TLS Working Group D. Taylor
Internet-Draft Forge Research Pty Ltd
Expires: December 6, 2004 T. Wu
Arcot Systems

N. Mavroyanopoulos

T. Perrin

June 7, 2004

Using SRP for TLS Authentication
draft-ietf-tls-srp-07
Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on December 6, 2004.
Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract

This memo presents a technique for using the Secure Remote Password

protocol ([SRP], [SRP-6]) as an authentication method for the
Transport Layer Security protocol [TLS].

Taylor, et al. Expires December 6, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Using SRP for TLS Authentication

Table of Contents

1
2.

I

oo >

E RSN (08)

Introduction
SRP Authentication in TLS

2.1 Notation and Terminology . .
2.2 Handshake Protocol Overview
2.3 Text Preparation
2.4 SRP Verifier Creation .
2.5 Changes to the Handshake Message Contents
2.5.1 Client Hello
2.5.2 Server Certificate
2.5.3 Server Key Exchange
2.5.4 Client Key Exchange .
2.6 Calculating the Pre-master Secret
2.7 Cipher Suite Definitions
2.8 New Message Structures
2.8.1 Client Hello
2.8.2 Server Key Exchange
2.8.3 Client Key Exchange
2.9 Error Alerts

Security Considerations
References ..
Normative References
Informative References
Authors' Addresses
SRP Group Parameters
Acknowledgements .
Intellectual Property and Copyrlght Statements

N =

June 2004

‘B ‘E)\ \5 ‘i ‘(T) \5 ‘B ‘B ‘E ‘8 [© [© [© [0 [0 [0 N N o o o o1 s W

Taylor, et al. Expires December 6, 2004 [Page 2]

Internet-Draft Using SRP for TLS Authentication June 2004

1.

Introduction

At the time of writing TLS [TLS] uses public key certificates, or
Kerberos, for authentication.

These authentication methods do not seem well suited to the
applications now being adapted to use TLS ([IMAP] or [FTP], for
example). Given that these protocols are designed to use the user
name and password method of authentication, being able to safely use
user names and passwords provides an easier route to additional
security.

SRP ([SRP], [SRP-6]) is an authentication method that allows the use
of user names and passwords over unencrypted channels without
revealing the password to an eavesdropper. SRP also supplies a
shared secret at the end of the authentication sequence that can be
used to generate encryption keys.

This document describes the use of the SRP authentication method for
TLS.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

https://datatracker.ietf.org/doc/html/rfc2119

Taylor, et al. Expires December 6, 2004 [Page 3]

Internet-Draft Using SRP for TLS Authentication June 2004

2. SRP Authentication in TLS
2.1 Notation and Terminology

The version of SRP used here is sometimes referred to as "SRP-6"
[SRP-6]. This version is a slight improvement over "SRP-3", which
was described in [SRP] and [REC2945].

This document uses the variable names defined in [SRP-6]:

N, g: group parameters (prime and generator)

s: salt

B, b: server's public and private values
A, a: client's public and private values
I: user name (aka "identity")

P: password

v: verifier

The | symbol indicates string concatenation, the A operator is the
exponentiation operation, and the % operator is the integer remainder
operation. Conversion between integers and byte-strings assumes the
most-significant bytes are stored first, as per [TLS] and [RFC2945].

2.2 Handshake Protocol Overview

The advent of [SRP-6] allows the SRP protocol to be implemented using
the standard sequence of handshake messages defined in [TLS].

The parameters to various messages are given in the following

diagram.
Client Server
I I
Client Hello (I) ------------------------ > |
| <emmmmm oo Server Hello
I T T Certificate*
N Server Key Exchange (N, g, s, B)
I e e Server Hello Done
Client Key Exchange (A) ----------------- > |
[Change cipher spec]
Finished -------------“--“-mm oo > |
| [Change cipher spec]
I T Finished
I I
Application Data <-------------- > Application Data

* Indicates an optional message which is not always sent.

https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945

Taylor, et al. Expires December 6, 2004 [Page 4]

Internet-Draft Using SRP for TLS Authentication June 2004

Figure 1

2.3 Text Preparation

The user name and password strings shall be UTF-8 encoded Unicode,
prepared using the [SASLPrep] profile of [StringPrep].

2.4 SRP Verifier Creation

The verifier is calculated as described in section 3 of [RFC2945].
We give the algorithm here for convenience.

