh(1..254), happy(255) } Mood;
3.6. Constructed Types

Structure types may be constructed from primitive types for
convenience. Each specification declares a new, unique type. The
syntax used for definitions is much like that of C.

struct {
T1 f1;
T2 f2;

n fn;
T

Fixed- and variable-length list (vector) fields are allowed using
the standard list syntax. Structures V1 and V2 in the variants
example (Section 3.8) demonstrate this.

The fields within a structure may be qualified using the type's
name, with a syntax much like that available for enumerateds. For
example, T.f2 refers to the second field of the previous
declaration.

3.7. Constants

Fields and variables may be assigned a fixed value using "=", as in:
struct {

T1 f1 =8; /* T.f1 must always be 8 */

T2 f2;
P T

3.8. Variants

Defined structures may have variants based on some knowledge that is
available within the environment. The selector must be an enumerated
type that defines the possible variants the structure defines. Each
arm of the select (below) specifies the type of that variant's field
and an optional field label. The mechanism by which the variant is
selected at runtime is not prescribed by the presentation language.

struct {
T1 f1;
T2 f2;
Tn fn;
select (E) {

case el: Tel [[fel]];
case e2: Te2 [[fe2]];

éééé en: Ten [[fen]];
iy
T TV,

For example:
enum { apple(0), orange(1l) } VariantTag;

struct {

uint16 number;

opaque string<@..10>; /* variable length */
} Vi

struct {

uint32 number;

opaque string[10]; /* fixed length */
} Vv2;

struct {
VariantTag type;
select (VariantRecord.type) {
case apple: Vi;
case orange: V2,
}

} VariantRecord;
Handshake Protocol

The handshake protocol is used to negotiate the security parameters
of a connection. Handshake messages are supplied to the TLS record

layer, where they are encapsulated within one or more TLSPlaintext

or TLSCiphertext structures which are processed and transmitted as

specified by the current active connection state.

enum {
client_hello(1),
server_hello(2),
new_session_ticket(4),
end_of_early_data(5),
encrypted_extensions(8),
certificate(11),
certificate_request(13),
certificate_verify(15),
finished(20),
key_update(24),
message_hash(254),
(255)

} HandshakeType;

struct {
HandshakeType msg_type; /* handshake type */
uint24 length; /* remaining bytes in message */
select (Handshake.msg_type) {
case client_hello: ClientHello;
case server_hello: ServerHello;
case end_of_early_data: EndOfEarlyData;
case encrypted_extensions: EncryptedExtensions;
case certificate_request: CertificateRequest;
case certificate: Certificate;
case certificate_verify: CertificateVerify;
case finished: Finished;
case new_session_ticket: NewSessionTicket;
case key_update: KeyUpdate;
}i

} Handshake;

Protocol messages MUST be sent in the order defined in Section 4.4.1
and shown in the diagrams in Section 2. A peer which receives a
handshake message in an unexpected order MUST abort the handshake
with an "unexpected_message" alert.

New handshake message types are assigned by IANA as described in
Section 11.

4.1. Key Exchange Messages

The key exchange messages are used to determine the security
capabilities of the client and the server and to establish shared
secrets, including the traffic keys used to protect the rest of the
handshake and the data.

.1.1. Cryptographic Negotiation

In TLS, the cryptographic negotiation proceeds by the client
offering the following four sets of options in its ClientHello:

*A list of cipher suites which indicates the AEAD algorithm/HKDF
hash pairs which the client supports.

*A "supported_groups" (Section 4.2.7) extension which indicates
the (EC)DHE groups which the client supports and a "key_share"
(Section 4.2.8) extension which contains (EC)DHE shares for some
or all of these groups.

*A "signature_algorithms" (Section 4.2.3) extension which
indicates the signature algorithms which the client can accept. A
"signature_algorithms_cert" extension (Section 4.2.3) may also be
added to indicate certificate-specific signature algorithms.

*A "pre_shared_key" (Section 4.2.11) extension which contains a
list of symmetric key identities known to the client and a
"psk_key_exchange_modes" (Section 4.2.9) extension which
indicates the key exchange modes that may be used with PSKs.

