
Workgroup: Network Working Group

Internet-Draft: draft-ietf-tls-snip-00

Published: 25 August 2021

Intended Status: Informational

Expires: 26 February 2022

Authors: M. Thomson

Mozilla

Secure Negotiation of Incompatible Protocols in TLS

Abstract

An extension is defined for TLS that allows a client and server to

detect an attempt to force the use of less-preferred application

protocol even where protocol options are incompatible. This

supplements application-layer protocol negotiation (ALPN), which

allows choices between compatible protocols to be authenticated.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the TLS Working Group

mailing list (tls@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/tls/.

Source for this draft and an issue tracker can be found at https://

github.com/martinthomson/snip.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/tls/
https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/martinthomson/snip
https://github.com/martinthomson/snip
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Incompatible Protocols and SVCB

4. Authenticating Incompatible Protocols

5. Incompatible Protocol Selection

6. Logical Servers

6.1. Validation Process

6.2. QUIC Version Negotiation

6.3. Alternative Services

7. Operational Considerations

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Acknowledgments

Appendix B. Defining Logical Servers

Author's Address

1. Introduction

With increased diversity in protocol choice, some applications are

able to use one of several semantically-equivalent protocols to

achieve their goals. This is particularly notable in HTTP where

there are currently three distinct protocols: HTTP/1.1 [HTTP11],

HTTP/2 [HTTP2], and HTTP/3 [HTTP3]. This is also true of protocols

that support variants based on both TLS [TLS] and DTLS [DTLS].

For protocols that are mutually compatible, Application-Layer

Protocol Negotiation (ALPN; [ALPN]) provides a secure way to

negotiate protocol selection.

In ALPN, the client offers a list of options in a TLS ClientHello

and the server chooses the option that it most prefers. A downgrade

attack occurs where both client and server support a protocol that

the server prefers more than than the selected protocol. ALPN

protects against this attack by ensuring that the server is aware of

¶

¶

¶

https://trustee.ietf.org/license-info

all options the client supports and including those options and the

server choice under the integrity protection provided by the TLS

handshake.

This downgrade protection functions because protocol negotiation is

part of the TLS handshake. The introduction of semantically-

equivalent protocols that use incompatible handshakes introduces new

opportunities for downgrade attack. For instance, it is not possible

to negotiate the use of HTTP/2 based on an attempt to connect using

HTTP/3. The former relies on TCP, whereas the latter uses UDP. These

protocols are therefore mutually incompatible.

This document defines an extension to TLS that allows clients to

discover when servers support alternative protocols that are

incompatible with the currently-selected TLS version. This might be

used to avoid downgrade attack caused by interference in protocol

discovery mechanisms.

This extension is motivated by the addition of new mechanisms, such

as [SVCB]. SVCB enables the discovery of servers that support

multiple different protocols, some of which are incompatible. The

extension can also be used to authenticate protocol choices that are

discovered by other means.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Two protocols are consider "compatible" if it is possible to

negotiate either using the same connection attempt. In comparison,

protocols are "incompatible" if they require separate attempts to

establish a connection.

3. Incompatible Protocols and SVCB

The SVCB record [SVCB] allows a client to learn about services

associated with a domain name. This includes how to locate a server,

along with supplementary information about the server, including

protocols that the server supports. This allows a client to start

using a protocol of their choice without added latency, as the

lookup can be performed concurrently with other name resolution. The

added cost of the additional DNS queries is minimal.

However, SVCB provides no protection against a downgrade attack

between incompatible protocols. An attacker could remove DNS records

for client-preferred protocols, leaving the client to believe that

¶

¶

¶

¶

¶

¶

¶

only less-preferred options are available. If those options are not

compatible with the client-preferred option, the client will not

know to attempt these. The client then only offers options

compatible with the less-preferred options when attempting a TLS

handshake. Even if a client were to inform the server that it

supports a more preferred protocol, the server would not be able to

act upon it.

