
Network Working Group Tatu Ylonen <ylo@ssh.fi>
INTERNET-DRAFT SSH Communications Security
draft-ietf-tls-ssh-00.txt June 13, 1996
Expires: December 1st, 1996

 SSH Transport Layer Protocol

Status of This memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as ``work in progress.''

To learn the current status of any Internet-Draft, please check
the ``1id-abstracts.txt'' listing contained in the Internet-Drafts
Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast),
or ftp.isi.edu (US West Coast).

Abstract

This document describes the SSH transport layer protocol. The protocol
can be used as a basis for a number of secure network services. It pro-
vides strong encryption, mutual authentication, and integrity protec-
tion.

https://datatracker.ietf.org/doc/pdf/draft-ietf-tls-ssh-00.txt

Tatu Ylonen <ylo@ssh.fi> [page 1]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

Table of Contents

1. Introduction . 2
2. Data Type Representations Used in the Protocol 3
 2.1. vlint32 . 3
 2.2. string . 3
 2.3. boolean . 3
 2.4. byte . 3
 2.5. uint16 . 4
 2.6. uint32 . 4
3. Connection Setup . 4
 3.1. Use over TCP/IP . 4
 3.2. Protocol Version Exchange 4
 3.3. Compatibility with Old SSH Versions 4
 3.3.1. Old Client, New Server 4
 3.3.2. New Client, Old Server 5
4. Binary Packet Protocol . 5
 4.1. Maximum Packet Length 5
 4.2. Compression . 6
 4.3. Encryption . 6
 4.4. Data Integrity . 7
5. Key Exchange . 7
 5.1. Sending Supported Algorithm Lists 8
 5.2. RSA-Style Key Exchange 11
 5.2.1. Server Sends Host Key 11
 5.2.2. Client Sends Double-Encrypted Session Key 11
 5.3. Diffie-Hellman Style Key Exchange 12
 5.4. Deriving Encryption and Integrity Keys 12
6. Client Host Authentication 13
7. Service Request . 14
8. Data Exchange . 14
9. Key Re-Exchange . 15
10. Additional Messages . 16
 10.1. Disconnection Message 16
 10.2. Ignored Data Message 16
 10.3. Reserved Messages . 16
11. Summary of Message Numbers 17
12. Public Keys and Public Key Infrastructure 17

 12.1. SSH_PK_SIMPLE_RSA_PKCS 17

1. Introduction

The SSH protocol is a secure transport layer protocol. It provides
strong encryption, cryptographic host autentication, and integrity
protection.

Authentication in this protocol level is host-based; this protocol does
not perform user authentication. It is expected that a higher level
protocol will be defined on top of this protocol that will perform user
authentication for those services that need it.

Tatu Ylonen <ylo@ssh.fi> [page 2]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

The protocol has been designed to be simple, flexible, allow parameter
negotiation, and minimize the number of round-trips. Key exchange
method, public key algorithm, symmetric encryption algorithm, message
authentication algorithm, and hash algorithm are all negotiated. It is
expected that in most environments, only 1.5 round-trips will be needed
for full key exchange, mutual authentication, service request, and
acceptance notification of service request. The worst case is 2.5
round-trips for a proper implementation.

2. Data Type Representations Used in the Protocol

2.1. vlint32

The vlint32 can represent arbitrary 32-bit unsigned integers. It is
stored as a variable number of bytes (1-5 bytes), depending on the value
being stored.

Bits 6-7 of the first byte determine the number of additional bytes that
follow, and are interpreted as follows.

 Bit7 Bit6 Number of bytes that follow
 0 0 0
 0 1 1
 1 0 2
 1 1 4

Bits 0-6 of the first byte and the following bytes contain the value of
the integer, MSB first.

If bits 6-7 are both one, the remaining bits in the first byte are zero
(reserved for future extension).

2.2. string

A string here means an arbitrary length binary string. Strings are
allowed to contain arbitrary binary data, including null characters and
8-bit characters.

A string is represented as a vlint32 containing its length, followed by
zero or more characters that are the value of the string.

2.3. boolean

A boolean value is represented as a single byte. The value 0 represents
false, and the value 1 represents true. All non-zero values are
interpreted as true, but applications should not store values other than
0 and 1.

2.4. byte

A byte represents an arbitrary 8-bit value. Fixed length data is
sometimes represented as byte array of bytes, written byte[n], where n
is the number of bytes in the array.

