
Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Informational E. Rescorla
Expires: May 26, 2019 RTFM, Inc.
 November 22, 2018

Issues and Requirements for SNI Encryption in TLS
draft-ietf-tls-sni-encryption-04

Abstract

 This draft describes the general problem of encryption of the Server
 Name Identification (SNI) parameter. The proposed solutions hide a
 Hidden Service behind a Fronting Service, only disclosing the SNI of
 the Fronting Service to external observers. The draft lists known
 attacks against SNI encryption, discusses the current "co-tenancy
 fronting" solution, and presents requirements for future TLS layer
 solutions.

 In practice, it may well be that no solution can meet every
 requirement, and that practical solutions will have to make some
 compromises.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Huitema & Rescorla Expires May 26, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft TLS-SNI Encryption Requirements November 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. History of the TLS SNI extension 3
2.1. Unanticipated usage of SNI information 3
2.2. SNI encryption timeliness 4
2.3. End-to-end alternatives 4

3. Security and Privacy Requirements for SNI Encryption 5
3.1. Mitigate Replay Attacks 5
3.2. Avoid Widely Shared Secrets 6
3.3. Prevent SNI-based Denial of Service Attacks 6
3.4. Do not stick out . 6
3.5. Forward Secrecy . 6
3.6. Proper Security Context 7
3.7. Fronting Server Spoofing 7
3.8. Supporting multiple protocols 7
3.8.1. Hiding the Application Layer Protocol Negotiation . . 8
3.8.2. Support other transports than HTTP 8

4. HTTP Co-Tenancy Fronting 8
4.1. HTTPS Tunnels . 9
4.2. Delegation Control 10
4.3. Related work . 10

5. Security Considerations 10
6. IANA Considerations . 11
7. Acknowledgements . 11
8. Informative References 11

 Authors' Addresses . 13

1. Introduction

 Historically, adversaries have been able to monitor the use of web
 services through three channels: looking at DNS requests, looking at
 IP addresses in packet headers, and looking at the data stream
 between user and services. These channels are getting progressively
 closed. A growing fraction of Internet communication is encrypted,
 mostly using Transport Layer Security (TLS) [RFC5246]. Progressive
 deployment of solutions like DNS in TLS [RFC7858] mitigates the
 disclosure of DNS information. More and more services are colocated
 on multiplexed servers, loosening the relation between IP address and
 web service. However, multiplexed servers rely on the Service Name

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7858

Huitema & Rescorla Expires May 26, 2019 [Page 2]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 Information (SNI) to direct TLS connections to the appropriate
 service implementation. This protocol element is transmitted in
 clear text. As the other methods of monitoring get blocked,
 monitoring focuses on the clear text SNI. The purpose of SNI
 encryption is to prevent that.

 In the past, there have been multiple attempts at defining SNI
 encryption. These attempts have generally floundered, because the
 simple designs fail to mitigate several of the attacks listed in

Section 3. In the absence of a TLS level solution, the most popular
 approach to SNI privacy is HTTP level fronting, which we discuss in

Section 4.

2. History of the TLS SNI extension

 The SNI extension was standardized in 2003 in [RFC3546] to facilitate
 management of "colocation servers", in which a multiple services
 shared the same IP address. A typical example would be mutiple web
 sites served by the same web server. The SNI extension carries the
 name of a specific server, enabling the TLS connection to be
 established with the desired server context. The current SNI
 extension specification can be found in [RFC6066].

 The SNI specification allowed for different types of server names,
 but only the "hostname" variant was standardized and deployed. In
 that variant, the SNI extension carries the domain name of the target
 server. The SNI extension is carried in clear text in the TLS
 "Client Hello" message.

