
Workgroup: Network Working Group

Internet-Draft: draft-ietf-tls-snip-01

Published: 16 February 2022

Intended Status: Informational

Expires: 20 August 2022

Authors: M. Thomson

Mozilla

Secure Negotiation of Incompatible Protocols in TLS

Abstract

An extension is defined for TLS that allows a client and server to

detect an attempt to force the use of less-preferred application

protocol even where protocol options are incompatible. This

supplements application-layer protocol negotiation (ALPN), which

allows choices between compatible protocols to be authenticated.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. Incompatible Protocol Selection

3.1. Client Policy

3.2. Logical Servers

4. Authenticating Incompatible Protocols

4.1. Validation

4.2. QUIC Version Negotiation

4.3. HTTP Alternative Services

5. Operational Considerations

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Acknowledgments

Appendix B. Defining Logical Servers

Appendix C. Incompatible Protocols and SVCB

Author's Address

1. Introduction

With increased diversity in protocol choice, some applications are

able to use one of several semantically-equivalent protocols to

achieve their goals. This is particularly notable in HTTP where

there are currently three distinct protocols: HTTP/1.1 [HTTP11],

HTTP/2 [HTTP2], and HTTP/3 [HTTP3]. This is also true of protocols

that support variants based on both TLS [TLS] and DTLS [DTLS].

For protocols that are mutually compatible, Application-Layer

Protocol Negotiation (ALPN; [ALPN]) provides a secure way to

negotiate protocol selection.

In ALPN, the client offers a list of options in a TLS ClientHello

and the server chooses the option that it most prefers. A downgrade

attack occurs where both client and server support a protocol that

the server prefers more than than the selected protocol. ALPN

protects against this attack by ensuring that the server is aware of

all options the client supports and including those options and the

server choice under the integrity protection provided by the TLS

handshake.

Downgrade protection in ALPN functions because protocol negotiation

is part of the TLS handshake. The introduction of semantically-

equivalent protocols that use incompatible handshakes introduces new

opportunities for downgrade attack. For instance, it is not possible

to negotiate the use of HTTP/2 based on an attempt to connect using

¶

¶

¶

HTTP/3. The former relies on TCP, whereas the latter uses UDP. These

protocols are therefore mutually incompatible and ALPN cannot be

used to securely select between the two.

This document defines an extension to TLS that allows clients to

discover when a server supports alternative protocols that are

incompatible with the protocol in use. This might be used to detect

a downgrade attack.

Downgrade protection for incompatible protocols only works for

services provided by the same logical server (see Section 3.2). That

is, the protection only applies to servers that operate from the

same IP address and port number from the perspective of the client.

This extension is motivated by the addition of new protocols such as

HTTP/3 [HTTP3] that are semantically equivalent, but incompatible

with existing protocols.

These downgrade protections are intended to work for any method that

a client might use to discover that a server supports a particular

protocol. Special considerations for HTTP Alternative Services

[ALTSVC] is included in Section 4.3 and a discussion of SVCB [SVCB]

can be found in Appendix C.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Two protocols are considered "compatible" if it is possible to

negotiate either using the same connection attempt. In comparison,

protocols are "incompatible" if they require separate attempts to

establish a connection.

3. Incompatible Protocol Selection

This document extends the authentication protections provided by TLS

to cover negotiation of incompatible protocols.

This is complementary to ALPN [ALPN], which only protects the

negotiation of compatible protocols. In ALPN, the client presents a

set of compatible options and the server chooses its most preferred.

This extension works by having a server offer a list of incompatible

protocols that it supports on the same logical server (see Section

3.2). How clients use this information will depend on client policy.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.1. Client Policy

A client has to choose between incompatible options before making a

connection attempt. Thefore, this document does not define a

negotiation mechanism, it only provides authenticated information

that a client can use.

Importantly, detecting a potential downgrade between incompatible

protocols does not automatically imply that a client abandon a

connection attempt. It only provides the client with authenticated

information that can help with making a decision. What a client does

with this information is left to client policy.

For a protocol like HTTP/3, this might not result in the client

choosing to use HTTP/3, even if HTTP/3 is preferred and the server

indicates that a service endpoint supporting HTTP/3 is available.