Tatu Ylonen <ylo@ssh.fi> [page 3]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

2.5. uint16

A 16-bit unsigned integer, represented as two bytes, MSB first.

2.6. uint32

A 32-bit unsigned integer, represented as four bytes, MSB first.

3. Connection Setup

SSH works over any 8-bit clean, binary-transparent transport. The
client initiates the connection, and sets up the binary-transparent
transport.

3.1. Use over TCP/IP

When used over TCP/IP, the server normally listens for connections on
port 22. This port number has been registered with the IANA (Internet

Assigned Numbers Authority), and has been officially assigned for SSH.

3.2. Protocol Version Exchange

When the connection has been established, both sides send an
identification string of the form "SSH-protoversion-softwareversion
comments", followed by a newline. The maximum length of the string is
255 characters, including the newline. The protocol version described
in this document is 2.0.

Key exchange will begin immediately after sending this identifier
(normally without waiting for the identifier from the other side -- see
the next section for compatibility issues). All packets following the
identification string will use the binary packet protocol, to be
described below.

3.3. Compatibility with Old SSH Versions

During a transition period, it is important to be able to work
compatibly with installed SSH clients and servers using an older version
of the protocol. Information in this section is only relevant for
implementations supporting compatibility with old versions.

3.3.1. Old Client, New Server

Server implementations should support a configurable "compatibility"
flag that enables compatibility with old versions. When this flag is
on, the server will not send any further data after its initialization
string until it has received an identification string from the client.
The server can then determine whether the client is using an old
protocol, and can revert to the old protocol if desired.

When compatibility with old clients is not needed, the server should
send its initial key exchange data immediately after the identification
string. This saves a round-trip.

Tatu Ylonen <ylo@ssh.fi> [page 4]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

3.3.2. New Client, Old Server

Since the new client will immediately send additional data after its
identification string (before receiving server's identification), the
old protocol has already been corrupted when the client learns that the
server is old. When this happens, the client should close the
connection to the server, and reconnect using the old protocol this
time.

4. Binary Packet Protocol

Each packet consists of the following fields:

 Length
 The length of the packet (bytes). This represents the number of
 bytes that follow this value, including the optional MAC. The
 length is represented as a vlint32.

 Padding length
 Length of padding (bytes). This field is represented as a
 vlint32.

 Payload
 The useful contents of the packet.

 Padding
 Arbitrary-length padding, such that the total length of
 length+paddinglength+payload+padding is a multiple of 8 bytes. It
 is recommended that at least four bytes of random padding be
 always used.

 MAC
 Message authentication code. This field is optional, and its
 length depends on the algorithm in use.

Note that length of the concatenation of packet length, padding length,
payload, and padding must be a multiple of 8. This constraint is
enforced even when using stream ciphers. Note that the packet length
field is also encrypted, and processing it requires special care when
sending/receiving packets. In particular, one has to be extra careful
when computing the amount of padding, as changing the amount of padding
can also change the size of the length fields. The minimum size of a
packet is 8 characters (plus MAC); implementations should decrypt the
length after receiving the first 8 bytes of a packet.

When the protocol starts, no encryption is in effect, no compression is
used, and no MAC is in use. During key exchange, an encryption method,
compression method, and a MAC method are selected. Any further messages
will use the negotiated algorithms.

4.1. Maximum Packet Length

The maximum length of the uncompressed payload is 32768 bytes. The

Tatu Ylonen <ylo@ssh.fi> [page 5]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

maximum size of the entire packet, including length, padding length,
payload, padding, and MAC, is 35000 bytes. The motivation for this
limit is to keep the protocol easy to implement on 16-bit machines.

4.2. Compression

If compression has been negotiated, the payload field will be compressed
using the negotiated algorithm. The length field will contain the
compressed length (i.e., that transmitted on the wire).

Compressed packets must not exceed the total packet size limit; the
compression algorithm must guarantee that it does not expand the packet
too much. The uncompressed payload size must not exceed the maximum
payload size (the compressed payload, however, may be bigger than the
maximum payload size, as long as the packet size limit is not exceeded).

The following compression methods are currently supported:

#define SSH_COMPRESS_NONE 0 /* no compression */
#define SSH_COMPRESS_ZIP 1 /* ZIP compression */

SSH_COMPRESS_ZIP is the ZLIB compression. Its data format is described
in the Internet-Draft draft-deutsch-zlib-spec-04.txt and its references.
Compression level 6 is recommended.