2.1. Unanticipated usage of SNI information

 The SNI was defined to facilitate management of servers, but the
 developer of middleboxes soon found out that they could take
 advantage of the information. Many examples of such usage are
 reviewed in [RFC8404]. They include:

 o Censorship of specific sites by "national firewalls",

 o Content filtering by ISP blocking specific web sites in order to
 implement "parental controls", or to prevent access to fraudulent
 web sites, such as used for phishing,

 o ISP assigning different QOS profiles to target services,

 o Enterprise firewalls blocking web sites not deemed appropriate for
 work, or

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc8404

Huitema & Rescorla Expires May 26, 2019 [Page 3]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 o Enterprise firewalls exempting specific web sites from MITM
 inspection, such as healthcare or financial sites for which
 inspection would intrude with the privacy of employees.

 The SNI is probably also included in the general collection of
 metadata by pervasive surveillance actors.

2.2. SNI encryption timeliness

 The clear-text transmission of the SNI was not flagged as a problem
 in the security consideration sections of [RFC3546], [RFC4366], or
 [RFC6066]. These specifications did not anticipate the alternative
 uses and abuses described in Section 2.1. One reason may be that,
 when these RFCs were written, the SNI information was available
 through a variety of other means.

 Many deployments still allocate different IP addresses to different
 services, so that different services can be identified by their IP
 addresses. However, content distribution networks (CDN) commonly
 serve a large number of services through a small number of addresses.

 The SNI carries the domain name of the server, which is also sent as
 part of the DNS queries. Most of the SNI usage described in

Section 2.1 could also be implemented by monitoring DNS traffic or
 controlling DNS usage. But this is changing with the advent of DNS
 resolvers providing services like DNS over TLS [RFC7858] or DNS over
 HTTPS [RFC8484].

 The subjectAltName extension of type dNSName of the server
 certificate, or in its absence the common name component, expose the
 same name as the SNI. In TLS versions 1.0 [RFC2246], 1.1 [RFC4346],
 and 1.2 [RFC5246], the server send their certificate in clear text,
 ensuring that there would be limited benefits in hiding the SNI. But
 the transmission of the server certificate is protected in TLS 1.3
 [RFC8446].

 The decoupling of IP addresses and server names, the deployment of
 DNS privacy, and the protection of server certificates transmissions
 all contribute to user privacy. Encrypting the SNI now will complete
 this push for privacy and make it harder to censor specific internet
 services.

2.3. End-to-end alternatives

 Deploying SNI encryption will help thwarting most of the
 "unanticipated" SNI usages described in Section 2.1, including
 censorship and pervasive surveillance. It will also thwart functions
 that are sometimes described as legitimate. Most of these functions

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc8484
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446

Huitema & Rescorla Expires May 26, 2019 [Page 4]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 can however be realized by other means. For example, some DNS
 service providers offer customers the provision to "opt in" filtering
 services for parental control and phishing protection. Per stream
 QoS can be provided by a combination of packet marking and end to end
 agreements. As SNI encryption becomes common, we can expect more
 deployment of such "end to end" solutions.

 At the moment enterprises have the option of installing a firewall
 performing SNI filtering to prevent connections to certain websites.
 With SNI encryption this becomes ineffective. Obviously, managers
 could block usage of SNI encryption in enterprise computers, but this
 wide scale blocking would diminish the privacy protection of traffic
 leaving the enterprise, which may not be desirable. Enterprises
 managers could rely instead on filtering software and management
 software deployed on enterprises computers.

3. Security and Privacy Requirements for SNI Encryption

 Over the past years, there have been multiple proposals to add an SNI
 encryption option in TLS. Many of these proposals appeared
 promising, but were rejected after security reviews pointed plausible
 attacks. In this section, we collect a list of these known attacks.

3.1. Mitigate Replay Attacks

 The simplest SNI encryption designs replace in the initial TLS
 exchange the clear text SNI with an encrypted value, using a key
 known to the multiplexed server. Regardless of the encryption used,
 these designs can be broken by a simple replay attack, which works as
 follow:

 1- The user starts a TLS connection to the multiplexed server,
 including an encrypted SNI value.

 2- The adversary observes the exchange and copies the encrypted SNI
 parameter.

