
TN3270E Working Group James Carmichael
Internet Draft Soumitra (Ronnie) Sarkar
Expiration Date: June, 1998 IBM Corporation
 December 1997

LU6.2 over TCP/IP
<draft-ietf-tn3270e-tcp62-00.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This draft describes IBM's support for running LU6.2 applications
 over a TCP/IP network. This support is provided using a subset of the
 X/Open architecture for Multiprotocol Transport Networking, which is
 a general protocol conversion architecture for running any
 application over any transport protocol. This draft is being
 distributed to members of the Internet community in order to solicit
 their reactions to the proposals contained in it. While the issues
 discussed may not be directly relevant to the research problems of
 the Internet, they may be interesting to a number of researchers and
 implementers.

 Any questions or comments relative to the contents of this draft
 should be sent to the following Internet address:
 carmich@us.ibm.com.

https://datatracker.ietf.org/doc/html/draft-ietf-tn3270e-tcp62-00.txt

Carmichael & Sarkar [Page 1]

Internet Draft LU6.2 over TCP/IP December 1997

Contents

Status of this Memo.. 1

Abstract... 1

1. INTRODUCTION... 3

2. A HIGH LEVEL OVERVIEW OF TCP62 FUNCTION........................ 4
2.1. Protocol Compensations Required for TCP62................. 5

2.1.1. LU6.2 Headers that Flow Over TCP/IP.................. 8
2.1.2. A Sample Flow.. 8

 2.2. LU6.2 and Related Protocols to Disable When Running TCP62. 10
2.3. TCP62 Address Mapping..................................... 11

3. Protocol Compensations... 12
3.1. Connection Establishment.................................. 13
3.2. Data Transfer... 14

3.2.1. Nonexpedited Data.................................... 14
3.2.2. Expedited Data....................................... 14

3.2.2.1. Sending Expedited Data.......................... 14
3.2.2.2. Receiving Expedited Data........................ 18

3.3. MPTN Keepalive Protocol................................... 18
3.3.1. The Problem of Out-of-Sync Connections............... 18
3.3.2. A Keepalive Protocol Using Datagrams................. 19

3.4. Connection Termination.................................... 20

4. Other Protocol Issues Not Related to Compensations............. 21
 4.1. Segmentation and Reassembly of APPC Request/Response Units 21

4.2. Pacing.. 22

5. TCP62 Formats.. 23
5.1. Migration Considerations.................................. 24

5.1.1. Processing Rules..................................... 24
5.1.2. Processing Actions................................... 25

5.1.2.1. Command... 25
5.1.2.2. Field... 26

5.2. Common Command Formats.................................... 26
5.2.1. Common Prefix.. 27
5.2.2. Optional Fields...................................... 28
5.2.3. MPTN Addresses....................................... 29

5.2.3.1. MPTN Qualifier.................................. 29
5.2.3.2. Address Mode.................................... 30
5.2.3.3. Node Address.................................... 30
5.2.3.4. Local Address................................... 30

5.2.4. Diagnostic Values.................................... 30
5.2.4.1. Primary Return Code Values...................... 31
5.2.4.2. Secondary Return Code Values.................... 31

Carmichael & Sarkar [Page 2]

Internet Draft LU6.2 over TCP/IP December 1997

5.2.4.3. Error Detector Address.......................... 33
5.2.4.4. Error Detector Data............................. 33

5.3. Command Formats... 34
5.3.1. MPTN_Connect... 34

5.3.1.1. MPTN_Connect Optional Fields.................... 36
5.3.2. MPTN_Hdr... 40
5.3.3. MPTN_DG_OOB_Data..................................... 41
5.3.4. MPTN_DG_KEEPALIVE_Hdr................................ 44

SECURITY... 45

REFERENCES... 46

AUTHORS' ADDRESSES... 46

1. INTRODUCTION

Applications that involve communications over a network are typically
written using a given application programming interface (API) that ties
it to a specific communications protocol, referred to as its "native"
protocol. For example, Telnet uses the sockets API which ties it to
TCP/IP, a version of DB2 uses the Advanced Peer to Peer Communications
(APPC) API, the native protocol for which is LU6.2, Lan Requester uses
the NetBEUI API and thus it's native protocol is NetBIOS, and so on.

Multiprotocol Transport Networking (MPTN) is an architecture for
building a class of middleware systems that allow applications,
originally designed to run on a given communications protocol, to run on
any other protocol (i.e., run over a "nonnative" protocol) without
change. Breaking the binding that typically exists between an
application and a communications protocol enables users to reduce the
number of protocols installed in their physical networks without giving
up their favorite applications.

In contrast to encapsulation techniques such as Data Link Switching,
where entire frames emitted by OSI layer 1 of a communications protocol
are encapsulated as data over another communications protocol, MPTN uses
a "protocol conversion" technique. TCP62 is the subset of MPTN
architecture which supports programs written to APIs that depend on the
LU6.2 protocol (e.g., APPC, CPIC) to run on a TCP/IP network.

[1]MPTN architecture addresses two separate problems - providing
application independence from communications protocols, and the problem
of network heterogeneity.

A node that performs protocol conversions at an end point, allowing an

Carmichael & Sarkar [Page 3]

Internet Draft LU6.2 over TCP/IP December 1997

application to run over a nonnative protocol without change, is called
an "MPTN access node". A TCP62 node is an access node that converts
LU6.2 to TCP/IP.

The network heterogeneity problem is addressed by an "MPTN gateway",
which performs transport layer concatenation of heterogeneous networks.
For example, a TCP62 gateway would allow an APPC application running on
a TCP/IP network to communicate with an APPC application on a native SNA
network. An MPTN gateway performs all the protocol conversions that an
access node performs, and additional protocol conversions to hide the
nonnative network (in the TCP62 case, TCP/IP) from the native network's
control flows (e.g., APPN control point protocols). MPTN gateway
technology is not an X/Open standard. This draft only covers the access
node function for LU6.2 over TCP/IP.

2. A HIGH LEVEL OVERVIEW OF TCP62 FUNCTION

To implement TCP62 function on a given platform, the following issues
need to be considered.

 1. The LU6.2 stack on that platform needs to be modified so that
 transport layer functions of an LU6.2 session are provided by
 a TCP connection, after the session traffic has been processed
 by protocol conversion software.

 Since transport layer functions required by the LU6.2 stack
 do not exactly match the characteristics of TCP connections,
 "protocol compensations" have to be performed by the
 conversion code. Definition of the formats and protocols for
 performing such compensations is the primary focus of this
 draft.

 An important issue that needs to be addressed is - what
 constitutes LU6.2 transport layer function. A secondary, but
 related issue is - which LU6.2 headers need to flow across a
 TCP/IP network for higher layer (OSI layer 5 and above)
 functions.
 2. Protocols associated with LU6.2, such as Advance Peer to Peer
 Networking (APPN) control point protocols, as well as LU6.2
 session level pacing protocols, must be prevented from flowing on
 the TCP/IP network.
 3. Since TCP62 allows LU6.2 applications to run unchanged over a
 TCP/IP network, LU6.2 network resource names used by the latter
 applications have to be mapped to the IP addresses of the
 machines where those resources reside. This is referred to as
 the "address mapping" problem.

Carmichael & Sarkar [Page 4]

Internet Draft LU6.2 over TCP/IP December 1997

The figure below illustrates logical components in a node running TCP62.

 | APPC/CPIC |
 | application |

 ^
 |
 v

 | LU6.2 |
 | protocol |<---
 | stack | | Transport layer
 --------------- | requests
 v

 | Protocol |
 | compensations |
 | + |
 | Address |
 | mapping |

 ^
 |
 v
 =================
 == sockets API ==
 =================

 | TCP/IP |
 | protocol |
 | stack |

Figure 1. High Level Overview of the Components of a TCP62 Node

2.1. Protocol Compensations Required for TCP62

TCP62 maps LU6.2 sessions to TCP connections. It is a one-to-one
mapping. LU6.2 sessions provide connection-oriented semantics, ensuring
in-order, reliable delivery of data. OSI layer 5 and above functionality
is provided with half-duplex session management semantics and
transaction support (sync point). Since LU6.2 session semantics do not
exactly match the functions provided by a TCP connection, TCP62 code
must compensate for the differences. The functional differences between
the session semantics of each protocol is outlined below.

 1. Connection setup with connection data:

Carmichael & Sarkar [Page 5]

Internet Draft LU6.2 over TCP/IP December 1997

 When an APPC application wants to communicate with a partner
 application, it requests that an APPC "conversation" for a given
 class of service (COS) be set up to a partner LU, where the
 partner application is identified by a "transaction program (TP)
 name". The APPC stack in turn checks if an LU6.2 "session" for
 that COS already exists to the partner. If so, then the
 conversation setup involves flowing the appropriate LU6.2 format
 (FMH5) on that session as control data. Otherwise, the session
 must be set up over an MPTN connection using MPTN protocols.

 LU6.2 session setup involves flowing a BIND (a set of bits that
 define session parameters) to the session partner, which in OSI
 terms constitutes "connection data".
 The session partner returns a BIND response (connection response
 data), and if it is acceptable to the node that initiated the
 connection request, session setup is complete. Since the TCP
 connection setup protocol does not require connection data, this
 is an area that will require protocol compensation.

 2. Record-oriented traffic

 APPC conversations guarantee that units of data sent by APPC
 applications will be delivered to the session partner with record
 boundaries kept intact. This should be contrasted with TCP, which
 is a stream-oriented transport layer protocol.

 3. Expedited Data:

 In MPTN architecture, expedited data is defined as "out-of-band"
 data on a connection that can bypass the normal queueing
 mechanisms that "normal" data on that connection is subjected to.
 Expedited data on a connection can therefore bypass (i.e., arrive
 at the destination before) normal data that was sent before it,
 but must not arrive at the destination any later than normal data
 that was sent after it.