If the server does not select a PSK, then the first three of these
options are entirely orthogonal: the server independently selects a
cipher suite, an (EC)DHE group and key share for key establishment,
and a signature algorithm/certificate pair to authenticate itself to
the client. If there is no overlap between the received
"supported_groups" and the groups supported by the server, then the
server MUST abort the handshake with a "handshake_failure" or an
"insufficient_security" alert.

If the server selects a PSK, then it MUST also select a key
establishment mode from the list indicated by the client's
"psk_key_exchange_modes" extension (at present, PSK alone or with
(EC)DHE). Note that if the PSK can be used without (EC)DHE, then
non-overlap in the "supported_groups" parameters need not be fatal,
as it is in the non-PSK case discussed in the previous paragraph.

If the server selects an (EC)DHE group and the client did not offer
a compatible "key_share" extension in the initial ClientHello, the
server MUST respond with a HelloRetryRequest (Section 4.1.4)
message.

If the server successfully selects parameters and does not require a
HelloRetryRequest, it indicates the selected parameters in the
ServerHello as follows:

*If PSK is being used, then the server will send a
"pre_shared_key" extension indicating the selected key.

*When (EC)DHE is in use, the server will also provide a
"key_share" extension. If PSK is not being used, then (EC)DHE and
certificate-based authentication are always used.

*When authenticating via a certificate, the server will send the
Certificate (Section 4.4.2) and CertificateVerify (Section 4.4.3)
messages. In TLS 1.3 as defined by this document, either a PSK or
a certificate is always used, but not both. Future documents may
define how to use them together.

If the server is unable to negotiate a supported set of parameters
(i.e., there is no overlap between the client and server
parameters), it MUST abort the handshake with either a
"handshake_failure" or "insufficient_security" fatal alert (see
Section 6).

4.1.2. Client Hello

When a client first connects to a server, it is REQUIRED to send the
ClientHello as its first TLS message. The client will also send a
ClientHello when the server has responded to its ClientHello with a
HelloRetryRequest. In that case, the client MUST send the same
ClientHello without modification, except as follows:

*If a "key_share" extension was supplied in the HelloRetryRequest,
replacing the list of shares with a list containing a single
KeyShareEntry from the indicated group.

*Removing the "early_data" extension (Section 4.2.10) if one was
present. Early data is not permitted after a HelloRetryRequest.

*Including a "cookie" extension if one was provided in the
HelloRetryRequest.

*Updating the "pre_shared_key" extension if present by recomputing
the "obfuscated_ticket_age" and binder values and (optionally)
removing any PSKs which are incompatible with the server's
indicated cipher suite.

*Optionally adding, removing, or changing the length of the
"padding" extension [RFC7685].

*Other modifications that may be allowed by an extension defined
in the future and present in the HelloRetryRequest.

Because TLS 1.3 forbids renegotiation, if a server has negotiated
TLS 1.3 and receives a ClientHello at any other time, it MUST
terminate the connection with an "unexpected_message" alert.

If a server established a TLS connection with a previous version of
TLS and receives a TLS 1.3 ClientHello in a renegotiation, it MUST
retain the previous protocol version. In particular, it MUST NOT
negotiate TLS 1.3.

Structure of this message:

uintl16 ProtocolVersion;
opaque Random[32];

uint8 CipherSuite[2]; /* Cryptographic suite selector */
struct {
ProtocolVersion legacy_version = 0x0303; /* TLS vi1.2 */

Random random;
opaque legacy_session_id<@..32>;
CipherSuite cipher_suites<2..2/A16-2>;
opaque legacy_compression_methods<1..2/8-1>;
Extension extensions<8..2716-1>;
} ClientHello;

legacy_version: 1In previous versions of TLS, this field was used
for version negotiation and represented the highest version
number supported by the client. Experience has shown that many
servers do not properly implement version negotiation, leading to
"version intolerance" in which the server rejects an otherwise
acceptable ClientHello with a version number higher than it
supports. In TLS 1.3, the client indicates its version
preferences in the "supported_versions" extension (Section 4.2.1)
and the legacy_version field MUST be set to 0x0303, which is the
version number for TLS 1.2. TLS 1.3 ClientHellos are identified
as having a legacy_version of 0x0303 and a supported_versions
extension present with 0x0304 as the highest version indicated
therein. (See Appendix E for details about backward
compatibility.) A server which receives a legacy_version value
not equal to Ox0303 MUST abort the handshake with an
"illegal_parameter" alert.

