
Trade Working Group February 2004
INTERNET-DRAFT Masayuki Terada
 NTT DoCoMo
Expires: August 2004 Ko Fujimura
 NTT

 Voucher Trading System Application Programming Interface (VTS-API)
 <draft-ietf-trade-voucher-vtsapi-06.txt>

Status of This Document

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this document is unlimited. Please send comments to
 the TRADE working group at <ietf-trade@lists.elistx.com>, which may
 be joined by sending a message with subject "subscribe" to <ietf-
 trade-request@lists.elistx.com>.

 Discussions of the TRADE working group are archived at
http://lists.elistx.com/archives/ietf-trade.

Abstract

 This document specifies the Voucher Trading System Application
 Programming Interface (VTS-API). The VTS-API allows a wallet or
 other application to issue, transfer, and redeem vouchers in a
 uniform manner independent of the VTS implementation. The VTS is a
 system to securely transfer vouchers, e.g., coupons, tickets, loyalty
 points, and gift certificates; this process is often necessary in the
 course of payment and/or delivery transactions.

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Acknowledgements

https://datatracker.ietf.org/doc/html/draft-ietf-trade-voucher-vtsapi-06.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://lists.elistx.com/archives/ietf-trade

M. Terada, K. Fujimura [Page 1]

INTERNET-DRAFT VTS-API February 2004

 The following persons, in alphabetic order, contributed substantially
 to the material herein:

 Donald Eastlake 3rd
 Iguchi Makoto
 Yoshitaka Nakamura
 Ryuji Shoda

Table of Contents

 Status of this Memo . 1
 Abstract . 1
 Acknowledgements . 1

1. Introduction . 3
2. Processing Model . 4
3. Design Overview . 6
4. Concepts . 6
5. Interface Definitions 7
5.1 VTSManager . 8
5.1.1 getParticipantRepository 8
5.1.2 getVoucherComponentRepository 8
5.2 ParticipantRepository 8
5.2.1 lookup . 9
5.3 Participant . 9
5.3.1 getIdentifier . 9
5.3.2 getVTSAgent . 9
5.4 VTSAgent . 10
5.4.1 login . 10
5.4.2 logout . 11
5.4.3 prepare . 11
5.4.4 issue . 12
5.4.5 transfer . 13
5.4.6 consume . 14
5.4.7 present . 15
5.4.8 cancel . 15
5.4.9 resume . 16
5.4.10 create . 16
5.4.11 delete . 16
5.4.12 getContents . 17
5.4.13 getSessions . 17
5.4.14 getLog . 18
5.4.15 addReceptionListener 18
5.4.16 removeReceptionListener 18
5.5 Session . 19
5.5.1 getIdentifier . 19
5.5.2 getVoucher . 19
5.5.3 getSender . 19
5.5.4 getReceiver . 20

5.5.5 isPrepared . 20
5.5.6 isActivated . 20
5.5.7 isSuspended . 20

M. Terada, K. Fujimura [Page 2]

INTERNET-DRAFT VTS-API February 2004

5.5.8 isCompleted . 20
5.6 Voucher . 21
5.6.1 getIssuer . 21
5.6.2 getPromise . 21
5.6.3 getCount . 21
5.7 VoucherComponentRepository 21
5.7.1 register . 22
5.8 VoucherComponent . 22
5.8.1 getIdentifier . 22
5.8.2 getDocument . 23
5.9 ReceptionListener . 23
5.9.1 arrive . 24
5.10 Exceptions . 24
6. Example Code . 25
7. Security Considerations 26
8. Normative References 27
9. Informative References 27
10. Author's Address . 28

 Full Copyright Statement . 28

1. Introduction

 This document specifies the Voucher Trading System Application
 Programming Interface (VTS-API). The motivation and background of
 the Voucher Trading System (VTS) are described in Requirements for
 Generic Voucher Trading [VTS].