Blocking of UDP or QUIC is known to be widespread. As a result,

clients might adopt a policy of tolerating a downgrade to a TCP-

based version of HTTP, even if HTTP/3 were preferred. However, as

blocking of UDP is highly correlated by access network, clients that

are able to establish HTTP/3 connections to some servers might

choose to apply a stricter policy when a server that indicates HTTP/

3 support is unreachable.

3.2. Logical Servers

This document relies on the notion of a logical server for

determining how a client interprets information about incompatible

protocols.

Clients can assume availability of incompatible protocols across the

set of endpoints that share an IP version, IP address, and port

number with the TLS server that provides the incompatible_protocols

extension.

This definition includes a port number that is independent of the

protocol that is used. Any protocol that defines a port number is

considered to be equivalent. In particular, incompatible protocols

can be deployed to TCP, UDP, SCTP, or DCCP ports as long as the IP

address and port number is the same.

This determination is made from the perspective of a client. This

means that server operators need to be aware of all instances that

might answer to the same IP address and port; see Section 5.

4. Authenticating Incompatible Protocols

The incompatible_protocols(TBD) TLS extension provides clients with

information about the incompatible protocols that are supported by

¶

¶

¶

¶

¶

¶

¶

the same logical server; see Section 3.2 for a definition of a

logical server.

enum {

 incompatible_protocols(TBD), (65535)

} ExtensionType;

A client that supports the extension advertises an empty extension.

In response, a server that supports this extension includes a list

of application protocol identifiers. The "extension_data" field of

the server extension uses the ProtocolName type defined in [ALPN].

This syntax is shown in Figure 1.

opaque ProtocolName<1..2^8-1>; // From RFC 7301

ProtocolName IncompatibleProtocol;

struct {

 select (Handshake.msg_type) {

 case client_hello:

 Empty;

 case encrypted_extensions:

 IncompatibleProtocol incompatible_protocols<3..2^16-1>;

 };

} IncompatibleProtocols;

Figure 1: TLS Syntax for incompatible_protocols Extension

This extension only applies to the ClientHello and

EncryptedExtensions messages. An implementation that receives this

extension in any other handshake message MUST send a fatal

illegal_parameter alert.

A client offers an empty extension to indicate that is wishes to

receive information about incompatible protocols supported by the

(logical) server.

A server deployment that supports multiple incompatible protocols

MAY advertise all protocols that are supported by the same logical

server. A server needs to ensure that protocols advertised in this

fashion are available to the client.

A server MUST omit any compatible protocols from this extension.

That is, any protocol that the server might be able to select, had

the client offered the protocol in the

application_layer_protocol_negotiation extension. In comparison,

clients are expected to include all compatible protocols in the

application_layer_protocol_negotiation extension.

¶

¶

¶

¶

¶

¶

¶

Information presented by the server is only valid at the time it is

provided. A client can act on that information immediately, but it

cannot retain the information on the expectation that it will be

valid later. A server therefore only needs to consider providing

information that is current for a period that would allow the client

to act, which might amount to a few seconds.

4.1. Validation

If a client has discovered server endpoints for a preferred protocol

that point to the same logical server, receiving an

incompatible_protocols extension that includes that protocol is a

strong indication of a potential downgrade attack.

In response to detecting a potential downgrade attack, a client

might abandon the current connection attempt and report an error.

A client might support an incompatible protocol, but chooses not to

attempt its use under normal conditions might choose not to fail if

it learns that the protocol is supported by the server. This client

might instead make a connection attempt or initiate discovery for

that protocol when it learns that it is available.

4.2. QUIC Version Negotiation

QUIC enables the definition of incompatible protocols that share a

port. The incompatible_protocols extension can be used to

authenticate the choice of application protocols across incompatible

QUIC version. QUIC version negotiation [QUIC-VN] is used to

authenticate the choice of QUIC version.

As there are two potentially competing sets of preferences at

different protocol layers, clients need to set preferences for QUIC

version and application protocol are consistent.

