
TN3270E Working Group G. Pullen
Internet-Draft: <draft-ietf-tn3270e-extensions-03.txt> Alcatel USA
Extends: RFC 2355 M. Williams
Expiration Date: April 2002
 October 8, 2001

TN3270E Functional Extensions

Status of this Memo

 This document is an Internet-Draft and is in full conformance
 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (1999, 2000, 2001). All Rights
 Reserved.

Abstract

 This draft addresses issues and implementation problems defined and
 discussed at the TN3270E/TN5250E Interoperability Events. It does
 not replace the current TN3270 Enhancements protocol. It describes
 functional extensions to the TN3270E protocol. The TN3270E function
 negotiation mechanism is used to allow the server and client to
 determine which, if any, of these functions will be supported during
 a session. This preserves backward compatibility between clients
 and servers that do not support these features.

 Among the issues to be address by this draft are SNA/TN3270E
 Contention state resolution, SNA Sense Code support, Function
 Management Header support, and TN3270E header byte-doubling
 suppression.

https://datatracker.ietf.org/doc/html/draft-ietf-tn3270e-extensions-03.txt
https://datatracker.ietf.org/doc/html/rfc2355
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Pullen & Williams Internet Draft [Page 1]

Internet Draft TN3270E Functional Extensions October 2001

1. Table of Contents

1. Table of Contents 2
2. Negotiated Function Codes 3
3. Negotiated Function Example 3
4. Contention Resolution Function 4
4.1 Keyboard Restore Problem 4
4.2 Implied Keyboard Restore Problem 4
4.3 Bid Problem . 4
4.4 Signal Problem . 5
4.5 CONTENTION-RESOLUTION Implementation 5
4.5.1 SEND-DATA Indicator (SDI) 6
4.5.2 KEYBOARD-RESTORE Indicator (KRI) 7
4.5.3 BID Data Type . 8
4.5.4 SIGNAL Indicator . 9
5. Function Management Header (FMH) Support Function . . . 12
5.1 FMH Overview . 12
5.1.1 LU1 FMH1 Support . 13
5.1.2 Usage of DSSEL in FMH1 13
5.1.3 Structured Field Data Stream 14
5.1.4 IPDS Data Stream . 14
5.2 FMH Data Type . 14
5.3 Server Implementation 15
5.3.1 Bind Processing . 15
5.3.2 Host/Server Flow . 15
5.3.3 Client/Server Flow 16
5.3.4 FMH Responses . 16
5.4 Client Implementation 17
6. SNA Sense Code Function 18
7. TN3270E Header Byte-doubling Suppression Function . . . 19
8. References . 20
9. Term Definitions . 20
10. Abbreviations . 21
11. Conventions . 21
12. Author's Note . 22
13. Author's Address . 22

Pullen & Williams Internet Draft [Page 2]

Internet Draft TN3270E Functional Extensions October 2001

2. Negotiated Function Codes

 To maintain backward compatibility with clients and servers that do
 not support the extended TN3270E functions all new functionality
 will be negotiated. The current TN3270E function negotiation rules
 apply. Either side may request one or more of the extended
 functions by adding them to the function code list during TN3270E
 function negotiations. Either side may reject the function by
 removing it from the function list.

 The extended TN3270E function negotiation codes are defined as:

 CONTENTION-RESOLUTION 5
 FMH-SUPPORT 6
 SNA-SENSE 7
 SUPPRESS-HEADER-BYTE-DOUBLING 8

3. Negotiated Function Example

 The SNA-SENSE function support is enabled by the negotiation below:

 Server: IAC DO TN3270E
 Client: IAC WILL TN3270E
 . . .
 Client: IAC SB TN3270E FUNCTIONS REQUEST ... SNA-SENSE IAC SE
 Server: IAC SB TN3270E FUNCTIONS IS ... SNA-SENSE IAC SE

 Support is disabled by the negotiation below (the server does not
 support the SNA-SENSE function):

 Server: IAC DO TN3270E
 Client: IAC WILL TN3270E
 . . .
 Client: IAC SB TN3270E FUNCTIONS REQUEST ... SNA-SENSE IAC SE
 Server: IAC SB TN3270E FUNCTIONS REQUEST ... IAC SE
 Client: IAC SB TN3270E FUNCTIONS IS ... IAC SE

Pullen & Williams Internet Draft [Page 3]

Internet Draft TN3270E Functional Extensions October 2001

4. Contention Resolution Function

 This function addresses shortcomings in the current TN3270E (RFC
2355) specification that stem from the fact that SNA is a

 send/receive state oriented protocol, while TN3270E is relatively
 state free. The following subsections define the problems to be
 addressed and the methods to resolve those issues.

4.1 Keyboard Restore Problem

 The Keyboard Restore problem concerns uncertainty over when the
 client can send data to the TN3270E server. TN3270E provides for an
 End-Of-Record (EOR) mechanism, which allows the client to determine
 where the boundary is between 3270 data stream commands. The server
 sends EOR whenever it sends data to the client for which the LIC
 (Last-In-Chain) indicator was set. Clients have no choice but to
 interpret the presence of EOR as an indication that it is okay to go
 ahead and send data back to the host (providing the 3270 data-stream
 has restored the keyboard). Since it is not uncommon for the Server
 to receive a LIC from the host with no CDI (Change Direction
 Indicator) set, a serious problem is created where the client will
 send data to the server when it does not own the send state.