 The LU6.2 protocol stack requires support for expedited data for
 the following two reasons:

 - In older versions of the APPC API which supports half-duplex
 conversations only, applications cannot send expedited
 data, but the protocol stack itself sends expedited data that
 needs to bypass normal data which can be held up due to
 queueing LU6.2 congestion control.

 - In full duplex APPC APIs (including CPIC), applications can
 send expedited data with the same properties that the
 APPC protocol depends on.

Carmichael & Sarkar [Page 6]

Internet Draft LU6.2 over TCP/IP December 1997

 Expedited data in LU6.2 can be more than one byte long, and has
 more general properties than those provided by the TCP (1-byte)
 urgent data mechanism, making this another area where protocol
 compensations will be required of a TCP transport provider,

 4. Session Outage Notification:

 APPC sync point functions (e.g., which provide 2-phase commit like
 capability) depend on the APPC API to provide them with
 immediate notification when a session is disrupted. In LU6.2,
 such notification is provided by the Data Link Control (DLC) layer
 of the stack, which performs LLC-2 level "keepalive" protocols
 with the adjacent link station that constitutes the next hop in an
 end-to-end LU6.2 session.

 TCP/IP implements a keepalive protocol on a per connection basis,
 but on most implementations (at the time when TCP62 was designed),
 the keepalive timers were quite high (e.g., 2 hours) and were not
 configurable. This led to the definition of a keepalive
 compensation for this function, which needs to be implemented by
 TCP62.

 5. Duplex-Abortive Session Termination with Termination Data

 In MPTN architecture, a connection termination request is
 classified as duplex if transport user on one end of the
 connection can terminate both ends of the full-duplex
 connection. The connection termination is classified as
 abortive if no guarantees are required to ensure that data
 in flight needs to reach the other end of the connection,
 when the termination request is received by the protocol
 stack.

 APPC applications view connections as conversations, whereas,
 the LU6.2 stack's view of a connection is a session. Since LU6.2
 sessions are normally terminated only when no conversations are
 active, the requirement for abortive close seems quite natural.
 Session termination with a conversation active is a severe enough
 condition where any attempts to preserve the integrity of data in
 flight would be meaningless.

 An LU6.2 session is terminated by exchanging UNBIND and UNBIND
 response formats on the session. In MPTN (as well as OSI)
 parlance, this is known as termination data. Since TCP
 connections do not provide the exchange of termination data
 during connection shutdown, this is yet another area where a
 compensation is required.

Carmichael & Sarkar [Page 7]

Internet Draft LU6.2 over TCP/IP December 1997

2.1.1. LU6.2 Headers that Flow Over TCP/IP

Since LU6.2 transport function in TCP62 is performed by TCP/IP, only
those LU6.2 headers that are required by higher layers of the LU6.2
stack need to flow over a TCP connection. For all LU6.2 formats that
flow over TCP connections, only the following headers are included:

 - only the sequence number field of the LU6.2 transmission header
(TH)
 - the entire request/response header (RH), except when reassembly of
 LU6.2 request/response units (RUs) is being performed by TCP62.

While it is hard to exactly map SNA protocol stack functions to OSI
transport and session layer functions, it is a reasonable approximation
that the TH represents transport layer information while the RH contains
session layer information needed to implement functions such as half-
duplex conversations. The sequence number field in the TH is used to
implement acknowledged data transmissions in APPC and CPIC API, and
since that is not a typical transport layer function in protocols other
than SNA, a compensation was not provided for it, but instead, the LU6.2
implementation of that function is preserved - thus preserving a portion
of the transport header.

2.1.2. A Sample Flow

The example below illustrates the flows that take place when an
APPC/CPIC application on Node A requests a conversation with an
application on Node B. The LU6.2 stack finds no existing session to
reuse, and therefore creates one. The request goes through the TCP62
code, and the LU6.2 session is mapped to a TCP connection. Application
data flows on the LU6.2 session, and as payload on the TCP connection
(and sometimes, as payloads of UDP datagrams) after MPTN headers have
been added to indicate the protocol compensations being performed.
Finally, the conversation ends, and the session is terminated
(typically, LU6.2 sessions stay up and get reused for new conversations;
the session termination case is used to demonstrate the entire life
cycle of the connection).

Carmichael & Sarkar [Page 8]

Internet Draft LU6.2 over TCP/IP December 1997

 Node A Node B
 --------------- ----------------
APPC/CPIC		APPC/CPIC
application		application
=============		==============
LU6.2		LU6.2
stack		stack
=============		==============
TCP62		TCP62
=============		==============
TCP /IP		TCP/IP
 --------------- ----------------

 Step 0: Perform the address mapping to discover the partner
 node's IP address, given the LU name that the application
 uses. The details of that step are omitted.

 Step 1: Setup native TCP connection to partner node
 <==============================>

 Step 2: Exchange MPTN connection setup packets as data on TCP
 connection, thus mapping an APPC session to a TCP connection.

 IP header, TCP header, MPTN_Connect (incl. BIND image)
 ------------------------------->
 IP header, TCP header, MPTN_Connect RSP (incl. BIND RSP)
 <-------------------------------

 Step 3: Exchange LU6.2 (connection-oriented) application data over
 TCP connection, using TCP62 protocol compensation headers.
 Occasionally, UDP datagrams need to be used for certain
 compensations, as described in a later section.

 IP header, TCP/UDP header, compensation header,
 SNA TH subset + RH, application/protocol data
 <==============================>

 Step 4: Terminate SNA session using TCP62 protocols.
 The termination protocols use UDP only.

 IP header, UDP header, protocol compensation header,
 SNA TH subset + RH, application/protocol data
 <==============================>

Carmichael & Sarkar [Page 9]

Internet Draft LU6.2 over TCP/IP December 1997

Figure 2. High Level Overview of TCP62 Protocols

2.2. LU6.2 and Related Protocols to Disable When Running TCP62

Since TCP62 was designed to be a protocol conversion approach instead of
a protocol encapsulation approach, every effort was made to filter out
aspects of LU6.2 and related protocols for which analogous functions
exist on a TCP/IP network. The two categories of protocols to be
disabled in a node running TCP62 are

 1. APPN control point protocols.
 2. LU6.2 pacing protocols.

APPN control point protocols serve the same function as routing
protocols in a TCP/IP network. These protocols implement a link state
routing algorithm (similar to OSPF), where special nodes called network
nodes (which form the APPN network backbone) continuously exchange
topology information, and use that information to compute an optimal
route between two logical units (LUs).

LU6.2 uses a window based flow control mechanism, which is conceptually
similar to TCP/IP's sliding window protocol. LU6.2 protocols use an
"adaptive pacing" mechanism, where the stack at the sending end of a
connection requests additional windows (one for each record that it will
send) from the receiver by setting a "pacing request" bit in the SNA
Record Header (RH). The stack at the receiving end of the session sends
an Isolated Pacing Message (IPM), based on the buffer capacity in the
node, to indicate how many more records the transmitting side can send
it.

Since TCP/IP already uses an various IP routing protocols that allows
any node on an IP network to reach any other node with an IP address on
that network, TCP62 prohibits APPN protocols (the routing protocol
associated with APPC) from running over TCP/IP, since that would amount
to running two separate routing protocols on the same network. The
address mapping compensation is used to map partner LU names to partner
IP addresses, and existing IP routing mechanisms (and ARP) are
sufficient to complete the rest of the steps leading to native SNA
connection setup.

LU6.2 flow control protocols are disallowed when running TCP62. In
particular, the pacing request bit of the LU6.2 RH must never be set
when sent over a TCP connection. In addition, IPMs must also be
prevented from flowing over TCP/IP. The rationale for this decision is
to prevent one set of pacing protocols from being run of top of another.
A TCP62 implementation must map the APPC adaptive pacing protocol to
TCP/IP's flow control protocol. This is described in greater detail in
Section 4.2, "Pacing".

Carmichael & Sarkar [Page 10]

Internet Draft LU6.2 over TCP/IP December 1997

2.3. TCP62 Address Mapping

Distributed applications use names to identify communication partners.
Different communications protocols use diverse naming conventions to
identify partner nodes, and applications within those nodes. APPC
applications use LU6.2 names to identify a logical units in nodes. LU
names are of the form

 NETWORK-ID.LOGICAL-UNIT-NAME

where both the network-id and logical-unit-name parts can be up to 8
bytes long and use a subset of the EBCDIC character set. A transaction
program (TP) name, which can be up to 64 bytes long, is used to identify
the application in the partner node. A socket application uses a 4-byte
IP addresses to identify partner node, and a port number to identify the
partner application.

Address mapping can be thought of as a type of compensation to be
provided, not due to a mismatch in transport protocol function, but due
to a mismatch in naming conventions used in different protocols to
identify communications partners. Since an APPC/CPIC application uses an
LU name to identify its partner, this has to be translated to an IP
address by TCP62 so that communication with the node where the partner
LU resides can take place over TCP/IP.

In LU6.2, only the partner LU name is used when a session is set up.
The TP name is exchanged in a later flow. Therefore, a solution to the
address mapping problem in TCP62 requires a mechanism for mapping a
partner LU name to the partner IP address. Address mapping is performed
using the TCP/IP Domain Name System (DNS), which consists of a resolver
(client), which queries a domain name server or a local HOSTS file to
map a domain name to an IP address. Address mapping is TCP62 is
implemented as follows:

 1. For each LU6.2 name that is a potential partner of an APPC
 application running over TCP/IP, the name is converted to a
 domain name using the following algorithm:

 - the EBCDIC characters are converted to ASCII characters
 - the ASCII character name, which is of the form
 NETWORK-ID.LU-NAME
 is converted to the form
 LU-NAME.NETWORK-ID
 by swapping the network and LU-name portions on either side
 of the period.

 - an SNASUFFIX (a configured value) that is common to all TCP62
 nodes in the user's TCP/IP network is added to the above

Carmichael & Sarkar [Page 11]

Internet Draft LU6.2 over TCP/IP December 1997

 name.