The compression context is initialized after key exchange, and is passed
from one packet to the next with only a partial flush being performed at
the end of each packet. A partial flush means that all data will be
output, but the next packet will continue using compression tables from
the end of the previous packet.

Compression is independent in each direction, and the different
compression methods may be used for each direction.
4.3. Encryption

An encryption algorithm and a key will be negotiated during the key
exchange. When encryption is in effect, the length, payload and padding
fields of each packet will be encrypted with the given algorithm.

The encrypted data in all packets sent in one direction will be
considered a single data stream. For example, initialization vectors
will be passed from the end of one packet to the beginning of the next
packet.

The ciphers in each direction will run independently of each other.
They will typically use a different key, and different ciphers can be
used in each direction.

https://datatracker.ietf.org/doc/pdf/draft-deutsch-zlib-spec-04.txt

The following ciphers/mode combinations are currently supported:

#define SSH_CALG_NONE 0 /* No encryption */
#define SSH_CALG_IDEA_CBC 1 /* IDEA in CBC mode */
#define SSH_CALG_3DES_CBC 2 /* 3DES in CBC mode */

Tatu Ylonen <ylo@ssh.fi> [page 6]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

#define SSH_CALG_DES_CBC 3 /* DES in CBC mode (warning: weak!) */
#define SSH_CALG_ARCFOUR 4 /* ARCFOUR stream cipher */

The ARCFOUR cipher is compatible with the RC4 cipher; RC4 is a trademark
of RSA Data Security, Inc.

4.4. Data Integrity

Data integrity is protected by including with each packet a message
authentication code (MAC) that is computed from a shared secret, packet
sequence number, and the contents of the packet.

The message authentication algorithm and key are negotiated during key
exchange. Initially, no MAC will be in effect, and its length will be
zero. After key exchange, the selected MAC will be computed before
encryption from the concatenation of packet data (length, payload, and
padding) and a packet sequence number (stored as a 32-bit integer, MSB
first). The integrity key is also used in the computation of the MAC,
but the way it is used depends on the MAC algorithm in use. Note that
the MAC algorithm may be different for each direction.

The packet sequence number is only used for integrity checking. It is
never explicitly transmitted, but it is included in MAC computation to
ensure that no packets are lost. The sequence number of the first
packet sent is zero; from there on the sequence number is incremented by
one for every packet sent (separately for each direction). The packet
number is 32 bits and wraps around if 32 bits is not enough for
representing it. The sequence number is incremented also for packets
that are not encrypted or MACed, and is not reset even if keys are
renegotiated later.

The check bytes resulting from the MAC algorithm are transmitted without
encryption as the last part of the packet. The number of check bytes
depends on the algorithm chosen.

The following MAC algorithms are currently defined:

#define SSH_MAC_NONE 0 /* No MAC in use (length = 0) */

#define SSH_MAC_HMAC_MD5 1 /* HMAC-MD5 (length = 16) */
#define SSH_MAC_HMAC_SHA 2 /* HMAC-SHA-1 (length = 20) */
#define SSH_MAC_MD5 3 /* MD5 of data+key (length = 16) */

The HMAC methods are described in draft-ietf-ipsec-hmac-md5-00.txt.

The SSH_MAC_MD5 method returns the MD5 of the concatenation of the
authenticated data and the key.

5. Key Exchange

Key exchange begins by each side sending lists of supported algorithms.
Each side has a preferred algorithm, and it is assumed that most
implementations at any given time will use the same preferred algorithm.
Each side will make the guess that the other side is using the same

Tatu Ylonen <ylo@ssh.fi> [page 7]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

algorithm, and may send an initial key exchange packet according to the
algorithm if the preferred method so dictates. If the guess is wrong,
they'll ignore each other's first data, select a common algorithm, and
send the initial key exchange packet again, this time for the same
algorithm.

At this time, there are two styles of key exchanges, RSA-style exchange
and Diffie-Hellman style exchange (several methods may be available in
each group). RSA-style exchange is based on the server sending two
encryption public keys (host key and server key), the client generating
a session key, sending it encrypted by the public keys, and server
decrypting it with private keys. In Diffie-Hellman style exchange the
parties derive a shared secret via a message exchange, and then check
against man-in-the-middle attacks with a signature of the exchange.