The verifier (v) is computed based on the salt (s), user name (I),
password (P), and group parameters (N, g). The computation uses the
[SHAL1] hash algorithm:

X
\

SHA1(s | SHAL(I | ":" | P))
grxX % N

2.5 Changes to the Handshake Message Contents

This section describes the changes to the TLS handshake message
contents when SRP is being used for authentication. The definitions
of the new message contents and the on-the-wire changes are given in
Section 2.8.

2.5.1 Client Hello

The user name is appended to the standard client hello message using
the hello message extension mechanism defined in [TLSEXT] (see
Section 2.8.1).

2.5.1.1 Session Resumption

When a client attempts to resume a session that uses SRP
authentication, the client MUST include the user name extension in
the client hello message, in case the server cannot or will not allow
session resumption, meaning a full handshake is required.

If the server does agree to resume an existing session the server
MUST ignore the information in the SRP extension of the client hello
message, except for its inclusion in the finished message hashes.
This is to ensure attackers cannot replace the authenticated identity
without supplying the proper authentication information.

https://datatracker.ietf.org/doc/html/rfc2945#section-3

Taylor, et al. Expires December 6, 2004 [Page 5]

Internet-Draft Using SRP for TLS Authentication June 2004

2.5.1.2 Missing SRP Username

The client may offer SRP ciphersuites in the hello message but omit
the SRP extension. If the server would like to select an SRP
ciphersuite in this case, the server MAY return a
missing_srp_username alert (see Section 2.9) immediately after
processing the client hello message. This alert signals the client
to resend the hello message, this time with the SRP extension. This
allows the client to advertise that it supports SRP, but not have to
prompt the user for his user name and password, nor expose the user
name in the clear, unless necessary.

After sending the missing_srp_username alert, the server MUST leave
the TLS connection open, yet reset its handshake protocol state so it
is prepared to receive a second client hello message. Upon receiving
the missing_srp_username alert, the client MUST either send a second
client hello message, or send a fatal user_cancelled alert.

If the client sends a second hello message, the second hello message
MUST offer SRP ciphersuites, and MUST contain the SRP extension, and
the server MUST choose one of the SRP ciphersuites. Both client
hello messages MUST be treated as handshake messages and included in
the hash calculations for the TLS Finished message. The premaster
and master secret calculations will use the random value from the
second client hello message, not the first.

2.5.1.3 Unknown SRP Username

If the server doesn't have a verifier for the given user name, the
server MAY abort the handshake with an unknown_srp_username alert
(see Section 2.9). Alternatively, if the server wishes to hide the
fact that this user name doesn't have a verifier, the server MAY
simulate the protocol as if a verifier existed, but then reject the
client's finished message with a bad_record_mac alert, as if the
password was incorrect.

To simulate the existence of an entry for each user name, the server
must consistently return the same salt (s) and group (N, g) values
for the same user name. For example, the server could store a secret
"seed key" and then use HMAC-SHA1l(seed_key, "salt" | user_name) to
generate the salts [HMAC]. For B, the server can return a random
value between 1 and N-1 inclusive. However, the server should take
care to simulate computation delays. One way to do this is to
generate a fake verifier using the "seed key" approach, and then
proceed with the protocol as usual.

Taylor, et al. Expires December 6, 2004 [Page 6]

Internet-Draft Using SRP for TLS Authentication June 2004

2.5.2 Server Certificate

The server MUST send a certificate if it agrees to an SRP cipher
suite that requires the server to provide additional authentication
in the form of a digital signature. See Section 2.7 for details of
which ciphersuites defined in this document require a server
certificate to be sent.

2.5.3 Server Key Exchange

The server key exchange message contains the prime (N), the generator
(g), and the salt value (s) read from the SRP password file based on
the user name (I) received in the client hello extension.

The server key exchange message also contains the server's public
value (B). The server calculates this value as B = k*v + g”"b % N,
where b is a random number which SHOULD be at least 256 bits in
length, and k = SHA1(N | g).

If the server has sent a certificate message, the server key exchange
message MUST be signed.

The group parameters (N, g) sent in this message MUST have N as a
safe prime (a prime of the form N=2gq+1, where q is also prime). The
integers from 1 to N-1 will form a group under multiplication % N,
and g MUST be a generator of this group. The SRP group parameters in
Appendix A are proven to have these properties, so the client SHOULD
accept any parameters from this Appendix which have large enough N
values to meet his security requirements. The client MAY accept
other group parameters from the server, either by prior arrangement,
or by checking the parameters himself.

To check that N is a safe prime, the client should use some method
such as performing 64 iterations of the Miller-Rabin test with random
bases (selected from 2 to N-2) on both N and q (by performing 64
iterations, the probability of a false positive is no more than
27-128). To check that g is a generator of the group, the client can
check that 1 < g < N-1, and g~rq % N equals N-1. Performing these
checks may be time-consuming; after checking new parameters, the
client may want to add them to a known-good list.