For example, if application protocol A exclusively uses QUIC version

X and application protocol B exclusively uses QUIC version Y,

setting a preference for both A and Y will result in one or other

option not being selected. This would result in failure if the

client applied a policy that regarded either downgrade as an error.

4.3. HTTP Alternative Services

It is possible to select incompatible protocols based on an

established connection. The Alternative Services [ALTSVC]

bootstrapping in HTTP/3 [HTTP3] is not vulnerable to downgrade as

the signal is exchanged over an authenticated connection. A server

can advertise the presence of an endpoint that supports HTTP/3 using

an HTTP/2 or HTTP/1.1 connection.

¶

¶

¶

¶

¶

¶

¶

¶

A client can choose to ignore incompatible protocols when attempting

to use an alternative service.

5. Operational Considerations

By listing incompatible protocols a server needs to be certain that

the incompatible protocols are available. Ensuring that this

information is correct might need some amount of coordination in

server deployments. In particular, coordination is important if a

load balancer distributes load for a single IP address to multiple

server instances, or where anycast [BCP126] is used.

Incompatible protocols can only be listed in the

incompatible_protocols extension when those protocols are deployed

across all server instances. A client might regard lack of

availability for an advertised protocol as a downgrade attack, which

could lead to service outages for those clients.

Server deployments can choose not to provide information about

incompatible protocols might avoid the operational complexity of

providing accurate information. If a server does not list

incompatible protocols, clients cannot gain authenticated

information about their availability and so cannot detect downgrade

attacks against those protocols.

During rollout of a new, incompatible protocol, until the deployment

is stable and not at risk of being disabled, servers SHOULD NOT

advertise the existence of the new protocol.

Protocol deployments that are in the process of being disabled first

need to be removed from the incompatible_protocols extension. If a

disabled protocol is advertised to clients, clients might regard

this as a downgrade attack. Though the incompatible_protocols

extension only applies at the time of the TLS handshake, clients

might take some time to act on the information. If an incompatible

protocol is removed from deployment between when the client

completes a handshake and when it acts, this could be treated as an

error by the client.

6. Security Considerations

This design depends on the integrity of the TLS handshake across all

forms, including TLS [RFC8446], DTLS [DTLS], and QUIC [QUIC-TLS].

Similarly, integrity is necessary across all TLS versions that a

client is willing to negotiate. An attacker that can modify a TLS

handshake in any one of these protocols or versions can cause a

client to believe that other options do not exist.

¶

¶

¶

¶

¶

¶

¶

Value:

Extension Name:

TLS 1.3:

DTLS-Only:

Recommended:

Reference:

[ALPN]

[ALTSVC]

[RFC2119]

[RFC8174]

[BCP126]

[DTLS]

7. IANA Considerations

IANA is requested to assign a new value from the "TLS ExtensionType

Values" registry:

TBD

incompatible_protocols

CH, EE

N

Y

this document, Section 4

8. References

8.1. Normative References

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/rfc/

rfc7301>.

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

8.2. Informative References

Abley, J. and K. Lindqvist, "Operation of Anycast

Services", BCP 126, RFC 4786, December 2006.

<https://www.rfc-editor.org/info/bcp126>

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", Work in Progress, Internet-Draft, draft-ietf-tls-

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc7838
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/info/bcp126

[HTTP11]

[HTTP2]

[HTTP3]

[QUIC-TLS]

[QUIC-VN]

[RFC8446]

[SVCB]

[TLS]

[URI]

dtls13-43, 30 April 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-tls-dtls13-43>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP/

1.1", Work in Progress, Internet-Draft, draft-ietf-

httpbis-messaging-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

messaging-19>.

Thomson, M. and C. Benfield, "HTTP/2", Work in Progress,

Internet-Draft, draft-ietf-httpbis-http2bis-07, 24

January 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-httpbis-http2bis-07>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

http-34, 2 February 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-quic-http-34>.

Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

Work in Progress, Internet-Draft, draft-ietf-quic-tls-34,

14 January 2021, <https://datatracker.ietf.org/doc/html/

draft-ietf-quic-tls-34>.