 The solution is for the server to provide the client with an
 indication that it may send data. The Send Data Indicator (SDI)
 mechanism will be discussed later in this document.

4.2 Implied Keyboard Restore Problem

 The Implied Keyboard Restore problem occurs when an application
 never explicitly sets the keyboard restore bit of the WCC byte in

 any of the 3270 data streams during a bracket. In SNA, EB is
 considered an "implied" keyboard restore in this case. However,
 since TN clients are not aware of the bracket or direction state the
 client is not aware that it is allowed to send data and often hangs
 in X-CLOCK state.

 The solution for this problem is for the server to detect the
 implied keyboard restore condition and send the Keyboard Restore
 Indicator (KRI) flag to inform the client that its keyboard is
 unlocked (ready state).

4.3 BID Problem

 In SNA, when a session is in the BETB (Between Bracket), the Primary
 LU (PLU), or host, may bid for the bracket by either sending an
 explicit or implicit BID. The Secondary LU (SLU), or terminal,
 processes the BID, either granting the bracket to the host or
 rejecting the request. Having granted the bracket the SLU must

https://datatracker.ietf.org/doc/html/rfc2355
https://datatracker.ietf.org/doc/html/rfc2355

 enter the X-CLOCK (Time) input inhibited state.

Pullen & Williams Internet Draft [Page 4]

Internet Draft TN3270E Functional Extensions October 2001

 An implicit BID occurs when the session is BETB and the host sends a
 message to the SLU with Begin Bracket (BB) indicated. No BID
 actually flows but is implied. The SLU may accept or reject as if a
 BID had been sent.

 In the TN3270 world, there is no mechanism for including the client
 in the BID process. The server must process the BID on the client's
 behalf, without the ability to request the client yield the send
 state. This leads to a variety of problems when the client attempts
 to send data inbound after the server has sent positive response to
 a BID from the host. These problems include hung or lost sessions,
 lost data, or SNA or host application error messages, depending on
 data flow, timing, and how the server handles the BID process.

 This problem can be addressed by allowing the BID to propagate to
 the client. When the server receives a valid BID (implicit or
 explicit) from the host (i.e. one that occurs in the BETB state) it
 will forward it to the client. The client will respond either
 positively or negatively. Having granted the BID (positive
 response), the client enters the X-CLOCK input inhibited state until
 the session reenters contention state.

4.4 Signal Problem

 The Signal problem occurs when the PLU sends a Signal in order to
 force the SLU to yield direction. For example, when the secondary
 has rejected a BID and the host needs to override it. The BID
 reject may occur when the user types some data (perhaps an
 unintentional depression of the space bar) and does not press an AID
 key. The SNA architecture provides that the primary (host) can send
 a Signal. The secondary should reply with a positive response, send
 a null RU with Change Direction to yield direction (and Begin
 Bracket if appropriate), and enter send inhibit state.

 With TN3270 there is no way for the server to force the client to
 yield the send state.

4.5 CONTENTION-RESOLUTION Implementation

 This section defines a new negotiated TN3270E function called
 CONTENTION-RESOLUTION. Support of this function implies that both
 the client and the server are able to handle the SDI, KRI and Signal
 header flags and the BID data type as defined in this specification.

 This function is intended SNA TN3270E environments only. Non-SNA
 server implementations should ALWAYS disable this function during
 TN3270E function negotiations.

 When the CONTENTION-RESOLUTION function is supported, the
 REQUEST-FLAG header field is interpreted as a bit mask, instead of a

 byte value, to allow the field to be used for Send Data, Keyboard
 Restore and Signal indicators.

Pullen & Williams Internet Draft [Page 5]

Internet Draft TN3270E Functional Extensions October 2001

4.5.1 Send Data Indicator (SDI)

 To use the Send Data Indicator the CONTENTION-RESOLUTION function
 must be supported by and agreed upon by both the server and client
 during TN3270E function negotiations. SDI is only valid for TN3270E
 terminals in PLU-SLU session (3270-DATA type). SDI is not used for
 SSCP-LU mode to avoid the overhead of the server having to BID to
 send asynchronous SSCP-LU-DATA records to the client.

 SDI is meaningful only when sent by the server. It is sent in the
 REQUEST-FLAG field of the TN3270E header. The SDI bit mask is:

 SEND-DATA-MASK 0x01

 A bit value of 1 (true) indicates to the client that it holds the
 send state. A bit value of 0 (false) indicates the server (and host
 by extension) holds the send state.

 In SNA LU-LU session, the server sends SDI when the host
 relinquishes send state with either the CDI or the EBI set in the
 SNA RU header.

 It is valid for the server to send a null 3270-DATA message (TN3270E
 header and EOR, no data) to indicate the send state to the client.
 This allows the server and client to handle a NULL RU containing EBI
 or CDI received from the host.

 The server ignores SDI in messages from the client and processes any
 data as usual depending on data type.