 3- The adversary starts its own connection to the multiplexed server,
 including in its connection parameters the encrypted SNI copied from
 the observed exchange.

 4- The multiplexed server establishes the connection to the protected
 service, thus revealing the identity of the service.

 One of the goals of SNI encryption is to prevent adversaries from
 knowing which Hidden Service the client is using. Successful replay
 attacks breaks that goal by allowing adversaries to discover that
 service.

Huitema & Rescorla Expires May 26, 2019 [Page 5]

Internet-Draft TLS-SNI Encryption Requirements November 2018

3.2. Avoid Widely Shared Secrets

 It is easy to think of simple schemes in which the SNI is encrypted
 or hashed using a shared secret. This symmetric key must be known by
 the multiplexed server, and by every users of the protected services.
 Such schemes are thus very fragile, since the compromise of a single
 user would compromise the entire set of users and protected services.

3.3. Prevent SNI-based Denial of Service Attacks

 Encrypting the SNI may create extra load for the multiplexed server.
 Adversaries may mount denial of service attacks by generating random
 encrypted SNI values and forcing the multiplexed server to spend
 resources in useless decryption attempts.

 It may be argued that this is not an important DOS avenue, as regular
 TLS connection attempts also require the server to perform a number
 of cryptographic operations. However, in many cases, the SNI
 decryption will have to be performed by a front end component with
 limited resources, while the TLS operations are performed by the
 component dedicated to their respective services. SNI based DOS
 attacks could target the front end component.

3.4. Do not stick out

 In some designs, handshakes using SNI encryption can be easily
 differentiated from "regular" handshakes. For example, some designs
 require specific extensions in the Client Hello packets, or specific
 values of the clear text SNI parameter. If adversaries can easily
 detect the use of SNI encryption, they could block it, or they could
 flag the users of SNI encryption for special treatment.

 In the future, it might be possible to assume that a large fraction
 of TLS handshakes use SNI encryption. If that was the case, the
 detection of SNI encryption would be a lesser concern. However, we
 have to assume that in the near future, only a small fraction of TLS
 connections will use SNI encryption.

3.5. Forward Secrecy

 The general concerns about forward secrecy apply to SNI encryption
 just as well as to regular TLS sessions. For example, some proposed
 designs rely on a public key of the multiplexed server to define the
 SNI encryption key. If the corresponding private key was
 compromised, the adversaries would be able to process archival
 records of past connections, and retrieve the protected SNI used in
 these connections. These designs failed to maintain forward secrecy
 of SNI encryption.

Huitema & Rescorla Expires May 26, 2019 [Page 6]

Internet-Draft TLS-SNI Encryption Requirements November 2018

3.6. Proper Security Context

 We can design solutions in which a fronting service act as a relay to
 reach the protected service. Some of those solutions involve just
 one TLS handshake between the client and the fronting service. The
 master secret is verified by verifying a certificate provided by the
 fronting service, but not by the protected service. These solutions
 expose the client to a Man-In-The-Middle attack by the fronting
 service. Even if the client has some reasonable trust in this
 services, the possibility of MITM attack is troubling.

 There are other classes of solutions in which the master secret is
 verified by verifying a certificate provided by the protected
 service. These solutions offer more protection against a Man-In-The-
 Middle attack by the fronting service.

 The fronting service could be pressured by adversaries. By design,
 it could be forced to deny access to the protected service, or to
 divulge which client accessed it. But if MITM is possible, the
 adversaries would also be able to pressure the fronting service into
 intercepting or spoofing the communications between client and
 protected service.

3.7. Fronting Server Spoofing

 Adversaries could mount an attack by spoofing the Fronting Service.
 A spoofed Fronting Service could act as a "honeypot" for users of
 hidden services. At a minimum, the fake server could record the IP
 addresses of these users. If the SNI encryption solution places too
 much trust on the fronting server, the fake server could also serve
 fake content of its own choosing, including various forms of malware.