Schinazi, D. and E. Rescorla, "Compatible Version

Negotiation for QUIC", Work in Progress, Internet-Draft,

draft-ietf-quic-version-negotiation-05, 25 October 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-quic-

version-negotiation-05>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Schwartz, B., Bishop, M., and E. Nygren, "Service binding

and parameter specification via the DNS (DNS SVCB and

HTTPSSVC)", Work in Progress, Internet-Draft, draft-ietf-

dnsop-svcb-httpssvc-03, 11 June 2020, <https://

datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-

httpssvc-03>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2bis-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2bis-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-version-negotiation-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-version-negotiation-05
https://www.rfc-editor.org/rfc/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-httpssvc-03
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-httpssvc-03
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-httpssvc-03
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986

Appendix A. Acknowledgments

Benjamin Schwartz provided significant input into the design of the

mechanism and helped simplify the overall design.

Appendix B. Defining Logical Servers

As incompatible protocols use different protocol stacks, they also

use different endpoints. In other words, it is impossible for a

single endpoint to support multiple incompatible protocols. Thus, it

is necessary to understand the set of endpoints at a server that

offer the incompatible protocols.

Thus, the definition of where incompatible protocols needs to

encompass multiple endpoints somehow.

A number of choices are possible here:

The set of endpoints that are authoritative for the same domain

name.

The set of endpoints that are authoritative for the same

"authority" as defined in RFC 3986 [URI], which is in effect

domain name plus port number.

The set of endpoints that are referenced by the same SVCB

ServiceMode record; see Section 2.4.3 of [SVCB].

The set of endpoints that share an IP address.

The set of endpoints that share an IP address and port number.

The challenge with options based on domain name is that it might

prevent the use of multiple service providers. This is a common

practice for HTTP, where the same domain name can be operated by

multiple CDN operators.

Having multiple service operators also rules out using SVCB

ServiceMode records also as different records might be used to

identify different operators.

Hosts on the same IP address might work, but common deployment

practices include use of different ports for entirely different

services. These can have different operational constraints, such as

deployment schedules. Including different ports in the same scope

could force all services on the same host to support a consistent

set of protocols.

This leaves IP and port. There is a risk that the same port number

is used for completely different purposes depending on the choice of

¶

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

* ¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-httpssvc-03#section-2.4.3

protocol. This practice is sufficiently rare that it is not

anticipated to be a problem. Finally, a deployment with no ability

to coordinate the deployment of protocols that share an IP and port

can choose not to advertise the availability of incompatible

protocols.

Appendix C. Incompatible Protocols and SVCB

The SVCB record [SVCB] allows a client to learn about services

associated with a domain name. This includes how to locate a server,

along with supplementary information about the server, including

protocols that the server supports. This allows a client to start

using a protocol of their choice without added latency, as a query

for SVCB records can be performed at the same time as name

resolution.

However, SVCB provides no protection against a downgrade attack

between incompatible protocols. An attacker could remove DNS records

for protocols that the client prefers, leaving the client to believe

that only less-preferred options are available. If removed options

are not compatible with the option that is chosen, the client will

attempt those less-preferred options when attempting a TLS

handshake.

Authenticating all of the information presented in SVCB records

might provide clients with complete information about server

support, but this is impractical for several reasons:

it is not possible to ensure that all server instances in a

deployment have the same protocol configuration, as deployments

for a single name routinely include multiple providers that

cannot coordinate closely;

the ability to provide a subset of valid DNS records is integral

to many strategies for managing servers; and

ensuring that cached DNS records are synchronized with server

state is challenging in a number of deployments.

Overall, an authenticated TLS handshake is a better source of

authoritative information.

Author's Address

Martin Thomson

Mozilla

Email: mt@lowentropy.net

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

mailto:mt@lowentropy.net

	Secure Negotiation of Incompatible Protocols in TLS
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Incompatible Protocol Selection
	3.1. Client Policy
	3.2. Logical Servers

	4. Authenticating Incompatible Protocols
	4.1. Validation
	4.2. QUIC Version Negotiation
	4.3. HTTP Alternative Services

	5. Operational Considerations
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Acknowledgments
	Appendix B. Defining Logical Servers
	Appendix C. Incompatible Protocols and SVCB
	Author's Address

