
Network Working Group K. Bhargavan
Internet-Draft A. Delignat-Lavaud
Expires: April 9, 2015 A. Pironti
 Inria Paris-Rocquencourt
 A. Langley
 Google Inc.
 M. Ray
 Microsoft Corp.
 October 6, 2014

Transport Layer Security (TLS) Session Hash and
Extended Master Secret Extension
draft-ietf-tls-session-hash-02

Abstract

 The Transport Layer Security (TLS) master secret is not
 cryptographically bound to important session parameters such as the
 client and server identities. Consequently, it is possible for an
 active attacker to set up two sessions, one with a client and another
 with a server, such that the master secrets on the two sessions are
 the same. Thereafter, any mechanism that relies on the master secret
 for authentication, including session resumption, becomes vulnerable
 to a man-in-the-middle attack, where the attacker can simply forward
 messages back and forth between the client and server. This
 specification defines a TLS extension that contextually binds the
 master secret to a log of the full handshake that computes it, thus
 preventing such attacks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 9, 2015.

Bhargavan, et al. Expires April 9, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TLS Session Hash Extension October 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Notation . 4
3. The TLS Session Hash . 5
4. The extended master secret 5
4.1. TLS . 5
4.2. SSL 3.0 . 6

5. Extension negotiation . 6
5.1. Extension definition 6
5.2. Client and Server Behavior 7

6. Security Considerations 7
7. IANA Considerations . 7
8. Acknowledgments . 7
9. References . 7
9.1. Normative References 7
9.2. Informative References 8

 Authors' Addresses . 8

1. Introduction

 In TLS [RFC5246], every session has a "master_secret" computed as:

 master_secret = PRF(pre_master_secret, "master secret",
 ClientHello.random + ServerHello.random)
 [0..47];

 where the "pre_master_secret" is the result of some key exchange
 protocol. For example, when the handshake uses an RSA ciphersuite,
 this value is generated uniformly at random by the client, whereas
 for DHE ciphersuites, it is the result of a Diffie-Hellman key
 agreement.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5246

Bhargavan, et al. Expires April 9, 2015 [Page 2]

Internet-Draft TLS Session Hash Extension October 2014

 As described in [TRIPLE-HS], in both the RSA and DHE key exchanges,
 an active attacker can synchronize two TLS sessions so that they
 share the same "master_secret". For an RSA key exchange where the
 client is unauthenticated, this is achieved as follows. Suppose a
 client, C, connects to a malicious server, A. A then connects to a
 server, S, and completes both handshakes. For simplicity, assume
 that C and S only use RSA ciphersuites. (Note that C thinks it is
 connecting to A and is oblivious of S's involvement.)

 1. C sends a "ClientHello" to A, and A forwards it to S.

 2. S sends a "ServerHello" to A, and A forwards it to C.

 3. S sends a "Certificate", containing its certificate chain, to A.
 A replaces it with its own certificate chain and sends it to C.

 4. S sends a "ServerHelloDone" to A, and A forwards it to C.

 5. C sends a "ClientKeyExchange" to A, containing the
 "pre_master_secret", encrypted with A's public key. A decrypts
 the "pre_master_secret", re-encrypts it with S's public key and
 sends it on to S.

 6. C sends a "Finished" to A. A computes a "Finished" for its
 connection with S, and sends it to S.

 7. S sends a "Finished" to A. A computes a "Finished" for its
 connection with C, and sends it to C.

 At this point, both connections (between C and A, and between A and
 S) have new sessions that share the same "pre_master_secret",
 "ClientHello.random", "ServerHello.random", as well as other session
 parameters, including the session identifier and, optionally, the
 session ticket. Hence, the "master_secret" value will be equal for
 the two sessions and it will be associated both at C and S with the
 same session ID, even though the server identities on the two
 connections are different. Moreover, the record keys on the two
 connections will also be the same.

 Similar scenarios can be achieved when the handshake uses a DHE
 ciphersuite, or an ECDHE ciphersuite with an arbitrary explicit
 curve. Even if the client or server does not prefer using RSA or
 DHE, the attacker can force them to use it by offering only RSA or
 DHE in its hello messages. Other key exchanges may also be
 vulnerable. If client authentication is used, the attack still
 works, except that the two sessions now differ on both client and
 server identities.

