
Internet Engineering Task Force Michael Boe
INTERNET-DRAFT draft-ietf-tn3270e-telnet-tls-06.txt Jeffrey Altman
 April 2002

TLS-based Telnet Security

Status of this memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas, and
its working groups. Note that the other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced or obsoleted by other documents at any time.
Its is inappropriate to use Internet-Drafts as reference material or to
cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

Copyright (C) The Internet Society (1998 - 2000). All Rights Reserved.

Abstract

Telnet service has long been a standard Internet protocol. However, a
standard way of ensuring privacy and integrity of Telnet sessions has
been lacking. This document proposes a standard method for Telnet
servers and clients to use the Transport Layer Security (TLS) protocol.
It describes how two Telnet participants can decide whether or not to
attempt TLS negotiation, and how the two participants should process
authentication credentials exchanged as a part of TLS startup.

Changes since -05 Draft

 None. Republication for IETF Last Call

Changes since -04 Draft

 Incorporated changes submitted by Eric Rescorla and Russ Housley.
 Mostly minor in nature except for an expansion of the text in
section 4.1.1 on how certificate verification should be performed.

 This section was taken almost verbatim from RFC 2818.

 Minor changes include:

https://datatracker.ietf.org/doc/html/draft-ietf-tn3270e-telnet-tls-06.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2818

 . change MUST to SHOULD in section 3.2

 . clarification to reference to Kerberos cipher suites in 4.1.1

 . expansion of discussion on mutual authentication via Telnet
 AUTH in section 4.1.3.

 . both client and server should shutdown connection upon error
 detection in section 4.1.3

 . correction to name of PKIX Working Group in section 5.1

 . expansion of discussion of finished message discussion in 5.2.

 . TLS 3.1 replaced by TLS 1.0 in section 6.1

 . removal of "dangerous to encrypt twice" comment from 7.0

 . expansion of references.

Changes since -03 Draft

 Major changes to sections describing authentication of clients
 and servers.

Changes since -02 Draft

 o Clarify server actions in response to client initiating the TLS
 negotiation.

 o Replace the parochial term "mainframe" with "application-server."

 o Nuke explicit references to RFC1416, since there's a new RFC in the
 works for this and the reference isn't normative anyway.

 o Use dNSName language similar to that used in the most recent HTTP TLS
 draft.

 o Delete beginning paragraph describing server-authentication in TLS.
 Unclear and possibly wrong.

 o Delete explicit references to SASL, since we don't actually describe
 ways of using SASL.

 o Add section describing interaction between AUTH and STARTTLS option
 negotiations.

Changes since -01 Draft
 o Drop possibility of a continuing a Telnet session if the TLS
 negotiation fails.

 o Assert that server sending DO STARTTLS must be willing to negotiate

https://datatracker.ietf.org/doc/html/rfc1416

 a TLS session

 o Change SHOULD to MUST with respect to a server requesting a client
 certificate.

 o Add paragraph on commonName to section on check of X.509
 certificate.

 o Sharpen language concerning notification of possible
 server-certificate mismatch.

 o drop place-holder section on Kerberos 5 security; replace with
 section on non-PKI-based authentication (after TLS negotiation).

 o Prohibit fallback to SSL 2.0.

 o Give more details about how authentication-after-TLS-negotiation
 can be achieved.

 o Simplify post-TLS Telnet negotiation state-assumptions by resetting
 them to initial-state.

Changes since -00 Draft
 o Add local authentication/authorization operational model.

 o Change behavior of Telnet machine to reset at start of TLS
 negotiation.

 o Insert narrative questioning the utility of allowing continuation of
 Telnet session after TLS has ended.

 o change examples to reflect the above changes.

 o Fix several typos.

Contents

1 Introduction

2 Command Names and Codes (assigned by IANA)

3 Command Meanings

 3.1 Usage of commands and interactions with other Telnet options

 3.2 TLS Negotiation Failure

4 Authentication and Authorization

 4.1 Authentication of the Client by the Server

 4.1.1 PKI-based Authentication via TLS handshake

 4.1.2 Non-PKI Authentication via TLS handshake

 4.1.3 Telnet AUTH option

 4.1.4 Traditional Username and Password

 4.2 Authentication of the Server by the Client

 4.2.1 PKI-based Authentication via TLS handshake

 4.2.2 Non-PKI based authentication via TLS handshake

 4.2.3 Authentication by Telnet AUTH option

5 Security

 5.1 PKI-based certificate processing . . .

 5.2 Client and Server authentication of anonymous TLS connections

 5.3 Display of security levels

 5.4 Trust Relationships and Implications

 5.5 Telnet negotation handling

6 TLS Variants and Options

 6.1 Support of previous versions of TLS

 6.2 Using Kerberos V5 with TLS

7 Protocol Examples

 7.1 Successful TLS negotiation

 7.2 Successful TLS negotiation, variation

 7.3 Unsuccessful TLS negotiation

 7.4 Authentication via Telnet Auth Kerberos 4 after TLS negotiation

8 References

9 Authors

1 Introduction

This document describes the START_TLS Telnet option. It allows TLS
to be activated at the beginning of a Telnet connection to provide
authentication and confidentiality of the Telnet session. This document
also defines a set of advisory security policy response codes for use

when negotiating TLS from within Telnet.