 There are two main channels by which adversaries can conduct this
 attack. Adversaries can simply try to mislead users into believing
 that the honeypot is a valid Fronting Server, especially if that
 information is carried by word of mouth or in unprotected DNS
 records. Adversaries can also attempt to hijack the traffic to the
 regular Fronting Server, using for example spoofed DNS responses or
 spoofed IP level routing, combined with a spoofed certificate.

3.8. Supporting multiple protocols

 The SNI encryption requirement does not stop with HTTP over TLS.
 Multiple other applications currently use TLS, including for example
 SMTP [RFC5246], DNS [RFC7858], or XMPP [RFC7590]. These applications
 too will benefit of SNI encryption. HTTP only methods like those
 described in Section 4.1 would not apply there. In fact, even for
 the HTTPS case, the HTTPS tunneling service described in Section 4.1

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc7590

Huitema & Rescorla Expires May 26, 2019 [Page 7]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 is compatible with HTTP 1.0 and HTTP 1.1, but interacts awkwardly
 with the multiple streams feature of HTTP 2.0 [RFC7540]. This points
 to the need of an application agnostic solution, that would be
 implemented fully in the TLS layer.

3.8.1. Hiding the Application Layer Protocol Negotiation

 The Application Layer Protocol Negotiation (ALPN) parameters of TLS
 allow implementations to negotiate the application layer protocol
 used on a given connection. TLS provides the ALPN values in clear
 text during the initial handshake. While exposing the ALPN does not
 create the same privacy issues as exposing the SNI, there is still a
 risk. For example, some networks may attempt to block applications
 that they do not understand, or that they wish users would not use.

 In a sense, ALPN filtering could be very similar to the filtering of
 specific port numbers exposed in some network. This filtering by
 ports has given rise to evasion tactics in which various protocols
 are tunneled over HTTP in order to use open ports 80 or 443.
 Filtering by ALPN would probably beget the same responses, in which
 the applications just move over HTTP, and only the HTTP ALPN values
 are used. Applications would not need to do that if the ALPN was
 hidden in the same way as the SNI.

 In addition to hiding the SNI, it is thus desirable to also hide the
 ALPN. Of course, this implies engineering trade-offs. Using the
 same technique for hiding the ALPN and encrypting the SNI may result
 in excess complexity. It might be preferable to encrypt these
 independently.

3.8.2. Support other transports than HTTP

 The TLS handshake is also used over other transports such as UDP with
 both DTLS [I-D.ietf-tls-dtls13] and QUIC [I-D.ietf-quic-tls]. The
 requirement to encrypt the SNI apply just as well for these
 transports as for TLS over TCP.

 This points to a requirement for SNI Encryption mechanisms to also be
 applicable to non-TCP transports such as DTLS or QUIC.

4. HTTP Co-Tenancy Fronting

 In the absence of TLS level SNI encryption, many sites rely on an
 "HTTP Co-Tenancy" solution. The TLS connection is established with
 the fronting server, and HTTP requests are then sent over that
 connection to the hidden service. For example, the TLS SNI could be
 set to "fronting.example.com", the fronting server, and HTTP requests
 sent over that connection could be directed to "hidden.example.com",

https://datatracker.ietf.org/doc/html/rfc7540

Huitema & Rescorla Expires May 26, 2019 [Page 8]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 accessing the hidden service. This solution works well in practice
 when the fronting server and the hidden server are "co-tenant" of the
 same multiplexed server.

 The HTTP fronting solution can be deployed without modification to
 the TLS protocol, and does not require using any specific version of
 TLS. There are however a few issues regarding discovery, client
 implementations, trust, and applicability:

 o The client has to discover that the hidden service can be accessed
 through the fronting server.

 o The client browser's has to be directed to access the hidden
 service through the fronting service.

 o Since the TLS connection is established with the fronting service,
 the client has no proof that the content does in fact come from
 the hidden service. The solution does thus not mitigate the
 context sharing issues described in Section 3.6.

 o Since this is an HTTP level solution, it would not protect non
 HTTP protocols such as DNS over TLS [RFC7858] or IMAP over TLS
 [RFC2595].

