
Token Binding Working Group N. Harper
Internet-Draft Google Inc.
Intended status: Standards Track November 17, 2016
Expires: May 21, 2017

Token Binding for 0-RTT TLS 1.3 Connections
draft-ietf-tokbind-tls13-0rtt-00

Abstract

 This document describes how Token Binding can be used in the 0-RTT
 data of a TLS 1.3 connection. This involves updating how Token
 Binding negotiation works and adding a mechanism for indicating
 whether a server prevents replay. A TokenBindingMessage sent in
 0-RTT data has different security properties than one sent after the
 TLS handshake has finished, which this document also describes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 21, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Harper Expires May 21, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft 0-RTT Token Binding November 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. Proposed Design . 3
2.1. TokenBinding Signature Definition 3
2.2. Negotiating Token Binding 4
2.2.1. Negotiation TLS Extension 4
2.2.2. Replay Protection Indication Extension 4

3. Implementation Challenges 5
4. Alternatives Considered 5
4.1. Use Both 0-RTT and 1-RTT Exporters on Same Connection . . 5
4.2. Don't Remember Key Parameter From Previous Connection . . 6
4.3. Token Binding and 0-RTT Data Are Mutually Exclusive . . . 6

5. IANA Considerations . 6
6. Security Considerations 6
6.1. Attacks on PSK-only Key Exchange and Token Binding . . . 7
6.2. Exporter Replayability 7
6.3. Replay Mitigations 8
6.3.1. Server Mitigations 8
6.3.2. Client Mitigations 9

6.4. Early Data Ticket Age Window 9
6.5. Lack of Freshness . 9

7. Acknowledgements . 9
8. Normative References . 10

 Author's Address . 10

1. Introduction

 Token Binding ([I-D.ietf-tokbind-protocol]) cryptographically binds
 security tokens (e.g. HTTP cookies, OAuth tokens) to the TLS layer
 on which they are presented. It does so by signing an [RFC5705]
 exporter value from the TLS connection. TLS 1.3 introduces a new
 mode that allows a client to send application data on its first
 flight. If this 0-RTT data contains a security token, then a client
 using Token Binding would want to prove possession of its Token
 Binding private key so that the server can verify the binding. The
 [RFC5705]-style exporter provided by TLS 1.3 cannot be run until the
 handshake has finished. TLS 1.3 also provides an exporter that can
 be used with 0-RTT data, but it requires that the application
 explicitly specify that use. This document specifies how to use the
 early_exporter_secret with Token Binding in TLS 1.3 0-RTT data.

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705

Harper Expires May 21, 2017 [Page 2]

Internet-Draft 0-RTT Token Binding November 2016

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Proposed Design

 A TokenBinding struct as defined in [I-D.ietf-tokbind-protocol]
 contains a signature of the EKM value from the TLS layer. Under
 normal circumstances, a TokenBinding on a TLS 1.3 connection would
 use the exporter_secret to derive the EKM value. When 0-RTT data is
 assembled to be sent, the exporter_secret is not yet available. This
 design changes the definition of the TokenBinding.signature field to
 use the exporter with early_exporter_secret for 0-RTT data. Since no
 negotiation for the connection can happen before the client sends
 this TokenBindingMessage in 0-RTT data, this document also describes
 how a client decides what TokenBindingMessage to send in 0-RTT data
 and how a server should interpret that message.

 If a client does not send any 0-RTT data, or if the server rejects
 the client's 0-RTT data, then the client MUST use the 1-RTT exporter,
 as defined in [I-D.ietf-tokbind-protocol].

2.1. TokenBinding Signature Definition

 In [I-D.ietf-tokbind-protocol], the signature field of the
 TokenBinding struct is defined to be the signature of a
 concatentation that includes the EKM value. Depending on the
 circumstances, the exporter value in section 7.3.3 of
 [I-D.ietf-tls-tls13] is computed using either exporter_secret or
 early_exporter_secret as the Secret. The same Secret is used for the
 entirety of the connection.

 The rules for a client choosing which exporter to use are as follows.
 A client which is not sending any 0-RTT data on a connection MUST use
 the exporter defined in [I-D.ietf-tls-tls13] (using exporter_secret
 as the Secret) for all TokenBindingMessages on that connection so
 that it is compatible with [I-D.ietf-tokbind-protocol]. A client
 that sends a TokenBindingMessage in 0-RTT data must use the exporter
 with early_exporter_secret as the Secret (the "0-RTT exporter") since
 exporter_secret is not defined at that time. A client that sends
 0-RTT data which is not rejected by the server MUST use the 0-RTT
 exporter for the rest of the connection. If the server rejects the
 client's 0-RTT data, then the client MUST use the exporter defined in
 [I-D.ietf-tls-tls13] (using exporter_secret as the Secret) for the
 remainder of the connection, as if no 0-RTT data had ever been sent.

https://datatracker.ietf.org/doc/html/rfc2119

Harper Expires May 21, 2017 [Page 3]

Internet-Draft 0-RTT Token Binding November 2016

2.2. Negotiating Token Binding

2.2.1. Negotiation TLS Extension

 The behavior of the Token Binding negotiation TLS extension does not
 change for a 0-RTT connection: the client and server should process
 this extension the same way regardless of whether the client also
 sent the EarlyDataIndication extension.

