
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-tls-ticketrequests-06

Published: 19 November 2020

Intended Status: Standards Track

Expires: 23 May 2021

Authors: T. Pauly

Apple Inc.

D. Schinazi

Google LLC

C.A. Wood

Cloudflare

TLS Ticket Requests

Abstract

TLS session tickets enable stateless connection resumption for

clients without server-side, per-client, state. Servers vend an

arbitrary number of session tickets to clients, at their discretion,

upon connection establishment. Clients store and use tickets when

resuming future connections. This document describes a mechanism by

which clients can specify the desired number of tickets needed for

future connections. This extension aims to provide a means for

servers to determine the number of tickets to generate in order to

reduce ticket waste, while simultaneously priming clients for future

connection attempts.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/tlswg/draft-ietf-tls-ticketrequest.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 May 2021.

¶

¶

¶

¶

¶

¶

¶

https://github.com/tlswg/draft-ietf-tls-ticketrequest
https://github.com/tlswg/draft-ietf-tls-ticketrequest
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Use Cases

3. Ticket Requests

4. IANA Considerations

5. Performance Considerations

6. Security Considerations

7. Acknowledgments

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

As as described in [RFC8446], TLS servers vend clients an arbitrary

number of session tickets at their own discretion in

NewSessionTicket messages. There are at least three limitations with

this design.

First, servers vend some (often hard-coded) number of tickets per

connection. Some server implementations return a different default

number of tickets for session resumption than for the initial

connection that created the session. No static choice, whether

fixed, or resumption-dependent is ideal for all situations.

Second, clients do not have a way of expressing their desired number

of tickets, which can impact future connection establishment. For

example, clients can open parallel TLS connections to the same

server for HTTP, or race TLS connections across different network

interfaces. The latter is especially useful in transport systems

that implement Happy Eyeballs [RFC8305]. Since clients control

connection concurrency and resumption, a standard mechanism for

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

requesting more than one ticket is desirable for avoiding ticket

reuse. See [RFC8446], Appendix C.4 for discussion of ticket reuse

risks.

Third, all tickets in the client's possession ultimately derive from

some initial connection. Especially when the client was initially

authenticated with a client certificate, that session may need to be

refreshed from time to time. Consequently, a server may periodically

force a new connection even when the client presents a valid ticket.

When that happens, it is possible that any other tickets derived

from the same original session are equally invalid. A client avoids

a full handshake on subsequent connections if it replaces all stored

tickets with new ones obtained from the just performed full

handshake. The number of tickets the server should vend for a new

connection may therefore need to be larger than the number for

routine resumption.

This document specifies a new TLS extension - "ticket_request" -

that clients can use to express their desired number of session

tickets. Servers can use this extension as a hint for the number of

NewSessionTicket messages to vend. This extension is only applicable

to TLS 1.3 [RFC8446], DTLS 1.3 [I-D.ietf-tls-dtls13], and future

versions of (D)TLS.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

[RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Use Cases

The ability to request one or more tickets is useful for a variety

of purposes:

Parallel HTTP connections: To minimize ticket reuse while still

improving performance, it may be useful to use multiple, distinct

tickets when opening parallel connections. Clients must therefore

bound the number of parallel connections they initiate by the

number of tickets in their possession, or risk ticket re-use.

Connection racing: Happy Eyeballs V2 [RFC8305] describes

techniques for performing connection racing. The Transport

Services Architecture implementation from [TAPS] also describes

how connections can race across interfaces and address families.

In such cases, clients may use more than one ticket while racing

connection attempts in order to establish one successful

connection. Having multiple tickets equips clients with enough

¶

¶

¶

¶

¶

*

¶

*

new_session_count

resumption_count

tickets to initiate connection racing while avoiding ticket re-

use and ensuring that their cache of tickets does not empty

during such races. Moreover, as some servers may implement

single-use tickets, distinct tickets prevent premature ticket

invalidation by racing.

Less ticket waste: Currently, TLS servers use application-

specific, and often implementation-specific, logic to determine

how many tickets to issue. By moving the burden of ticket count

to clients, servers do not generate wasteful tickets. As an

example, clients might only request one ticket during resumption.

Moreover, as ticket generation might involve expensive

computation, e.g., public key cryptographic operations, avoiding

waste is desirable.

Decline resumption: Clients can indicate they have no intention

of resuming connections by sending a ticket request with count of

zero.

3. Ticket Requests

As discussed in Section 1, clients may want different numbers of

tickets for new or resumed connections. Clients may indicate to

servers their desired number of tickets to receive on a single

connection, in the case of a new or resumed connection, via the

following "ticket_request" extension:

Clients MAY send this extension in ClientHello. It contains the

following structure:

The number of tickets desired by the client when

the server chooses to negotiate a new connection.

The number of tickets desired by the client when

the server is willing to resume using a ticket presented in this

ClientHello.

A client starting a new connection SHOULD set new_session_count to

the desired number of session tickets and resumption_count to 0.

Once a client's ticket cache is primed, a resumption_count of 1 is a

good choice that allows the server to replace each ticket with a new

¶

*

¶

*

¶

¶

enum {

 ticket_request(TBD), (65535)

} ExtensionType;

¶

¶

struct {

 uint8 new_session_count;

 uint8 resumption_count;

} ClientTicketRequest;

¶

¶

¶

expected_count

ticket, without over-provisioning the client with excess tickets.