random: 32 bytes generated by a secure random number generator. See
Appendix C for additional information.

legacy_session_id: Versions of TLS before TLS 1.3 supported a
"session resumption" feature which has been merged with pre-
shared keys in this version (see Section 2.2). A client which has
a cached session ID set by a pre-TLS 1.3 server SHOULD set this
field to that value. In compatibility mode (see Appendix E.4),
this field MUST be non-empty, so a client not offering a pre-TLS
1.3 session MUST generate a new 32-byte value. This value need
not be random but SHOULD be unpredictable to avoid

implementations fixating on a specific value (also known as
ossification). Otherwise, it MUST be set as a zero-length list
(i.e., a zero-valued single byte length field).

cipher_suites: A list of the symmetric cipher options supported by
the client, specifically the record protection algorithm
(including secret key length) and a hash to be used with HKDF, in
descending order of client preference. Values are defined in
Appendix B.4. If the list contains cipher suites that the server
does not recognize, support, or wish to use, the server MUST
ignore those cipher suites and process the remaining ones as
usual. If the client is attempting a PSK key establishment, it
SHOULD advertise at least one cipher suite indicating a Hash
associated with the PSK.

legacy_compression_methods: Versions of TLS before 1.3 supported
compression with the list of supported compression methods being
sent in this field. For every TLS 1.3 ClientHello, this list MUST
contain exactly one byte, set to zero, which corresponds to the
"null" compression method in prior versions of TLS. If a TLS 1.3
ClientHello is received with any other value in this field, the
server MUST abort the handshake with an "illegal_ parameter"
alert. Note that TLS 1.3 servers might receive TLS 1.2 or prior
ClientHellos which contain other compression methods and (if
negotiating such a prior version) MUST follow the procedures for
the appropriate prior version of TLS.

extensions: Clients request extended functionality from servers by
sending data in the extensions field. The actual "Extension"
format is defined in Section 4.2. In TLS 1.3, the use of certain
extensions is mandatory, as functionality has moved into
extensions to preserve ClientHello compatibility with previous
versions of TLS. Servers MUST ignore unrecognized extensions.

All versions of TLS allow an extensions field to optionally follow
the compression_methods field. TLS 1.3 ClientHello messages always
contain extensions (minimally "supported_versions", otherwise, they
will be interpreted as TLS 1.2 ClientHello messages). However, TLS
1.3 servers might receive ClientHello messages without an extensions
field from prior versions of TLS. The presence of extensions can be
detected by determining whether there are bytes following the
compression_methods field at the end of the ClientHello. Note that
this method of detecting optional data differs from the normal TLS
method of having a variable-length field, but it is used for
compatibility with TLS before extensions were defined. TLS 1.3
servers will need to perform this check first and only attempt to
negotiate TLS 1.3 if the "supported_versions" extension is present.
If negotiating a version of TLS prior to 1.3, a server MUST check
that the message either contains no data after

legacy_compression_methods or that it contains a valid extensions
block with no data following. If not, then it MUST abort the
handshake with a "decode_error" alert.

In the event that a client requests additional functionality using
extensions and this functionality is not supplied by the server, the
client MAY abort the handshake.

After sending the ClientHello message, the client waits for a
ServerHello or HelloRetryRequest message. If early data is in use,
the client may transmit early Application Data (Section 2.3) while
waiting for the next handshake message.

.1.3. Server Hello

The server will send this message in response to a ClientHello
message to proceed with the handshake if it is able to negotiate an
acceptable set of handshake parameters based on the ClientHello.