 When SDI is received by the client and the current TN3270E message
 has been processed (upon receipt of EOR) the client may send data to
 the server. If RESPONSES have been negotiated, the client must send
 RESPONSES to the server regardless of the send state. Upon receipt
 of SDI, the client must send all pending RESPONSE messages before
 sending any keyboard input to the server.

 SDI is not a replacement for the 3270 data stream WCC Keyboard
 Restore bit. The client must track the 3270 WCC Keyboard Restore
 flag, TN3270E Keyboard Restore Indicator (KRI) and SDI to determine
 whether or not it can start sending data to the server. If keyboard
 restore (WCC or KRI) is received, the keyboard input must still be
 buffered until the SDI is received.

 The client may send an ATTN key (IAC IP) regardless of the keyboard
 State, including input inhibited state. ATTN causes the server to
 send a SIGNAL to the host requesting Change Direction. This may
 allow the user to recover from a direction state timing or
 synchronization problem (i.e. server neglected to send SDI). The
 client should avoid subsequent ATTN keys until it receives direction

 from the host. The server may disregard successive ATTN keys while
 waiting for the first ATTN to be processed and direction is yield by
 the host.

Pullen & Williams Internet Draft [Page 6]

Internet Draft TN3270E Functional Extensions October 2001

 The client may also send SYSREQ (if enabled by TN3270E function
 negotiation) to override the input inhibit state. This allows the
 user to switch to SSCP-LU session (possibly to logoff).

 The RESET key is used to clear local terminal and X-SYSTEM error
 conditions. RESET purges all buffered (type-ahead) keystrokes,
 except when entered to remove terminal Insert mode. In this case, a
 second RESET is required to purge the type-ahead buffer. RESET does
 restore the keyboard allowing the user to begin typing buffered
 keystrokes. However, it does NOT clear the X-CLOCK condition or
 allow the client to override the send state and forward data to the
 server.

4.5.2 Keyboard Restore Indicator (KRI)

 To use the Keyboard Restore Indicator the CONTENTION-RESOLUTION
 Function must be supported by and agreed upon by both the server and
 Client during TN3270E function negotiations. KRI is only valid for
 TN3270E terminals in PLU-SLU session (3270-DATA type mode).

 KRI is meaningful only when sent by the server. KRI is sent in the
 REQUEST-FLAG field of the TN3270E header. The KRI bit mask is:

 KEYBOARD-RESTORE-MASK 0x02

 A bit value of 1 (true) indicates to the client that its keyboard
 has been restored. The client's X-CLOCK indicator is turned off,
 allowing the user to enter data. However, the client may not
 send data to the server until it has also received SDI from the
 server (which may be set in the same REQUEST-FLAG field).

 Logically, the client treats KRI the same as it does the 3270 WCC
 Keyboard Restore bit. KRI is not a replacement for the 3270 data
 stream WCC Keyboard Restore bit. The client must still track both
 the KRI and 3270 WCC Keyboard Restore flag to determine the keyboard
 state. Normally, one or the other will be received. However, the
 client should not balk if both are received on a 3270-DATA message.

 The server ignores KRI in messages from the client and processes any
 data as usual depending on data type.

 The server sends KRI when it detects an "implied" keyboard restore
 during LU-LU session. The server must track whether the host
 application has explicitly set the keyboard restore bit of the
 WCC byte in any of the 3270 data streams during a bracket. If not,
 the server must set KRI in the TN3270E message header when EB is set
 in the SNA header.

 It is valid for the server to send a null 3270-DATA message (TN3270E
 Header and EOR, no data) to indicate the KRI to the client. This

 allows the server and client to handle a NULL RU containing EBI
 received from the host.

Pullen & Williams Internet Draft [Page 7]

Internet Draft TN3270E Functional Extensions October 2001

4.5.3 BID Data Type

 To use the BID data type the CONTENTION-RESOLUTION function must be
 supported by and agreed upon by both the server and client during
 TN3270E function negotiations. The BID data type message is only
 valid on terminal sessions in 3270-DATA (LU-LU) mode. The BID data
 type is not valid during SSCP-LU mode, NVT mode, or on printer
 sessions.

 The BID DATA-TYPE code is defined as:

 Data-type Name Code Meaning
 -------------- ---- ---
 BID 0x09 The server indicates that the host has sent
 an implicit or explicit BID by sending this
 data type to the client.

 The server sends the new TN3270E BID data type to the client upon
 receipt of either an implicit or an explicit BID from the host. The
 server must never send BID to the client when the host already has
 direction (holds send state).

 To send the BID data type the server inserts the BID data type in
 the DATA-TYPE field of the TN3270E header, inserts a null (0x00) in
 the REQUEST-FLAG field, inserts ALWAYS-RESPONSE (0x02) in the
 RESPONSE-FLAG field and fills in an appropriate SEQ-NUMBER. The server
 should use the next number in the progression of sequence numbers. An
 End-of-Record (EOR) is appended immediately after the TN3270E header
 (there is no data portion for a BID message).

 The BID data type must always receive a response from the client
 regardless of whether the RESPONSES function is supported on the
 session. The client's positive or negative response to a BID should
 be exactly the same as those defined in the TN3270 Enhancements RFC,
 unless the SNA Sense Code Function (defined in section 6) is used by
 the client to communicate a more specific code. The SEQ-NUMBER is
 returned by the client in its response, to allow the server to
 coordinate the response with the BID.