Group parameters that are not accepted via one of the above methods
MUST be rejected with an untrusted_srp_parameters alert (see Section
2.9).

The client MUST abort the handshake with an illegal_parameter alert
if B % N = 0.

Taylor, et al. Expires December 6, 2004 [Page 7]

Internet-Draft Using SRP for TLS Authentication June 2004

2.5.4 Client Key Exchange

The client key exchange message carries the client's public value
(A). The client calculates this value as A = gha % N, where a is a
random number which SHOULD be at least 256 bits in length.

The server MUST abort the handshake with an illegal_parameter alert
if A% N = 0.

2.6 Calculating the Pre-master Secret

The pre-master secret is calculated by the client as follows:

I, P = <read from user>

N, g, s, B = <read from server>
a = random()

A =gMra % N

u = SHA1(A | B)

k = SHAL(N | g)

X = SHA1(s | SHAL(I | ":" | P))

<premaster secret> = (B - (k * gMx)) A (a + (u * x)) % N

The pre-master secret is calculated by the server as follows:

, 9, s, v = <read from password file>
= random()
= SHAL(N | g)

k*v + gAb % N

<read from client>

SHA1(A | B)

<premaster secret> = (A * vAu) A b % N

N
b
k
B
A
u

The finished messages perform the same function as the client and
server evidence messages (M1 and M2) specified in [REC2945]. If
either the client or the server calculate an incorrect premaster
secret, the finished messages will fail to decrypt properly, and the
other party will return a bad_record_mac alert.

If a client application receives a bad_record_mac alert when
performing an SRP handshake, it should inform the user that the
entered user name and password are incorrect.

2.7 Cipher Suite Definitions

The following cipher suites are added by this draft. The usage of
AES ciphersuites is as defined in [RFC3268].

https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc3268

Taylor, et al. Expires December 6, 2004 [Page 8]

Internet-Draft Using SRP for TLS Authentication

CipherSuite TLS_SRP_SHA _WITH_3DES_EDE_CBC_SHA
CipherSuite TLS_SRP_SHA RSA WITH_3DES_EDE_CBC_SHA
CipherSuite TLS_SRP_SHA DSS_WITH_3DES_EDE_CBC_SHA
CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA
CipherSuite TLS_SRP_SHA RSA WITH_AES_128_CBC_SHA
CipherSuite TLS_SRP_SHA DSS_WITH_AES_128_CBC_SHA
CipherSuite TLS_SRP_SHA WITH_AES_256_CBC_SHA
CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA =
CipherSuite TLS_SRP_SHA DSS_WITH_AES_256_CBC_SHA =

e e e N N e e M Man

June 2004

0x00, O0x50
0X00, 0x51
0x00, 0x52
0x00, 0x53
0x00, Ox54
0x00, 0x55
0x00, 0x56
0x00, O0x57
0x00, 0x58

Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
require the server to send a certificate message containing a
certificate with the specified type of public key, and to sign the
server key exchange message using a matching private key.

Cipher suites that do not include a digital signature algorithm
identifier assume the server is authenticated by its possesion of the

SRP verifier.

Implementations conforming to this specification MUST implement the
TLS_SRP_SHA WITH_3DES_EDE_CBC_SHA ciphersuite, SHOULD implement the

+i
+i
}i
}i
ti
+i
}i
}i
ti

TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA WITH_AES_256_CBC_SHA
ciphersuites, and MAY implement the remaining ciphersuites.

2.8 New Message Structures

This section shows the structure of the messages passed during a
handshake that uses SRP for authentication. The representation

language used is the same as that used in [TLS].

2.8.1 Client Hello

A new value, "srp(6)", has been added to the enumerated ExtensionType
defined in [TLSEXT]. This value MUST be used as the extension number

for the SRP extension.

The "extension_data" field of the SRP extension SHALL contain:

opaque sSrp_I<1..2/8-1>
where srp_I is the user name, encoded per Section 2.4.
2.8.2 Server Key Exchange

A new value, "srp", has been added to the enumerated
KeyExchangeAlgorithm originally defined in [TLS].

When the value of KeyExchangeAlgorithm is set to "srp"

4

the server's

Taylor, et al. Expires December 6, 2004 [Page 9]

Internet-Draft Using SRP for TLS Authentication June 2004

SRP parameters are sent in the server key exchange message, encoded
in a ServerSRPParams structure.