We are interested in addressing the interaction between the Telnet
client and server that will support this secure requirement with the
knowledge that this is only a portion of the total end-user to
application path. Specifically, it is often true that the Telnet server
does not reside on the target machine (it does not have access to a list
of identities which are allowed to access to that application-server),
and it is often true (e.g. 3270 access) that the telnet server can not
even identify that portion of the emulation stream which contains user
identification/password information. Additionally, it may be the case
that the Telnet client is not co-resident with the end user and that it
also may be unable to identify that portion of the data stream that deals
with user identity. We make the assumption here that there is a trust
relationship and appropriate protection to support that relationship
between the Telnet Server and the ultimate application engine such that
data on this path is protected and that the application will authenticate
the end user via the emulation stream as well as use this to control
access to information. We further make the assumption that the path
between the end user and the client is protected.

To hold up the Telnet part of the overall secure path between the user
and the application-server, the Telnet data stream must appear
unintelligible to a third party. This is done by creating a shared
secret between the client and server. This shared secret is used to
encrypt the flow of data and (just as important) require the client to
verify that it is talking to correct server (the one that the
application-server trusts rather than an unintended man-in-the-middle)
with the knowledge that the emulation stream itself will be used by the
application-server to verify the identity of the end-user. Rather than
create a specialized new protocol which accomplishes these goals we
instead have chosen to use an existing IETF protocol, Transport Layer
Security (TLS) (formerly known as Secure Sockets Layer (SSL)).

The Telnet [TELNET] application protocol can certainly benefit from the
use of TLS. Since 1992 Telnet has supported over a dozen forms of
end user authentication and DES encryption via the AUTH and ENCRYPT
options. Since 1995, TLS (as SSL) has been used to provide privacy and
integrity protection to Telnet data streams via Telnet AUTH and via
dedicated IANA assigned port numbers (telnets 992). TLS offers a broad
range of security levels that allow sites to proceed at an "evolutionary"
pace in deploying authentication, authorization and confidentiality
policies, databases and distribution methods.

This document describes how TLS can be used to provide the following:

 o creation and refresh of a shared secret;

 o negotiation and execution of data encryption and optional
 compressesion;

 o primary negotiation of authentication; and, if chosen

 o execution of public-key or symmetric-key based authentication.

TLS at most offers only authentication of the peers conducting the TLS
dialog. In particular, it does not offer the possibility of the client
providing separate credentials for authorization than were presented for
authentication. After the establishment of peer to peer trust based
on TLS, other forms of end user authentication including Telnet AUTH
may be used to provide credentials for use in determining end user
authorization.

Traditional Telnet servers have operated without such early presentation
of authorization credentials for many reasons (most of which are
historical). However, recent developments in Telnet server technology
make it advantageous for the Telnet server to know the authorized
capabilities of the remote client before choosing a communications link
(be it `pty' or SNA LU) and link-characteristics to the host system (be
that "upstream" link local or remote to the server). Thus, we expect to
see the use of client authorization to become an important element of the
Telnet evolution. Such authorization methods may require certificates
presented by the client via TLS, or by the use of Telnet AUTH option, or
some other as yet unstandardized method.

This document describes the START_TLS telnet option which allows TLS to
be activated at the beginning of a Telnet connection using the standard
"telnet" port (IANA tcp\23). It also defines a set of advisory security-
policy response codes for use when negotiating TLS over Telnet.

Conventions Used in this Document
The key words "REQUIRED", "MUST", "MUST NOT", "SHOULD", "SHOULD NOT" and
"MAY" in this document are to be interpreted as described in [KEYWORDS].

Formal syntax is defined using ABNF [ABNF].

In examples, "C:" and "S:" indicate lines sent by the the client and
server, respectively.

2 Command Names and Codes (assigned by IANA)

 START_TLS 46 (decimal)

 FOLLOWS 1 (decimal)

3 Command Meanings

 This document makes reference to a "server" and a "client". For the
 purposes of this document, the "server" is the side of the connection
 that did the passive TCP open (TCP LISTEN state), and the "client" is
 the side of the connection that did the active open.

 IAC DONT START_TLS

 The sender is either not a server or is not interested in
 negotiating a TLS connection.

 IAC WONT START_TLS

 The sender is either not a client or is not interested in
 negotiating a TLS connection.

 IAC DO START_TLS

 The server side of the connection sends this command to indicate
 a desire to negotiate a TLS connection. This command MUST NOT
 be sent by the client and if received by the server MUST be refused
 with IAC WONT START_TLS.

 IAC WILL START_TLS

 The client side of the connection sends this command to indicate
 a desire to negotiate a TLS connection. This command MUST NOT
 be sent by the server and if received by the client MUST be refused
 with IAC DONT START_TLS.

 IAC SB START_TLS FOLLOWS IAC SE

 The FOLLOWS sub-command when sent indicates that the next byte of
 data received after this command MUST be a TLS negotiation as
 described in [TLS]. This sub-command is sent by both the client and
 the server. After this sub-command has been sent, the sender MUST NOT
 respond to nor initiate any additional telnet commands or
 sub-commands. When this sub-command has been sent and received the
 TLS negotiation will commence. When sent by a client this sub-
 command will be followed by a TLS ClientHello. When sent by a server
 this sub-command will be followed by a TLS ServerHello.