 When the client receives a BID message it is accepted by returning
 a positive response, or rejected by returning a negative response.
 The format of a positive response is the same as the positive
 response defined for the TN3270E RESPONSES function (i.e., RESPONSE
 data type, POSITIVE-RESPONSE code in RESPONSE-FLAG field, SEQ-NUMBER
 from BID). When the client accepts the BID the keyboard state goes
 to input inhibited, the client displays the X-CLOCK symbol and may
 not send data until SDI is received from the server.

 When the server receives a BID response from the client, it is

 responsible for constructing the appropriate SNA response to the host.

Pullen & Williams Internet Draft [Page 8]

Internet Draft TN3270E Functional Extensions October 2001

 If the client already has buffered data to be sent to the host the
 client can reject the BID. The negative response uses the TN3270E
 RESPONSES format (i.e., RESPONSE data type, NEGATIVE-RESPONSE code
 in RESPONSE-FLAG field, SEQ-NUMBER from BID). Unless the client
 supports the SNA Sense Codes function, there is no defined reason
 information in the data portion of the negative response. The
 server rejects the host's BID with a "Bracket Bid Reject" sense code
 (0x08130000). The client's send state should remain unchanged upon
 negatively responding to a BID (i.e. if send state is input
 inhibited, it stays that way).

 If the client supports the SNA Sense Code function, it has the
 option of returning "Receiver in Transmit Mode" (0x081B0000) sense
 code. This may be returned to reject the Bid when the user has
 started typing data but has not yet pressed an AID key.

 A potential race condition exists, where the client sends data at
 the same time the server is sending a BID to the client. The race
 condition is handled by the server, and is relatively transparent to
 the client. When the server receives data before the expected
 response to the BID, the data is treated as an implied negative
 response. The server sends the Bracket Bid Reject (0x08130000)
 negative response to the host's BID and forwards the client's data
 to the host. When the client's response to the BID is received it
 is discarded by the server. The client's keyboard state should be
 input inhibited, whether it responded positively or negatively to
 the BID, because it has not received SDI for the data it sent
 previously.

4.5.4 SIGNAL Indicator

 To use the SIGNAL indicator the CONTENTION-RESOLUTION function must
 be supported by and agreed upon by both the server and client during
 TN3270E function negotiations. The SIGNAL indicator is only valid
 on BID data type messages. The SIGNAL indicator is sent in the
 REQUEST-FLAG field of the TN3270E header.

 The SIGNAL bit mask is:

 SIGNAL-MASK 0x04

 A bit value of 1 (true) indicates that a Signal has been received
 from the PLU. Therefore the BID is "Forced" and the client MUST
 forfeit the send state.

 The client must always respond to a BID with the SIGNAL indicator, as
 described in the BID section. It is not necessary for the client to
 echo the SIGNAL indicator in its response. However, the server
 should not balk if the client does echo the SIGNAL indicator. The

 server must maintain in it's state machine that it is awaiting a
 response to a SIGNAL indicator.

Pullen & Williams Internet Draft [Page 9]

Internet Draft TN3270E Functional Extensions October 2001

 When a Signal is received from the PLU the TN3270E Server's
 behavior may be summarized as follows:

 Send positive response to the host for the Signal
 If the host already has direction, or in contention state. . .
 there is nothing more to do
 Else client has direction. . .
 send BID with Signal to client and wait for reply or data
 If data received first. . .
 forward data to host as normal (will carry CD)
 Else response received first. . .
 send null RU CD to Host (with BB if necessary)

 Upon receipt of Signal from the host, the server returns positive
 response to the host, regardless of whether the host or client holds
 direction. If the host holds direction (send state), there is
 nothing more to be done. The client should already be awaiting data
 from the host.

 If the client holds direction, the server sends a BID with the
 SIGNAL indicator set to inform the client that it no longer holds
 send state and its keyboard state is input inhibited. The server
 will receive either data or a positive response from the client.

 The server forwards any inbound data from the client to the host,
 while awaiting response to the signal BID. The inbound data record
 will cause the direction (CD) state to return to the host. When the
 positive response is received from the client the server has nothing
 further to do.

 If the server receives only a response from the client, the server
 sends a null RU with Change Direction (CD) to the host. The client
 MUST return positive response to the server. If the client sends
 negative response to a SIGNAL, even though it is not allowed to do
 so, the server treats it as a positive response and handles it
 accordingly.

 The Client's behavior when a BID containing the Signal indicator is
 summarized as:

 Receive BID with Signal indicator
 If client has direction and buffered keystrokes with AID. . .
 send first AID buffer
 Else host has direction (race condition) or no AID. . .
 the buffered keystrokes are left unchanged
 Return positive response to Signal
 Enter X-CLOCK input inhibited mode
 Buffer any keystrokes/AID typed after the Signal

Pullen & Williams Internet Draft [Page 10]

Internet Draft TN3270E Functional Extensions October 2001

 A Signal does not cause the client to purge any buffered keystrokes.
 If the client holds direction when the Signal is received, it may
 send one buffered AID message (if any) before sending positive
 response to the Signal. If the Host already had direction (race
 condition) or no AID key is buffered, the type-ahead buffer is
 retained, as is.