 The SNASUFFIX is of the form A.B.C such that it adheres to
 the rules of a valid TCP/IP domain name suffix.

 For example, if the LU name (in ASCII) is NET1.LU1, and the
 SNASUFFIX value for the customer network is
 dept1.company2.com, then the domain name derived from the LU
 name would be:
 LU1.NET1.dept1.company2.com

 2. The domain name is mapped to the IP address of the node where
 that LU resides (in a TCP62) node, by either entering the mapping
 in the database of a domain name server that serves the domain
 dept2.company1.com, or in a HOSTS file that would need to be
 distributed to all TCP62 nodes in the network.

 3. When an LU6.2 stack in a TCP62 node requests an LU6.2
 session to a partner LU, the TCP62 address mapping code
 must do the following:

 - apply the algorithm described in step 1 above to map the
 partner LU name to a domain name
 - query the DNS (using a standard sockets API call such as
 gethostbyname) which will return the IP address mapped to
 that domain name
 - use the IP address that was returned to set up a TCP
 connection to that node, in preparation for performing the
 connection setup protocols to that node.

3. Protocol Compensations

The previous section introduced the need for protocol compensations.
This section describes how each compensation is performed. The formats
of MPTN flows that are used to perform these compensations is described
in Section 5, "TCP62 Formats".

In TCP62, one TCP connection is used to map an LU6.2 session.
Compensations are implemented by flowing MPTN headers, usually followed
by payloads that contain SNA packets. The MPTN header conveys to the
receiver the nature of the compensation, allowing it to take appropriate
action. Some MPTN headers flow on the TCP connection representing the
session, whereas others flow as payloads of UDP datagrams, either to
bypass TCP flow control (e.g., for expedited data), or because the
compensation is node-level rather than session level (e.g., for
implementing a keepalive protocol).

Carmichael & Sarkar [Page 12]

Internet Draft LU6.2 over TCP/IP December 1997

The life cycle of an SNA session can be summarized as follows:
 - A session is set up by first creating a TCP connection to the
 node hosting the partner LU, whose IP address is determined using
 address mapping. The first packet on the connection is an
 MPTN_Connect, a portion of which contains the LU6.2 BIND image.
 The partner TCP62 node sends an MPTN_Connect response packet
 back, which includes the BIND response, and the connection set up
 is complete.
 - Regular data transfers now begin. Data that flows on the
 connection always consists of a 1-byte header that describes the
 compensation. This is typically followed by SNA headers and data.

 Expedited data flows using a more complex compensation mechanism.
 The data is first sent on the connection, but if an expedited data
 acknowledgement packet is not received in a fixed time (e.g., 3
 seconds in IBM implementations), the expedited data is sent to
 the partner in an "out-of-band" (OOB) datagram. OOB datagrams use
 a more complex format and flow as UDP datagrams.

 All SNA sessions require session outage notification compensation,
 which is performed using "keepalive" datagrams. Keepalive datagrams
 do not have any payload and also flow as UDP datagrams. The
 keepalive compensation is performed on a node-pair basis, as long
 as at least one LU6.2 session exists between those nodes.

 - Finally, if the session is to be terminated, the UNBIND image is
 sent to the partner node using the expedited data mechanism.

3.1. Connection Establishment

When establishing a LU6.2 session over TCP/IP, the normal TCP connection
establishment occurs first. The destination address is a combination of
the IP address obtained using address mapping, and the well-known port
utilized by MPTN. The values for the well-known ports are 397 for TCP
and 397 for UDP. After the TCP/IP connection has been established, the
two nodes exchange an MPTN_Connect command and response in order to set
up an MPTN connection. The initiating node sends the MPTN_Connect
command, including addressing information, connection characteristics,
and any connection data required. For LU6.2, the connection data is the
BIND RU. For detailed information about the MPTN_Connect and
MPTN_Connect response as they apply to LU6.2 over TCP/IP, please refer
to Section 5.3.1, "MPTN_Connect".

After processing the MPTN_Connect, the target node will send an
MPTN_Connect response. This response may include some changes to the
connection characteristics. The negotiable connection characteristics
are: maximum record length, maximum expedited record length, and

Carmichael & Sarkar [Page 13]

Internet Draft LU6.2 over TCP/IP December 1997

maximum length of connection termination data. These connection
characteristics may be negotiated down. The characteristics sent in the
MPTN_Connect response are the ones used on the connection.

In the MPTN_Connect command and response, there is a correlator suffix
field. This correlator suffix, when combined with the destination and
source MPTN addresses, must be unique for all time.

3.2. Data Transfer

When LU6.2 session data is sent, the stack builds a TH and an RH which
precedes the payload. The SNA headers are manipulated by the TCP62 code
so that only the sequence number part of the TH, and the RH with the
pacing request bit set to 0, flows on the TCP connection. On the
receiving node, the TCP62 code must rebuild the part of the TH that was
truncated by the sending node, and must also set the pacing bit on the
RH based on the implementation of pacing as described in Section 4.2,
"Pacing".

SNA session data is prefixed with a one-byte MPTN compensation header
that indicates the type of compensation being performed. When the data
flows over TCP, the compensation header is preceded by a four-byte
length field that indicates the length of the SNA data (including
headers), and also includes the sizes of the MPTN header and length
fields (5 bytes).

3.2.1. Nonexpedited Data

In TCP62, nonexpedited (or normal) data needs record-over-stream
compensation, since SNA honors record boundaries while TCP/IP is
stream-oriented. Normal data always flows over TCP, subject to the flow
control of the TCP connection. The one-byte compensation header
indicates that it is nonexpedited data with record boundaries preserved,
and the TCP62 code on the receiving node does not deliver it to the
local stack until the entire record arrives.

3.2.2. Expedited Data

3.2.2.1. Sending Expedited Data

LU6.2 requires the ability to send expedited data that fulfills two
requirements:

 1) The expedited data must arrive before data sent later
 on the connection.

Carmichael & Sarkar [Page 14]

Internet Draft LU6.2 over TCP/IP December 1997

 2) The expedited data must be able to bypass normal data
 queues, which may be backed up due to congestion.

Both the LU6.2 protocol stack, as well applications that use the full
duplex APPC API have the ability to send expedited data even if the
receiver is not receiving normal data.

In order to provide for these requirements, an MPTN compensation is
provided that sends data on the normal connection (to meet requirement
1, listed above), and, if needed, as a datagram (to meet requirement 2).
The receiver processes the version that arrives first, and discards the
other.

TCP/IP supports urgent data, but it's features are not rich enough to
meet the requirements of LU6.2.

 - While TCP/IP support urgent data, there is no guarantee that
 the urgent data will be sent if the window size on the TCP
 connection is zero. Under zero-window conditions, newer releases of
 BSD code send a TCP packet without any payload, but with the urgent
 bit set, to inform the partner about the availability of urgent
 data.
 The partner can read all the normal data that precedes the urgent
 data (the process of receiving the normal data will increase the
 window size, enabling the sender to send data). However, when TCP62
 was first designed, there was no indication that many TCP/IP
 implementations on Wintel systems had this fix.

 - The above fix, even if present, is not sufficient for LU6.2
 use. The TCP urgent data mechanism only handles one byte of
 urgent data, though additional urgent data can be handled if
 there is an a priori agreement between the sender and the
 receiver about the length. Since LU6.2 expedited data can have
 arbitrary lengths, any scheme based on predefined lengths is
 infeasible.

 - Finally, the TCP urgent data mechanism only marks the most recently
 sent urgent data. If the receiver does not process urgent data #1
 by the time urgent data #2 is sent, all indications that data #1
 was urgent are lost.

Given these limitations of the TCP urgent data mechanism, the expedited
data compensation designed for TCP62 is based on the assumption that TCP
has no expedited support at all.

Expedited data received from the LU6.2 stack is sent on the TCP
connection in the same way as normal data (with the LU6.2 headers
doctored, and preceded by a length and compensation header field),

Carmichael & Sarkar [Page 15]

Internet Draft LU6.2 over TCP/IP December 1997

except that the one-byte header field indicates that the data is
expedited. Expedited data requires an acknowledgement, which consists of
a length field and a one-byte compensation header that indicates that it
is an acknowledgement. There is no payload associated with this, and so
the length field should have a value of 5. The receiving TCP62 node
should send this acknowledgement as soon as it receives the expedited
data. Note that since the expedited data is sent on the TCP connection,
it is subject to TCP flow control, and may take a considerable amount of
time to reach the partner. Since this might happen, the compensation
mechanism uses a timer to wait for the acknowledgment, and if it does
not receive the acknowledgement in a reasonable amount of time (the
default is 3 seconds in IBM implementations), then the data is sent
using MPTN OOB datagrams, whose format is described in Section 5.3.3,
"MPTN_DG_OOB_Data".

When expedited data is sent as an OOB datagram, it appears as a payload
of an UDP datagram, whose destination address is the IP address of the
node hosting the partner LU, and the UDP port number is 397. The data
portion of the OOB datagram only consists of the MPTN header and the SNA
header subset and payload. Since UDP datagrams are not stream-oriented
but preserve record boundaries, the 4-byte length field is not required.

When expedited data is sent on an OOB datagram, the partner is expected
to respond with an OOB reply datagram which has no payload. If this
reply is not received in a reasonable amount of time (e.g., 10 seconds
is a default value on some IBM implementations, but the value can be
customized), the OOB datagram is retransmitted. If five retransmissions
yield no response, the connection is assumed to be dead and is torn
down.

In addition to the data being sent, the MPTN_DG_OOB_Data format includes
a connection correlator used to identify the associated connection, and
a connection sequence number that uniquely identifies that piece of
expedited data on the connection. These fields are described next.

3.2.2.1.1. Sequence Numbers in OOB Datagrams

Since expedited data that flows in an OOB datagram may reach the partner
in two different ways, the sequence number field allows the receiving
TCP62 node to discard whichever copy reaches it last. Note that when the
expedited data is first sent on the TCP connection, no sequence number
is included. Instead, the receiving TCP62 node is expected to keep a
count - which is sufficient because TCP delivers data in order, and
without loss. A sequence number field is required in the OOB datagram
because UDP datagrams can be lost and be delivered out of order.