3.1 Usage of commands and interactions with other Telnet options

The START_TLS option is an asymmetric option, with the server side
allowed to send IAC DO START_TLS and the client allowed to send
IAC WILL START_TLS. Sub-commands are used to synchronize the link
in preparation for negotiating TLS. This synchronization takes
the form of a three-way handshake:

 1. As per normal Telnet option processing rules, the client MUST
 respond to the server's IAC DO START_TLS with either IAC WONT
 START_TLS or IAC WILL START_TLS (if it hasn't already done so).
 Once the client has sent IAC WILL START_TLS and received
 IAC DO START_TLS, it MUST immediately send a FOLLOWS sub-command
 (IAC SB START_TLS FOLLOWS IAC SE) to indicate it is ready to begin
 a TLS negotiation. Once the FOLLOWS sub-command has been sent, the
 client MUST ignore all telnet negotiations except for the FOLLOWS

 sub-command. When the FOLLOWS sub-command has been received the
 client MUST halt use of the telnet protocol, reset the telnet state
 machine and begin a TLS negotiation by sending a ClientHello message.

 2. If the client initiates by sending IAC WILL START_TLS, the server
 MUST respond with either IAC DO START_TLS or IAC DONT START_TLS.

 3. The server SHOULD NOT send additional Telnet data or commands after
 sending IAC DO START_TLS except in response to client Telnet options
 received until after it receives either a negative response from the
 client (IAC WONT START_TLS) or a successful negotiation of TLS has
 occurred. If the client's START_TLS option response is negative, the
 server is free to send additional Telnet data or commands. If the
 client's response is affirmative (IAC WILL START_TLS), then the server
 MUST send the FOLLOWS sub-command (IAC SB START_TLS FOLLOWS IAC SE)
 and await the FOLLOWS sub-command from the client. When the FOLLOWS
 sub-command has been sent and received the server MUST halt use of the
 telnet protocol, reset the telnet state machine, and begin a TLS
 negotiation by sending a TLS ServerHello message.

 4. If both START_TLS and AUTH [AUTH] are offered, START_TLS SHOULD be sent
 first and MUST take precedence if both are agreed to. AUTH MAY be
 renegotiated after successful establishment of the TLS session if
 end-user authentication via a supported method is desired.

 5. If a TLS session has been established, the ENCRYPT [ENCRYPT] option
 MUST NOT be negotiated in either direction.

 6. When the FOLLOWS sub-command has been sent and received the Telnet
 state machine is reset. This means that the state of all telnet
 options is reset to the WONT/DONT state and any data received via
 subcommands is forgotten. After a sucessful TLS negotiation the
 Telnet negotiations will be restarted as if a new connection had
 just been established with one exception. Since TLS is already in
 use, the START_TLS option MUST NOT be negotiated.

3.2 TLS Negotiation Failure

The behavior regarding TLS negotiation failure is covered in [TLS], and
does not indicate that the TCP connection be broken; the semantics are
that TLS is finished and all state variables cleaned up. The TCP connection
may be retained.

However, it's not clear that either side can detect when the last of the
TLS data has arrived. So if TLS negotiation fails, the TCP connection
SHOULD be reset and the client MAY reconnect. To avoid infinite loops of
TLS negotiation failures, the client MUST remember to not negotiate
START_TLS if reconnecting due to a TLS negotiation failure.

4 Telnet Authentication and Authorization

Telnet servers and clients can be implemented in a variety of ways that
impact how clients and servers authenticate and authorize each other.
However, most (if not all) the implementations can be abstracted via the
following four communicating processes:

SES Server End System. This is an application or machine to which client
 desires a connection. Though not illustrated here, a single Telnet
 connection between client and server could have multiple SES
 terminations.

Server The Telnet server.

Client The Telnet client, which may or may not be co-located with the
 CES. The Telnet client in fact be a gateway or proxy for downstream
 clients; it's immaterial.

CES Client End System. The system communicating with the Telnet Client.
 There may be more than one actual CES communicating to a single
 Telnet Client instance; this is also immaterial to how Client and
 Server can sucessfully exchange authentication and authorization
 details. However, see Section 5.4 for a discussion on trust
 implications.

What is of interest here is how the Client and Server can exchange
authentication and authorization details such that these components can
direct Telnet session traffic to authorized End Systems in a reliable,
trustworthy fashion.

What is beyond the scope of this specification are several related
topics, including:

 o How the Server and SES are connected, and how they exchange data or
 information regarding authorization or authentication (if any).

 o How the Client and CES are connected, and how they exchange data or
 information regarding authorization or authentication (if any).

System-to-system communications using the Telnet protocol have
traditionally used no authentication techniques at the Telnet level.
More recent techniques have used Telnet to transport authentication
exchanges (RFC 2941). In none of these systems, however, is a remote system
allowed to assume more than one identity once the Telnet preamble
negotiation is over and the remote is connected to the application-
endpoint. The reason for this is that the local party must in some way
inform the end-system of the remote party's identity (and perhaps
authorization). This process must take place before the remote party
starts communicating with the end-system. At that point it's too late
to change what access a client may have to an server end-system: that
end-system has been selected, resources have been allocated and
capability restrictions set.

This process of authentication, authorization and resource allocation

https://datatracker.ietf.org/doc/html/rfc2941

can be modeled by the following simple set of states and transitions:

`unauthenticated' The local party has not received any credentials
 offered by the remote. A new Telnet connection starts in this state.

 The `authenticating' state will be entered from this state if the
 local party initiates the authentication process of the peer. The
 Telnet START_TLS negotiation is considered an initiation of the
 authentication process.

 The `authorizing' state will be entered from this state either if
 the local party decides to begin authorization and resource
 allocation procedures unilaterally...or if the local party has
 received data from the remote party destined for local end-system.

`authenticating' The local party has received at least some of the
 credentials needed to authenticate its peer, but has not finished
 the process.