Currently, the following key exchange methods have been defined:

 #define SSH_KEX_RSA_SHA 1 /* RSA key exchange with SHA-1 */
 #define SSH_KEX_DH_SHA 2 /* Diffie-Hellman kex with SHA-1 */

5.1. Sending Supported Algorithm Lists

Each side sends the following packet (this is the part that goes inside
the payload):

 vlint32 SSH_MSG_KEXINIT
 byte[16] cookie (random bytes)
 string kex_algorithms

https://datatracker.ietf.org/doc/pdf/draft-ietf-ipsec-hmac-md5-00.txt

 string host_key_algorithms
 string public_key_algorithms
 string encryption_algorithms_client_to_server
 string encryption_algorithms_server_to_client
 string mac_algorithms_client_to_server
 string mac_algorithms_server_to_client
 string compression_algorithms_client_to_server
 string compression_algorithms_server_to_client
 string hash_algorithms
 boolean first_kex_packet_follows
 byte[4] 0 (reserved for future extension)

Each of the algorithms strings contains algorithm numbers, one per byte.
Each supported (allowed) algorithm should be listed, in order of
preference. Each string must contain at least one value. The value
"NONE" is not automatically allowed; if a party permits connections with
NONE as one of the algorithms, it should list that as an algorithm.

 cookie
 The cookies are random values generated by each side. They are
 used when deriving keys from the shared secret. Their purpose is
 to make it impossible for either side to fully determine the keys
 (which might open possibilities for passing certain
 signatures/authentications to third parties).

Tatu Ylonen <ylo@ssh.fi> [page 8]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

 kex_algorithms
 Key exchange algorithms were defined above. The first algorithm
 is the preferred (and guessed) algorithm. If both sides make the
 same guess, that algorithm is used. Otherwise, the following
 algorithm is used to choose a key exchange method: iterate over
 client's kex algorithms, one at a time. Choose the first
 algorithm that satisfies the following conditions: 1) the server
 also supports the algorithm 2) if the algorithm requires an
 encryption-capable host key, there is an encryption-capable
 algorithm on the server's host_key_algorithms that is also
 supported by the client 3) if the algorithm requires a signature-
 capable host key, there is a signature-capable algorithm on the
 server's host_key_algorithms that is also supported by the
 client. If no algorithm satisfying all these conditions can be
 found, connection fails.

 The available algorithm numbers were listed above.
 host_key_algorithms

 Lists the public key algorithms/formats for which the host has a
 valid host key. (There can be multiple host keys for a host,
 possibly with different algorithm.) Some host keys may not
 support both signatures and encryption (this can be determined
 from the algorithm), and thus not all host keys are valid for all
 key exchange methods. Algorithms listed in this field must also
 be present in public_key_algorithms.

 See Section ``Public Key Formats'' for information on the
 algorithm numbers.

 public_key_algorithms
 Lists the public key algorithms supported by the host. See
 Section ``Public Key Formats'' for information on the algorithm
 numbers.

 encryption_algorithms
 Lists the acceptable symmetric encryption algorithms in order of
 preference. The chosen encryption algorithm will be the first
 algorithm on the client's list that is also on the server's list.
 If there is no such algorithm, connection fails.

 Note that SSH_CALG_NONE must be explicitly listed if it is to be
 acceptable. The available algorithm numbers are listed in Section
 ``Encryption''.

 The algorithm to use is negotiated separately for each direction,
 and different algorithms may be chosen.

 mac_algorithms
 Lists the acceptable MAC algorithms in order of preference. The
 chosen MAC algorithm will be the first algorithm on the client's
 list that is also on the server's list. If there is no such
 algorithm, connection fails.

Tatu Ylonen <ylo@ssh.fi> [page 9]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

 Note that SSH_MAC_NONE must be explicitly listed if it is to be
 acceptable. The available MAC algorithm numbers are listed in
 Section ``Data Integrity''.

 The algorithm to use is negotiated separately for each direction,
 and different algorithms may be chosen.

 compression_algorithms

 Lists the acceptable compression algorithms in order of
 preference. The chosen compression algorithm will be the first
 algorithm on the client's list that is also on the server's list.
 If there is no such algorithm, connection fails.

 Note that SSH_COMPRESS_NONE must be explicitly listed if it is to
 be acceptable. The available compression algorithm numbers are
 listed in Section ``Compression''.

