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Abstract

   The Transport Layer Security (TLS) master secret is not
   cryptographically bound to important session parameters such as the
   client and server identities.  Consequently, it is possible for an
   active attacker to set up two sessions, one with a client and another
   with a server, such that the master secrets on the two sessions are
   the same.  Thereafter, any mechanism that relies on the master secret
   for authentication, including session resumption, becomes vulnerable
   to a man-in-the-middle attack, where the attacker can simply forward
   messages back and forth between the client and server.  This
   specification defines a TLS extension that contextually binds the
   master secret to a log of the full handshake that computes it, thus
   preventing such attacks.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 9, 2015.

Bhargavan, et al.         Expires April 9, 2015                 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/


Internet-Draft         TLS Session Hash Extension           October 2014

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
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   include Simplified BSD License text as described in Section 4.e of
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   described in the Simplified BSD License.
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1.  Introduction

   In TLS [RFC5246], every session has a "master_secret" computed as:

   master_secret = PRF(pre_master_secret, "master secret",
                       ClientHello.random + ServerHello.random)
                       [0..47];

   where the "pre_master_secret" is the result of some key exchange
   protocol.  For example, when the handshake uses an RSA ciphersuite,
   this value is generated uniformly at random by the client, whereas
   for DHE ciphersuites, it is the result of a Diffie-Hellman key
   agreement.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5246
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   As described in [TRIPLE-HS], in both the RSA and DHE key exchanges,
   an active attacker can synchronize two TLS sessions so that they
   share the same "master_secret".  For an RSA key exchange where the
   client is unauthenticated, this is achieved as follows.  Suppose a
   client, C, connects to a malicious server, A.  A then connects to a
   server, S, and completes both handshakes.  For simplicity, assume
   that C and S only use RSA ciphersuites.  (Note that C thinks it is
   connecting to A and is oblivious of S's involvement.)

   1.  C sends a "ClientHello" to A, and A forwards it to S.

   2.  S sends a "ServerHello" to A, and A forwards it to C.

   3.  S sends a "Certificate", containing its certificate chain, to A.
       A replaces it with its own certificate chain and sends it to C.

   4.  S sends a "ServerHelloDone" to A, and A forwards it to C.

   5.  C sends a "ClientKeyExchange" to A, containing the
       "pre_master_secret", encrypted with A's public key.  A decrypts
       the "pre_master_secret", re-encrypts it with S's public key and
       sends it on to S.

   6.  C sends a "Finished" to A.  A computes a "Finished" for its
       connection with S, and sends it to S.

   7.  S sends a "Finished" to A.  A computes a "Finished" for its
       connection with C, and sends it to C.

   At this point, both connections (between C and A, and between A and
   S) have new sessions that share the same "pre_master_secret",
   "ClientHello.random", "ServerHello.random", as well as other session
   parameters, including the session identifier and, optionally, the
   session ticket.  Hence, the "master_secret" value will be equal for
   the two sessions and it will be associated both at C and S with the
   same session ID, even though the server identities on the two
   connections are different.  Moreover, the record keys on the two
   connections will also be the same.

   Similar scenarios can be achieved when the handshake uses a DHE
   ciphersuite, or an ECDHE ciphersuite with an arbitrary explicit
   curve.  Even if the client or server does not prefer using RSA or
   DHE, the attacker can force them to use it by offering only RSA or
   DHE in its hello messages.  Other key exchanges may also be
   vulnerable.  If client authentication is used, the attack still
   works, except that the two sessions now differ on both client and
   server identities.
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   Once A has synchronized the two connections, since the keys are the
   same on the two sides, it can step away and transparently forward
   messages between C and S, reading and modifying when it desires.  In
   the key exchange literature, such occurrences are called unknown key-
   share attacks, since C and S share a secret but they both think that
   their secret is shared only with A.  In themselves, these attacks do
   not break integrity or confidentiality between honest parties, but
   they offer a useful starting point from which to mount impersonation
   attacks on C and S.

   Suppose C tries to resume its session on a new connection with A.  A
   can then resume its session with S on a new connection and forward
   the abbreviated handshake messages unchanged between C and S.  Since
   the abbreviated handshake only relies on the master secret for
   authentication, and does not mention client or server identities,
   both handshakes complete successfully, resulting in the same session
   keys and the same handshake log.  A still knows the connection keys
   and can send messages to both C and S.

   Critically, on the new connection, even the handshake log is the same
   on C and S, thus defeating any man-in-the-middle protection scheme
   that relies on the uniqueness of finished messages, such as the
   secure renegotiation indication extension [RFC5746] or TLS channel
   bindings [RFC5929].  [TRIPLE-HS] describes several exploits based on
   such session synchronization attacks.  In particular, it describes a
   man-in-the-middle attack that circumvents the protections of
   [RFC5746] to break client-authenticated TLS renegotiation after
   session resumption.  Similar attacks apply to application-level
   authentication mechanisms that rely on channel bindings [RFC5929] or
   on key material exported from TLS [RFC5705].