The connection sequence numbers start at zero and increment after each

Carmichael & Sarkar [Page 16]

Internet Draft LU6.2 over TCP/IP December 1997

expedited message is sent. The sequence number field wraps (reset to
zero) at 65,535, which is sufficient to uniquely identify a given record
sent in an expedited fashion, assuming a reasonable amount of loss and
reordering of UDP datagrams. Retransmission of a previous expedited
message is not counted as a separate event.

3.2.2.1.2. Correlating an OOB Datagram to a Connection

The connection correlator in an OOB datagram consists of two parts: the
correlator address, which is a field that was assigned by the TCP62 node
that initiated the connection (and flowed on the MPTN_Connect packet),
and the correlator suffix, which is a value unique to SNA. The two
parts are concatenated to form the connection correlator.

There are two ways to correlate the MPTN_DG_OOB_Data to the associated
connection; the choice is up to the initiator of the format:

 1) Using the connection correlator field only.

 2) Using the connection correlator field and the optional receiver
 connection alias field.

The connection correlator is recognized by both sides without any extra
protocol being involved. The receiver connection alias is a local
identifier that can be used by the destination for a quicker
identification of the connection. The receiver connection alias on an
inbound OOB datagram can be used to identify the connection in a faster
manner than performing a match on the connection correlator. The
connection alias could be a connection control block pointer, a socket
number, or any other field that is deemed suitable by an implementation.

In the first MPTN_DG_OOB_Data sent for the connection, the sender can
provide its own local identifier (in the sender connection alias field)
in addition to the connection correlator. The receiver locates the
connection using the connection correlator and stores the sender
connection alias so that it knows the value to be returned in the
receiver connection alias field in the future.

Whenever a TCP62 node builds an MPTN_OOB_DG_Data format to send to its
connection partner, it should include a receiver connection alias, if
available. Inclusion of the receiver connection alias is recommended
for performance reasons.

The sender of an OOB datagram should continue to include its sender
connection alias until it receives an indication from the target that it
has been received, either in a positive response to an MPTN_DG_OOB_Data
sent, or in an MPTN_DG_OOB_Data command from the partner with the

Carmichael & Sarkar [Page 17]

Internet Draft LU6.2 over TCP/IP December 1997

receiver connection alias containing its local id.

3.2.2.2. Receiving Expedited Data

The target of the expedited data transfer must respond to each instance
of the expedited data received with an appropriate acknowledgement,
either with an MPTN Header marked as an expedited acknowledgement which
is sent on the TCP connection, or an MPTN_DG_OOB_Data response packet,
which is sent using UDP.

In the case of the MPTN_DG_OOB_Data response, the connection sequence
number is included in the MPTN_DG_OOB_Data response, and informs the
partner that the data has been received and any retransmissions should
be stopped.

3.3. MPTN Keepalive Protocol

TCP62 nodes must implement a keepalive protocol because TCP connections
do not provide session outage notification (SON) in a timely manner.
Even though TCP provides a per connection KEEPALIVE facility, the
typical values of TCP keepalive timers (the period of inactivity after
which liveness checking is initiated) are much larger than SNA's SON
requirements. Note that in many current TCP implementations, the
KEEPALIVE timer is settable on a per connection basis, but since this
was not true when TCP62 was first designed, this compensation was deemed
necessary.

3.3.1. The Problem of Out-of-Sync Connections

When two access nodes have a number of MPTN connections between them
(ignoring connections that are coming up or are being taken down), one
of two things can happen to cause them to have different views of which
connections they have with each other:

 - One of the access nodes crashes. This does not allow any
 connection termination flows to reach the partner node to allow
 the connections to be taken down. None of the TCP connections
 are taken down either. If there is no activity on any of the
 sessions, the two sides will have an inconsistent view of which
 LU6.2 sessions they have with each other until the TCP KEEPALIVE
 mechanism kicks in.

 - An intermediate router in the TCP connection between the two
 TCP62 nodes goes down for a while. During that period, each of

Carmichael & Sarkar [Page 18]

Internet Draft LU6.2 over TCP/IP December 1997

 the two nodes can independently close one or more LU6.2 sessions
 that they have with the partner. However, because of the dead
 router, neither the TCP62 flows nor any TCP connection termination
 flows can reach the partner. This would result in the two nodes
 having an inconsistent view of the connections they have with
 each other.

When two active TCP62 nodes have inconsistent views of the number of
LU6.2 sessions they have with each other, a new LU6.2 session set up
request initiated by one node (which believes that the number of
existing sessions is within limits) may be rejected by the partner node
(which believes that session limits have already been reached).

The above situation is a direct result of the fact that while the router
was down, the TCP keepalive mechanism did not get triggered. The
assumption here is that the router went down and came back up before the
TCP keepalive timer expired. Since TCP keepalive timers are often set
to an hour or more by default, and are not changeable in many
implementations, this is not an unrealistic scenario.

If the TCP keepalive timer was user settable, this problem could be
avoided by setting the timer value that is smaller the time required for
a router or an access node to be restarted after a crash (e.g., 2
minutes). However, most implementations do not allow this timer to be
changed by the user. The alternate solution is to implement an MPTN
keepalive protocol. The protocol is described in the next section.

3.3.2. A Keepalive Protocol Using Datagrams

The MPTN keepalive protocol is executed by two TCP62 nodes that have one
or more LU6.2 sessions with each other. LU6.2 sessions require SON, and
while SON is a session level characteristic, the keepalive protocol is
optimized to operate at a node-pair level. SON is a transport user
characteristic that flows on the MPTN_Connect packet (see Section
5.3.1.1.3, "User Characteristics") and both TCP62 nodes are thus aware
of when the keepalive protocol should be performed. The keepalive
protocol between a pair of nodes is stopped when the last LU6.2 session
between them is terminated.

The keepalive protocol involves sending a keepalive datagram if an
inactivity timer expires, and waiting for a response.

 - When the first LU6.2 session between a pair of TCP62 nodes
 is set up, an inactivity timer is started for that partner node.
 The value of the timer should be user settable.

 - When any data is received from the partner node - such as a

Carmichael & Sarkar [Page 19]

Internet Draft LU6.2 over TCP/IP December 1997

 connection request, data on an existing connection, an
 OOB datagram, or a keepalive datagram - the timer is reset.
 However, if no data is received from that partner before the
 timer expires, the MPTN keepalive protocol is initiated
 with that partner by sending it a keepalive datagram. Like OOB
 datagrams, keepalive datagrams flow as payloads of UDP datagrams
 and are sent to port 397, the MPTN well-known datagram
 port number. Keepalive datagrams never include any LU6.2 payload.

 - Once the keepalive protocol is initiated, a keepalive datagram is
 sent to the partner once every X seconds, where X is a value that
 can be configured by the user. When a TCP62 node receives a
 keepalive datagram, it must send a keepalive datagram RSP packet
 back to the sender. If a node does not receive a response to a
 keepalive datagram, or receive some other communication from
 the partner node after having sent the datagram 5 times, it
 concludes that the partner is either dead or is unreachable, and
 all LU6.2 sessions to that partner are terminated.

To cover the case where a node goes down and comes back up before the
KEEPALIVE protocol is able to detect the outage, an optional node
initialization ID field is included as part of the MPTN_Connect command.
This field contains a value that uniquely identifies the instance of the
sending node, e.g., a time stamp corresponding to the time the node was
initialized. The receiving node keeps this value, and compares it with
future incoming node initialization IDs from the same partner. If the
values are different, the partner has gone down and recovered. Thus,
all sessions with the partner that require SON should be cleaned up.

3.4. Connection Termination

When an LU6.2 session is terminated, an RU containing an UNBIND image is
sent to the partner. A session termination request assumes that both
ends of the session will be terminated, and any data in flight can be
dropped. Since APPC applications use conversations on top of sessions as
application level connections, and since a session is rarely brought
down when a conversation is using it, these semantics make sense.

In LU6.2 protocols, an UNBIND image always flows as expedited data,
since it should not be held up by session level pacing. Therefore, in
TCP62, the transmission of the UNBIND request must use expedited data
compensation. Unlike all other expedited data, the UNBIND is only sent
as an OOB datagram, without first making an attempt to send it on the
connection first. The regular expedited data compensation mechanism is
designed to deal with the fact that the data can reach the partner node
in two different ways. In this case, since the action the receiver will
take is to terminate the connection, it was decided that a simpler

Carmichael & Sarkar [Page 20]

Internet Draft LU6.2 over TCP/IP December 1997

option would be to flow the termination request using one mechanism
only. And since using the TCP connection is potentially delay-prone, the
OOB option was chosen.

When an UNBIND image is sent to the partner as an OOB datagram, its
payload consists of a 1-byte compensation header that indicates duplex-
abortive compensation, and the payload in the UNBIND preceded by the TH
subset and the RH. As with regular expedited data, the payload does not
include the 4-byte length field. When the TCP62 code sends the
termination request, it should discard any data that was queued for
transmission on that session, and should disable further reception of
inbound data on that connection.

The TCP62 node that receives the UNBIND request passes it up to the
local SNA stack, and terminates the TCP connection after discarding any
session data that was queued for transmission on that connection. The
TCP connection termination uses the standard socket "close" call, and
represents orderly shutdown of one end of the connection. When the local
SNA stack sends an UNBIND response, the TCP62 code sends an OOB response
datagram back to the sender to indicate that the session termination on
that node is complete. The inclusion of the UNBIND response image in the
OOB datagram is optional.

When the node that initiated the connection termination request receives
the OOB datagram response, it should inform the SNA stack (manufacturing
an UNBIND image if one was not included in the response datagram), and
finally, it should terminate it's end of the TCP connection using the
orderly termination semantics of the socket "close" call.