Bhargavan, et al. Expires April 9, 2015 [Page 3]

Internet-Draft TLS Session Hash Extension October 2014

 Once A has synchronized the two connections, since the keys are the
 same on the two sides, it can step away and transparently forward
 messages between C and S, reading and modifying when it desires. In
 the key exchange literature, such occurrences are called unknown key-
 share attacks, since C and S share a secret but they both think that
 their secret is shared only with A. In themselves, these attacks do
 not break integrity or confidentiality between honest parties, but
 they offer a useful starting point from which to mount impersonation
 attacks on C and S.

 Suppose C tries to resume its session on a new connection with A. A
 can then resume its session with S on a new connection and forward
 the abbreviated handshake messages unchanged between C and S. Since
 the abbreviated handshake only relies on the master secret for
 authentication, and does not mention client or server identities,
 both handshakes complete successfully, resulting in the same session
 keys and the same handshake log. A still knows the connection keys
 and can send messages to both C and S.

 Critically, on the new connection, even the handshake log is the same
 on C and S, thus defeating any man-in-the-middle protection scheme
 that relies on the uniqueness of finished messages, such as the
 secure renegotiation indication extension [RFC5746] or TLS channel
 bindings [RFC5929]. [TRIPLE-HS] describes several exploits based on
 such session synchronization attacks. In particular, it describes a
 man-in-the-middle attack that circumvents the protections of
 [RFC5746] to break client-authenticated TLS renegotiation after
 session resumption. Similar attacks apply to application-level
 authentication mechanisms that rely on channel bindings [RFC5929] or
 on key material exported from TLS [RFC5705].

 The underlying protocol issue is that since the master secret is not
 guaranteed to be unique across sessions, it cannot be used on its own
 as an authentication credential. This specification introduces a TLS
 extension that computes the "master_secret" value from the log of the
 handshake that computes it, so that different handshakes will, by
 construction, create different master secrets.

2. Requirements Notation

 This document uses the same notation and terminology used in the TLS
 Protocol specification [RFC5246].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bhargavan, et al. Expires April 9, 2015 [Page 4]

Internet-Draft TLS Session Hash Extension October 2014

3. The TLS Session Hash

 When a full handshake takes place, we define

 session_hash = Hash(handshake_messages)

 where "handshake_messages" refers to all handshake messages sent or
 received, starting at client hello up to and including the Client Key
 Exchange message, including the type and length fields of the
 handshake messages. This is the concatenation of all the exchanged
 Handshake structures, as defined in Section 7.4 of [RFC5246].

 The hash function "Hash" is defined by the ciphersuite in TLS 1.2.
 In all previous versions of TLS and in SSL 3.0, this function
 computes the concatenation of MD5 and SHA1.

 There is no "session_hash" for resumed handshakes, as they do not
 lead to the creation of a new session.

 Implementation note: As described in Section 4, the "session_hash" is
 used in the extended master secret computation. Hence, it must be
 possible to compute the session_hash before the master secret is
 computed. In SSL 3.0, the master secret is first needed in the
 Client's CertificateVerify message. Hence, it is widespread
 implementation practice to compute the master secret as soon as the
 "pre_master_secret" is available, typically immediately before or
 after sending the Client Key Exchange message. The definition of
 "session_hash" given in this document requires minimal patches to
 such implementations in order to implement the extended master secret
 extension. Our definition is also compatible with the common
 implementation practice of keeping running hashes of the handshake
 log.

4. The extended master secret

4.1. TLS

 When the extended master secret extension is negotiated in a TLS
 session, the "master_secret" is computed as

 master_secret = PRF(pre_master_secret, "extended master secret",
 session_hash)
 [0..47];

 The extended master secret computation differs from the [RFC5246] in
 the following ways:

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4
https://datatracker.ietf.org/doc/html/rfc5246

Bhargavan, et al. Expires April 9, 2015 [Page 5]

Internet-Draft TLS Session Hash Extension October 2014

 o The "extended master secret" label is used instead of "master
 secret";

 o The "session_hash" is used instead of the "ClientHello.random" and
 "ServerHello.random".

 The "session_hash" depends upon a handshake log that includes
 "ClientHello.random" and "ServerHello.random", in addition to
 ciphersuites, client and server certificates. Consequently, the
 extended master secret depends upon the choice of all these session
 parameters.