 The algorithm to use is negotiated separately for each direction,
 and different algorithms may be chosen.

 hash_algorithms
 Lists the acceptable hash algorithms in order of preference. The
 chosen hash algorithm will be the first algorithm on the client's
 list that is also on the server's list. If there is no such
 algorithm, connection fails.

 Implementations should only permit algorithms that they consider
 to be fairly secure, as the hash function will be used e.g. for
 deriving various keys from the shared secret. All hash algorithms
 must produce at least 16 bytes of output.

 Currently, the following hash functions are defined:

 #define SSH_HASH_SHA 1 /* returns 20 bytes */
 #define SSH_HASH_MD5 2 /* returns 16 bytes */

 first_kex_packet_follows
 Each side makes a guess of the negotiated key exchange method.
 This is based on the assumption that at any particular time there
 will be a single key exchange method and host key algorithm
 combination that dominates the installed base. Making a guess
 about the algorithm will save a round-trip in the typical case,
 and will incur little extra cost in the other cases.

 Each side will determine if they are supposed to send an initial
 packet in their guessed key exchange method. If they are, they
 will set this field to true and follow this packet by the first
 key exchange packet.

 After receiving the SSH_MSG_KEXINIT packet from the other side,
 each party will know whether their guess was right. If the guess
 was wrong, and this field is true, the next packet will be
 silently ignored, and each side will then act as determined by the

Tatu Ylonen <ylo@ssh.fi> [page 10]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

 negotiated key exchange method. If the guess was right, key
 exchange will immediately continue.

5.2. RSA-Style Key Exchange

RSA-style key exchange requires that the server host key supports
encryption. The idea is that the server sends its public host key and a
periodically changing key (called the server key). The client then
verifies that it is the correct key for the server, generates a session
key, encrypts the session key using both the server host key and the
server key, and sends the encrypted session key to the server.

The server key and host keys must both support encryption, and their
sizes must be compatible in such a way that the result of encrypting a
value with one of them can be encrypted with the other. The smaller of
the keys must be able to encrypt at least 48 bytes.

The host key should be larger than the server key, because this causes
the server key encryption to be done first, and prevents an outside
attacker from replacing the outer layer of encryption by an active man-
in-the-middle attack. Such an attack would not directly compromise
security, but would allow the attacker to later decrypt intercepted
sessions if he somehow obtains the private host key.

5.2.1. Server Sends Host Key

First, the server sends its public host and server keys in the following
packet:

 vlint32 SSH_MSG_KEXRSA_HOSTKEY
 string public host key
 string public server key

The host key and server key are stored in binary representation as
described in Section ``Public Key Formats''.

5.2.2. Client Sends Double-Encrypted Session Key

After receiving the public keys, the client validates that the host key
really belongs to the intended server. How this verification happens is
not specified in this protocol. Currently it may be checked against a
database of known name-key mappings; in future it will probably be
validated using an Internet public key infrastructure.

If the client is not willing to trust the server host key, it simply
closes the connection and the protocol terminates.

Otherwise, the client chooses an encryption algorithm that is supported

by both parties. It also chooses a MAC algorithm and a compression
algorithm that are supported by both parties.

To authenticate that no-one has been manipulating the key exchange with
the server, the client also computes an SHA-1 hash of the concatenated

Tatu Ylonen <ylo@ssh.fi> [page 11]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

payloads of (in this order): client's SSH_MSG_KEXINIT, server's
SSH_MSG_KEXINIT, and server's SSH_MSG_KEXRSA_HOSTKEY message.

The client then generates a 256 bit random session key. A message to be
passed to the server is formed by concatenating the following (in this
order): six zero bytes (reserved for future), first 10 bytes of the
SHA-1 hash of the key exchange, session key. This results in a total of
48 bytes of data to be passed to the server. Note that the negotiated
algorithms are not explicitly passed, as the algorithms given in Section
``Sending Supported Algorithm Lists'' fully determine the algorithms.

Note that the use of SHA-1 was hard-coded here. This is used to
authenticate the key exchange, and using HASH here would lead to all
sorts of potential problems in verifying the security of the protocol.
Using a fixed hash short-circuits verification to the properties of the
hash. Should the need ever arise, the only way to switch to another
algorithm here is to define a new key exchange algorithm (which, in
fact, is not very difficult).