4. Other Protocol Issues Not Related to Compensations

4.1. Segmentation and Reassembly of APPC Request/Response Units

In the APPC protocol, a request/response unit (RU) represents a unit of
data whose size (the RU size) is typically negotiated by all nodes in
the session path based on the smallest frame that a DLC in the session
path can transmit on a link. Irrespective of the size of the record that
an application sends across the APPC API, the largest record that flows
as the payload of an LU6.2 packet cannot be bigger than the RU size.
This ensures that when a negotiated RU size is used, no segmentation or
reassembly logic will be required in any hop of the session path.

When an APPN node in the session path does not implement RU size
negotiation function, segmentation and reassembly becomes inevitable for

Carmichael & Sarkar [Page 21]

Internet Draft LU6.2 over TCP/IP December 1997

that session when run natively. When LU6.2 sessions are run over TCP/IP
connections using MPTN, segmentation and reassembly are not required,
because TCP is a connection oriented protocol and an RU of any length
can be sent as a stream of bytes, (using a length field prefix to mark
the record length, as described in Section 5.3.2, "MPTN_Hdr") without
requiring any kind of "segmentation". However, when MPTN transport layer
gateways are installed in APPN-to-TCP/IP network boundaries, RU segments
created in a native SNA network must be reassembled somewhere in the
session path before the application endpoint in an SNA-over-TCP/IP
access node.

In TCP62, the reassembly is performed by the TCP62 code in the access
node that receives the segments. In a native node with only a (full)
APPC protocol stack, such reassembly is performed by a lower layer
component of the stack (Path Control). However, in the MPTN framework
for APPC over TCP/IP, the path control code is not involved in the
session path) - because it belongs to the sub-layer-4 part of the APPC
stack whose function is replaced by the TCP/IP stack - and therefore,
reassembly must be performed by the TCP62 code.

When an MPTN gateway receives segmented data on the SNA network and
sends it on the TCP/IP network, it adds the usual compensation headers
to the data, and flows the TH subset and RH that is defined for all data
over TCP. All LU6.2 segments that flow on a TCP connection consist of
the length field and the compensation header. On all segments except the
last one, the compensation header indicates that the data that follows
is a record segmnent and not a full record. The last segment contains a
regular record-over-stream compensation header, which is interpreted by
the receiver as the last record to reassemble.

When an MPTN gateway sends segments over the TCP/IP network, only the
first segment contains the TH subset and RH. Subsequent segments only
contain the RU, making it easy for the TCP62 code on the reassembling
node to concatenate the segments into a complete record. Note that this
is different from the manner in which segments are sent over a native
LU6.2 connection.

4.2. Pacing

Congestion on a TCP connection is indicated to a sockets application by
blocking its send calls (or returning appropriate error codes to
nonblocking send calls). For an LU6.2 connection set up using a TCP
connection, congestion would be caused by the receiving end's transport
provider not receiving data (due to buffer limitations on it's end
coupled with the receiving application's behavior). The TCP62 code on
the sending end should sense such congestion and give appropriate

Carmichael & Sarkar [Page 22]

Internet Draft LU6.2 over TCP/IP December 1997

feedback to the LU6.2 stack such that it can "fake out" the pacing
protocols that the APPC stack in the sending node believes it is
executing with the next hop node.

The SNA stack code on the sending node requests a pacing window by
setting the pacing request bit in the RH. When the TCP62 code on the
same node sees this bit, it should reset it before sending the packet
over the TCP connection that represents the session (since the pacing
request bit should not flow over the TCP connection), but it should
remember that the sender had asked for a pacing window. If all SNA
packets sent on the TCP connection, including the one whose pacing
request bit was set initially, are accepted for transmission by the TCP
stack (as indicated by the return code of the "send" socket call), then
the TCP connection is not congested and an IPM can be sent to the SNA
stack immediately. Otherwise, the TCP62 code should wait until all
packets including the one requesting a pacing window is sent before
sending the IPM.

On the receiving node, when TCP62 code receives an indication that there
is data available on a TCP connection that represents a session, it
checks if SNA buffers are available for receiving that data. It
initially starts with one buffer for receiving an RU (this is true of
native SNA sessions too). Once that buffer has been filled with inbound
data, TCP62 should set the pacing request bit on the RU before giving it
to the local SNA stack code. Depending on system buffer availability,
the SNA stack will either send an IPM immediately, or when buffers
become available. The TCP62 code should keep track of the IPM size to
determine how many more inbound RUs can be received from the TCP
connection before it has to ask for another window.

If there is a system buffer shortage in the receiving node, the TCP62
code will stop receiving IPMs from the local SNA stack, and will
therefore stop receiving data on the TCP connection. When this happens,
the TCP connection's receive queue will fill up, it will stop sending
TCP window updates to the sender to reflect the local congestion, the
sender (TCP62 code on the sending node) will see the congestion on it's
"send" socket calls, and therefore, the TCP62 code will stop sending
IPMs to the sender's SNA stack. That in turn will cause the SNA stack on
the sending node to apply back pressure to the application sending data.
This application of back pressure based on TCP flow control, and the
virtualization of SNA hop-by-hop pacing within a node, is how pacing of
LU6.2 connections is performed in TCP62.

5. TCP62 Formats

Carmichael & Sarkar [Page 23]

Internet Draft LU6.2 over TCP/IP December 1997

5.1. Migration Considerations

In order to ease migration for future functionality that may be added to
the architecture, MPTN defines a mechanism that allows MPTN nodes to use
new functions when their partners support it and still be able to
interoperate with back-level nodes. Every MPTN command and optional
field contains a processing specification field that tells the receiving
node how to handle the command or optional field based on a number of
criteria. All MPTN nodes must understand the processing specification
so that they can take the correct action when they encounter
unrecognized fields. If a node receives an MPTN command with an illegal
command processing specification value, it will discard the command.

The processing specification is a one byte field in the common prefix
that specifies:

 - Whether the command is a request or a response.

 - If a response, whether it is positive or negative.

 - The actions that should be taken by an access node or MPTN
 Gateway that does not recognize the command type.

 - If a negative response, the reason for the failure (rejected by
 the partner or not understood by the partner).

For a more detailed description of the bits in the processing
specification field, please refer to Section 5.2.1, "Common Prefix".

5.1.1. Processing Rules

The following rules govern the behavior of both up-level and back-level
nodes in order to make orderly migration possible:

1) Every optional field and every command contains a one-byte
 processing specification field that specifies the actions that
 should be taken by either an access node or gateway that does not
 recognize the command or field type.

2) A destination node that fails to recognize a command type or
 optional field tag uses the processing specification value to
 choose an action. The possible actions are detailed in Section

5.1.2, "Processing Actions".

3) Commands are processed before optional fields. If the command is
 valid, then the setting of the processing specification relies
 solely on the result of any optional field processing.

Carmichael & Sarkar [Page 24]

Internet Draft LU6.2 over TCP/IP December 1997

4) All optional fields should be processed, unless an error has
 already been encountered.

5) It is possible that future format changes may require multiple
 copies of the same optional field, while a back-level node may
 understand only a single instance of the field. If this happens,
 the receiver uses the first instance of the field and treats any
 additional copies of the field that it does not expect as
 unrecognized fields, i.e., it should ignore or fail them as
 specified in their processing specification fields.

6) Certain required fields and optional fields (those having an
 overall length count) may be extended in the future by adding
 additional information to the end of the existing format. This
 may be done if and only if the success of the command does not
 depend on the user being able to process the additional
 information. For example, the user transport requirements
 field may be extended with additional user characteristics that
 a back-level destination access node does not recognize and can
 ignore. In this case, a destination access node should not fail
 a command because the field is longer than expected. When the
 destination access node returns such a field in a reply, the
 following processing applies:

 a) When the destination access node recognizes the additional
 information it must echo it back.

 b) When the destination access node does not recognize the
 additional information, it is required that the destination
 access node drop the part not recognized. In this case,
 it cannot be assumed that if the additional information is
 returned, it is understood.

7) Reserved fields fields are set to zero by the sender and ignored
 by the receiver. This allows future use of these bits without
 breaking a back-level node.

5.1.2. Processing Actions

This section describes the actions taken by a destination node that does
not recognize a field or command.

5.1.2.1. Command

If the processing specification indicates that the destination is not
required to recognize the command, then the destination node should

Carmichael & Sarkar [Page 25]

Internet Draft LU6.2 over TCP/IP December 1997

discard the command.

If the processing specification indicates that the destination is
required to recognize the command, then the destination node should:

 - Set the following fields in the command processing specification:
 MPTN response indicator
 MPTN negative response indicator
 MPTN destination unrecognized indicator

 - Set the Time To Live (TTL) field to initial value

 - Optionally add diagnostics field

 - Return the command to the source

5.1.2.2. Field

If the processing specification indicates that the destination is not
required to recognize the field, then the destination node should set
the MPTN destination unrecognized indicator in the optional field and
proceed with the rest of the command processing.

If the processing specification indicates that the destination is
required to recognize the field, then the destination node should:

 - Set the following fields in the command processing specification:
 MPTN response indicator
 MPTN negative response indicator

 - Set the following fields in the field processing specification:
 MPTN destination unrecognized indicator

 - Set the Time To Live (TTL) field to initial value

 - Optionally add diagnostics field

 - Return the command to the source

5.2. Common Command Formats

Establishing, maintaining, and terminating LU6.2 connections over TCP/IP
involves the use of several different command formats. These command
formats do share some common characteristics. These common
characteristics will be discussed in this section.

Carmichael & Sarkar [Page 26]

Internet Draft LU6.2 over TCP/IP December 1997

5.2.1. Common Prefix

Each command includes a 4-byte prefix, referred to in this draft as the
"common prefix" field. This prefix identifies the command, provides
processing information, and specifies the length of the command.