 For the sake of choosing a key parameter to use in 0-RTT data, the
 client MUST use the same key parameter that was used on the
 connection during which the ticket (now being used for resumption)
 was established. The server MUST NOT accept early data if the
 negotiated Token Binding key parameter does not match the parameter
 from the initial connection. This is the same behavior as ALPN and
 SNI extensions.

 If 0-RTT data is being sent with Token Binding using a PSK obtained
 out-of-band, then the Token Binding key parameter to use with that
 PSK must also be provisioned to both parties, and only that key
 parameter must be used with that PSK.

2.2.2. Replay Protection Indication Extension

 The signed exporter value used in a 0-RTT connection is not
 guaranteed to be unique to the connection, so an attacker may be able
 to replay the signature without having possession of the private key.
 To combat this attack, a server may implement some sort of replay
 prevention, and indicate this to the client. A new TLS extension
 "token_binding_replay_indication" is defined for the client to query
 and server to indicate whether it has implemented a mechanism to
 prevent replay.

 enum {
 token_binding_replay_indication(TBD), (65535)
 } ExtensionType;

 When sent, this extension always has zero length. If a client wishes
 to know whether its peer is preventing replay of TokenBinding structs
 across multiple connections, the client can include this extension in
 its ClientHello. Upon receiving this extension, the server must echo
 it back if it is using such a mechanism (like those described in

Section 6.3.1) to prevent replay. A client that only wishes to send
 0-RTT Token Binding if the server implements replay protection can
 send this extension on first connection establishment, and if the
 server doesn't send it back (but does support Token Binding) the
 client can choose to not send 0-RTT messages to that server.

Harper Expires May 21, 2017 [Page 4]

Internet-Draft 0-RTT Token Binding November 2016

 A client that wishes to use this extension should send it every time
 it sends a "token_binding" [I-D.ietf-tokbind-negotiation] extension.

3. Implementation Challenges

 The client has to be able to modify the message it sends in 0-RTT
 data if the 0-RTT data gets rejected and needs to be retransmitted in
 1-RTT data. Even if the Token Binding integration with 0-RTT were
 modified so that Token Binding never caused a 0-RTT reject that
 required rewriting a request, the client still has to handle the
 server rejecting the 0-RTT data for other reasons.

 HTTP2 allows for requests to different domains to share the same TLS
 connection if the SAN of the cert covers those domains. If
 one.example.com supports 0-RTT and Token Binding, but two.example.com
 only supports Token Binding as defined in
 [I-D.ietf-tokbind-protocol], those servers cannot share a cert and
 use HTTP2.

4. Alternatives Considered

4.1. Use Both 0-RTT and 1-RTT Exporters on Same Connection

 The client could be required to use the 0-RTT EKM when the
 TokenBindingMessage is sent in 0-RTT data, and the 1-RTT EKM when it
 is sent in 1-RTT data. This requires that the abstraction of the TLS
 layer visible to the application where it is handling Token Binding
 exposes which phase the application data is being sent/received in.
 An application could very easily have this detail abstracted away;
 for example, the client might have a function like
 "write_possibly_early" that will send data in 0-RTT the current
 connection state permits it, and otherwise send data post-handshake.
 A pathological client might send the first few bytes of an
 application message in 0-RTT, but send the rest after the handshake
 (including the TokenBindingMessage). The server's application layer
 would have to track which bytes of the request were sent pre- and
 post-handshake to know how to validate that TokenBindingMessage.

 This constraint could be relaxed slightly. A ratcheting mechanism
 could be used where the client uses the 0-RTT EKM while it thinks
 that it's writing early data (even if it isn't writing early data),
 and once it knows the handshake is finished, it uses the 1-RTT EKM.
 Once the server sees a TokenBindingMessage using the 1-RTT EKM, the
 server would no longer accept the 0-RTT EKM. In practice, this is
 difficult to implement because multiple HTTP/2 streams can be
 multiplexed on the same connection, requiring the ratchet to be
 synchronized across the streams.