 The client then accepts the BID, and enters input inhibit mode. No
 further buffered data may be forwarded to the host until direction
 is returned to the client.

 The following diagram illustrates how the client should handle
 buffered keystrokes relative to BID/SIGNAL processing:

 |<--- Data typed before BID --->|<--- Data typed after BID --->|
 | is displayed on the screen. | is NOT displayed on screen. |

 This allows the host application to do a Read Buffer, update the
 portion of the screen it wants to change, put the cursor back to the
 right place for the suspended input and restore the keyboard. The
 client then streams the buffered keystrokes into the screen image.
 Upon completion of these processes the screen image should be
 restored correctly.

Pullen & Williams Internet Draft [Page 11]

Internet Draft TN3270E Functional Extensions October 2001

5. Function Management Header (FMH) Support Function

 Function Management Headers are not permitted in LU2 or LU3.
 Initially, they were not used in LU1 either. Consequently, no
 provision was made for them in TN3270 or TN3270E. Subsequently,
 support for FMHs over LU1 has been added to SNA based applications
 and devices. Requirements to support LU1 DBCS (Kanji etc.) and
 IPDS printer applications are driving this effort for TN3270E FMH
 support.

 A de facto standard has arisen for handling Structured Field data
 stream FMHs in both TN3270 and TN3270E. This de facto standard is
 referred to below as "silent FMH support". Only FMH1 is supported
 and merely forwarded, in both directions, as data. The receiver
 must recognize that the FMH is present by inspecting the first few
 bytes of the Telnet record and determining that they do not look
 like valid SCS data. This is workable because FMH1 is a fixed
 6-byte string, and it only occurs at the start of a record.

 The TN3270E FMH support function expands on silent FMH support by
 adding a mechanism for transferring FMHs through a server using a
 new TN3270E FMH data type. The main argument for adding this
 function is to allow clients and servers to formally determine
 whether the other side can "really" support FMH flows. Since, this
 functionality is negotiable, client/server vendors can make the
 determination of the merits of knowing whether the other side truly
 supports LU1 Function Management Headers.

5.1 FMH Overview

 FMH usage in its simplest terms:

 - There is only one FMH per chain, starting at the beginning of the
 chain.
 - The FMH may be spread over multiple RUs if too long for one. The
 Format Indicator (FI) is 1 in the BC RU and 0 in the rest.

 At the next level of complexity:

 - There may be multiple FMHs, consecutively, at the start of the
 chain.
 - The presence of an FMH following the current one is indicated by
 the concatenation flag at byte 1, bit 0 of the current.
 - As with a single FMH, these FMHs may continue over several RUs,
 but only the first RU has the FI flag on. FI=0 on subsequent RUs.

 The concatenation flag in the preceding FMH is sufficient to
 introduce it. However, the description of FMHs in [2] only requires
 a (concatenated sequence of) FMH to start at the start of an RU, not
 necessarily at the start of a chain. It states that any RU in the

 chain may have the FI flag on and thus start with an FMH, though the
 preceding RU ended with ordinary data.

Pullen & Williams Internet Draft [Page 12]

Internet Draft TN3270E Functional Extensions October 2001

 This would be awkward for TN3270E, since the RU boundaries are not
 visible to the clients. Fortunately, it is awkward for higher-level
 Host applications also, e.g. CICS and IMS applications. These
 generally do not see RU boundaries either. Moreover, it is
 contradicted by the description of sense code 400F in [2]. So it is
 not surprising that the 3174 does not support this generality.

5.1.1 LU1 FMH1 Support

 LU1 supports only FMH1. By default, LU1 sessions use SCS data
 stream. FMH1 is used to introduce support for an alternate data
 stream.

 The FMH1 format is:

 byte 0 | 1 | 2 | 3 | 4 .. n
 +--
 |length|concat| type |medium|subaddr|flags| DSP | DSSEL
 +--
 bits 8 1 7 4 4 4 4 3

 Where:
 length FMH length = (n+1)
 concat Concatenation Flag = (0)
 type FMH Type (FMH1 = 1)
 medium (console = 0)
 subaddr (0)
 flags Bit 0 - Send/Receive Indicator (SRI: Send=0, Receive=1)
 DSP Data-stream Profile
 - 0xB = Structured Field Data Stream
 - 0xD = IPDS Data Stream
 DSSEL Destination Selection

5.1.2 Usage of DSSEL in FMH1

 FMH1 describes the data-stream of accompanying data. The
 accompanying data can be in a single chain (BEDS) or spread over
 multiple chains (BDS ... EDS). For TN3270E, the client is only able
 to support BEDS for inbound FMHs, because the server will assume CD
 at the end of each chain.

 It is also possible to abort the data-stream (ADS instead of EDS),
 suspend a data-stream (SDS), and resume it later (RDS). In practice
 SDS/RDS are only used to insert console output into a longer
 transfer of data.

 The entire data-stream must be within a bracket. If EB occurs after
 BDS but before EDS then the data-stream is implicitly aborted.