 A voucher is a logical entity that represents a certain right and is
 logically managed by the VTS. A voucher is generated by the issuer,
 traded among users, and finally collected using VTS. The terminology
 and model of the VTS are also described in [VTS].

 While VTSs can be implemented in different ways such as a centralized
 VTS, which uses a centralized online server to store and manage all
 vouchers, or a distributed VTS, which uses per-user smartcards to
 maintain the vouchers owned by each user, the VTS-API allows a caller
 application to issue, transfer, and redeem vouchers in a uniform
 manner independent of the VTS implementation. Several attempts have
 been made at providing a generic payment API. Java Commerce Client
 [JCC] and Generic Payment Service Framework [GPSF], for example,
 introduce a modular wallet architecture that permits diverse types of
 payment modules to be added as plug-ins and supports both check-
 like/cash-like payment models. This document is inspired by these
 approaches but the scope of this document is limited to the VTS
 model, in which cash-like payment model is assumed and vouchers are
 directly or indirectly transferred between sender (transferor) and
 receiver (transferee) via the VTS. This document is not intended to
 support API for SET, e-check or other payment schemes that do not fit

 the VTS model.

 Unlike the APIs provided in JCC and GPSF, which are designed to

M. Terada, K. Fujimura [Page 3]

INTERNET-DRAFT VTS-API February 2004

 transfer only monetary values, this API enables the transfer of a
 wide-range of values through the use of XML-based Generic Voucher
 Language [GVL]. The monetary meaning of the voucher is interpreted
 by the upper application layer using the information described in the
 language. This approach makes it possible to provide a simpler API
 in the voucher-transfer layer and enhances runtime efficiency. The
 API specification in this document is described in the Java language
 syntax. Bindings for other programming languages may be completed in
 a future version of this document or separate related specifications.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]

2. Processing Model

 This section provides the processing model in which the VTS-API is
 used. A part of the text in this section has been taken from the
 Generic Voucher Language specification [GVL].

 There are several ways of implementing VTS. For discount coupons or
 event tickets, for example, a smartcard-based distributed offline VTS
 is often preferred, whereas for bonds or securities, a centralized
 online VTS is preferred. While distributed VTSs would utilize public
 (asymmetric) key-based or shared (symmetric) key-based cryptographic
 challenge-and-response protocols to trade vouchers securely,
 centralized VTSs would utilize transactions that rewrite ownerships
 of vouchers upon their database. It is therefore impractical to
 define standard protocols for issuing, transferring, or redeeming
 vouchers at this moment.

 To provide implementation flexibility, this document assumes a
 modular wallet architecture that allows multiple VTS to be added as
 plug-ins. In this architecture, instead of specifying a standard
 voucher transfer protocol, two specifications, i.e., Voucher
 Component and VTS-API specifications, are standardized (Figure 1).

https://datatracker.ietf.org/doc/html/rfc2119

M. Terada, K. Fujimura [Page 4]

INTERNET-DRAFT VTS-API February 2004

 Sender wallet/Issuing system Receiver wallet/Collecting system
 +---------------------------+ +---------------------------+
	Voucher Component					
	(Specifies VTS Provider and Promise)					
	-->					
	Intention to receive and payment (option)					
	<- -					
	Issue/transfer/ VTS		VTS Register			
	redeem request plug-in	plug-in Listener(*1)				
	------------------>				<------------------	
	(VTS API)	<- - - - - - - ->	(VTS API)			
		VTS-specific				
		protocol if VTS				
		is distributed				
	Result	<- - - - - - - ->	Notify(*2)			
	<------------------				------------------>	
 +---------------------------+ +---------------------------+
 (*1) Registration is optional. Note also that the VTS plug-ins are
 usually pre-registered when the wallet or collecting system
 is started.
 (*2) If a listener is registered.