Harper Expires May 21, 2017 [Page 5]

Internet-Draft 0-RTT Token Binding November 2016

 Relaxing this further where the server will always accept either the
 0-RTT or 1-RTT EKM (but the client keeps the behavior as above) is
 another possibility. This is more complicated than always using the
 0-RTT exporter, and provides no additional security benefits (since
 the server would have to accept a client only using the 0-RTT
 exporter).

4.2. Don't Remember Key Parameter From Previous Connection

 The proposed design uses the same Token Binding key parameter from
 the previous connection, and the TLS extension must negotiate the
 same key parameter as the previous connection. This mirrors how ALPN
 is negotiated in TLS 1.3. Instead of remembering this parameter, the
 client could put the in first entry of their key parameters list the
 key type being used in 0-RTT, and allow the client and server to
 potentially negotiate a new type to use once the handshake is
 complete. This alternate gains a slight amount of key type agility
 in exchange for implementation difficulty. Other variations of this
 are also possible, for example requiring the server to reject early
 data if it doesn't choose the first parameter, or requiring the
 client to send only one key parameter.

4.3. Token Binding and 0-RTT Data Are Mutually Exclusive

 If a TokenBindingMessage is never allowed in 0-RTT data, then no
 changes are needed to the exporter or negotiation. A server that
 wishes to support Token Binding must not create any NewSessionTicket
 messages with the allow_early_data flag set. A client must not send
 the token binding negotiation extension and the EarlyDataIndication
 extension in the same ClientHello.

5. IANA Considerations

 This document defines a new TLS extension
 "token_binding_replay_indication", which needs to be added to the
 IANA "Transport Layer Security (TLS) Extensions" registry.

6. Security Considerations

 Token Binding messages that use the 0-RTT exporter have weaker
 security properties than with the [RFC5705] exporter. If either
 party of a connection using Token Binding does not wish to use 0-RTT
 token bindings, they can do so: a client can choose to never send
 0-RTT data on a connection where it uses token binding, and a server
 can choose to reject any 0-RTT data sent on a connection that
 negotiated token binding.

https://datatracker.ietf.org/doc/html/rfc5705

Harper Expires May 21, 2017 [Page 6]

Internet-Draft 0-RTT Token Binding November 2016

 0-RTT data in TLS 1.3 has weaker security properties than other kinds
 of TLS data. Specifically, TLS 1.3 does not guarantee non-
 replayability of data between connections. Token Binding has similar
 replayability issues when in 0-RTT data, but preventing replay of
 Token Binding and preventing replay of 0-RTT data are two separate
 problems. Token Binding is not designed to prevent replay of 0-RTT
 data, although solutions for preventing the replay of Token Binding
 might also be applicable to 0-RTT data.

6.1. Attacks on PSK-only Key Exchange and Token Binding

 An attacker who possesses the PSK can eavesdrop on an existing
 connection that uses that PSK to obtain a TokenBindingMessage that is
 valid on the connection and then hijack the connection to send
 whatever attacker-controlled data it wishes. Because the regular
 exporter closes over the server random, this TokenBindingMessage is
 valid only for that connection.

 If the attacker does the same thing with a pure-PSK connection and
 0-RTT Token Binding, the attacker can replay the original ClientHello
 and the exporter will stay the same, allowing the attacker to obtain
 a TokenBindingMessage from one connection and replay it on future
 connections. The only way for a server to prevent this replay is to
 prevent the client from ever repeating a client random in the
 handshake.

 If a server accepting connections with PSK-only key establishment is
 concerned about the threat of PSK theft and also implements Token
 Binding, then that server must either reject all 0-RTT token
 bindings, or implement some form of preventing reuse of a client
 random.

6.2. Exporter Replayability

 The exporter specified in [I-D.ietf-tokbind-protocol] is chosen so
 that a client and server have the same exporter value only if they
 are on the same TLS connection. This prevents an attacker who can
 read the plaintext of a TokenBindingMessage sent on that connection
 from replaying that message on another connection (without also
 having the token binding private key). The 0-RTT exporter only
 covers the ClientHello and the PSK of the connection, so it does not
 provide this guarantee.

 An attacker with possession of the PSK secret and a transcript of the
 ClientHello and early data sent by a client under that PSK can
 extract the TokenBindingMessage, create a new connection to the
 server (using the same ClientHello and PSK), and send different
 application data with the same TokenBindingMessage. Note that the

Harper Expires May 21, 2017 [Page 7]

Internet-Draft 0-RTT Token Binding November 2016

 ClientHello contains public values for the (EC)DHE key agreement that
 is used as part of deriving the traffic keys for the TLS connection,
 so if the attacker does not also have the corresponding private
 values, they will not be able to read the server's response or send a
 valid Finished message in the handshake for this TLS connection.
 Nevertheless, by that point the server has already processed the
 attacker's message with the replayed TokenBindingMessage.