Pullen & Williams Internet Draft [Page 13]

Internet Draft TN3270E Functional Extensions October 2001

5.1.3 Structured Field Data Stream

 This is used by DBCS and IPDS printers so that a Read Partition
 Query exchange can be conducted with an LU1 printer. (See [1].)

 Outbound FMH1: 0x0601000B6000
 Inbound FMH1: 0x0601008B6000 (SRI bit on)

 BC RU
 length = 6
 concat = 0
 DSP = 0xB
 DSSEL = BEDS

 Since the DSSEL = BEDS, the Structured Field data-stream is from the
 end of the FMH to the end of the chain.

 The usage is bi-directional, but always as one from the host
 application and a reply from the secondary.

5.1.4 IPDS Data Stream

 (See [4].)

 Usage: 0x0601300D4000, 0x0601300D2000

 OIC RU
 length = 6
 concat = 0
 DSP = 0xD
 DSSEL = BDS, EDS
 No data following FMH in the same chain.

 Although no ADS is sent, an EB before EDS implicitly aborts the data
 stream.

5.2 FMH Data Type

 To use the FMH data type the FMH-SUPPORT function must be
 supported by and agreed upon by both the server and client during
 TN3270E function negotiations. The FMH data type message is only
 valid on LU1 printer sessions in SCS-DATA mode. The FMH data
 type is not valid during SSCP-LU mode, NVT mode, or on terminal or
 LU3 (DCS) printer sessions. The FMH DATA-TYPE code is defined as:

 Data-type Name Code Meaning
 -------------- ---- ---
 FMH-DATA 0x0A The sender indicates that the data portion
 of the message contains one or more Function
 Management Headers.

 The FMH-DATA data type is bi-directional, meaning both the client
 and server can send this data type.

Pullen & Williams Internet Draft [Page 14]

Internet Draft TN3270E Functional Extensions October 2001

5.3 Server Implementation

 If the FMH function has been negotiated, the server forwards the FMH
 data as part of the record, just as for normal data, and sets the
 FMH-DATA type in the TN3270E header.

 If the FMH function was not negotiated the server may send the same
 with the SCS-DATA type. This maintains backward compatibility for
 servers that invoke silent FMH support.

 There is a trade-off between making many data checks in the server,
 thereby keeping the client interface simple, and minimizing the
 server's knowledge of the data-stream, thereby preserving
 flexibility. This proposal takes the latter approach. In
 particular, except for silent FMH support, the server does not know
 which FMH types the client supports.

5.3.1 Bind Processing

 Since TN3270E does not permit the client to reject the Bind, the
 server must police the bind parameters as far as possible.

 If the server receives an LU1 Bind with byte 6 bit 1 set to 1 (FMHs
 will be used), but the client has not negotiated FMH function, then
 the server may choose to reject the Bind with sense 0x08350006.
 This is left optional (perhaps on customer configuration) in order
 to accommodate silent FMH support. However, when providing such
 support, the server is recommended to perform additional checks on
 the data, as outlined below.

5.3.2 Host/Server Flow

 When the server receives an RU from the host application on an LU1
 session FI = 1 and category = FMD, the server checks that the FMH is
 supported in principle. The server returns 0x400F0000 sense code if
 the Bind did not indicate FMHs or the FMH is not at the beginning of
 a chain. When providing silent FMH support to the client, the
 server may make the following optional checks, in this order:

 Sense Code Cause
 ---------- -----
 0x10082009 Invalid header length (must be 6).
 0x1008C000 Invalid FMH type (must be 1).
 0x10086006 Invalid Data-stream Profile (must be 0xB or 0xD).
 0x10080000 Other invalid parameters in FMH.

 Example:
 0x0601000B6000
 0x0601300D4000
 0x0601300D2000

 The server either sends a negative response to the Host application
 or forwards the data to the client.

Pullen & Williams Internet Draft [Page 15]

Internet Draft TN3270E Functional Extensions October 2001

 Note: If neither the FMH nor the SNA-SENSE functions are negotiated
 then it is recommended that the server only permit a specific list
 of FMHs from the Host.

 The existing function is to send EOJ to the client. There is no
 change required here.

5.3.3 Client/Server Flow

 When the server receives an FMH-DATA record from the client, it
 forwards the record to the Host application with FI set in the Begin
 Chain RU.

 If the server receives a message FMH-DATA type but the FMH function
 was not negotiated, the server may choose either of two actions:

 - Terminate the LU-LU session. It is suggested that, if BIND was
 negotiated, the UNBIND should carry a reason code of 0xFE.
 (If some future extension allows for SNA sense codes to flow to
 the client in the unbind image, the code to be used here should
 be 0x400F0000.)

 - Behave, for that message only, as though FMH function was
 negotiated.

 The server is not required to validate FMH-DATA messages received
 from the client.

 If the server has sent a silent FMH (SCS-DATA type) to the client,
 the server must compare the first 6 bytes of the data for being
 0x0601008B6000. If so, it sets FI in the Begin Chain RU.