The format of the prefix is as follows:

Byte Content

0 Type indicator for this command. Possible values are:

 X'80' MPTN_Connect
 X'83' MPTN_DG_OOB_Data
 X'84' MPTN_DG_KEEPALIVE_Hdr

1 Flag field that indicates whether this is a request or
 response, and also provides processing information.

 Bit Meaning

 0 When set to 1, indicates that this is a response.
 Otherwise, this is a request.

 1 Reserved in a request. When set to 1 in a response,
 indicates that this is a negative response.

 2 Reserved in a request and a positive response. When
 set to 1, indicates that the command was recognized
 by the destination but rejected.

 3 Reserved.

 4 When set to 1 in a request, indicates that a gateway
 must reject the command if it is unrecognized by
 sending a negative response to the originator. When
 set to 0 in a request, indicates that a gateway must
 forward the unrecognized command to the destination.

 The bit is forwarded without modification in a
 response.

 5 Reserved in a request. When set to 1 in a response,
 indicates that the gateway did not recognize this
 command.

 Bits 4 and 5 set to B'11' in a response indicate that
 the command failed because it was not recognized by

Carmichael & Sarkar [Page 27]

Internet Draft LU6.2 over TCP/IP December 1997

 the gateway.

 6 When set to 1 in a request, indicates that the
 destination must reject the command if it is
 unrecognized. When set to 0 in a request, indicates
 that the destination is to discard the unrecognized
 command.

 The bit is returned without modification in a
 response.

 7 Reserved in a request. When set to 1 in a response,
 indicates that the destination did not recognize this
 command.

 Bits 6 and 7 set to B'11' in a response indicate that
 the command failed because it was not recognized by
 the destination.

2 to 3 Length, in binary, of this command. Includes the four
 bytes used for this common prefix.

5.2.2. Optional Fields

Each command may contain one or more optional fields. These optional
fields are preceded by a 4-byte prefix. This prefix identifies which
optional field this is, provides processing information, and specifies
the length of the optional field.

The format of this prefix is as follows:

Byte Content

0 Type indicator for this optional field. Possible values
 are:
 X'05' service mode
 X'0A' connection data
 X'18' user characteristics
 X'19' compensations required
 X'1A' optional compensations
 X'1C' node initialization ID
 X'28' sender connection alias
 X'29' receiver connection alias
 X'F0' diagnostics

1 Processing specification for this optional field.

Carmichael & Sarkar [Page 28]

Internet Draft LU6.2 over TCP/IP December 1997

 Bit Meaning

 0 to 3 Reserved

 4 When set to 1 in a request, indicates that the
 gateway must reject the command if this optional
 field is unrecognized. Echoed in a response.

 5 Reserved in a request. When set to 1 in a
 response, indicates that a gateway did not
 recognize this optional field.

 Bits 4 and 5 set to B'11' in a response indicate
 that the command failed because this optional
 field was not recognized by a gateway.

 6 When set to 1 in a request, indicates that the
 destination must reject the command if this
 optional field is unrecognized by the destination.

 7 Reserved in a request. When set to 1 in a
 response, indicates that the destination did not
 recognize this optional field.

 Bits 6 and 7 set to B'11' in a response indicate
 that the command failed because this optional
 field was not recognized by the destination.

2 to 3 Length, in binary, of this optional field. Includes the
 four bytes used for used for this optional field prefix.

5.2.3. MPTN Addresses

Addresses used in MPTN command have a common format. Each MPTN address
consists of an MPTN qualifier, an address mode, a node address, and a
local address. These subfields are described in the sections that
follow:

When an address used in an MPTN command is optional, it is preceded by
the 4-byte prefix used for all optional fields, described in "Optional
Fields".

5.2.3.1. MPTN Qualifier

An MPTN qualifier is a 1-byte hexadecimal code that identifies the
"address family" to which the address belongs. For LU6.2 over TCP/IP,

Carmichael & Sarkar [Page 29]

Internet Draft LU6.2 over TCP/IP December 1997

this value is always X'0B' which means that this address represents a
SNA network-qualified LU name. In this case, all address values will be
encoded in EBCDIC.

5.2.3.2. Address Mode

The address mode used in an MPTN address is a 1-byte hexadecimal code
that identifies the type of addressing used. For LU6.2 over TCP/IP, the
only possible value is 'X01' which represents an individual address.

5.2.3.3. Node Address

The node address in an MPTN address is the network address by which the
node can be located. This address has a variable length, and therefore
includes a 1-byte length field. Since a null node address is not
permitted, the node address length will take values from 4 to 18 bytes
for LU6.2 over TCP/IP because the node address corresponds to a
network-qualified LU name. The format of the node address is:

Byte Content

0 Length (n + 1), in binary, of the node address

1 to n Node address

5.2.3.4. Local Address

Local addresses are not used with LU6.2 over TCP/IP; therefore, this
field will always have a value of X'01'. This value represents a null
local address.

5.2.4. Diagnostic Values

Diagnostics can be sent on any negative response. When used, they
provide information about the reason for the failure of the command.

A negative response can include more than one Diagnostics field. The
subfields of the Diagnostics field include a diagnostics prefix as
described in the "Optional Fields" section, a primary return code, a
secondary return code, an error detector address, and error detector
data.

Carmichael & Sarkar [Page 30]

Internet Draft LU6.2 over TCP/IP December 1997

5.2.4.1. Primary Return Code Values

The primary return code describes the primary reason for the failure of
the command. The format of this field is as follows:

Byte Content

0 Reserved

1 1-byte hexadecimal code of the command type that was in
 error

2 to 3 Primary return code. The following values are defined
 for this field:
 X'0001' Connection limits exceeded
 X'0002' User not found
 X'0003' User not reachable
 X'0006' Service mode not supported
 X'0007' Rejected by user
 X'0008' User not listening
 X'0009' Time to live counter expired
 X'0014' User characteristics mismatch
 X'0015' Compensation unrecognized
 X'0016' Compensation mismatch
 X'0017' Error in user data
 X'001E' Connection data unexpected
 X'001F' Connection data missing
 X'0020' Compensations required field missing
 X'0029' Error in destination address
 X'002A' Error in source address
 X'002B' Optional fields out of sequence
 X'002C' Error in correlator
 X'002D' Length error: field too long
 X'002E' Length error: field too short
 X'002F' Error in receiver connection alias
 X'0032' Format error
 X'0033' Invalid header in MPTN_DG_OOB_Data
 X'003C' Internal processing error

Primary return codes X'0001', X'0002', X'0003', X'0020', X'0029',
X'002A', X'002C', X'002D', X'002E', X'0032', and X'003C' provide
additional diagnostic information through use of a secondary return
code. Secondary return codes are described in the next section.

5.2.4.2. Secondary Return Code Values

Three alternative uses and formats are defined for this field. Format 1

Carmichael & Sarkar [Page 31]

Internet Draft LU6.2 over TCP/IP December 1997

specifies an offset into the command where an error was detected. This
value is given relative to the start of the common prefix field,
assuming offset 0 for the first byte of that field. Format 2 describes
the secondary reason for the failure, where the secondary return code is
defined in the context of the primary return code. Format 3 identifies
the optional field in error and the instance of the field if multiple
instances are present in the request.

Byte Content

0 Format of the Secondary Return Code. The
 following values are defined for this field:
 X'00' Format 1
 X'80' Format 2
 X'C0' Format 3

1 Reserved

2 to 3 Dependent on format:

 Format 1: Offset to error in command.

 Format 2: For primary return code = X'0001':

 X'0001' Rejected by access node
 X'0002' Rejected by gateway

 For primary return code = X'0002':

 X'0005' Address unknown
 X'0006' Qualifier unknown

 For primary return code = X'0003':

 X'000A' Net ID unreachable
 X'000B' Node address unrecognized
 X'000C' Node unreachable

 For primary return code = X'0029'
 or X'002A'

 X'000E' Unrecognized MPTN
 qualifier
 X'000F' Unrecognized address mode
 X'0010' Invalid address mode
 X'0011' Missing node address
 X'0012' Node address too long
 X'0013' Invalid node address

Carmichael & Sarkar [Page 32]

Internet Draft LU6.2 over TCP/IP December 1997

 X'0014' Invalid MPTN qualifier
 X'0015' Node address too short
 X'0016' Host address unexpected

 For primary return code = X'002C'

 X'0018' Out of range
 X'0019' Duplicate

 For primary return code = X'0032'

 X'001B' Error in fixed field

 For primary return code = X'003C'

 X'001E' Temporary error
 X'001F' Permanent error

 Format 3: For primary return code = X'0020',
 X'002D', or X'002E':

 Byte Meaning

 0 Field identifier of the
 optional field in error.

 1 Index (starting from 0)
 of the instance of the
 field having the error.

5.2.4.3. Error Detector Address

The error detector address contains the address of the node that
detected the failure. It is an MPTN address, and is therefore
structured according to the description in "MPTN Addresses". In this
usage, the local address subfield is always present, but may or may not
include an address value.

5.2.4.4. Error Detector Data

The node that detects the failure is allowed to send up to 254 bytes of
additional information related to the failure. The format of this field
is as follows:

Byte Content

Carmichael & Sarkar [Page 33]

Internet Draft LU6.2 over TCP/IP December 1997

0 Length (n + 1), in binary, of the error detector data.

1 to n Error data specified by the error detector. Format
 for this data is byte string.

5.3. Command Formats

5.3.1. MPTN_Connect

An MPTN_Connect request is the first command sent over a TCP/IP
connection in order to establish a LU6.2 session. An MPTN_Connect
response acknowledges that request, and indicates whether or not the
connection was accepted. Both positive and negative responses are
defined for the MPTN_Connect. The format of the command as it relates
running LU6.2 applications over TCP/IP is as follows:

Field Name Size Range Contents
 (in bytes)

Record Length 4 Specifies the overall length of
 the command, including the four
 bytes used for its own
 specification.

Command Type 1 X'80'

Processing 1 Bits 4 and 6 MUST be set to 1,
 Specification indicating that the message
 must be recognized by both a
 gateway and the destination. The
 remaining bits in this field are
 set as described in the "Common
 Prefix" section.