 This sort of replayability of a TokenBindingMessage is different than
 the replayability caveat of 0-RTT application data in TLS 1.3. A
 network observer can replay 0-RTT data from TLS 1.3 without knowing
 any secrets of the client or server, but the application data that is
 replayed is untouched. This replay is done by a more powerful
 attacker who is able to view the plaintext and then spoof a
 connection with the same parameters so that the replayed
 TokenBindingMessage still validates when sent with different
 application data.

6.3. Replay Mitigations

 This section presents multiple ways that a client or server can
 prevent the replay of a TokenBinding while still using Token Binding
 with 0-RTT data.

 If a client or server implements a measure that prevents all replays,
 then its peer does not also need to implement such a mitigation. A
 client that is concerned about replay SHOULD implement replay a
 mitigation instead of relying solely on a signal from the server
 through the replay indication extension.

6.3.1. Server Mitigations

 If a server uses a session cache instead of stateless tickets, it can
 enforce that a PSK generated for resumption can only be used once.
 If an attacker tries to replay 0-RTT data (with a
 TokenBindingMessage), the server will reject it because the PSK was
 already used.

 Preventing all replay of 0-RTT data is not necessary to prevent
 replay of a TokenBinding. A server could implement a mechanism to
 prevent a particular TokenBinding from being presented on more than
 one connection. In cases where a server's TLS termination and
 application layer processing happen in different locations, this
 option might be easier to implement, especially when not all requests
 have bound tokens. This processing can also take advantage of the
 structure of the bound token, e.g. a token that identifies which user
 is making a request could shard its store of which TokenBindings have
 been seen based on the user ID.

Harper Expires May 21, 2017 [Page 8]

Internet-Draft 0-RTT Token Binding November 2016

 A server can prevent some, but not all, 0-RTT data replay with a
 tight time window for the ticket age that it will accept. See

Section 6.4 for more details.

6.3.2. Client Mitigations

 A client cannot prevent a sufficiently motivated attacker from
 replaying a TokenBinding, but it can make it so difficult to replay
 the TokenBinding that it is easier for the attacker to steal the
 Token Binding key directly. If the client secures the resumption
 secret with the same level of protection as the Token Binding key,
 then the client has made it not worth the effort of the attacker to
 attempt to replay a TokenBinding. Ideally the resumption secret (and
 Token Binding key) are protected strongly and virtually non-
 exportable.

6.4. Early Data Ticket Age Window

 When an attacker with control of the PSK secret replays a
 TokenBindingMessage, it has to use the same ClientHello that the
 client used. The ClientHello includes an "obfuscated_ticket_age" in
 its EarlyDataIndication extension, which the server can use to narrow
 the window in which that ClientHello will be accepted. Even if a PSK
 is valid for a week, the server will only accept that particular
 ClientHello for a smaller time window based on the ticket age. A
 server should make their acceptance window for this value as small as
 practical to limit an attacker's ability to replay a ClientHello and
 send new application data with the stolen TokenBindingMessage.

6.5. Lack of Freshness

 The 0-RTT exporter value does not contain anything that the client
 cannot precompute before connecting to the server. Therefore, an
 attacker could have a client generate but not send a series of
 messages to take particular actions, and then selectively send one of
 those messages at a later date. If this attack includes deleting the
 resumption secret from the client, then these latent attacker-held
 messages will be the only ones to use that resumption secret and
 replay protections do not prevent this attack.

7. Acknowledgements

 The author would like to thank David Benjamin, Steven Valdez, Bill
 Cox, and Andrei Popov for their feedback and suggestions.

Harper Expires May 21, 2017 [Page 9]

Internet-Draft 0-RTT Token Binding November 2016

8. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-18 (work in progress),
 October 2016.

 [I-D.ietf-tokbind-negotiation]
 Popov, A., Nystrom, M., Balfanz, D., and A. Langley,
 "Transport Layer Security (TLS) Extension for Token
 Binding Protocol Negotiation", draft-ietf-tokbind-

negotiation-05 (work in progress), September 2016.

 [I-D.ietf-tokbind-protocol]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., and J.
 Hodges, "The Token Binding Protocol Version 1.0", draft-

ietf-tokbind-protocol-10 (work in progress), September
 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

Author's Address

 Nick Harper
 Google Inc.

 Email: nharper@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-18
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-negotiation-05
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-negotiation-05
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-protocol-10
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-protocol-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705

Harper Expires May 21, 2017 [Page 10]