   The underlying protocol issue is that since the master secret is not
   guaranteed to be unique across sessions, it cannot be used on its own
   as an authentication credential.  This specification introduces a TLS
   extension that computes the "master_secret" value from the log of the
   handshake that computes it, so that different handshakes will, by
   construction, create different master secrets.

2.  Requirements Notation

   This document uses the same notation and terminology used in the TLS
   Protocol specification [RFC5246].

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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3.  The TLS Session Hash

   When a full handshake takes place, we define

         session_hash = Hash(handshake_messages)

   where "handshake_messages" refers to all handshake messages sent or
   received, starting at client hello up to and including the Client Key
   Exchange message, including the type and length fields of the
   handshake messages.  This is the concatenation of all the exchanged
   Handshake structures, as defined in Section 7.4 of [RFC5246].

   The hash function "Hash" is defined by the ciphersuite in TLS 1.2.
   In all previous versions of TLS and in SSL 3.0, this function
   computes the concatenation of MD5 and SHA1.

   There is no "session_hash" for resumed handshakes, as they do not
   lead to the creation of a new session.

   Implementation note: As described in Section 4, the "session_hash" is
   used in the extended master secret computation.  Hence, it must be
   possible to compute the session_hash before the master secret is
   computed.  In SSL 3.0, the master secret is first needed in the
   Client's CertificateVerify message.  Hence, it is widespread
   implementation practice to compute the master secret as soon as the
   "pre_master_secret" is available, typically immediately before or
   after sending the Client Key Exchange message.  The definition of
   "session_hash" given in this document requires minimal patches to
   such implementations in order to implement the extended master secret
   extension.  Our definition is also compatible with the common
   implementation practice of keeping running hashes of the handshake
   log.

4.  The extended master secret

4.1.  TLS

   When the extended master secret extension is negotiated in a TLS
   session, the "master_secret" is computed as

       master_secret = PRF(pre_master_secret, "extended master secret",
                           session_hash)
                           [0..47];

   The extended master secret computation differs from the [RFC5246] in
   the following ways:

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4
https://datatracker.ietf.org/doc/html/rfc5246
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   o  The "extended master secret" label is used instead of "master
      secret";

   o  The "session_hash" is used instead of the "ClientHello.random" and
      "ServerHello.random".

   The "session_hash" depends upon a handshake log that includes
   "ClientHello.random" and "ServerHello.random", in addition to
   ciphersuites, client and server certificates.  Consequently, the
   extended master secret depends upon the choice of all these session
   parameters.

   Our proposed design reflects the recommendation that keys should be
   bound to the security contexts that compute them [sp800-108].  The
   technique of mixing a hash of the key exchange messages into master
   key derivation is already used in other well-known protocols such as
   SSH [RFC4251].

4.2.  SSL 3.0

   SSL 3.0 does not defne a PRF function, instead it defines a custom
   algorithm to compute the master secret.  When the extended master
   secret extension is negotiated in SSL 3.0, the master secret is
   computed as

       master_secret =
             MD5(pre_master_secret + SHA('A' + pre_master_secret +
                 session_hash)) +
             MD5(pre_master_secret + SHA('BB' + pre_master_secret +
                 session_hash)) +
             MD5(pre_master_secret + SHA('CCC' + pre_master_secret +
                 session_hash));

   That is, the "session_hash" replaces the concatenation of
   "ClientHello.random" and "ServerHello.random".

5.  Extension negotiation

5.1.  Extension definition

   This document defines a new TLS extension, "extended_master_secret"
   (with extension type 0x0017), which is used to signal both client and
   server to use the extended master secret computation.  The
   "extension_data" field of this extension is empty.  Thus, the entire
   encoding of the extension is 00 17 00 00.

https://datatracker.ietf.org/doc/html/rfc4251
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   If client and server agree on this extension and a full handshake
   takes place, both client and server MUST use the extended master
   secret derivation algorithm, as defined in Section 4.

5.2.  Client and Server Behavior

   In its ClientHello message, a client implementing this document MUST
   send the "extended_master_secret" extension.

   If a server receives the "extended_master_secret" extension, it MUST
   include the "extended_master_secret" extension in its ServerHello
   message.

   Implementation note: if the server decides to proceed with
   resumption, the extension does not have any effect.  Requiring the
   extension to be included anyway makes the extension negotiation logic
   easier, because it does not depend on whether resumption is accepted
   or not.  Moreover, a client may find useful to learn that the server
   supports this extension anyway.

6.  Security Considerations

   This entire document is about security, see [TRIPLE-HS] for more
   details.

7.  IANA Considerations

   IANA has added the extension code point 23 (0x0017), which has been
   used for prototype implementations, for the "extended_master_secret"
   extension to the TLS ExtensionType values registry as specified in
   TLS [RFC5246].
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