 Figure 1. Wallet architecture with VTS plug-ins

 In this architecture, a VTS provides a logical view of vouchers
 called Valid Voucher Set (VVS), which is a set that includes the
 vouchers <I,P,H> managed by the VTS [VTS]. A user's wallet can
 access (e.g. view, transfer and redeem) the subset of VVS that
 includes a set of vouchers owned by the user, by interacting with the
 VTS plug-in via the VTS-API. Likewise, an issuing system can issue a
 voucher and add it to the VVS and a collecting system can be notified
 of the redemption of vouchers via the VTS-API.

 After a sender and a receiver agree on what vouchers are to be traded
 and which VTS is to be used, the issuing system or wallet system
 requests the corresponding VTS plug-in to permit the issue, transfer,
 or redeem transactions to be performed via the VTS-API. The VTS then
 logically rewrites the ownership of the vouchers on the VVS using the
 VTS-specific protocol. Since the VTS is responsible for preventing
 illegal acts on vouchers like forgery or reproduction as required in
 [VTS], the protocol would include a cryptographic challenge-and-
 response (in a distributed VTS) or a transactional database manipula-
 tion with adequate access controls (in a centralized VTS). Finally,

 a completion event is sent to the wallet systems or issuing/collect-
 ing systems.

M. Terada, K. Fujimura [Page 5]

INTERNET-DRAFT VTS-API February 2004

 This document describes the VTS-API specification. See [GVL] for the
 Voucher Component specification that gives the syntax and semantics
 for describing and interpreting meaning of vouchers.

3. Design Overview

 We have adopted the following approach to specify the VTS-API.

 1) Provide an abstract and uniform API that encapsulates the VTS
 implementation. For example, a common API is provided for
 both centralized and distributed VTS. It brings more freedom
 of VTS selection for issuers and application developers.

 2) To provide an abstract and uniform API, this document intro-
 duces an interface called VTSAgent that is associated with a
 holder and provides methods to manipulate vouchers held by its
 holder. Vouchers are accessed through the methods provided by
 the VTSAgent.

 3) Use existing standards for the VTS branding mechanism (negoti-
 ation). This document assumes that the VTS to be used for
 sending a voucher has settled before calling the VTS-APIs.
 Negotiation can be done within the upper application layer
 using other standards, e.g., [IOTP] or [ECML], if necessary.

 4) Support only push-type voucher transfer interface in which
 voucher transfer session is initiated by the transferor side.
 Pull-type voucher transfer interface can be implemented on top
 of the push-type VTS interface at application level.

4. Concepts

 The VTS-API consists of the following interfaces. A VTS is required
 to implement all of the interfaces except ReceptionListener, which is
 intended to be implemented by wallets or other applications that use
 VTS.

 VTSManager
 Provides the starting point to use a VTS plug-in. All of the
 objects needed to manipulate vouchers can be directly or indi-
 rectly acquired via the VTSManager. A VTSManager maintains
 the two repositories; a ParticipantRepository and a Voucher-
 ComponentRepository described below.

 ParticipantRepository
 Provides the access points of Participants, which are to be
 trading partners. A ParticipantRepository maintains Partici-
 pants and acts as an "address book" of trading partners.

 Participant
 Represents a participant (such as issuers, holders, and

M. Terada, K. Fujimura [Page 6]

INTERNET-DRAFT VTS-API February 2004

 collectors). A Participant knows how to obtain the corre-
 sponding VTSAgent described below.

 VTSAgent (extends Participant)
 Provides the access point of vouchers in Valid Voucher Set
 (VVS) that is logically managed by VTS. A VTSAgent provides a
 means of manipulating vouchers held by its holder; basic trad-
 ing methods, i.e., issue, transfer, consume, and present.
 Before calling trading methods, the application must create a
 Session which is described below.

 Session
 Represents the logical connection established by the trade. A
 Session has references to two Participants, i.e., the sender
 and the receiver. After trading methods are called using a
 Session, the Session holds a reference to the Vouchers to be
 traded.

 Voucher
 Represents one or more vouchers of which all of the issuer
 part and promise part of vouchers are the same. A Voucher
 holds references to the Participant (issuer) who issued the
 voucher and a VoucherComponent (promise) which is described
 below.