 The `authenticated' state will be entered from this state if the
 local party is satisfied with the credentials proferred by the
 client.

 The `unauthenticated' state will be entered from this state if the
 local party cannot verify the credentials proffered by the client or
 if the client has not proffered any credentials. Alternately, the
 local party may terminate the Telnet connection instead of returning
 it to the `unauthenticated' state.

`authenticated' The local party has authenticated its peer, but has not
 yet authorized the client to connect to any end-system resources.

 The `authenticating' state will be entered from this state if the
 local party decides that further authentication of the client is
 warranted.

 The `authorizing' state will be entered from this state if the local
 party either initiates authorization dialog with the client (or
 engages in some process to authorize and allocate resources on
 behalf of the client), or has received data from the remote party
 destined for a local end-system.

`authorizing' The local party is in the process of authorizing its peer
 to use end-system resources, or may be in the process of allocating
 or reserving those resources.

 The `transfer-ready' state will be entered when the local party is
 ready to allow data to be passed between the local end-system and
 remote peer.

 The `authenticated' state will be entered if the local party
 determines that the current authorization does not allow any access

 to a local end-system. If the remote peer is not currently
 authenticated, then the `unauthenticated' state will be entered
 instead.

`transfer-ready' The party may pass data between the local end-system to
 its peer.

 The `authorizing' state will be entered if the local party (perhaps
 due to a request by the remote peer) deallocates the communications
 resources to the local-end system. Alternately, the local party may
 enter the `authenticated' or the `unauthenticated' state.

In addition to the "orderly" state transitions noted above, some
extraordinary transitions may also occur:

 1. The absence of a guarantee on the integrity of the data stream
 between the two Telnet parties also removes the guarantee that the
 remote peer is who the authentication credentials say the peer is.
 Thus, upon being notified that the Telnet session is no longer using
 an integrity layer, the local party must at least deallocate all
 resources associated with a Telnet connection which would not have
 been allocable had the remote party never authenticated itself.

 In practice, this deallocation-of-resources restriction is hard to
 interpret consistently by both Telnet endpoints. Therefore, both
 parties MUST return to the initial Telnet state after negotiation of
 TLS. That is, it is as if the Telnet session had just started.

 This means that the states may transition from whatever the current
 state is to `unauthenticated'. Alternately, the local party may
 break the Telnet connection instead.

 2. If the local party is notified at any point during the Telnet
 connection that the remote party's authorizations have been reduced
 or revoked, then the local party must treat the remote party as being
 unauthenticated. The local party must deallocate all resources
 associated with a Telnet connection which would not have been
 allocable had the remote party never authenticated itself.

 This too may mean that the states may transition from whatever the
 current state is to `unauthenticated'. Alternately, the local party
 may break the Telnet connection instead.

The above model explains how each party should handle the authentication
and authorization information exchanged during the lifetime of a Telnet
connection. It is deliberately fuzzy as to what constitutes internal
processes (such as "authorizing") and what is meant by "resources" or
"end-system" (such as whether an end-system is strictly a single entity
and communications path to the local party, or multiples of each, etc).

Here's a state transition diagram, as per [RFC2360]:

https://datatracker.ietf.org/doc/html/rfc2360

 0 1 2 3 4
Events | unauth auth'ing auth'ed authorizing trans-ready
-----------+--
auth-needed| sap/1 sap/1 sap/1 sap/1 der,sap/1
auth-accept| - ain/2 - - -
auth-bad | - 0 wa/0 wa,der/0 der,sap/1
authz-start| szp/3 - szp/3 - -
data-rcvd | szp/3 qd/1 szp/3 qd/3 pd/4
authz-ok | - - - 4 -
authz-bad | - - - der/2 wa,der,szp/3

Action | Description
-------+--
sap | start authentication process
der | deallocate end-system resources
ain | authorize if needed
szp | start authorization process
qd | queue incoming data
pd | process data
wa | wipe authorization info

Event | Description
-------------+---
auth-needed | authentication deemed needed by local party
auth-accept | remote party's authentication creds accepted
auth-bad | remote party's authentication creds rejected or expired
authz-start | local or remote party starts authorization proceedings
data-rcvd | data destined for end-system received from remote party
authz-ok | authorization and resource allocation succeeded
authz-bad | authorization or resource allocation failed or expired

4.1 Authentication of the Server by the Client

A secure connection requires that the client be able to authenticate the
identity of the server. How the authentication is performed depends
upon the TLS cipher agreed upon during the negotiation. As of this
writing there are three categories of cipher suites supported by TLS:
ciphers supporting X.509 certificates (PKI), non-PKI ciphers, and
anonymous ciphers. The following sections detail how Server authentication
should be performed by the client for each cipher category.

4.1.1 PKI-based Authentication via TLS handshake

When a PKI based cipher is negotiated during the TLS negotiation, the
server will deliver an X.509 certificate to the client. Before the
certificate MAY be used to determine the identity of the server, the
certifiicate MUST be validated as per RFC 2459.

Once validated the identity of the server is confirmed by matching the DNS
name used to access the host with the name stored in the certificate. If the
certificate includes the `subjectAltName' extension and it contains a

https://datatracker.ietf.org/doc/html/rfc2459

`dNSName' object, then the client MUST use this name as the identity of the
server. Otherwise, the (most specific) commonName field in the Subject field
if the certificate MUST be used. Note that although the commonName field
technique is currently in wide use, it is deprecated and Certification
Authorities are encourage to use the dnsName instead.