 The discovery issue is common to pretty much every SNI encryption
 solution. The browser issue may be solved by developing a browser
 extension that support HTTP Fronting, and manages the list of
 fronting services associated with the hidden services that the client
 uses. The multi-protocol issue can be mitigated by using
 implementation of other applications over HTTP, such as for example
 DNS over HTTPS [RFC8484]. The trust issue, however, requires
 specific developments.

4.1. HTTPS Tunnels

 The HTTP Fronting solution places a lot of trust in the Fronting
 Server. This required trust can be reduced by tunnelling HTTPS in
 HTTPS, which effectively treats the Fronting Server as an HTTP Proxy.
 In this solution, the client establishes a TLS connection to the
 Fronting Server, and then issues an HTTP Connect request to the
 Hidden Server. This will establish an end-to-end HTTPS over TLS
 connection between the client and the Hidden Server, mitigating the
 issues described in Section 3.6.

 The HTTPS in HTTPS solution requires double encryption of every
 packet. It also requires that the fronting server decrypts and relay
 messages to the hidden server. Both of these requirements make the
 implementation onerous.

https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc8484

Huitema & Rescorla Expires May 26, 2019 [Page 9]

Internet-Draft TLS-SNI Encryption Requirements November 2018

4.2. Delegation Control

 Clients would see their privacy compromised if they contacted the
 wrong fronting server to access the hidden service, since this wrong
 server could disclose their access to adversaries. This requires a
 controlled way to indicate which fronting ferver is acceptable by the
 hidden service.

 This problem is both similar and different from the "fronting server
 spoofing" attack described in Section 3.7. Here, the spoofing would
 be performed by distributing fake advice, such as "to reach example
 hidden.example.com, use fake.example.com as a fronting server", when
 "fake.example.com" is under the control of an adversary.

 In practice, this attack is well mitigated when the hidden service is
 accessed through a specialized application. The name of the fronting
 server can then be programmed in the code of the application. But
 the attack is much harder to mitigate when the hidden service has to
 be accessed through general purpose web browsers. The browsers will
 need a mechanism to obtain the fronting server indication in a secure
 way.

 There are several proposed solutions to this problem, such as
 creating a special form of certificate to codify the relation between
 fronting and hidden server, or obtaining the relation between hidden
 and fronting service through the DNS, possibly using DNSSEC to avoid
 spoofing.

 We can observe that content distribution network have a similar
 requirement. They need to convince the client that "www.example.com"
 can be accessed through the seemingly unrelated "cdn-node-
 xyz.example.net". Most CDN have deployed DNS-based solutions to this
 problem.

4.3. Related work

 The ORIGIN frame defined for HTTP/2 [RFC8336] can be used to flag
 content provided by the hidden server. Secondary certificate
 authentication [I-D.ietf-httpbis-http2-secondary-certs] can be used
 to manage authentication of hidden server content, or to perform
 client authentication before accessing hidden content.

5. Security Considerations

 Replacing clear text SNI transmission by an encrypted variant will
 improve the privacy and reliability of TLS connections, but the
 design of proper SNI encryption solutions is difficult. This

https://datatracker.ietf.org/doc/html/rfc8336

Huitema & Rescorla Expires May 26, 2019 [Page 10]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 document does not present the design of a solution, but provide
 guidelines for evaluating proposed solutions.

 This document lists a number of attacks against SNI encryption in
Section 3, and also in Section 4.2, and presents a list of

 requirements to mitigate these attacks. The current HTTP based
 solutions described in Section 4 only meet some of these
 requirements. In practice, it may well be that no solution can meet
 every requirement, and that practical solutions will have to make
 some compromises.

 In particular, the requirement to not stick out presented in
Section 3.4 may have to be lifted, especially for proposed solutions

 that could quickly reach large scale deployments.

6. IANA Considerations

 This draft does not require any IANA action.