If a certificate is sent to the client the server key exchange
message must be signed.

enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;

struct {
select (KeyExchangeAlgorithm) {
case diffie_hellman:
ServerDHParams params;
Signature signed_params;
case rsa:
ServerRSAParams params;
Signature signed_params;
case srp: /* new entry */
ServerSRPParams params;
Signature signed_params;
iy

} ServerKeyExchange;

struct {
opaque Srp_N<1..2/A16-1>;
opaque srp_g<1l..2716-1>;
opaque srp_s<1..2/78-1>
opaque sSrp_B<1..2/A16-1>;
} ServerSRPParams; /* SRP parameters */

2.8.3 Client Key Exchange

When the value of KeyExchangeAlgorithm is set to "srp", the client's
public value (A) is sent in the client key exchange message, encoded
in a ClientSRPPublic structure.

struct {
select (KeyExchangeAlgorithm) {
case rsa: EncryptedPreMasterSecret;
case diffie_hellman: ClientDiffieHellmanPublic;
case srp: ClientSRPPublic; /* new entry */
} exchange_keys;
} ClientKeyExchange;

struct {
opaque Srp_A<1l..2716-1>;
} ClientSRPPublic;

Taylor, et al. Expires December 6, 2004 [Page 10]

Internet-Draft Using SRP for TLS Authentication June 2004

2.9 Error Alerts
Three new error alerts are defined:

0o "unknown_srp_username" (120) - this alert MAY be sent by a server
that receives an unknown user name. This alert is always fatal.
See Section 2.5.1.3 for details.

o "missing_srp_username" (121) - this alert MAY be sent by a server
that would like to select an offered SRP ciphersuite, if the SRP
extension is absent from the client's hello message. This alert
is always a warning. Upon receiving this alert, the client MAY
send a new hello message on the same connection, this time
including the SRP extension. See Section 2.5.1.2 for details.

0o '"untrusted_srp_parameters" (122) - this alert MUST be sent by a
client that receives unknown or untrusted (N, g) values. This
alert is always fatal. See Section 2.5.3 for details.

Taylor, et al. Expires December 6, 2004 [Page 11]

Internet-Draft Using SRP for TLS Authentication June 2004

3.

Security Considerations

If an attacker is able to steal the SRP verifier file, the attacker
can masquerade as the real server, and can also use dictionary
attacks to recover client passwords.

An attacker could repeatedly contact an SRP server and try to guess a
legitimate user's password. Servers SHOULD take steps to prevent
this, such as limiting the rate of authentication attempts from a
particular IP address, or against a particular user account, or
locking the user account once a threshold of failed attempts is
reached.

The client's user name is sent in the clear in the Client Hello
message. To avoid sending the user name in the clear, the client
could first open a conventional anonymous, or server-authenticated
connection, then renegotiate an SRP-authenticated connection with the
handshake protected by the first connection.

The checks described in Section 2.5.3 and Section 2.5.4 on the
received values for A and B are crucial for security and MUST be
performed.

The private values a and b SHOULD be at least 256 bit random numbers,
to give approximately 128 bits of security against certain methods of
calculating discrete logarithms.

If the client receives a missing_srp_username alert, the client
should be aware that unless the handshake protocol is run to
completion, this alert may have been inserted by an attacker. If the
handshake protocol is not run to completion, the client should not
make any decisions, nor form any assumptions, based on receiving this
alert.

It is possible to choose a (user name, password) pair such that the
resulting verifier will also match other, related, (user name,
password) pairs. Thus, anyone using verifiers should be careful not
to assume that only a single (user name, password) pair matches the
verifier.

Taylor, et al. Expires December 6, 2004 [Page 12]

Internet-Draft Using SRP for TLS Authentication June 2004

4. References
4.1 Normative References

[TLS] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,
January 1999.

[SRP-6] Wu, T., "SRP-6: Improvements and Refinements to the Secure
Remote Password Protocol", October 2002,
<http://srp.stanford.edu/srp6.ps>.

[TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.
and T. Wright, "TLS Extensions", RFC 3546, June 2003.

[StringPrep]
Hoffman, P. and M. Blanchet, "Preparation of
Internationalized Strings ("stringprep")", REC 3454,
December 2002.

[SASLPrep]
Zeilenga, K., "SASLprep: Stringprep profile for user names
and passwords'", draft-ietf-sasl-saslprep-09 (work in
progress), April 2004.

[RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
REC 2945, September 2000.

[SHA1] "Announcing the Secure Hash Standard", FIPS 180-1,
September 2000.

[HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication", RFEC 2104,
February 1997.