Structure of this message:

struct {
ProtocolVersion legacy_version = 0x0303; /* TLS vi1.2 */
Random random;
opaque legacy_session_id_echo<0..32>;
CipherSuite cipher_suite;
uint8 legacy_compression_method = 0;
Extension extensions<6..2716-1>;
} ServerHello;

legacy version: 1In previous versions of TLS, this field was used
for version negotiation and represented the selected version
number for the connection. Unfortunately, some middleboxes fail
when presented with new values. In TLS 1.3, the TLS server
indicates its version using the "supported_versions" extension
(Section 4.2.1), and the legacy_version field MUST be set to
0x0303, which is the version number for TLS 1.2. (See Appendix E
for details about backward compatibility.)

random: 32 bytes generated by a secure random number generator. See
Appendix C for additional information. The last 8 bytes MUST be
overwritten as described below if negotiating TLS 1.2 or TLS 1.1,
but the remaining bytes MUST be random. This structure is
generated by the server and MUST be generated independently of
the ClientHello.random.

legacy_session_id_echo: The contents of the client's
legacy_session_id field. Note that this field is echoed even if
the client's value corresponded to a cached pre-TLS 1.3 session
which the server has chosen not to resume. A client which

receives a legacy_session_id_echo field that does not match what
it sent in the ClientHello MUST abort the handshake with an
"illegal_parameter" alert.

cipher_suite: The single cipher suite selected by the server from
the ClientHello.cipher_suites list. A client which receives a
cipher suite that was not offered MUST abort the handshake with
an "illegal_parameter" alert.

legacy_compression_method: A single byte which MUST have the value
0.

extensions: A list of extensions. The ServerHello MUST only include
extensions which are required to establish the cryptographic
context and negotiate the protocol version. All TLS 1.3
ServerHello messages MUST contain the "supported_versions"
extension. Current ServerHello messages additionally contain
either the "pre_shared_key" extension or the "key_share"
extension, or both (when using a PSK with (EC)DHE key
establishment). Other extensions (see Section 4.2) are sent
separately in the EncryptedExtensions message.

For reasons of backward compatibility with middleboxes (see

Appendix E.4), the HelloRetryRequest message uses the same structure
as the ServerHello, but with Random set to the special value of the
SHA-256 of "HelloRetryRequest":

CF 21 AD 74 E5 9A 61 11 BE 1D 8C 02 1E 65 B8 91
C2 A2 11 16 7A BB 8C 5E 07 9E 09 E2 C8 A8 33 9C

Upon receiving a message with type server_hello, implementations
MUST first examine the Random value and, if it matches this value,
process it as described in Section 4.1.4).

TLS 1.3 has a downgrade protection mechanism embedded in the
server's random value. TLS 1.3 servers which negotiate TLS 1.2 or
below in response to a ClientHello MUST set the last 8 bytes of
their Random value specially in their ServerHello.

If negotiating TLS 1.2, TLS 1.3 servers MUST set the last 8 bytes of
their Random value to the bytes:

44 4F 57 4E 47 52 44 01

[REC8996] and Appendix E.5 forbid the negotiation of TLS versions
below 1.2. However, server implementations which do not follow that
guidance MUST set the last 8 bytes of their ServerHello.random value
to the bytes:

44 4F 57 AE 47 52 44 00

TLS 1.3 clients receiving a ServerHello indicating TLS 1.2 or below
MUST check that the last 8 bytes are not equal to either of these
values. TLS 1.2 clients SHOULD also check that the last 8 bytes are
not equal to the second value if the ServerHello indicates TLS 1.1
or below. If a match is found, the client MUST abort the handshake
with an "illegal parameter" alert. This mechanism provides limited
protection against downgrade attacks over and above what is provided
by the Finished exchange: because the ServerKeyExchange, a message
present in TLS 1.2 and below, includes a signature over both random
values, it is not possible for an active attacker to modify the
random values without detection as long as ephemeral ciphers are
used. It does not provide downgrade protection when static RSA is
used.

Note: This is a change from [REC5246], so in practice many TLS 1.2
clients and servers will not behave as specified above.