7. Acknowledgements

 A large part of this draft originates in discussion of SNI encryption
 on the TLS WG mailing list, including comments after the tunneling
 approach was first proposed in a message to that list:
 <https://mailarchive.ietf.org/arch/msg/tls/

tXvdcqnogZgqmdfCugrV8M90Ftw>.

 Thanks to Daniel Kahn Gillmor for a pretty detailed review of the
 initial draft. Thanks to Stephen Farrell, Mark Orchezowski, Martin
 Rex and Martin Thomson for their reviews.

8. Informative References

 [I-D.ietf-httpbis-http2-secondary-certs]
 Bishop, M., Sullivan, N., and M. Thomson, "Secondary
 Certificate Authentication in HTTP/2", draft-ietf-httpbis-

http2-secondary-certs-03 (work in progress), October 2018.

 [I-D.ietf-quic-tls]
 Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-16 (work in
 progress), October 2018.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-30 (work in progress),
 November 2018.

https://mailarchive.ietf.org/arch/msg/tls/tXvdcqnogZgqmdfCugrV8M90Ftw
https://mailarchive.ietf.org/arch/msg/tls/tXvdcqnogZgqmdfCugrV8M90Ftw
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-16
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-30

Huitema & Rescorla Expires May 26, 2019 [Page 11]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, DOI 10.17487/RFC2246, January 1999,

 <https://www.rfc-editor.org/info/rfc2246>.

 [RFC2595] Newman, C., "Using TLS with IMAP, POP3 and ACAP",
RFC 2595, DOI 10.17487/RFC2595, June 1999,

 <https://www.rfc-editor.org/info/rfc2595>.

 [RFC3546] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 3546, DOI 10.17487/RFC3546, June 2003,
 <https://www.rfc-editor.org/info/rfc3546>.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, DOI 10.17487/RFC4366, April 2006,
 <https://www.rfc-editor.org/info/rfc4366>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7590] Saint-Andre, P. and T. Alkemade, "Use of Transport Layer
 Security (TLS) in the Extensible Messaging and Presence
 Protocol (XMPP)", RFC 7590, DOI 10.17487/RFC7590, June
 2015, <https://www.rfc-editor.org/info/rfc7590>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

https://datatracker.ietf.org/doc/html/rfc2246
https://www.rfc-editor.org/info/rfc2246
https://datatracker.ietf.org/doc/html/rfc2595
https://www.rfc-editor.org/info/rfc2595
https://datatracker.ietf.org/doc/html/rfc3546
https://www.rfc-editor.org/info/rfc3546
https://datatracker.ietf.org/doc/html/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://datatracker.ietf.org/doc/html/rfc4366
https://www.rfc-editor.org/info/rfc4366
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7590
https://www.rfc-editor.org/info/rfc7590
https://datatracker.ietf.org/doc/html/rfc7858
https://www.rfc-editor.org/info/rfc7858

Huitema & Rescorla Expires May 26, 2019 [Page 12]

Internet-Draft TLS-SNI Encryption Requirements November 2018

 [RFC8336] Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",
RFC 8336, DOI 10.17487/RFC8336, March 2018,

 <https://www.rfc-editor.org/info/rfc8336>.

 [RFC8404] Moriarty, K., Ed. and A. Morton, Ed., "Effects of
 Pervasive Encryption on Operators", RFC 8404,
 DOI 10.17487/RFC8404, July 2018,
 <https://www.rfc-editor.org/info/rfc8404>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

Authors' Addresses

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor WA 98250
 U.S.A

 Email: huitema@huitema.net

 Eric Rescorla
 RTFM, Inc.
 U.S.A

 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/rfc8336
https://www.rfc-editor.org/info/rfc8336
https://datatracker.ietf.org/doc/html/rfc8404
https://www.rfc-editor.org/info/rfc8404
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8484
https://www.rfc-editor.org/info/rfc8484

Huitema & Rescorla Expires May 26, 2019 [Page 13]