The resulting data is encrypted with the smaller of host key and server
key, and the result then with the larger of them. The resulting double-
encrypted session key is then sent to the server for verification. Note
that public-key encryption probably involves padding, depending on the
algorithm.

 vlint32 SSH_MSG_KEXRSA_SESSIONKEY
 string double-encrypted session key

Upon receiving this message, the server uses its private host and server
keys to decrypt the session key. It computes a corresponding SHA hash,
and compares the hash values. If the hash does not match, the server
disconnects. Otherwise, encryption, compression, and integrity
protection are taken into effect immediately after this message.

The server does not acknowledge this message in any way. The client may
continue by sending further protocol requests using the negotiated
encryption. If the server was not able to decrypt the session key, it
won't be able to determine what the futher requests are or to respond to

them.

5.3. Diffie-Hellman Style Key Exchange

XXX To be defined later.

5.4. Deriving Encryption and Integrity Keys

As a result of the key exchange, the parties have a 256-bit shared
secret.

Various keys are computed from this secret and from the cookies
exchanged during algorithm negotiation. The cookies are used to make it
impossible for either party to alone determine the keys.

Tatu Ylonen <ylo@ssh.fi> [page 12]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

Each key is computed as HASH of the concatenation of client's cookie,
server's cookie, and 16 bytes of secret data. The secret data is
different for each key, and is taken from the 32-byte shared secret as
follows:

o Initial IV client to server: bytes 0-15

o Initial IV server to client: bytes 1-16

o Encryption key client to server: bytes 5-20

o Encryption key server to client: bytes 8-23

o Integrity key client to server: bytes 13-28

o Integrity key server to client: bytes 16-31

Each key is at least 16 bytes (128 bits). For some algorithms, only
part of this amount is actually used. If a longer key is needed for
some algorithm, the key is extended by computing HASH of the entire key
so far, and appending the resulting bytes (as many as HASH outputs) to
the key. This process is repeated until enough key material is
available.

6. Client Host Authentication

Next, the client can (but is not required to) send its own host
authentication message. If this message is not sent, the server will

consider the client unnamed for authentication purposes. It is expected
that many servers will refuse to talk to clients that do not first
authenticate themselves.

Note that this message passes the host name, and can be used to
authenticate hosts on the other side of a firewall.

To authenticate itself, the client computes HASH of the
concatenatenation of (in this order) the client host name, client's
cookie, and server's cookie. It then signs this hash using its private
host key (one that uses an algorithm which is supported by the server),
and sends the following value to the server:

 vlint32 SSH_MSG_HOSTAUTH
 string client host name
 string client public host key
 string signature of host name+client cookie+server cookie

The host key is stored in binary representation as described in Section
``Public Key Formats''.

The server will verify that the client host name is really associated
with the given key. If the name-key association cannot be verified, the
server may at its option either disconnect or ignore the client host
authentication.

Tatu Ylonen <ylo@ssh.fi> [page 13]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

If the name-key association can be verified, the signature is checked.
If it is incorrect, the connection is closed. Otherwise, the server
updates its state to the fact that the client has been cryptographically
authenticated.

The server may also attempt to validate whether the host name supplied
by the client matches with a name obtained from network protocol headers
or other sources (e.g., it may require the supplied name to match a DNS
reverse mapped name, unless the reverse mapped name is a firewall host).
However, such validation is not always possible, and is not required by
this protocol. If the server finds a mismatch between the client-
supplied name and the name obtained from the network protocols, the
server may disconnect.

Some servers may refuse to continue the dialog with the client unless
the client is able to authenticate itself cryptographically. Likewise,
some servers may refuse to talk to certain clients, and may disconnect
at this point. It is recommended that such disconnections use

SSH_MSG_DISCONNECT and explain the reason for disconnecting.

7. Service Request

After the various authentications, the client requests a service. The
service is identified by a name, which must consists of alphanumeric
characters, hyphens ('-'), and underscores ('_'). The name must not be
longer than 64 characters.

 vlint32 SSH_MSG_SERVICE_REQUEST
 string service name

Most server implementations will have a table of services that are
supported, specifying what to do for each service.

If the server rejects the service request, it either disconnects or
(preferably) sends a SSH_MSG_DISCONNECT message.