Authenticating all of the information presented in SVCB records

might provide clients with complete information about server

support, but this is impractical for several reasons:

it is not possible to ensure that all server instances in a

deployment have the same protocol configuration, as deployments

for a single name routinely include multiple providers that

cannot coordinate closely;

the ability to provide a subset of valid DNS records is integral

to many strategies for managing servers; and

it is difficult to ensure that cached DNS records are

synchronized with server state.

Overall, an authenticated TLS handshake is a better source of

authoritative information about the protocols that are supported by

servers.

4. Authenticating Incompatible Protocols

The incompatible_protocols(TBD) TLS extension provides clients with

information about the incompatible protocols that are supported by

the same logical server; see Section 6 for a definition of a logical

server.

enum {

 incompatible_protocols(TBD), (65535)

} ExtensionType;

A client that supports the extension advertises an empty extension.

In response, a server that supports this extension includes a list

of application protocol identifiers. The "extension_data" field of

the value server extension uses the ProtocolName type defined in

[ALPN], which is repeated here. This syntax is shown in Figure 1.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

opaque ProtocolName<1..2^8-1>;

ProtocolName IncompatibleProtocol;

struct {

 select (Handshake.msg_type) {

 case client_hello:

 Empty;

 case encrypted_extensions:

 IncompatibleProtocol incompatible_protocols<3..2^16-1>;

 };

} IncompatibleProtocols;

Figure 1: TLS Syntax for incompatible_protocols Extension

This extension only applies to the ClientHello and

EncryptedExtensions messages. An implementation that receives this

extension in any other handshake message MUST send a fatal

illegal_parameter alert.

A server deployment that supports multiple incompatible protocols

MAY advertise all protocols that are supported by the same logical

server. A server needs to ensure that protocols advertised in this

fashion are available to the client.

A server MUST omit any compatible protocols from this extension.

That is, any protocol that the server might be able to select, had

the client offered the protocol in the

application_layer_protocol_negotiation extension. In comparison,

clients are expected to include all compatible protocols in the

application_layer_protocol_negotiation extension.

5. Incompatible Protocol Selection

This document expands the definition of protocol negotiation to

include both compatible and incompatible protocols and provide

protection against downgrade for both types of selection. ALPN

[ALPN] only considers compatible protocols: the client presents a

set of compatible options and the server chooses its most preferred.

With an selection of protocols that includes incompatible options,

the client makes a selection between incompatible options before

making a connection attempt. Therefore, this design does not enable

negotiation, it instead provides the client with information about

other incompatible protocols that the server might support.

Detecting a potential downgrade between incompatible protocols does

not automatically imply that a client abandon a connection attempt.

It only provides the client with authenticated information about its

options. What a client does with this information is left to client

policy.

¶

¶

¶

¶

¶

¶

In brief:

For compatible protocols, the client offers all acceptable

options and the server selects its most preferred

For incompatible protocols, information the server offers is

authenticated and the client is able to act on that

For a protocol like HTTP/3, this might not result in the client

choosing to use HTTP/3, even if HTTP/3 is preferred and the server

indicates that a service endpoint supporting HTTP/3 is available.

Blocking of UDP or QUIC is known to be widespread. As a result,

clients might adopt a policy of tolerating a downgrade to a TCP-

based protocol, even if HTTP/3 were preferred. However, as blocking

of UDP is highly correlated by access network, clients that are able

to establish HTTP/3 connections to some servers might choose to

apply a stricter policy when a server that indicates HTTP/3 support

is unreachable.

6. Logical Servers

The set of endpoints over which clients can assume availability of

incompatible protocols is the set of endpoints that share an IP

version, IP address, and port number with the TLS server that

provides the incompatible_protocols extension.

This definition includes a port number that is independent of the

protocol that is used. Any protocol that defines a port number is

considered to be equivalent. In particular, incompatible protocols

can be deployed to TCP, UDP, SCTP, or DCCP ports as long as the IP

address and port number is the same.