Matching is performed using the matching rules specified by [RFC 2459]. If
more than one identity of a given type is present in the certificate (e.g.,
more than one dnsName name, a match in any one of the set is considered
acceptable.) Names may contain the wildcard character '*' which is considered
to match any single domain name component or component fragment. E.g.,
"*.a.com" matches "foo.a.com" but not "bar.foo.a.com. "f*.com" matches
"foo.com" but not "bar.com".

In some cases, an IP address is used to access the host instead of a DNS name.
 In these cases, a 'subjectAltName' object of type 'iPAddress' MUST be present
in the certificate and MUST exactly match the IP address provided by the end
user.

If the hostname does not match the identity in the certificate, user oriented
clients MUST either notify the user (clients MAY give the user the opportunity
to continue with the connection in any case) or terminate the connection with
a bad certificate error. Automated clients MUST log the error to an
appropriate audit log (if available) and SHOULD terminate the connection (with
a bad certificate error.) Automated clients MAY provide a configuration
setting that disables this check, but MUST provide a setting which enables it.

4.1.2 Non-PKI based authentication via TLS handshake

As of this writing TLS only supports one class of non-PKI cipher suites
which are based on Kerberos 5. Regardless, any non-PKI cipher suite
incorporated into TLS will provide for mutual authentication. Authentication
of the server is therefore implied by a successful TLS credential exchange.

4.1.3 Authentication by Telnet AUTH option (RFC 2941)

If the TLS exchange used an anonymous cipher such as Anonymous-Diffie-
Hellman (ADH) or if the X.509 certificate could not be validated, then
the session MUST be protected from a man in the middle attack. This can
be accomplished by using a Telnet AUTH [AUTH] method that provides for
mutual authentication(*) of the client and server; and which allows the
TLS Finished messages sent by the client and the server to be verified.
A failure to successfully perform a mutual authentication with Finished
message verification via Telnet AUTH MUST result in termination of the
connection by both the client and the server.

(*) The Telnet AUTH option supports both unilateral and mutual authentication
methods. The distinction being that mutual authentication methods confirm
the identity of both parties at the end of the negotiation. A unilateral
authentication method cannot be used to verify the contents of the TLS client
and server finished messages. It is worth noting that TLS usually

https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc2941

authenticates the server to the client; whereas, Telnet AUTH usually
authenticates the client to the server when unilateral methods are used.

4.2 Authentication of the Client by the Server

After TLS has been successfully negotiated the server may not have the
client's identity (verified or not) since the client is not required to
provide credentials during the TLS exchange. Even when the client does
provide credentials during the TLS exchange, the server may have a policy
that prevents their use. Therefore, the server may not have enough
confidence in the client to move the connection to the authenticated state.

If further client, server or client-server authentication is going to
occur after TLS has been negotiated, it MUST occur before any
non-authentication-related Telnet interactions take place on the link
after TLS starts. When the first non-authentication-related Telnet
interaction is received by either participant, then the receiving
participant MAY drop the connection due to dissatisfaction with the
level of authentication.

If the server wishes to request a client certificate after TLS is
initially started (presumably with no client certificate requested), it
may do so. However, the server MUST make such a request immediately
after the initial TLS handshake is complete.

No TLS negotiation outcome, however trustworthy, will by itself provide
the server with the authorization identity if that is different from the
authentication identity of the client.

The following subsections detail how the client can provide the server
with authentication and authorization credentials.

4.2.1 PKI-based Authentication via TLS handshake

PKI-based authentication is used by the client transmitting an X.509
certificate to the host during the TLS handshake. There is no standard
mechanism defined for how a client certificate should be mapped to a
authorization identity (userid). There are several methods currently
in wide practice. A telnet server compliant with this document may
implement zero, one or more than one of them.

The first method is to use information stored within the certificate
to determine the authorization identity. If the certificate contains
an Common Name object then portions of it can be used as the
authorization identity. If the Common Name contains an UID member,
then it can be used directly. If the Common Name contains an Email
member, then it can be used if the specified domain matches the domain
of the telnet server.

The second method is to use the entire Subject Name as a entry to
lookup in a directory. The directory provides a mapping between the
subject name and the authorization identity.

The third method is to use the entire certificate as a entry to lookup
in a directory with the directory providing a mapping between the
certificate and the authorization identity.

The first method is only practical if the certificates are being
issued by certificate authority managed by the same organization as
the server performing the authorization.

The second and third methods can be used with certificates issued
by public certificate authorities provided the certificates are
delivered to the organization performing the authorization in advance
via an authenticated method. The second and third methods have the
added benefit that the certificates, if issued by the authorizing
organization, do not require that any personal information about the
subject be included in the certificate. The Subject line could be
filled only with gibberish to establish its uniqueness in the
directory.

4.2.2 Non-PKI Authentication via TLS handshake

TLS supports non-PKI authentication methods which can be used for
securely establishing authentication identities. As of this writing,
TLS supports only one non-PKI authentication method, Kerberos 5.
However, it is not unlikely that other authentication methods might be
incorporated into TLS ciphers in the future.

4.2.3 Telnet AUTH option

The Telnet AUTH option implements a variety of authentication methods
which can be used to establish authentication and authorization
identities. Some methods (e.g., KERBEROS_IV and KERBEROS_V) allow
separate authentication and authorization identities to be provided.
Details on the use of the Telnet AUTH option and its authentication
methods can be found in RFC1416 (about to be obsoleted) and its related
documents. For a current list of Telnet AUTH methods see IANA.