If the server supports the service (and permits the client to use it),
it responds with

 vlint32 SSH_MSG_SERVICE_ACCEPT

The client is permitted to send further packets without waiting for the
this message; those packets will go the selected service if the server
accepts the service request.

8. Data Exchange

Once a service has been selected, data is transmitted in each direction
asynchronously. The data is packetized using the following format:

 vlint32 SSH_MSG_DATA
 string data

Tatu Ylonen <ylo@ssh.fi> [page 14]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

For stream-based services data is passed directly to the application.
Packet-based applications may have their own packet structure embedded
within each data packet.

When a service closes its output (i.e., will not send more data), the
following message is sent to the other side:

 vlint32 SSH_MSG_EOF

When this message is received, the service will be notified of the end-
of-file status on input. Output from the service is still accepted, and
sent to the other side.

When the service on either side exits (i.e., will no longer accept
input, and will not generate more output), the following message is sent
after any other data sent by the application. After this message, the
connection will be closed. An EOF is not necessarily sent before this
message.

 vlint32 SSH_MSG_CLOSE

9. Key Re-Exchange

Either side may request re-exchange of keys at any time after the
initial exchange (and outside other key exchanges). The re-exchange is
not visible to the service, and will take place using the same algorithm
that was used in the original key exchange.

Key re-exchange is started by sending a SSH_MSG_KEXINIT packet
(described in Section ``Sending Supported Algorithm Lists''). When this
message is received, a party must respond with its own SSH_MSG_KEXINIT
message. Either party may initiate the re-exchange, but roles are not
changed (i.e., the server remains the server, and the client remains the
client).

Key re-exchange is performed under whatever encryption was in effect
when the exchange was started. Encryption, compression, and MAC methods
are changed when the key exchange is complete (as in the initial key
exchange). Re-exchange is processed identically to the initial key
exchange, except that it is not necessary to validate that the host key
really belongs to the server. It is permissible to change the
encryption, compression, and MAC algorithms during the re-exchange. All
keys are recomputed after the exchange. Compression and encryption
contexts are reset. The packet sequence number is not reset.

It is recommended that keys be changed after each gigabyte of
transmitted data and after each hour of connection time, whichever comes
sooner.

It is also possible to use the key re-exchange mechanism to switch to
faster algorithms after authentication, or to avoid double processing
for pre-encrypted or pre-authenticated data. However, since the re-
exchange is a public key operation, it requires a fair amount of

Tatu Ylonen <ylo@ssh.fi> [page 15]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

processing power and should not be performed too often.

10. Additional Messages

Either party may send any of the following messages at any time.

10.1. Disconnection Message

 vlint32 SSH_MSG_DISCONNECT
 vlint32 error code
 string description

This message causes immediate termination of the connection. The
description field gives the reason for disconnecting in human-readable
form. The error code gives the reason in a machine-readable format, and
can have the following values:

#define SSH_DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT 1
#define SSH_DISCONNECT_PROTOCOL_ERROR 2
#define SSH_DISCONNECT_INCOMPATIBLE_HOST_KEY 3
#define SSH_DISCONNECT_INCOMPATIBLE_PUBLIC_KEY_ALG 4
#define SSH_DISCONNECT_INCOMPATIBLE_CRYPTO_ALG 5
#define SSH_DISCONNECT_INCOMPATIBLE_MAC_ALG 6
#define SSH_DISCONNECT_INCOMPATIBLE_COMPRESSION_ALG 7
#define SSH_DISCONNECT_INCOMPATIBLE_HASH_ALG 8
#define SSH_DISCONNECT_KEY_EXCHANGE_FAILED 9
#define SSH_DISCONNECT_HOST_AUTHENTICATION_FAILED 10
#define SSH_DISCONNECT_MAC_ERROR 11
#define SSH_DISCONNECT_COMPRESSION_ERROR 12
#define SSH_DISCONNECT_SERVICE_NOT_AVAILABLE 13
#define SSH_DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED 14
#define SSH_DISCONNECT_OPERATION_PROHIBITED 15

10.2. Ignored Data Message

 vlint32 SSH_MSG_IGNORE
 string data

All implementations must understand (and ignore) this message. No
implementation is required to ever send them.

10.3. Reserved Messages

An implementation must respond to all unrecognized messages with an
SSH_MSG_UNIMPLEMENTED message. Later protocol versions may define other
meanings for these message types.

 vlint32 SSH_MSG_UNIMPLEMENTED

 uint32 packet sequence number of rejected message

Message numbers below 1000 are reserved for "official" extensions.
Other extensions and experimental code should use message numbers above
this.