[RFC3268] Chown, P., "Advanced Encryption Standard (AES)
Ciphersuites for Transport Layer Security (TLS)", RFC
3268, June 2002.

[MODP] Kivinen, T. and M. Kojo, "More Modular Exponentiation
(MODP) Diffie-Hellman groups for Internet Key Exchange
(IKE)", RFC 3526, May 2003.

4.2 Informative References

[IMAP] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
June 1999.

[FTP] Ford-Hutchinson, P., Carpenter, M., Hudson, T., Murray, E.

https://datatracker.ietf.org/doc/html/rfc2246
http://srp.stanford.edu/srp6.ps
https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-saslprep-09
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3268
https://datatracker.ietf.org/doc/html/rfc3268
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc2595

Taylor, et al. Expires December 6, 2004 [Page 13]

Internet-Draft Using SRP for TLS Authentication June 2004

and V. Wiegand, "Securing FTP with TLS",
draft-murray-auth-ftp-ssl1-13 (work in progress), March 2004.

[SRP] Wu, T., "The Secure Remote Password Protocol", Proceedings of
the 1998 Internet Society Network and Distributed System
Security Symposium pp. 97-111, March 1998.

Authors' Addresses

David Taylor
Forge Research Pty Ltd

EMail: DavidTaylor@forge.com.au
URI: http://www.forge.com.au/

Tom Wu
Arcot Systems

EMail: tom@arcot.com
URI: http://www.arcot.com/

Nikos Mavroyanopoulos

EMail: nmav@gnutls.org
URI: http://www.gnutls.org/

Trevor Perrin

EMail: trevp@trevp.net
URI: http://trevp.net/

https://datatracker.ietf.org/doc/html/draft-murray-auth-ftp-ssl-13
http://www.forge.com.au/
http://www.arcot.com/
http://www.gnutls.org/
http://trevp.net/

Taylor, et al. Expires December 6, 2004 [Page 14]

Internet-Draft

Appendix A.

Using SRP for TLS Authentication

SRP Group Parameters

June 2004

The 1024, 1536, and 2048-bit groups are taken from software developed
by Tom Wu and Eugene Jhong for the Stanford SRP distribution, and
subsequently proven to be prime.

[MODP],
of N,

The larger primes are taken from

The 1024-bit and 1536-bit groups MUST be supported.

1.

3.

1024-bit Group

The hexadecimal value is:

EEAFOABY
9C256576
8E495C1D
7BCF1885
FD5138FE

ADB38DD6
D674DF74
6089DAD1
C529F566
8376435B

The generator is: 2.
1536-bit Group

9C33F80A
96EA81D3
5DC7D7B4
660E57EC
9FC61D2F

The hexadecimal value is:

9DEF3CAF
4B19CC4D
80B655BB
E3BAB63D
6EDF0195
F7CCB7AE
8CE7A28C

B939277A
5F4F5F55
9A22ES8DC
47548381
39349627
837C264A
2442C6F3

The generator is: 2.
2048-bit Group

B1F12A86
6E27CBDE
DFO28A7C
DBC5B1FC
DB2FD53D
E3A9BEBS8
15180F93

The hexadecimal value is:

AC6BDB41
3DB56050
CD7F48A9
D5SFAAAES
7359D041
436C6481
S5EA7T7A27
03CE5329
94B5C803
9E4AFF73

324A9A9B
A37329CB
DAG4FD50
2918A996
DS5C33EA7
F1D2B907
75D2ECFA
9CCCo41C
D89F7AE4

The generator is: 2.
3072-bit Group

F166DESE
B4AO99ED
E8083969
2FOGB93B8
1D281E44
8717461A
032CFBDB
7BC308D8
35DE236D

FA8FC5ES
383B4813
6154D6B6
68EDBC3C
COEBOGES

17A47BBB
51C6A94B
EC67FODO
764E3F4B
24B7C486
7F8A2FE9
499A234D

1389582F
8193E075
EDB767B0O
55F97993
6B14773B
5B9D32E6
F52FB378
2A5698F3
525F5475

60726187
D692C6EO
CE8EF4AD
05726CCO

DBAS51DF4
E4607A29
8134B1C8
53DD9DA1
65772E43
B8B5292E
CF76E3FE

AF72B665
7767A13D
CF609517
EC975EEA
CA97B43A
88F87748
61602790
A8DOC382
9B65E372

75FF3COB
EODSDS8E2
69B15D49
2FD4CBF4

99AC4C80
1558903B
B9798914
158BFD3E
7D6C7F8C
5A021FFF
D135F9BB

1987EEQ7
D52312AB
9A163AB3
A80OD740A
23FB8016
544523B5
O4ES57AEG
71AE35F8
FCD68EF2

but generators have been calculated that are primitive roots
unlike the generators in [MODP].