4.2.4 Traditional Username and Password

When all else fails the authorization identity may be provided over
the secure TLS connection in the form of a username and password.

The Username MAY be transmitted to the host via the Telnet New
Environment option's USER variable.

5 Security

Security is discussed throughout this document. Most of this document
concerns itself with wire protocols and security frameworks. But in this
section, client and server implementation security issues are in focus.

https://datatracker.ietf.org/doc/html/rfc1416

5.1 PKI-based certificate processing

A complete discussion of the proper methods for verifying X.509 certificates
and their associated certificate chains is beyond the scope of this
document. The reader is advised to refer to the RFCs issued by the PKIX
Working Group. However, the verification of a certificate MUST include,
but isn't limited to, the verification of the signature certificate
chain to the point where the a signature in that chain uses a known good
signing certificate in the local key chain. The verification
SHOULD then continue with a check to see if the fully qualified host name
which the client connected to appears anywhere in the server's
certificate subject (DN).

If the certificate cannot be verified then either:

 o the end user MUST see a display of the server's certificate and be
 asked if he/she is willing to proceed with the session; or,

 o the end user MUST NOT see a display of server's certificate, but the
 certificate details are logged on whatever media is used to log
 other session details. This option may be preferred to the first
 option in environments where the end-user cannot be expected to make
 an informed decision about whether a mismatch is harmful. The
 connection MUST be closed automatically by the client UNLESS the
 client has been configured to explicitly allow all mismatches.

 o the connection MUST be closed on the user's behalf, and an error
 describing the mismatch logged to stable storage.

If the client side of the service is not interactive with a human
end-user, the Telnet connection SHOULD be dropped if this host check
fails.

5.2 Client and Server authentication of anonymous-TLS connections

When authentication is performed after the establishment of a TLS session
which uses an anonymous cipher, it is imperative that the authentication
method protect against a man in the middle attack by verifying the
contents of the client's and server's TLS finished messages. Without
the verification of both the client and server's TLS finished messages
it is impossible to confirm that there is not a man in the middle
listening and perhaps changing all the data transmitted on the
connection.

Verification of the TLS finished messages can be performed as part
of a Telnet AUTH option mutual authentication exchange (when using the
ENCRYPT_START_TLS flag.) This can be done at the same time the
verification of the authentication-type-pair is performed.

5.3 Display of security levels

The Telnet client and server MAY, during the TLS protocol negotiation

phase, choose to use a weak cipher suite due to policy, law or even
convenience. It is, however, important that the choice of weak cipher
suite be noted as being commonly known to be vulnerable to attack. In
particular, both server and client software should note the choice of
weak cipher-suites in the following ways:

 o If the Telnet endpoint is communicating with a human end-user, the
 user-interface SHOULD display the choice of weak cipher-suite and
 the fact that such a cipher-suite may compromise security.

 o The Telnet endpoints SHOULD log the exact choice of cipher-suite as
 part of whatever logging/accounting mechanism normally used.

5.4 Trust Relationships and Implications

Authentication and authorization of the remote Telnet party is useful,
but can present dangers to the authorizing party even if the connection
between the client and server is protected by TLS using strong
encryption and mutual authentication. This is because there are some
trust-relationships assumed by one or both parties:

 o Each side assumes that the authentication and authentication details
 proferred by the remote party stay constant until explicitly changed
 (or until the TLS session is ended).

 o More stringently, each side trusts the other to send a timely
 notification if authentication or authorization details of the other
 party's end system(s) have changed.

Either of these assumptions about trust may be false if an intruder has
breached communications between a client or server and its respective
end system. And either may be false if a component is badly implemented
or configured. Implementers should take care in program construction to
avoid invalidating these trust relationships, and should document to
configuring-users the proper ways to configure the software to avoid
invalidation of these relationships.

5.5 Telnet negotation handling

There are two aspects to Telnet negotiation handling that affect the
security of the connection. First, given the asynchronous nature
of Telnet option negotiations it is possible for a telnet client or
server to allow private data to be transmitted over a non-secure
link. It is especially important that implementors of this telnet
option ensure that no telnet option subnegotiations other than those
related to authentication and establishment of security take place over
an insecure connection.

The second item is related to the most common error when implementing
a telnet protocol state machine. Most telnet implementations do not
check to ensure that the peer responds to all outstanding requests
to change states: WILL, DO, WONT, DONT. It is important that all

telnet implementations ensure that requests for state changes are
responded to.

6 TLS Variants and Options

TLS has different versions and different cipher suites that can be
supported by client or server implementations. The following
subsections detail what TLS extensions and options are mandatory. The
subsections also address how TLS variations can be accommodated.

6.1 Support of previous versions of TLS

TLS has its roots in SSL 2.0 and SSL 3.0. Server and client
implementations may wish to support for SSL 3.0 as a fallback in case TLS
1.0 or higher is not supported. This is permissible; however, client
implementations which negotiate SSL3.0 MUST still follow the rules in
Section 5.3 concerning disclosure to the end-user of transport-level
security characteristics.

Negotiating the use of SSL 3.0 is done as part of the TLS negotiation; it
is detailed in [TLS]. SSL 2.0 MUST NOT be negotiated.

6.2 Using Kerberos V5 with TLS

If the client and server are both amenable to using Kerberos V5, then
using non-PKI authentication techniques within the confines of TLS may
be acceptable (see [TLSKERB]). Note that clients and servers are under
no obligation to support anything but the cipher-suite(s) mandated in
[TLS]. However, if implementations do implement the KRB5 authentication
as a part of TLS ciphersuite, then these implementations SHOULD support
at least the TLS_KRB5_WITH_3DES_EDE_CBC_SHA ciphersuite.