A legacy TLS client performing renegotiation with TLS 1.2 or prior
and which receives a TLS 1.3 ServerHello during renegotiation MUST
abort the handshake with a "protocol_version" alert. Note that
renegotiation is not possible when TLS 1.3 has been negotiated.

4.1.4. Hello Retry Request

The server will send this message in response to a ClientHello
message if it is able to find an acceptable set of parameters but
the ClientHello does not contain sufficient information to proceed
with the handshake. As discussed in Section 4.1.3, the
HelloRetryRequest has the same format as a ServerHello message, and
the legacy_version, legacy_session_id_echo, cipher_suite, and
legacy_compression_method fields have the same meaning. However, for
convenience we discuss "HelloRetryRequest" throughout this document
as if it were a distinct message.

The server's extensions MUST contain "supported_versions".
Additionally, it SHOULD contain the minimal set of extensions
necessary for the client to generate a correct ClientHello pair. As
with the ServerHello, a HelloRetryRequest MUST NOT contain any
extensions that were not first offered by the client in its
ClientHello, with the exception of optionally the "cookie" (see
Section 4.2.2) extension.

Upon receipt of a HelloRetryRequest, the client MUST check the
legacy_version, legacy_session_id_echo, cipher_suite, and
legacy_compression_method as specified in Section 4.1.3 and then
process the extensions, starting with determining the version using
"supported_versions". Clients MUST abort the handshake with an
"illegal parameter" alert if the HelloRetryRequest would not result
in any change in the ClientHello. If a client receives a second

HelloRetryRequest in the same connection (i.e., where the
ClientHello was itself in response to a HelloRetryRequest), it MUST
abort the handshake with an "unexpected_message" alert.

Otherwise, the client MUST process all extensions in the
HelloRetryRequest and send a second updated ClientHello. The
HelloRetryRequest extensions defined in this specification are:

*supported_versions (see Section 4.2.1)

*cookie (see Section 4.2.2)

*key_share (see Section 4.2.8)

A client which receives a cipher suite that was not offered MUST
abort the handshake. Servers MUST ensure that they negotiate the
same cipher suite when receiving a conformant updated ClientHello
(if the server selects the cipher suite as the first step in the
negotiation, then this will happen automatically). Upon receiving
the ServerHello, clients MUST check that the cipher suite supplied
in the ServerHello is the same as that in the HelloRetryRequest and
otherwise abort the handshake with an "illegal_parameter" alert.

In addition, in its updated ClientHello, the client SHOULD NOT offer
any pre-shared keys associated with a hash other than that of the
selected cipher suite. This allows the client to avoid having to
compute partial hash transcripts for multiple hashes in the second
ClientHello.

The value of selected_version in the HelloRetryRequest
"supported_versions" extension MUST be retained in the ServerHello,
and a client MUST abort the handshake with an "illegal_ parameter"
alert if the value changes.

4.2. Extensions

A number of TLS messages contain tag-length-value encoded extensions
structures.

struct {
ExtensionType extension_type;
opaque extension_data<@..2716-1>;
} Extension;

enum {
server_name(0),
max_fragment_length(1),
status_request(5),
supported_groups(10),
signature_algorithms(13),
use_srtp(14),
heartbeat (15),
application_layer_protocol_negotiation(16),
signed_certificate_timestamp(18),
client_certificate_type(19),
server_certificate_type(20),
padding(21),
pre_shared_key(41),
early_data(42),
supported_versions(43),
cookie(44),
psk_key_exchange_modes(45),
certificate_authorities(47),
oid_filters(48),
post_handshake_auth(49),
signature_algorithms_cert(50),
key_share(51),
(65535)

} ExtensionType;

Here:

/*
/*
/*
/*
/*
/*
/*
/)\'
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC

6066
6066
6066
8422,
8446
5764
6520
7301
6962
7250
7250
7685
8446
8446
8446
8446
8446
8446
8446
8446
8446
8446

*/
*/
*/
7919 */
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*"extension_type" identifies the particular extension type.