This determination is made from the perspective of a client. This

means that servers need to be aware of all instances that might

answer to the same IP address and port; see Section 7.

6.1. Validation Process

The type of protocol authentication scope describes how a client

might learn of all of the service endpoints that a server offers in

that scope. If a client has attempted to discover service endpoints

using the methods defined by the protocol authentication scope,

receiving an incompatible_protocols extension from a server is a

strong indication of a potential downgrade attack.

A client considers that a downgrade attack might have occurred if a

server advertises that there are endpoints that support a protocol

that the client prefers over the protocol that is currently in use.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

In response to detecting a potential downgrade attack, a client

might abandon the current connection attempt and report an error. A

client that supports discovery of incompatible protocols, but

chooses not to make a discovery attempt under normal conditions

might instead not fail, but it could use what it learns as cause to

initiate discovery.

6.2. QUIC Version Negotiation

QUIC enables the definition of incompatible protocols that share a

port. This mechanism can be used to authenticate the choice of

application protocol in QUIC. QUIC version negotiation [QUIC-VN] is

used to authenticate the choice of QUIC version.

As there are two potentially competing sets of preferences, clients

need to set preferences for QUIC version and application protocol

that do not result in inconsistent outcomes. For example, if

application protocol A exclusively uses QUIC version X and

application protocol B exclusively uses QUIC version Y, setting a

preference for both A and Y will lead to a failure condition that

cannot be reconciled.

6.3. Alternative Services

It is possible to negotiate protocols based on an established

connection without exposure to downgrade. The Alternative Services

[ALTSVC] bootstrapping in HTTP/3 [HTTP3] does just that. Assuming

that HTTP/2 or HTTP/1.1 are not vulnerable to attacks that would

compromise integrity, a server can advertise the presence of an

endpoint that supports HTTP/3.

Under these assumptions Alternative Services is secure, but it has

performance trade-offs. A client could attempt the protocol it

prefers most, but that comes at a risk that this protocol is not

supported by a server. A client could implement a fallback, which

might even be performed concurrently (see [HAPPY-EYEBALLS]), but

this costs time and resources. A client avoids these costs by

attempting the protocol it believes to be most widely supported,

though this might come with a performance penalty in cases where the

most-preferred protocol is supported.

A client can choose to ignore incompatible protocols when attempting

to use an alternative service.

7. Operational Considerations

By listing incompatible protocols a server needs reliable knowledge

of the existence of these alternatives. This depends on some

coordination of deployments. In particular, coordination is

important if a load balancer distributes load for a single IP

¶

¶

¶

¶

¶

¶

[ALPN]

[RFC2119]

address to multiple server instances. Ensuring consistent

configuration of servers could present operational difficulties as

it requires that incompatible protocols are only listed when those

protocols are deployed across all server instances.

Server deployments can choose not to provide information about

incompatible protocols, which denies clients information about

downgrade attacks but might avoid the operational complexity of

providing accurate information.

During rollout of a new, incompatible protocol, until the deployment

is stable and not at risk of being disabled, servers SHOULD NOT

advertise the existence of the new protocol. Protocol deployments

that are disabled, first need to be removed from the

incompatible_protocols extension or there could be some loss of

service. Though the incompatible_protocols extension only applies at

the time of the TLS handshake, clients might take some time to act

on the information. If an incompatible protocol is removed from

deployment between when the client completes a handshake and when it

acts, this could be treated as an error by the client.

If a server does not list incompatible protocols, clients cannot

learn about other services and so cannot detect downgrade attacks

against those protocols.

8. Security Considerations

This design depends on the integrity of the TLS handshake across all

forms, including TLS [RFC8446], DTLS [DTLS], and QUIC [QUIC-TLS]. An

attacker that can modify a TLS handshake in any one of these

protocols can cause a client to believe that other options do not

exist.