5.3.4 FMH Responses

 If SNA-SENSE-CODE is not supported, and the client returns a
 negative response to a silent FMH (SCS-DATA) or FMH-DATA type, the
 server is unable to determine whether the client objects to the FMH or
 the ensuing data. However, of the identified FMHs requiring support,
 only the Structured Field Data Stream can have data in the same
 chain. Even then, the cause of the rejection is likely to be that
 the client does not support FMHs. Therefore, it is recommended to
 the server interpret the negative response as a rejection of the FMH
 itself. The server should send negative response with 0x10080000
 Sense code to the Host.

 If SNA-SENSE-CODE is supported the server takes the first four bytes
 of data following the TN3270E header as an SNA sense code and sends
 these, unchanged and unchecked, in the negative response to the host.
 There are many SNA sense codes associated with FMH errors that the
 client may return. Most are at the application level and begin with

 0x1008.

Pullen & Williams Internet Draft [Page 16]

Internet Draft TN3270E Functional Extensions October 2001

 In addition to codes previously defined, below are some common FMH
 Sense codes:

 Sense Code Cause
 ---------- -----
 0x10080000 Invalid parameters in FMH.
 0x08350006 Bind has byte 6 bit 1 set to 1 (FMHs will be used) but
 printer does not support FMHs.
 0x400F0000 Incorrect use of FI (not BC RU), or Bind error
 (byte 6/bit 1 set to 0). The FI flag is not echoed
 in the SNA response.

5.4 Client Implementation

 A client that negotiates FMH function takes responsibility for
 validating the FMH-DATA messages. If an error is found in a
 received FMH, the client must send a NEGATIVE-RESPONSE.

 If SNA-SENSE has been negotiated, the SNA-SENSE is set in the
 Response header field with the appropriate 4-byte SNA sense code in
 data field. Otherwise, the response field is set to NEGATIVE-
 RESPONSE and the data field contains the one byte Command Reject
 (0x0) status code.

 A client that negotiates the FMH function must set FMH-DATA type on
 all records it sends that start with an FMH.

 If a client receives EOJ after BDS and before EDS then the client
 should infer ADS.

Pullen & Williams Internet Draft [Page 17]

Internet Draft TN3270E Functional Extensions October 2001

6. SNA Sense Code Function

 This function is intended for SNA TN3270E environments only.
 Non-SNA server implementations should ALWAYS disable this function
 during TN3270E function negotiations.

 When the server and client operate in an SNA environment, it is
 impractical to perpetuate the one-byte error code mapping style of
 TN3270E. Especially, when SNA already provides a table of defined
 Sense codes. The SNA Sense Code function allows the client to
 return SNA Sense codes to the server, which are in turn forwarded to
 the SNA Host as a negative response.

 The client indicates that the data portion of the response message
 contains a 4-byte SNA sense code by setting the following code in
 the RESPONSE-FLAG field:

 SNA-SENSE-CODE 2

 The SNA-SENSE function may be negotiated on either terminal or
 printer sessions. When the SNA-SENSE and RESPONSES functions have
 been negotiated, the server is committed to accepting SNA-SENSE-CODE
 responses to 3270-DATA, SCS-DATA (LU1), BID and FMH-DATA data type
 messages.

 The client retains the option of providing specific SNA Sense codes,
 or letting the server map all errors to the appropriate SNA sense
 codes.

Pullen & Williams Internet Draft [Page 18]

Internet Draft TN3270E Functional Extensions October 2001

7. TN3270E Header Byte-doubling Suppression Function

 A performance bottleneck facing Telnet server and client vendors is,
 any 0xFF within an outbound data stream must be byte-doubled (a
 second 0xFF inserted into the data stream) by the sender in order to
 differentiate actual data from Telnet IAC commands. The receiver of
 the data stream must then scan through the data stream removing the
 inserted 0xFF bytes. With header-based protocols, like TN3270E,
 Telnet byte-doubling forces the header to be variable length, to
 allow for any 0xFF bytes that may occur within the header.

 From discussions on the TN3270E list, it was determined that Telnet
 Byte-doubling Suppression would best be handled outside of the
 TN3270E standard as a new Telnet negotiated option. This will allow
 other block mode protocols (i.e. traditional TN3270, and TN5250) to
 take advantage of the proposed option.

 However, the variable length header issue is within the scope of the
 TN3270E standard. This draft proposes a method to make the TN3270E
 header fixed length by eliminating byte-doubling of the 5 header
 bytes. This function will extend the TN3270E standard to address
 this issue. Although this function is proposed in anticipation of a
 new Suppress Byte-doubling Telnet option, it is intended to be
 independent of whether such a Telnet option is negotiated.

 When the SUPPRESS-HEADER-BYTE-DOUBLING function is enabled the
 TN3270E header will never be byte-doubled in either direction
 (client to server/server to client). Therefore, the size of the
 TN3270E header will ALWAYS be 5 bytes when the Header Byte-doubling
 function is in effect.

 The sender of a TN3270E message guarantees that the first five
 (header) bytes of the record will not contain any embedded Telnet
 commands. The sender must byte-double the data portion of the
 TN3270E message.

 The receiver of the message must validate that the message received
 does begin with a valid TN3270E header, to avoid misinterpreting
 asynchronous Telnet command packets between TN3270E records. The
 receiver must also be cognizant of whether a TN3270E header is
 expected to avoid problems that may occur if bytes in the middle of
 a chain of buffers are not scanned properly. When the receiver has
 determined that a valid TN3270E header is present it must skip past
 the header to begin scanning for byte-doubled 0xFF characters.