*"extension_data" contains information specific to the particular

extension type.

The contents of the "extension_data" field are typically defined by
an extension-specific structure defined in the TLS presentation
language. Unless otherwise specified, trailing data is forbidden.
That is, senders MUST NOT include data after the structure in the
"extension_data" field. When processing an extension,
abort the handshake with a "decode_error" alert if there is data
left over after parsing the structure. This does not apply if the
receiver does not implement or is configured to ignore an extension.

receivers MUST

The list of extension types is maintained by IANA as described in

Section 11.

Extensions are generally structured in a request/response fashion,
though some extensions are just requests with no corresponding
response (i.e., indications). The client sends its extension
requests in the ClientHello message, and the server sends its
extension responses in the ServerHello, EncryptedExtensions,
HelloRetryRequest, and Certificate messages. The server sends
extension requests in the CertificateRequest message which a client
MAY respond to with a Certificate message. The server MAY also send
unsolicited extensions in the NewSessionTicket, though the client
does not respond directly to these.

Implementations MUST NOT send extension responses (i.e., in the
ServerHello, EncryptedExtensions, HelloRetryRequest, and Certificate
messages) if the remote endpoint did not send the corresponding
extension requests, with the exception of the "cookie" extension in
the HelloRetryRequest. Upon receiving such an extension, an endpoint
MUST abort the handshake with an "unsupported_extension" alert.

The table below indicates the messages where a given extension may
appear, using the following notation: CH (ClientHello), SH
(ServerHello), EE (EncryptedExtensions), CT (Certificate), CR
(CertificateRequest), NST (NewSessionTicket), and HRR
(HelloRetryRequest). If an implementation receives an extension
which it recognizes and which is not specified for the message in
which it appears, it MUST abort the handshake with an

"illegal parameter" alert.

Extension TLS 1.3
server_name [RFC6066] CH, EE
max_fragment_length [REC6066] CH, EE
status_request [RFC6066] CH, CR, CT
supported_groups [REC7919] CH, EE
signature_algorithms [RFC8446] CH, CR
use_srtp [REC5764] CH, EE
heartbeat [RFC6520] CH, EE
application_layer_protocol_negotiation [RFC7301] CH, EE
signed_certificate_timestamp [REC6962] CH, CR, CT
client_certificate_type [REC7250] CH, EE
server_certificate_type [REC7250] CH, EE
padding [RFC7685] CH
cached_info [REC7924] CH, EE
compress_certificate [RFC8879] CH, CR
record_size_limit [RFC8849] CH, EE
delegated_credentials [RFC9345] CH, CR, CT
supported_ekt_ciphers [REC8870] CH, EE
pre_shared_key [RFC8446] CH, SH

early_data [RFC8446] CH, EE, NST

Extension TLS 1.3

psk_key_exchange_modes [RFC8446] CH
cookie [RFC8446] CH, HRR
supported_versions [RFEC8446] CH, SH, HRR
certificate_authorities [RFC8446] CH, CR
oid_filters [RFEC8446] CR
post_handshake_auth [RFC8446] CH
signature_algorithms_cert [RFC8446] CH, CR
key_share [RFC8446] CH, SH, HRR
transparency_info [REC9162] CH, CR, CT
connection_id [RFC9146] CH, SH
external_id_hash [RFC8844] CH, EE
external_session_id [RFC8844] CH, EE
quic_transport_parameters [REC9001] CH, EE
ticket_request [RFC9149] CH, EE

Table 1: TLS Extensions

Note: this table includes only extensions marked "Recommended" at
the time of this writing.

When multiple extensions of different types are present, the
extensions MAY appear in any order, with the exception of
"pre_shared_key" (Section 4.2.11) which MUST be the last extension
in the ClientHello (but can appear anywhere in the ServerHello
extensions block). There MUST NOT be more than one extension of the
same type in a given extension block.

In TLS 1.3, unlike TLS 1.2, extensions are negotiated for each
handshake even when in resumption-PSK mode. However, O-RTT
parameters are those negotiated in the previous handshake;
mismatches may require rejecting O-RTT (see Section 4.2.10).