9. IANA Considerations

TODO: register the extension

10. References

10.1. Normative References

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/rfc/

rfc7301>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc7301

[RFC8174]

[ALTSVC]

[DTLS]

[HAPPY-EYEBALLS]

[HTTP11]

[HTTP2]

[HTTP3]

[QUIC-TLS]

[QUIC-VN]

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

10.2. Informative References

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", Work in Progress, Internet-Draft, draft-ietf-tls-

dtls13-43, 30 April 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-tls-dtls13-43>.

Wing, D. and A. Yourtchenko, "Happy Eyeballs:

Success with Dual-Stack Hosts", RFC 6555, DOI 10.17487/

RFC6555, April 2012, <https://www.rfc-editor.org/rfc/

rfc6555>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP/

1.1", Work in Progress, Internet-Draft, draft-ietf-

httpbis-messaging-18, 18 August 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

messaging-18>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

http-34, 2 February 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-quic-http-34>.

Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

Work in Progress, Internet-Draft, draft-ietf-quic-tls-34,

14 January 2021, <https://datatracker.ietf.org/doc/html/

draft-ietf-quic-tls-34>.

Schinazi, D. and E. Rescorla, "Compatible Version

Negotiation for QUIC", Work in Progress, Internet-Draft,

draft-ietf-quic-version-negotiation-04, 26 May 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-quic-

version-negotiation-04>.

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc7838
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://www.rfc-editor.org/rfc/rfc6555
https://www.rfc-editor.org/rfc/rfc6555
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-18
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-18
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-18
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-version-negotiation-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-version-negotiation-04

[RFC8446]

[SVCB]

[TLS]

[URI]

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Schwartz, B., Bishop, M., and E. Nygren, "Service binding

and parameter specification via the DNS (DNS SVCB and

HTTPSSVC)", Work in Progress, Internet-Draft, draft-ietf-

dnsop-svcb-httpssvc-03, 11 June 2020, <https://

datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-

httpssvc-03>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Appendix A. Acknowledgments

Benjamin Schwartz provided significant input into the design of the

mechanism and helped simplify the overall design.

Appendix B. Defining Logical Servers

As incompatible protocols use different protocol stacks, they also

use different endpoints. In other words, it is in many cases

impossible for the exactly same endpoint to support multiple

incompatible protocols. Thus, it is necessary to understand the set

of endpoints at a server that offer the incompatible protocols.

A number of choices are possible here:

The set of endpoints that are authoritative for the same domain

name.

The set of endpoints that are authoritative for the same

"authority" as defined in RFC 3986 [URI], which is in effect

domain name plus port number.

The set of endpoints that are referenced by the same SVCB

ServiceMode record.

The set of endpoints that share an IP address.

The set of endpoints that share an IP address and port number.

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-httpssvc-03
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-httpssvc-03
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-httpssvc-03
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986

The challenge with options based on domain name is that it might

prevent the use of multiple service providers. This is a common

practice for HTTP, where the same domain name can be operated by

multiple CDN operators.

Having multiple service operators also rules out using SVCB

ServiceMode records also as different records might be used to

identify different operators.

Hosts on the same IP address might work, but common deployment

practices include use of different ports for entirely different

services, which can have different operational constraints such as

deployment schedules. Including different ports in the same scope

could force all services on the same host to support a consistent

set of protocols.

This leaves IP and port. There is always a risk that the same port

number is used for completely different purposes depending on the

choice of protocol, but this practice is sufficiently rare that it

is not anticipated to be a problem.

Author's Address

Martin Thomson

Mozilla

Email: mt@lowentropy.net

¶

¶

¶

¶

mailto:mt@lowentropy.net

	Secure Negotiation of Incompatible Protocols in TLS
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Incompatible Protocols and SVCB
	4. Authenticating Incompatible Protocols
	5. Incompatible Protocol Selection
	6. Logical Servers
	6.1. Validation Process
	6.2. QUIC Version Negotiation
	6.3. Alternative Services

	7. Operational Considerations
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Acknowledgments
	Appendix B. Defining Logical Servers
	Author's Address