Command Length 4 The size of this command minus
 the four byte record length field.

Time To Live 1 Used to prevent commands from
 circulating endlessly. When a
 command arrives with a value of 1,
 the command is either at its
 destination or, if not, will be
 rejected and returned to the
 initiator of the connection as a
 negative response.

Carmichael & Sarkar [Page 34]

Internet Draft LU6.2 over TCP/IP December 1997

Destination 5 to 512 Specifies the target address of
 Address the connection. This is the
 receiver of the MPTN_Connect
 request, and the sender of an
 MPTN_Connect response. This
 field is described in section
 "MPTN Addresses".

Source 5 to 512 Specifies the source address of
 Address the connection. This is the
 sender of the MPTN_Connect
 request, and the receiver of an
 MPTN_Connect response. This
 field is described in section
 "MPTN Addresses".

Correlator Suffix 2 to 9 Used to correlate a request with
 its response. The source address,
 taken together with the correlator
 suffix, uniquely identifies the
 MPTN connection for all time.
 Byte 0 is the length(n + 1), in
 binary, of the correlator suffix
 value. Bytes 1 to n represent
 the actual value.

User Transport This section is composed of the
 Requirements six fields listed next.

User Transport 1 Length field for the user transport
 Requirements requirements. If the value in this
 Length field is greater than 15 (the length
 of the currently-defined subfields),
 all data beyond the first 15 bytes
 is ignored.

Maximum Record 4 Maximum size for a record that can be
 Length sent on this connection.

Maximum Expedited 4 Maximum size for an expedited data
 Data Length record that can be sent on this
 connection.

Maximum 4 Maximum size for termination data that
 Termination Data can be sent on this connection.
 Length

Termination Type 1 For LU6.2 over TCP/IP, this value is

Carmichael & Sarkar [Page 35]

Internet Draft LU6.2 over TCP/IP December 1997

 always X'20' - Duplex Abortive

Expedited Marking 1 For LU6.2 over TCP/IP, this value is
 always X'00' which specifies that the
 LU6.2 application does not need to
 mark the position in the normal data
 where expedited data was sent.

5.3.1.1. MPTN_Connect Optional Fields

The following fields are "MPTN Optional" fields that are required to run
LU6.2 applications over TCP/IP. A description of each field is given
and, if necessary, a format of subfields associated with the "MPTN
Optional" field.

5.3.1.1.1. Service Mode

Specification of the level of transport service required in each
transport network. Consists of the subfields Service Mode Prefix, MPTN
Service Mode, and User-Defined Service Mode. The field is present when
the sender requires a specific level of service.

Service Mode Prefix is an Optional Field prefix, as described in Section
5.2.2 "Optional Fields". The type indicator (byte 0) is set to X'05'.
Bits 4 and 6 of the processing specification (byte 1) are set to 1 and
0, respectively. This indicates that a negative response is required if
the field is unrecognized by the destination. The remaining bits in the
processing specification are set as described in Section 5.2.2 "Optional
Fields".

MPTN Service Mode is a predefined service mode required by the user.
The field is 1-byte in length with the following possible values:

 X'00' Only user-defined service-mode is specified. No MPTN-
 defined service mode will be used as a default.
 X'01' No specific service mode is required.
 X'02' High bandwidth is required.
 X'03' Fast response time is required.
 X'04' Secure service with high bandwidth is required.
 X'05' Secure service with fast response time is required.

For LU6.2 over TCP/IP, the service mode maps to the SNA class of service
in the following way:

 SNA Class of Service MPTN Service Mode

Carmichael & Sarkar [Page 36]

Internet Draft LU6.2 over TCP/IP December 1997

 CONNECT X'01'
 BATCH X'02'
 INTER X'03'
 BATCHSC X'04'
 INTERSC X'05'
 SNASVCMG X'01'
 CPSVCMG X'01'

Note that at the time this draft was written, there were no known
implementations of the secure modes, X'04' and X'05'. General security
for TCP/IP is being defined by the IETF.

The User-Defined Service Mode identifies the service mode required by
the transport user. When this field is supported by a gateway, then
this value takes precedence over the value specified in MPTN Service
Mode. The format of this field is as follows:

Byte Content

0 Length (n + 1), in binary, of the user-defined service
 mode

1 to n User-defined service mode (when present). Format is
 ASCII character string.

5.3.1.1.2. Connection Data

In a request, this field contains the BIND RU. In a positive response,
this field contains a positive BIND_RSP. In a negative response, this
field contains data related to the connection failure if any was
specified; however, if any Diagnostics optional field except X'0007',
Rejected by User, is present, this field echoes back the data sent on
the MPTN_Connect request. Consists of the subfields Connection Data
Prefix and Connection Data Value. Always present for LU6.2 over TCP/IP.

The Connection Data Prefix is an Optional Field prefix, as described in
Section 5.2.2 "Optional Fields". The type indicator (byte 0) is set to
X'0A'. Bits 4 and 6 of the processing specification Byte 1) are set to
0 and 1, respectively. This indicates that a negative response is not
required if the field is unrecognized by a gateway, but it is required
if the field is unrecognized by the destination. The remaining bits in
the processing specification are set as described in Section 5.2.2
"Optional Fields".

The Connection Data Value field contains the connection data specified
by the user.

Carmichael & Sarkar [Page 37]

Internet Draft LU6.2 over TCP/IP December 1997

5.3.1.1.3. User Characteristics

Specifies the user characteristics for which support is requested on
this connection. When more than one user characteristic is required,
the user characteristic identifiers can be specified in any order. The
contents of this field are not changed by a gateway. This field
consists of the subfields User Characteristics Prefix and User
Characteristics Value. The field is present when specific user
characteristics are requested.

User Characteristics Prefix is an Optional Field prefix, as described in
Section 5.2.2, "Optional Fields". The type indicator (byte 0) is set to
X'18'. Bits 4 and 6 of the processing specification (byte 1) are both
set to to 0, indicating that a negative response is not required if the
field is unrecognized either by a gateway or by the destination. The
remaining bits in the processing specification are set as described in
Section 5.2.2, "Optional Fields".

User Characteristics Value is a list of user characteristic values
representing the user characteristics to be used on this connection.
The list consists of 1-byte unsigned binary values. The number of
elements in the list is determined by subtracting 4 from the value
stored in the length subfield (bytes 2 and 3) of the User
Characteristics Prefix field. The value that can appear in this field
for LU6.2 over TCP/IP is:

 X'01' Session Outage Notification (SON)

If the User Characteristics field is understood by the destination but a
certain value is not supported then that value should be set to X'00' in
the response.

5.3.1.1.4. Compensations Required

Specifies the compensations that will be used on this connection. When
more than one compensation is required, the compensation identifiers can
be specified in any order. The contents of this field can change at
every gateway. This field consists of the subfields Compensations
Prefix and Compensations Value. The fix is present when compensations
are required.

The Compensations Prefix is an Optional Field prefix, as described in
Section 5.2.2, "Optional Fields". The type indicator (byte 0) is set to
X'19'. Bits 4 and 6 of the processing specification (byte 1) are both
set to 1, indicating that a negative response is required if the field
is unrecognized either by a gateway or by the destination. The
remaining bits in the processing specification are set as described in

Carmichael & Sarkar [Page 38]

Internet Draft LU6.2 over TCP/IP December 1997

Section 5.2.2, "Optional Fields".

The Compensations Value field is a list of MPTN headers and command
identifier values representing the compensations to be used on this MPTN
segment. This field is a list of 1-byte unsigned binary values. The
number of elements in the list is determined by subtracting 4 from the
value stored in the length subfield (bytes 2 and 3) of the Compensations
Prefix field. For LU6.2 over TCP/IP, the compensations required
include:

 X'00' Record boundary marker
 X'01' Expedited message
 X'03' Expedited message acknowledgement
 X'10' Duplex-abortive termination
 X'20' Segmented Message
 X'83' MPTN_DG_OOB_Data message needed for expedited data

5.3.1.1.5. Optional Compensations

Specifies the optional compensations that are requested on this
connection. When more than one optional compensation is specified, the
compensation identifiers can be specified in any order. The contents of
this field can change at every gateway. This field consists of the
subfields Optional Compensations Prefix and Optional Compensations
Value. This field is present when optional compensations are requested.

The Optional Compensations Prefix field is an Optional Field prefix, as
described in Section 5.2.2, "Optional Fields". The type indicator (byte
0) is set to X'1A'. Bits 4 and 6 of the processing specification (byte
1) are both set to 0, indicating that a negative response is not
required if the field is unrecognized either by a gateway or by the
destination. The remaining bits in the processing specification are set
as described in Section 5.2.2, "Optional Fields".

The Optional Compensations Value field is a list of MPTN headers and
command identifier values representing the optional compensations to be
used on this MPTN segment. This field is a list of 1-byte unsigned
binary values. The number of elements in the list is determined by
subtracting 4 from the value stored in the length subfield (bytes 2 and
3) of the Optional Compensations Prefix field. For LU6.2 over TCP/IP,
the optional compensations include:

 X'84' MPTN_DG_KEEPALIVE_Hdr message needed for session outage
 notification

If the Optional Compensations field is understood by the destination but
a certain value is not supported then that value should be set to X'00'

Carmichael & Sarkar [Page 39]

Internet Draft LU6.2 over TCP/IP December 1997

in the response.

5.3.1.1.6. Node Initialization ID

This field represents a value that uniquely identifies the instance of
the sending node, e.g., a time corresponding to when the node was
initialized. This field consists of a Node Initialization ID Prefix,
and Node Initialization ID Value. This field is optional and used when
there is a danger that a node may be terminated and reinitialized in
less time than the keepalive process will detect.

The Node Initialization ID Prefix is an Optional Field prefix, as
described in Section 5.2.2, "Optional Fields". The type indicator (byte
0) is set to X'1C'. Bits 4 and 6 of the processing specification are
both set to 0, indicating that a negative response is not required if
the field is unrecognized either by a gateway or by the destination.
The remaining bits in the processing specification are set as described
in Section 5.2.2, "Optional Fields".