There are subtle (and not so subtle) interactions that may occur in
this protocol between new features and existing features which may
result in a significant reduction in overall security. The following
considerations should be taken into account when designing new
extensions:

*Some cases where a server does not agree to an extension are
error conditions (e.g., the handshake cannot continue), and some
are simply refusals to support particular features. In general,
error alerts should be used for the former and a field in the
server extension response for the latter.

*Extensions should, as far as possible, be designed to prevent any
attack that forces use (or non-use) of a particular feature by
manipulation of handshake messages. This principle should be
followed regardless of whether the feature is believed to cause a

4,

security problem. Often the fact that the extension fields are
included in the inputs to the Finished message hashes will be
sufficient, but extreme care is needed when the extension changes
the meaning of messages sent in the handshake phase. Designers
and implementors should be aware of the fact that until the
handshake has been authenticated, active attackers can modify
messages and insert, remove, or replace extensions.

2.1. Supported Versions

struct {
select (Handshake.msg_type) {
case client_hello:
ProtocolVersion versions<2..254>;

case server_hello: /* and HelloRetryRequest */
ProtocolVersion selected_version;
i

} SupportedVersions;

The "supported_versions" extension is used by the client to indicate
which versions of TLS it supports and by the server to indicate
which version it is using. The extension contains a list of
supported versions in preference order, with the most preferred
version first. Implementations of this specification MUST send this
extension in the ClientHello containing all versions of TLS which
they are prepared to negotiate (for this specification, that means
minimally 0x0304, but if previous versions of TLS are allowed to be
negotiated, they MUST be present as well).

If this extension is not present, servers which are compliant with
this specification and which also support TLS 1.2 MUST negotiate TLS
1.2 or prior as specified in [REC5246], even if
ClientHello.legacy_version is 0x0304 or later. Servers MAY abort the
handshake upon receiving a ClientHello with legacy_version 0x0304 or
later.

If this extension is present in the ClientHello, servers MUST NOT
use the ClientHello.legacy_version value for version negotiation and
MUST use only the "supported_versions" extension to determine client
preferences. Servers MUST only select a version of TLS present in
that extension and MUST ignore any unknown versions that are present
in that extension. Note that this mechanism makes it possible to
negotiate a version prior to TLS 1.2 if one side supports a sparse
range. Implementations of TLS 1.3 which choose to support prior
versions of TLS SHOULD support TLS 1.2. Servers MUST be prepared to
receive ClientHellos that include this extension but do not include
0x0304 in the list of versions.

A server which negotiates a version of TLS prior to TLS 1.3 MUST set
ServerHello.version and MUST NOT send the "supported_versions"
extension. A server which negotiates TLS 1.3 MUST respond by sending
a "supported_versions" extension containing the selected version
value (0x0304). It MUST set the ServerHello.legacy_version field to
0x0303 (TLS 1.2).

After checking ServerHello.random to determine if the server
handshake message is a ServerHello or HelloRetryRequest, clients
MUST check for this extension prior to processing the rest of the
ServerHello. This will require clients to parse the ServerHello in
order to read the extension. If this extension is present, clients
MUST ignore the ServerHello.legacy_version value and MUST use only
the "supported_versions" extension to determine the selected
version. If the "supported_versions" extension in the ServerHello
contains a version not offered by the client or contains a version
prior to TLS 1.3, the client MUST abort the handshake with an
"illegal parameter" alert.

.2.2. Cookie

struct {
opaque cookie<1..2716-1>;
} Cookie;

Cookies serve two primary purposes:

*Allowing the server to force the client to demonstrate
reachability at their apparent network address (thus providing a
measure of DoS protection). This is primarily useful for non-
connection-oriented transports (see [RFC6347] for an example of
this).

*Allowing the server to offload state to the client, thus allowing
it to send a HelloRetryRequest without storing any state. The
server can do this by storing the hash of the ClientHello in the
HelloRetryRequest cookie (protected with some suitable integrity
protection algorithm).

When sending a HelloRetryRequest, the server MAY