7 Protocol Examples

The following sections provide skeletal examples of how Telnet clients
and servers can negotiate TLS.

7.1 Successful TLS negotiation

The following protocol exchange is the typical sequence that starts TLS:

// typical successful opening exchange
 S: IAC DO START_TLS
 C: IAC WILL START_TLS IAC SB START_TLS FOLLOWS IAC SE
 S: IAC SB START_TLS FOLLOWS IAC SE
// server now readies input stream for non-Telnet, TLS-level negotiation
 C: [starts TLS-level negotiations with a ClientHello]
 [TLS transport-level negotiation ensues]
 [TLS transport-level negotiation completes with a Finished exchanged]
// either side now able to send further Telnet data or commands

7.2 Successful TLS negotiation, variation

The following protocol exchange is the typical sequence that starts TLS,
but with the twist that the (TN3270E) server is willing but not
aggressive about doing TLS; the client strongly desires doing TLS.

// typical successful opening exchange
 S: IAC DO TN3270E
 C: IAC WILL START_TLS IAC
 S: IAC DO START_TLS
 C: IAC WILL START_TLS IAC SB START_TLS FOLLOWS IAC SE
 S: IAC SB START_TLS FOLLOWS IAC SE
// server now readies input stream for non-Telnet, TLS-level negotiation
 C: [starts TLS-level negotiations with a ClientHello]
 [TLS transport-level negotiation ensues]
 [TLS transport-level negotiation completes with a Finished
 exchanged]
// note that server retries negotiation of TN3270E after TLS
// is done.
 S: IAC DO TN3270E
 C: IAC WILL TN3270E
// TN3270E dialog continues....

7.3 Unsuccessful TLS negotiation

This example assumes that the server does not wish to allow the Telnet
session to proceed without TLS security; however, the client's version
of TLS does not interoperate with the server's.

//typical unsuccessful opening exchange
 S: IAC DO START_TLS
 C: IAC WILL START_TLS IAC SB START_TLS FOLLOWS IAC SE
 S: IAC SB START_TLS FOLLOWS IAC SE
// server now readies input stream for non-Telnet, TLS-level negotiation
 C: [starts TLS-level negotiations with a ClientHello]
 [TLS transport-level negotiation ensues]
 [TLS transport-level negotiation fails with server sending
 ErrorAlert message]
 S: [TCP level disconnect]
// server (or both) initiate TCP session disconnection

This example assumes that the server wants to do TLS, but is willing to
allow the session to proceed without TLS security; however, the client's
version of TLS does not interoperate with the server's.

//typical unsuccessful opening exchange
 S: IAC DO START_TLS
 C: IAC WILL START_TLS IAC SB START_TLS FOLLOWS IAC SE
 S: IAC SB START_TLS FOLLOWS IAC SE
// server now readies input stream for non-Telnet, TLS-level negotiation
 C: [starts TLS-level negotiations with a ClientHello]

 [TLS transport-level negotiation ensues]
 [TLS transport-level negotiation fails with server sending
 ErrorAlert message]
 S: [TCP level disconnect]
// session is dropped

7.4 Authentication via Kerberos 4 after TLS negotiation

Here's an implementation example of using Kerberos 4 to authenticate the
client after encrypting the session with TLS. Note the following
details:

 o The client strictly enforces a security policy of proposing Telnet
 AUTH first, but accepting TLS. This has the effect of producing a
 rather verbose pre-TLS negotiation sequence; however, the
 end-result is correct. A more efficient pre-TLS sequence can be
 obtained by changing the client security policy to be the same as the
 server's for this connection (and implementing policy-aware
 negotiation code in the Telnet part of the client).

 A similar efficient result can be obtained even in the absence of a
 clear client security policy if the client has cached server
 security preferences from a previous Telnet session to the same
 server.

 o The server strictly enforces a security policy of proposing TLS
 first, but falling back to Telnet AUTH.

 C: IAC WILL AUTHENTICATION
 C: IAC WILL NAWS
 C: IAC WILL TERMINAL-TYPE
 C: IAC WILL NEW-ENVIRONMENT
 S: IAC DO START_TLS
 C: IAC WILL START_TLS
 C: IAC SB START_TLS FOLLOWS IAC SE
 S: IAC DO AUTHENTICATION
 S: IAC DO NAWS
 S: IAC WILL SUPPRESS-GO-AHEAD
 S: IAC DO SUPPRESS-GO-AHEAD
 S: IAC WILL ECHO
 S: IAC DO TERMINAL-TYPE
 S: IAC DO NEW-ENVIRONMENT
 S: IAC SB AUTHENTICATION SEND
 KERBEROS_V4 CLIENT_TO_SERVER|MUTUAL|ENCRYPT_REQ
 KERBEROS_V4 CLIENT_TO_SERVER|MUTUAL
 KERBEROS_V4 CLIENT_TO_SERVER|ONE_WAY
 SSL CLIENT_TO_SERVER|ONE_WAY IAC SE
 S: IAC SB TERMINAL-TYPE SEND IAC SE
 S: IAC SB NEW-ENVIRONMENT SEND IAC SE
 S: IAC SB START_TLS FOLLOWS IAC SE
 [TLS - handshake starting]