9EA2314C
50B98BE4
82559B29
976EAA9A

BEEEA961
AGDOF843
9B60O9EOB
2B9C8CF5
E442734A
5E91479E

FC319294
4B03310D
661A05FB
DBFA4FF74
76BD207A
24B0OD57D
AF874E73
EODBFBB6
OFA7111F

This prime is: 2A3072 - 2A3008 - 1 + 2A64 * { [272942 pi] +

1690314 }

Taylor, et al. Expires December 6, 2004 [Page 15]

Its hexadecimal value is:

FFFFFFFF
8A67CCT74
302BOA6D
A637ED6B
49286651
FD24CF5F
670C354E
180E8603
3995497C
04507A33
B3970F85
1AD2EE6B
BBE11757
EOFD108E

FFFFFFFF
020BBEA6
F25F1437
OBFF5CB6
ECE45B3D
83655D23
4ABC9804
9B2783A2
EA956AES
A85521AB
ABE1EACT
F12FFAQ6
7A615D6C
4B82D120

The generator is: 5.
4096-bit Group

COOFDAA2
3B139B22
4FE1356D
FAO06B7ED
C2007CB8
DCA3AD96
F1746C08
ECO7A28F
15D22618
DF1CBAG4
ABF5AE8C
D98A0864
770988C0
A93AD2CA

2168C234
514A0879
6D51C245
EE386BFB
A163BF05
1C62F356
CA18217C
B5C55DFO
98FAQ510
ECFB8504
DB933D7
D8760273
BAD946E2
FFFFFFFF

C4C6628B
8E3404DD
E485B576
5A899FA5
98DA4836
208552BB
32905E46
6F4C52C9
15728E5A
58DBEFOA
1E8C94E0
3EC86A64
O8E24FA0
FFFFFFFF

80DC1CD1
EF9519B3
625E7EC6
AE9F2411
1C55D39A
9ED52907
2E36CE3B
DE2BCBF6
8AAAC42D
8AEA7157
4A25619D
521F2B18
74E5AB31

29024E08
CD3A431B
F44C42E9
7C4B1FEG
69163FAS8
7096966D
E39E772C
95581718
AD33176D
5D060C7D
CEE3D226
177B206C
43DB5BFC

This prime is: 274096 - 27A4032 - 1 + 27A64 * { [2A3966 pi] +

240904 }

Its hexadecimal value 1is:

FFFFFFFF
8A67CC74
302BOA6D
A637ED6B
49286651
FD24CF5F
670C354E
180E8603
3995497C
04507A33
B3970F85
1AD2EE6B
BBE11757
EOFD108E
99C32718
O4DESEF9
233BA186
D5BO5AA9
FFFFFFFF

FFFFFFFF
020BBEA6
F25F1437
OBFF5CB6
ECE45B3D
83655D23
4ABC9804
9B2783A2
EA956AES
A85521AB
AGE1EAC7
F12FFA06
7A615D6C
4B82D120
6AF4E23C
2ESEFC14
515BE7ED
93B4EA98
FFFFFFFF

The generator is: 5.
6144-bit Group

CO90FDAA2
3B139B22
4FE1356D
F406B7ED
C2007CB8
DCA3AD96
F1746C08
ECO7A28F
15D22618
DF1CBAG4
ABF5AES8C
D98A0864
770988C0O
A9210801
1A946834
1FBECAAG
1F612970
8D8FDDC1

2168C234
514A0879
6D51C245
EE386BFB
A163BFO5
1C62F356
CA18217C
B5C55DF0
98FA0510
ECFB8504
DBO933D7
D8760273
BAD946E2
1A723C12
B6150BDA
287C5947
CEE2D7AF
86FFB7DC

C4C6628B
8E3404DD
E485B576
5A899FA5
98DA4836
208552BB
32905E46
6F4C52C9
15728E5A
58DBEFOGA
1E8C94E0
3EC86A64
O8E24FA0
A787EGD7
2583E9CA
4E6BCO5D
B81BDD76
90A6CO8F

80DC1CD1
EF9519B3
625E7EC6
AE9F2411
1C55D39A
9ED52907
2E36CE3B
DE2BCBF6
8AAAC42D
8AEA7157
4A25619D
521F2B18
74E5AB31
88719A10
2AD44CES8
99B2964F
2170481C
4DF435C9