 Our proposed design reflects the recommendation that keys should be
 bound to the security contexts that compute them [sp800-108]. The
 technique of mixing a hash of the key exchange messages into master
 key derivation is already used in other well-known protocols such as
 SSH [RFC4251].

4.2. SSL 3.0

 SSL 3.0 does not defne a PRF function, instead it defines a custom
 algorithm to compute the master secret. When the extended master
 secret extension is negotiated in SSL 3.0, the master secret is
 computed as

 master_secret =
 MD5(pre_master_secret + SHA('A' + pre_master_secret +
 session_hash)) +
 MD5(pre_master_secret + SHA('BB' + pre_master_secret +
 session_hash)) +
 MD5(pre_master_secret + SHA('CCC' + pre_master_secret +
 session_hash));

 That is, the "session_hash" replaces the concatenation of
 "ClientHello.random" and "ServerHello.random".

5. Extension negotiation

5.1. Extension definition

 This document defines a new TLS extension, "extended_master_secret"
 (with extension type 0x0017), which is used to signal both client and
 server to use the extended master secret computation. The
 "extension_data" field of this extension is empty. Thus, the entire
 encoding of the extension is 00 17 00 00.

https://datatracker.ietf.org/doc/html/rfc4251

Bhargavan, et al. Expires April 9, 2015 [Page 6]

Internet-Draft TLS Session Hash Extension October 2014

 If client and server agree on this extension and a full handshake
 takes place, both client and server MUST use the extended master
 secret derivation algorithm, as defined in Section 4.

5.2. Client and Server Behavior

 In its ClientHello message, a client implementing this document MUST
 send the "extended_master_secret" extension.

 If a server receives the "extended_master_secret" extension, it MUST
 include the "extended_master_secret" extension in its ServerHello
 message.

 Implementation note: if the server decides to proceed with
 resumption, the extension does not have any effect. Requiring the
 extension to be included anyway makes the extension negotiation logic
 easier, because it does not depend on whether resumption is accepted
 or not. Moreover, a client may find useful to learn that the server
 supports this extension anyway.

6. Security Considerations

 This entire document is about security, see [TRIPLE-HS] for more
 details.

7. IANA Considerations

 IANA has added the extension code point 23 (0x0017), which has been
 used for prototype implementations, for the "extended_master_secret"
 extension to the TLS ExtensionType values registry as specified in
 TLS [RFC5246].

8. Acknowledgments

 The triple handshake attacks were originally discovered by Antoine
 Delignat-Lavaud, Karthikeyan Bhargavan, and Alfredo Pironti, and were
 further developed by the miTLS team: Cedric Fournet, Pierre-Yves
 Strub, Markulf Kohlweiss, Santiago Zanella-Beguelin. Many of the
 ideas in this draft emerged from discussions with Martin Abadi, Ben
 Laurie, Eric Rescorla, Martin Rex, Brian Smith.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Bhargavan, et al. Expires April 9, 2015 [Page 7]

Internet-Draft TLS Session Hash Extension October 2014

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

9.2. Informative References

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [TRIPLE-HS]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple Handshakes and Cookie Cutters:
 Breaking and Fixing Authentication over TLS", IEEE
 Symposium on Security and Privacy, pages 98-113 , 2014.

 [sp800-108]
 Chen, L., "NIST Special Publication 800-108:
 Recommendation for Key Derivation Using Pseudorandom
 Functions", Unpublished draft , 2009.

Authors' Addresses

 Karthikeyan Bhargavan
 Inria Paris-Rocquencourt
 23, Avenue d'Italie
 Paris 75214 CEDEX 13
 France

 Email: karthikeyan.bhargavan@inria.fr

 Antoine Delignat-Lavaud
 Inria Paris-Rocquencourt
 23, Avenue d'Italie
 Paris 75214 CEDEX 13
 France

 Email: antoine.delignat-lavaud@inria.fr

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc4251

Bhargavan, et al. Expires April 9, 2015 [Page 8]

Internet-Draft TLS Session Hash Extension October 2014

 Alfredo Pironti
 Inria Paris-Rocquencourt
 23, Avenue d'Italie
 Paris 75214 CEDEX 13
 France

 Email: alfredo.pironti@inria.fr

 Adam Langley
 Google Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 USA

 Email: agl@google.com

 Marsh Ray
 Microsoft Corp.
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Email: maray@microsoft.com

Bhargavan, et al. Expires April 9, 2015 [Page 9]