Pullen & Williams Internet Draft [Page 19]

Internet Draft TN3270E Functional Extensions October 2001

8. References

 [1] IBM's "3174 Functional Description", Bookshelf book CN7A7003,
 GA23-0218-11.
 [2] IBM's "Systems Network Architecture Formats", GA27-3136-14.
 [3] RFC 2355
 [4] IBM's "IPDS and SCS Technical Reference", S544-5312-00.

9. Term Definitions

 This section defines some of the terms used in this document.

 Input Inhibited -
 a state where the client does not hold send state. Either the
 client has presented an AID message to the host or the host has
 gained direction via the BID process. The keyboard state is any
 of the type-ahead or keyboard disabled states.

 Only SYSREQ or ATTN may be forwarded to the server while the
 client is in Input Inhibited state. SYSREQ and ATTN should never
 be buffered by the client.

 Keyboard Disabled -
 a keyboard state where keystrokes may NOT be buffered by the
 client. Keyboard disabled states include (X-f), etc.

 Keyboard States -
 define the various modes a keyboard may be in during a TN3270E
 session.

 When the client holds send state the keyboard is in Ready state.
 The client is free to process all keyboard input and forward any
 entered or buffered AID data to the server.

 An Input Inhibited state is entered when the client surrenders
 send state by sending an AID buffer or granting a BID request
 from the host.

 The diagram below summarizes the various keyboard states:

 Ready | Input Inhibited
 |---
 | Type-ahead | Keyboard Disabled
 |----------------------------+------------------------
 | X-CLOCK | X-SYSTEM | . . . | X-f | . . .

https://datatracker.ietf.org/doc/html/rfc2355

Pullen & Williams Internet Draft [Page 20]

Internet Draft TN3270E Functional Extensions October 2001

 Type-ahead -
 is a state in which the client (terminal) may buffer keystrokes
 when the keyboard is an Input Inhibited state. Displayed
 keyboard state may be either X-CLOCK (Time) or X-SYSTEM (System
 Lock). Keystrokes (text and AID keys) are buffered waiting for
 send state to be returned to the client.

10. Abbreviations

 ADS Abort Destination Selection, value of DSSEL
 BB Begin Bracket, byte 2 bit 0 of RH of BC RU
 BC Begin chain, byte 0 bit 6 of RH
 BC RU An RU with BC = 1
 BDS Begin Destination Selection, value of DSSEL
 BEDS Begin and End Destination Selection, value of DSSEL
 DCA Document Content Architecture
 DSP Data-stream Profile, byte 3 bits 4-7 of FMH
 DSSEL Destination Selection, byte 4 bits 0-2 of FMH
 EB End Bracket, byte 2 bit 1 of RH of BC RU
 EC End chain, byte 0 bit 7 of RH
 EC RU An RU with EC = 1
 EDS End Destination Selection, value of DSSEL
 FI Format Indicator, byte 0 bit 4 of RH
 FIC First In Chain - an RU with BC = 1 and EC = 0
 FMD Function Management Data (user data, not FMH)
 FMH Function Management Header, a SNA data header
 IPDS Intelligent Printer Data Stream
 LIC Last In Chain - an RU with BC = 0 and EC = 1
 LU Logical Unit
 LUn Logical Unit Type n, n = 0, 1, 2, etc.
 MIC Middle In Chain - an RU with BC = 0 and EC = 0
 OIC Only In Chain - an RU with BC = 1 and EC = 1
 RDS Resume Destination Selection, value of DSSEL
 RH Request Header, 3 byte header on SNA RU
 RU Request Unit, an SNA frame starting with an RH
 SDS Suspend Destination Selection, value of DSSEL
 SNA Systems Network Architecture

11. Conventions

 - Byte order is big-endian, e.g. bit 0 is the most significant bit.

Pullen & Williams Internet Draft [Page 21]

Internet Draft TN3270E Functional Extensions October 2001

12. Author's Note

 Portions of this document were drawn from the following sources:
 - Contention Resolution proposal by Rodger Erickson (Wall Data).
 - SNA Sense Code and Function Management Header Support proposal
 by Derek Bolton (Cisco Systems).
 - TN3270E Byte-doubling Suppression proposal by Marty Williams
 (Cisco Systems).
 - Discussions on the TN3270E list and at the TN3270E/TN5250E
 Interoperability Events, 1997-1998. Particularly contributions
 by Jim Mathewson II (IBM), Derek Bolton, Michael Boe, and Diane
 Henderson (Cisco Systems).

13. Author's Addresses

 Gene Pullen Alcatel USA, Inc.
 1000 Coit Road
 Plano, Texas 75075
 Email: gene.pullen@usa.alcatel.com

 Marty Williams Email: mwilliam@dmans.com

Draft Expiration Date: April 2002

Full Copyright Statement

Copyright (c) The Internet Society (1999, 2000, 2001). All Rights
Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of develop- ing Internet standards in
which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE.

Pullen & Williams Internet Draft [Page 22]