29024E08
CD3A431B
F44C42E9
7CAB1FEG
69163FA8
7096966D
E39E772C
95581718
AD33170D
5D066C7D
CEE3D226
177B200C
43DB5BFC
BDBA5B26
DBBBC2DB
AO9OC3A2
DOO69127
34063199

This prime is: 2746144 - 276080 - 1 + 2A64 * { [27r6014 pi] +

929484 }

Its hexadecimal value is:
FFFFFFFF FFFFFFFF CO90OFDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 O20BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B

Taylor, et al. Expires December 6, 2004 [Page 16]

Internet-Draft

302BOAGD
A637EDGB
49286651
FD24CF5F
670C354E
180E8603
3995497C
04507A33
B3970F85
1AD2EEGB
BBE11757
EOFD108E
99C32718
O4DESEF9
233BA186
D5BO5AA9
36C3FAB4
ADO9ES30E
DA3EDBEB
2BD7AF42
F482D7CE
BEC7ES8F3
CC8F6D7E
B7C5DA76
387FE8D7
6DCC4024

Using SRP for TLS Authentication

F25F1437
OBFF5CB6
ECE45B3D
83655D23
4ABC9804
9B2783A2
EA956AES
A85521AB
ABE1EACT
F12FFAQ6
7A615D6C
4B82D120
6AF4E23C
2E8EFC14
515BE7ED
93B4EA98
D27C7026
E5DB382F
CF9B14ED
6FB8F401
6E74FEF6
23A97ATE
BF48E1D8
F550AA3D
6E3C0468
FFFFFFFF

The generator is: 5.
7. 8192-bit Group

4FE1356D
F406B7ED
C2007CB8
DCA3AD96
F1746C08
ECO7A28F
15022618
DF1CBA64
ABF5AESC
D98A0864
770988C0
A9210801
1A946834
1FBECAA6
1F612970
8D8FDDC1
C1D4DCB2
413001AE
44CE6CBA
378CD2BF
D55E702F
36CC88BE
14CC5ED2
8A1FBFFO
043E8F66
FFFFFFFF

6D51C245
EE386BFB
A163BFO5
1C62F356
CA18217C
B5C55DF0
98FAG510
ECFB8504
DBO933D7
D8760273
BAD946E2
1A723C12
B6150BDA
287C5947
CEE2D7AF
86FFB7DC
602646DE
BOGAS3ED
CED4BB1B
5983CA01
46980C82
OF1D45B7
OF8037EO
EB19CCB1
3F4860EE

E485B576
5A899FA5
98DA4836
208552BB
32905E46
6F4C52C9
15728E5A
58DBEFOA
1E8C94E0
3EC86A64
O8E24FA0
A787EGD7
2583E9CA
4E6BCO5D
B81BDD76
90A6CO8F
C9751E76
9027D831
DB7F1447
C64B92EC
B5A84031
FF585AC5
A79715EE
A313D55C
12BF2D5B

625E7EC6
AE9F2411
1C55D39A
9ED52907
2E36CE3B
DE2BCBF6
8AAAC42D
8AEA7157
4A25619D
521F2B18
74E5AB31
88719A10
2AD44CES8
99B2964F
2170481C
4DF435C9
3DBA37BD
179727B0O
E6CC254B
FO32EA15
900B1C9E
4BD407B2
F29BE328
DA56C9EC
0B7474D6

June 2004

F44C42E9
7C4B1FEG
69163FAS8
7096966D
E39E772C
95581718
AD331706D
5D060C7D
CEE3D226
177B206C
43DB5BFC
BDBA5B26
DBBBC2DB
AO9OC3A2
DOO69127
34028492
F8FF9406
865A8918
33205151
D1721D03
59E7CO7F
2B4154AA
06A1D58B
2EF29632
E694F91E

This prime is: 28192 - 2A8128 - 1 + 2764 * { [2/8062 pi] +

4743158 }

Its hexadecimal value is:

FFFFFFFF
8A67CCT74
302BOA6D
A637ED6B
49286651
FD24CF5F
670C354E
180E8603
3995497C
04507A33
B3970F85
1AD2EE6B
BBE11757
EOFD108E
9932718

FFFFFFFF
020BBEA6
F25F1437
OBFF5CB6
ECE45B3D
83655D23
4ABC9804
9B2783A2
EA956AES
A85521AB
ABE1EACT
F12FFA@6
7A615D6C
4B82D120
6AF4E23C

COOFDAA2
3B139B22
4FE1356D
FA406B7ED
C2007CB8
DCA3AD96
F1746C08
ECO7A28F
15D22618
DF1CBAG64
ABF5AES8C
D98A0864
770988C0
A9210801
1A946834