 [TLS - OK]
 C: IAC WILL AUTHENTICATION
 C: IAC WILL NAWS
 C: IAC WILL TERMINAL-TYPE
 C: IAC WILL NEW-ENVIRONMENT
 <wait for outstanding negotiations>
 S: IAC DO AUTHENTICATION
 S: IAC DO NAWS
 S: IAC WILL SUPPRESS-GO-AHEAD
 C: IAC DO SUPPRESS-GO-AHEAD
 S: IAC DO SUPPRESS-GO-AHEAD
 C: IAC WILL SUPPRESS-GO-AHEAD
 S: IAC WILL ECHO
 C: IAC DO ECHO
 S: IAC DO TERMINAL-TYPE
 S: IAC DO NEW-ENVIRONMENT
 S: IAC SB AUTHENTICATION SEND
 KERBEROS_V4 CLIENT_TO_SERVER|MUTUAL
 KERBEROS_V4 CLIENT_TO_SERVER|ONE_WAY IAC SE
 C: IAC SB AUTHENTICATION NAME jaltman IAC SE
 C: IAC SB AUTHENTICATION IS
 KERBEROS_V4 CLIENT_TO_SERVER|MUTUAL AUTH
 04 07 0B "CC.COLUMBIA.EDU" 00 "8(" 0D 9E 9F AB A0 "L" 15 8F A6
 ED "x" 19 F8 0C "wa" CA "z`" 1A E2 B8 "Y" B0 8E "KkK" C6 AA "<" FF
 FF 98 89 "|" 90 AC DF 13 "2" FC 8E 97 F7 BD AE "e" 07 82 "n" 19 "v"
 7F 10 C1 12 B0 C6 "|" FA BB "s1Y" FF FF 10 B5 14 B3 "(" BC 86 "`"
 D2 "z" AB "Qp" C4 "7" AB "]8" 8A 83 B7 "j" E6 "IK" DE "|YIVN"
 IAC SE
 S: IAC SB TERMINAL-TYPE SEND IAC SE
 S: IAC SB NEW-ENVIRONMENT SEND IAC SE
 S: IAC SB AUTHENTICATION REPLY
 KERBEROS_V4 CLIENT_TO_SERVER|MUTUAL ACCEPT IAC SE
 C: IAC SB AUTHENTICATION IS
 KERBEROS_V4 CLIENT|MUTUAL CHALLENGE "[" BE B7 96 "j" 92 09 "~" IAC SE
 S: IAC SB AUTHENTICATION REPLY
 KERBEROS_V4 CLIENT_TO_SERVER|MUTUAL RESPONSE "df" B0 D6 "vR_/" IAC SE
 C: IAC SB TERMINAL-TYPE IS VT320 IAC SE
 C: IAC SB NEW-ENVIRONMENT IS VAR USER VALUE jaltman VAR SYSTEMTYPE \\
 VALUE WIN32 IAC SE
 C: IAC SB NAWS 162 49 IAC SE

Here are several things to note about the above example:

 o After TLS is successfully negotiated, all non-TLS Telnet settings
 are forgotten and must be renegotiated.

 o After TLS is successfully negotiated, the server offers all
 authentication types that are appropriate for a session using TLS.
 Note that the server, post TLS-negotiation, isn't offering Telnet
 ENCRYPT or AUTH SSL, since (a) it's useless to encrypt twice, and
 (b) TLS and/or SSL can be applied only once to a Telnet session.

8 References

[ANBF] D. Crocker, Ed., P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC2235, November 1997.

[AUTH] T.Ts'o, Ed,. J. Altman, "Telnet Authentication Option",
RFC2941, September 2000.

[ENCRYPT] T.Ts'o, "Telnet Encryption Option", RFC2946, September 2000.

[KEYWORDS] Bradner, S. "Key words for use in RFCs to Indicate
 Requirement Levels", RFC2119, March 1997.

[RFC927] Brian A. Anderson. "TACACS User Identification Telnet
 Option", RFC927, December 1984

[RFC2360] G. Scott, Editor. "Guide for Internet Standard Writers",
RFC2360, June 1998.

[RFC2459] Housley, R., Ford, W., Polk, W. and D.Solo, "Internet
 Public Key Infrastructure: Part I: X.509 Certificate and
 CRL Profile", RFC2459, January 1999.

[TELNET] J. Postel, J. Reynolds. "Telnet Protocol Specifications",
RFC854, May 1983.

[TLS] Tim Dierks, C. Allen. "The TLS Protocol", RFC2246, January
 1999.

[TLSKERB] Ari Medvinsky, Matthew Hur. "Addition of Kerberos Cipher
 Suites to Transport Layer Security (TLS)", RFC2712, October
 1999.

9 Authors

 Michael Boe Jeffrey Altman
 Cisco Systems Inc. Columbia University
 170 West Tasman Drive 612 West 115th Street
 San Jose CA 95134 USA New York NY 10025 USA

 Email: mboe@cisco.com jaltman@columbia.edu

10 Mailing list

 General Discussion:tn3270e@list.nih.gov
 To Subscribe: listserv@list.nih.gov
 In Body: sub tn3270e <first_name>
 Archive: listserv@list.nih.gov

 Associated list: telnet-wg@bsdi.com

https://datatracker.ietf.org/doc/html/rfc2235
https://datatracker.ietf.org/doc/html/rfc2941
https://datatracker.ietf.org/doc/html/rfc2946
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc927
https://datatracker.ietf.org/doc/html/rfc2360
https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2712

Full Copyright Statement

Copyright (c) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of develop- ing Internet standards in
which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.