The Node Initialization ID Value field specifies the node initialization
ID, e.g., a time stamp. The field may be from 2 to 8 bytes in length.
sp

5.3.1.1.7. Diagnostics

This field is only allowed on negative MPTN_Connect responses. For a
description, please refer to Section 5.2.4, "Diagnostic Values".

5.3.2. MPTN_Hdr

MPTH headers are 1-byte fields that are inserted before the user's data
on an MPTN connection. The field specifies which compensation, if any,
is in use. The possible identifiers required for running LU6.2
applications over TCP/IP include:

 X'00' Record boundary marker
 X'01' Expedited message
 X'03' Expedited message acknowledgement
 X'10' Duplex-abortive termination
 X'20' Segmented message

User data may follow the MPTN header. When user data follows MPTN
header X'10', then that data is an UNBIND specified by the transport
user. User data is present when the transport user sends data
associated with the MPTN header. The user data field is not required
for some compensations, such as the various termination compensations

Carmichael & Sarkar [Page 40]

Internet Draft LU6.2 over TCP/IP December 1997

when they are used without user termination data and acknowledgements.

For LU6.2 over TCPI/IP, the MPTN header will be preceded by a 4-byte
record length that specifies the overall length of the message including
the four bytes used for its own specification.

5.3.3. MPTN_DG_OOB_Data

The MPTN_DG_OOB_Data is a command defined for sending data on a separate
path from the connection ("out of band"), to ensure that it reaches the
partner. This is command can be used, for example, to insure that SNA
expedited data reaches the target node. The format of the command as it
relates to running LU6.2 applications over TCP/IP is as follows:

Field Name Size Range Contents
 (in bytes)

Record Length 4 Specifies the overall length of
 the command, including the four
 bytes used for its own
 specification.

Command Type 1 X'83'

Processing 1 Bits 4 and 6 MUST be set to 0 and 1,
 Specification respectively. This indicates that
 a negative response is not required
 if the message is unrecognized by a
 gateway, but it is required if the
 message is unrecognized by the
 destination. The remaining bits in
 in this field are set as described in

Section 5.2.1, "Common Prefix".

Command Length 4 Represents the size of this entire
 message. It includes the four bytes
 used for the Common Prefix, but does
 not include the four bytes for the
 Record Length field, the size of the
 MPTN Header, or the size of the User
 Data.

Connection Sequence number used to correlate this
 Sequence Number 2 datagram with activity on a specific
 connection.

Correlator Address 5 to 512 Specifies the address of the user that

Carmichael & Sarkar [Page 41]

Internet Draft LU6.2 over TCP/IP December 1997

 initiated the connection that the
 out-of-band data relates to. This
 field is described in Section 5.2.3,
 "MPTN Addresses".

Correlator Suffix 2 to 9 Used with the Correlator Address field
 to correlate this out-of-band data to
 its connection. (This is the same
 value that was sent in the
 MPTN_Connect command for the
 connection.) Byte 0 is the length
 (n + 1), in binary of the correlator
 suffix value. Bytes 1 to n represent
 the actual value.

Sender Connection 9 to 516 Specifies a connection alias that, when
 Alias used in the acknowledgement, will
 enable the sender to quickly identify
 the associated connection. Consists of
 the following subfields: Sender Alias
 Prefix, Sender Alias MPTN Qualifier,
 Sender Alias Address Mode, Sender Alias
 Node Address, and Sender Alias Local
 Address. Sender Alias Prefix is an
 Optional Field prefix, as described in

Section 5.2.2, "Optional Fields". The
 type indicator (byte 0) is set to
 X'28'. Bits 4 and 6 of the processing
 specification (byte 1) are both set to
 0. This indicates that a negative
 response is not required if the field
 is unrecognized by a gateway or by the
 destination. The remaining bits in the
 processing specifications are set as
 described in Section 5.2.2, "Optional
 Fields". The remaining subfields are
 described in Section 5.2.3, "MPTN
 Addresses". Note that the Sender Alias
 MPTN Qualifier must be set to X'7F'
 and the Sender Alias Address Mode must
 be set to the value X'01'.

 This field is present when the sender
 (of a request or response) wants to
 communicate a local form address to the
 destination and is not required.

Receiver 9 to 516 Specifies a connection alias that

Carmichael & Sarkar [Page 42]

Internet Draft LU6.2 over TCP/IP December 1997

 Connection Alias enables the receiver to quickly
 identify the connection for which this
 out-of-band data was sent. This is the
 connection alias that the sender
 received earlier from the partner.
 Consists of the following subfields:
 Receiver Alias Prefix, Receiver Alias
 MPTN Qualifier, Receiver Alias Address
 Mode, Receiver Alias Node Address, and
 Receiver Alias Local Address. Receiver
 Alias Prefix is an Optional Field
 prefix as described in Section 5.2.2,
 "Optional Fields". The type indicator
 (byte 0) is set to X'29'. Bits 4 and 6
 of the processing specification (byte
 1) are both set to 0. This indicates
 that a negative response is not
 required if the field is unrecognized
 by a gateway or by the destination.
 The remaining bits in the processing
 specification are set as described in

Section 5.2.2, "Optional Fields". The
 remaining subfields are described in

Section 5.2.3, "MPTN Addresses". Note
 that the Receiver Alias MPTN Qualifier
 MUST be set to X'7F' and the Receiver
 Alias Address Mode MUST be set to the
 value X'01'.

 This field is present when the sender
 has previously received a sender
 connection alias from the partner.

Maximum Datagram 4 This is an Optional Field prefix as
 Common Prefix described in Section 5.2.2, "Optional
 Fields". The type indicator (byte 0)
 is set to X'2E'. Bits 4 and 6 of the
 processing specification (byte 1) are
 both set to 0. The remaining bits in
 the processing specification are set
 as described in Section 5.2.2,
 "Optional Fields".

 This field is present when TCP/IP
 stack can receive a datagram bigger
 than the largest datagram
 guaranteed to be receivable by TCP/IP.

Carmichael & Sarkar [Page 43]

Internet Draft LU6.2 over TCP/IP December 1997

Maximum Datagram 4 This field represents the maximum
 Value datagram receive size supported by the
 sending TCP/IP stack. This field is
 only present when the Maximum Datagram
 Common Prefix is present. The value
 is expressed in a binary form and is
 limited to 4 bytes in length.

Diagnostics 18 to 779 This field is only allowed on negative
 MPTN_DG_OOB_Data responses. For a
 description, please refer to Section

5.2.4, "Diagnostic Values".

MPTN Header 1 Indicates the compensations associated
 with this command. This field MUST be
 in a request and MUST NOT be in a
 response. The values are expressed in
 a hexadecimal format. The following
 values are allowed:
 X'01' user expedited data
 X'10' duplex-abortive termination

User Data 0 to Contains the transport user's data. If
 (2 32 - 32) MPTN Header is X'01', then this is user
 expedited data. If MPTN header is
 X'10', then this is termination data
 specified by the transport user. This
 field may be present in a request
 depending on the MPTN Header. This
 field MUST NOT be present in a
 response.

5.3.4. MPTN_DG_KEEPALIVE_Hdr

The MPTN_DG_KEEPALIVE_Hdr is a command defined for detecting session
outage notification in a timely manner.

Field Name Size Range Contents
 (in bytes)

Record Length 4 Specifies the overall length of
 the command, including the four
 bytes used for its own
 specification.

Command Type 1 X'84'

Carmichael & Sarkar [Page 44]

Internet Draft LU6.2 over TCP/IP December 1997

Processing 1 Bits 4 and 6 are both set to 0,
 Specification indicating that no negative
 response is required if the command
 is unrecognized by a gateway or the
 destination. The remaining bits in
 the processing specification are set
 as described in Section 5.2.2,
 "Optional Fields".

Command Length 2 This value represents the size of this
 entire command excluding the four byte
 record length field.

Source Address 5 to 512 Specifies the provider address of the
 sender of the keepalive command. This
 is the sender of an
 MPTN_DG_KEEPALIVE_Hdr request, and the
 receiver of the MPTN_DG_KEEPALIVE_Hdr
 response. The contents of this field
 are described in Section 5.2.3,
 "MPTN Addresses".

Destination 5 to 512 Specifies the provider address of the
 Address receiver of the keepalive command.
 This is the receiver of an
 MPTN_DG_KEEPALIVE_Hdr request, and the
 sender of the MPTN_DG_KEEPALIVE_Hdr
 response. The contents of this field
 are described in Section 5.2.3,
 "MPTN Addresses".

Diagnostics 18 to 779 This field is only allowed on negative
 MPTN_DG_OOB_Data responses. For a
 description, please refer to Section

5.2.4, "Diagnostic Values".

SECURITY

This draft does not attempt to address the issue of security. This
draft does not affect any existing level of SNA security that exists
today.

Carmichael & Sarkar [Page 45]

Internet Draft LU6.2 over TCP/IP December 1997

REFERENCES

[1] X/OPEN CAE Specification, Multiprotocol Transport Networking
 (XMPTN): Access Node (ISBN: 1-85912-106-3, P521)

[2] X/OPEN CAE Specification, Multiprotocol Transport Networking
 (XMPTN): Data Formats (ISBN: 1-85912-111-X, C522)

[3] Multiprotocol Transport Networking (MPTN) Architecture: Technical
 Overview, IBM Document #GC31-7073.

AUTHORS' ADDRESSES

James Carmichael Soumitra (Ronnie) Sarkar
IBM Corporation IBM Corporation
P.O. Box 12195 P.O. Box 12195
Research Triangle Park, NC 27709 Research Triangle Park, NC 27709
USA USA

phone: +1 919-254-5798 phone: +1 919-254-6461
email: carmich@us.ibm.com email: sarkar@us.ibm.com

Carmichael & Sarkar [Page 46]