2168C234
514A0879
6D51C245
EE386BFB
A163BF05
1C62F356
CA18217C
B5C55DF0
98FA0510
ECFB8504
DBO933D7
D8760273
BAD946E2
1A723C12
B6150BDA

C4C6628B
8E3404DD
E485B576
5A899FA5
98DA4836
208552BB
32905E46
6F4C52C9
15728E5A
58DBEFOA
1E8C94EO0
3EC86A64
O8E24FA0
A787E6GD7
2583E9CA

80DC1CD1
EF9519B3
625E7EC6
AE9F2411
1C55D39A
9ED52907
2E36CE3B
DE2BCBF6
8AAAC42D
8AEA7157
4A25619D
521F2B18
74E5AB31
88719A10
2AD44CES8

29024E08
CD3A431B
F44C42E9
7C4B1FEG
69163FAS8
7096966D
E39E772C
95581718
AD33170D
5D060C7D
CEE3D226
177B206C
43DB5BFC
BDBA5B26
DBBBC2DB

Taylor, et al. Expires December 6, 2004 [Page 17]

Internet-Draft

O4DESEF9
233BA186
D5BO5AA9
36C3FAB4
AD9ES30E
DA3EDBEB
2BD7AF42
F482D7CE
BEC7E8F3
CC8F6D7E
B7C5DA76
387FE8D7
6DBE1159
3BC832B6
5AE4F568
22222E04
2F8385DD
6D2A13F8
0846851D
359046F4
FCO26E47
60C980DD

Using SRP for TLS Authentication

2E8BEFC14
515BE7ED
93B4EA98
D27C7026
ES5DB382F
CF9B14ED
6FB8F401
6E74FEF6
23A97ATE
BF48E1D8
F550AA3D
6E3C0468
74A3926F
8D9DD3060
3423B474
A4037C0O7
FA9D4B7F
3F44F82D
FOAB4819
EB879F92
9558E447
98EDD3DF

The generator is: 19

1FBECAA6 287C5947
1F612970 CEE2D7AF
8D8FDDC1 86FFB7DC
C1D4DCB2 602646DE
413001AE BO6A53ED
44CE6CBA CED4BB1B
378CD2BF 5983CA01
D55E702F 46980C82
36CC88BE OF1D45B7
14CC5ED2 OF8037EQ
8A1FBFFO EB19CCB1
043E8F66 3F4860EE
12FEES5E4 38777CB6
741FA7BF 8AFC47ED
2BF1C978 238F16CB
13EB57A8 1A23F0C7
A2CO87E8 79683303
DF310EE® 74AB6A36
S5DED7EA1 B1D510BD
4009438B 481C6CD7
5677E9AA 9E3050E2
FFFFFFFF FFFFFFFF
(decimal).

4E6BCO5D
B81BDD76
90A6CO8F
C9751E76
9027D831
DB7F1447
C64B92EC
B5A84031
FF585AC5
A79715EE
A313D55C
12BF2D5B
A932DF8C
2576F693
E39D652D
3473FC64
ED5BDD3A
4597E899
7EE74D73
889A002E
765694DF

99B2964F
2170481C
4DF435C9
3DBA37BD
179727B0O
E6CC254B
FO32EA1S
900B1C9E
4BD407B2
F29BE328
DAS6C9EC
0B7474D6
D8S8BEC4DO0O
6BA42466
E3FDB8BE
6CEA306B
062B3CF5
ABG255DC1
FAF36BC3
D5EE382B
C81F56ES8

June 2004

ABG9OC3A2
DOO69127
34028492
F8FF9406
865A8918
33205151
D1721D6G3
59E7CO7F
2B4154AA
06A1D58B
2EF29632
E694F91E
73B931BA
3AAB639C
FC848AD9
4BCBC886
B3A278A6
64F31CC5
1ECFA268
C9190DA6
80OB96E71

Taylor, et al. Expires December 6, 2004 [Page 18]

Internet-Draft Using SRP for TLS Authentication June 2004

Appendix B. Acknowledgements

Thanks to all on the IETF tls mailing list for ideas and analysis.

Taylor, et al. Expires December 6, 2004 [Page 19]

Internet-Draft Using SRP for TLS Authentication June 2004

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.

Full Copyright Statement
Copyright (C) The Internet Society (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Taylor, et al. Expires December 6, 2004 [Page 20]

Internet-Draft Using SRP for TLS Authentication June 2004

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Taylor, et al. Expires December 6, 2004 [Page 21]