Tatu Ylonen <ylo@ssh.fi> [page 16]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

11. Summary of Message Numbers

The following message numbers have been defined in this protocol.

 #define SSH_MSG_DISCONNECT 1
 #define SSH_MSG_IGNORE 2
 #define SSH_MSG_UNIMPLEMENTED 3
 #define SSH_MSG_KEXINIT 10
 #define SSH_MSG_KEXRSA_HOSTKEY 11
 #define SSH_MSG_KEXRSA_SESSIONKEY 12
 #define SSH_MSG_HOSTAUTH 30
 #define SSH_MSG_SERVICE_REQUEST 40
 #define SSH_MSG_SERVICE_ACCEPT 41
 #define SSH_MSG_DATA 42
 #define SSH_MSG_EOF 43
 #define SSH_MSG_CLOSE 44

12. Public Keys and Public Key Infrastructure

This protocol is intentionally open on public key formats, as well as
signature and encryption formats. There is currently no generally
accepted public key infrastructure on the Internet, and there are
several competing key formats, and more formats are likely to appear.
It will probably take several years until the situation is resolved. In
particular, it is not clear that X.509 would be the solution, although
that is also a possibility.

There are several aspects to a public key type:

o Key format: how is the key coded, and how are certificates
 represented. The key blobs in this protocol may (but are not
 required to) contain certificates in addition to keys.

o Signature and/or encryption algorithms. Some algorithms may not
 support both encryption and decryption.

o Encoding for signatures and encrypted data. This includes but is not
 limited to padding, byte order, and data formats.

o Computation of unique key id.

 #define SSH_PK_SIMPLE_RSA_PKCS 1

Note that the key type is negotiated at the beginning of the key
exchange, and is not included in the key blob itself.

12.1. SSH_PK_SIMPLE_RSA_PKCS

This key type defines an RSA public key, with (mostly) PKCS compatible
signature and encryption formats. It supports both signatures and
encryption.

Public keys of this type are represented as follows:

Tatu Ylonen <ylo@ssh.fi> [page 17]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

 byte[4] 0 (reserved)
 uint32 number of bits in the modulus
 uint16 number bits in the secret exponent
 bytes[n] exponent, MSB first, n = floor((bits+7)/8)
 uint16 number of bits in the modulus
 bytes[n] modulus, MSB first, n = floor((bits+7)/8)

It is permissible that there be other data (e.g., certificates)
following this; however, such data is not yet defined.

Note that private key formats are not defined here, and are
implementation-specific.

The key id for this key type is of the format "SSH-PKCS-1-RSA-xxxxxxxx",
where the "xxxxxxxx" stands for an SHA-1 hash of the data listed above,
in hexadecimal (a total of 40 lowercase hex characters). Any data
following the above (e.g., certificates) is not included in the key id
calculation.

An encrypted message is formed as follows.

o The data to be encrypted is padded into a long integer of the same
 number of bits as the modulus as follows:

 MSB . . . LSB

 0 2 RND(n bytes) 0 encrypted_data

The RND bytes represent non-zero random bytes.

o To encrypt, this integer is raised to the public exponent, modulo the
 modulus.

o The result is converted to a byte string of floor((bits+7)/8) bytes
 (where bits is the number of bits in the modulus), MSB first. This
 byte string (without any length or terminating characters) is the
 result of the encryption.

A signature is formed as follows.

o The data to be signed (typically a message digest, but not required
 to be such) is padded into a long integer of the same number of bits
 as the modulus as follows:

 MSB . . . LSB

 0 1 RND(n bytes) 0 signed_data

The RND bytes represent non-zero random bytes. Note that this differs
from the PKCS standard, where 0xFF bytes are specified for padding.

o To sign, this integer is raised to the private exponent, modulo the
 modulus.

Tatu Ylonen <ylo@ssh.fi> [page 18]

INTERNET-DRAFT SSH Transport Layer Protocol June 13, 1996

o The result is converted to a byte string of floor((bits+7)/8) bytes
 (where bits is the number of bits in the modulus), MSB first. This
 byte string (without any length or terminating characters) is the
 signature. Applications may add other data outside this value.

Tatu Ylonen <ylo@ssh.fi> [page 19]