However, clients which race multiple connections and place a

separate ticket in each will ultimately end up with just the tickets

from a single resumed session. In that case, clients can send a

resumption_count equal to the number of sessions they are attempting

in parallel. (Clients which send a resumption_count less than the

number of parallel connection attempts might end up with zero

tickets.)

When a client presenting a previously obtained ticket finds that the

server nevertheless negotiates a new connection, the client SHOULD

assume that any other tickets associated with the same session as

the presented ticket are also no longer valid for resumption. This

includes tickets obtained during the initial (new) connection and

all tickets subsequently obtained as part of subsequent resumptions.

Requesting more than one ticket in cases when servers complete a new

connection helps keep the session cache primed.

Servers SHOULD NOT send more tickets than requested for the

connection type selected by the server (new or resumed connection).

Moreover, servers SHOULD place a limit on the number of tickets they

are willing to send, whether for new or resumed connections, to save

resources. Therefore, the number of NewSessionTicket messages sent

will typically be the minimum of the server's self-imposed limit and

the number requested. Servers MAY send additional tickets, typically

using the same limit, if the tickets that are originally sent are

somehow invalidated.

A server which supports and uses a client "ticket_request" extension

MUST also send the "ticket_request" extension in the

EncryptedExtensions message. It contains the following structure:

The number of tickets the server expects to send in

this connection.

Servers MUST NOT send the "ticket_request" extension in any

handshake message, including ServerHello or HelloRetryRequest

messages. A client MUST abort the connection with an

"illegal_parameter" alert if the "ticket_request" extension is

present in any server handshake message.

If a client receives a HelloRetryRequest, the presence (or absence)

of the "ticket_request" extension MUST be maintained in the second

ClientHello message. Moreover, if this extension is present, a

¶

¶

¶

¶

struct {

 uint8 expected_count;

} ServerTicketRequestHint;

¶

¶

¶

client MUST NOT change the value of ClientTicketRequest in the

second ClientHello message.

4. IANA Considerations

IANA is requested to create an entry, ticket_request(TBD), in the

existing registry for ExtensionType (defined in [RFC8446]), with

"TLS 1.3" column values being set to "CH, EE", and "Recommended"

column being set to "Y".

5. Performance Considerations

Servers can send tickets in NewSessionTicket messages any time after

the server Finished message (see [RFC8446]; Section 4.6.1). A server

which chooses to send a large number of tickets to a client can

potentially harm application performance if the tickets are sent

before application data. For example, if the transport connection

has a constrained congestion window, ticket messages could delay

sending application data. To avoid this, servers should prioritize

sending application data over tickets when possible.

6. Security Considerations

Ticket re-use is a security and privacy concern. Moreover, clients

must take care when pooling tickets as a means of avoiding or

amortizing handshake costs. If servers do not rotate session ticket

encryption keys frequently, clients may be encouraged to obtain and

use tickets beyond common lifetime windows of, e.g., 24 hours.

Despite ticket lifetime hints provided by servers, clients SHOULD

dispose of cached tickets after some reasonable amount of time that

mimics the session ticket encryption key rotation period.

Specifically, as specified in Section 4.6.1 of [RFC8446], clients

MUST NOT cache tickets for longer than 7 days.

In some cases, a server may send NewSessionTicket messages

immediately upon sending the server Finished message rather than

waiting for the client Finished. If the server has not verified the

client's ownership of its IP address, e.g., with the TLS Cookie

extension (see [RFC8446]; Section 4.2.2), an attacker may take

advantage of this behavior to create an amplification attack

proportional to the count value toward a target by performing a

(DTLS) key exchange over UDP with spoofed packets. Servers SHOULD

limit the number of NewSessionTicket messages they send until they

have verified the client's ownership of its IP address.

Servers that do not enforce a limit on the number of

NewSessionTicket messages sent in response to a "ticket_request"

extension could leave themselves open to DoS attacks, especially if

ticket creation is expensive.

¶

¶

¶

¶

¶

¶

[I-D.ietf-tls-dtls13]

[RFC2119]

[RFC8174]

[RFC8446]

[RFC8305]

[TAPS]

7. Acknowledgments

The authors would like to thank David Benjamin, Eric Rescorla, Nick

Sullivan, Martin Thomson, Hubert Kario, and other members of the TLS

Working Group for discussions on earlier versions of this draft.

Viktor Dukhovni contributed text allowing clients to send multiple

counts in a ticket request.

8. References

8.1. Normative References

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-39, 2 November 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-tls-

dtls13-39.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

8.2. Informative References

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/info/rfc8305>.

Brunstrom, A., Pauly, T., Enghardt, T., Grinnemo, K.,

Jones, T., Tiesel, P., Perkins, C., and M. Welzl,

"Implementing Interfaces to Transport Services", Work in

Progress, Internet-Draft, draft-ietf-taps-impl-08, 2

November 2020, <http://www.ietf.org/internet-drafts/

draft-ietf-taps-impl-08.txt>.

Authors' Addresses

Tommy Pauly

¶

http://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-39.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-39.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-39.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305
http://www.ietf.org/internet-drafts/draft-ietf-taps-impl-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-impl-08.txt

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

Christopher A. Wood

Cloudflare

101 Townsend St

San Francisco,

United States of America

Email: caw@heapingbits.net

mailto:tpauly@apple.com
mailto:dschinazi.ietf@gmail.com
mailto:caw@heapingbits.net

	TLS Ticket Requests
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Use Cases
	3. Ticket Requests
	4. IANA Considerations
	5. Performance Considerations
	6. Security Considerations
	7. Acknowledgments
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