 VoucherComponent
 Represents a Voucher Component described in [GVL]. It defines
 the promise part of the voucher.

 VoucherComponentRepository
 Provides the access points of VoucherComponents. A Voucher-
 ComponentRepository maintains VoucherComponents and acts as a
 "voucher type book" managed by the VTS. This document assumes
 that a set of VoucherComponents has been acquired and stored
 in this repository. Delivery of VoucherComponents is beyond
 the scope of this document. It may be delivered within the
 VTS from the trading partners or manually acquired from a
 trusted third party (See Section 3 of [GVL]).

 ReceptionListener
 Provides a listener function with regard to the receipt of a
 voucher by VTSAgent to wallets or other applications that
 implement this interface. (This interface may not be imple-
 mented as part of VTS)

5. Interface Definitions

 The interfaces defined in this document reside in the package named
 "org.ietf.vts". Wallets or other applications that use this

 API,should import this package as "import org.ietf.vts.*;".

M. Terada, K. Fujimura [Page 7]

INTERNET-DRAFT VTS-API February 2004

5.1 VTSManager

 public interface VTSManager

 Provides the starting point to use a VTS plug-in.

 All of the objects needed to manipulate vouchers can be directly or
 indirectly acquired via a VTSManager, so that wallets or other
 applications can make the VTS available by instantiating an object
 implementing this interface.

 A class that implements the VTSManager interface must have a public
 default constructor (a constructor without any parameters). The
 VTS provides a name for such constructor so that the implementation
 class can bootstrap the interface.

5.1.1 getParticipantRepository

 public ParticipantRepository getParticipantRepository()

 Returns a repository that maintains Participants.

 Returns:

 the ParticipantRepository of the VTS, or null if no
 ParticipantRepository is available.

5.1.2 getVoucherComponentRepository

 public VoucherComponentRepository getVoucherComponentRepository()

 Returns a repository that maintains VoucherComponents.

 Returns:

 the VoucherComponentRepository of the VTS, or null if no
 VoucherComponentRepository is available.

5.2 ParticipantRepository

 public interface ParticipantRepository

 Provides the access points of Participants. A ParticipantRepository
 maintains Participants and acts as an "address book" of trading
 partners.

 The object implementing this interface maintains Participants (or
 holds a reference to an object maintaining Participants), which are
 to be trading partners.

M. Terada, K. Fujimura [Page 8]

INTERNET-DRAFT VTS-API February 2004

 The implementation of ParticipantRepository may be either (an
 adaptor to) "yellow pages" which is a network-wide directory
 service like LDAP, or "pocket address book" which maintains only
 personal acquaintances.

5.2.1 lookup

 public Participant lookup(String id)

 Retrieves the participant that has the specified id.

 Returns:

 the participant associated with the specified id or null if the id
 is null or the corresponding participant cannot be found.

5.3 Participant

 public interface Participant

 Represents the participants (such as issuers, holders, and
 collectors).

 This interface is used as representation of the trade partners and
 issuers of vouchers. Anyone can retrieve objects implementing
 Participant from the participant repository.

5.3.1 getIdentifier

 public String getIdentifier()

 Returns the identifier of the participant. Each participant must
 have a unique identifier.

 The identifier can be used for looking up and retrieving the
 participant via the ParticipantRepository.

 The format of the identifier is implementation-specific.

 Returns:

 the identifier string of the participant.

5.3.2 getVTSAgent

 VTSAgent getVTSAgent()

 Returns a VTSAgent, whose identifier is the same as the identifier
 of the participant.

 Returns:

M. Terada, K. Fujimura [Page 9]

INTERNET-DRAFT VTS-API February 2004

 an object implementing VTSAgent.

5.4 VTSAgent

 public interface VTSAgent extends Participant

 Represents contact points to access vouchers in Valid Voucher Set
 (VVS) that is managed by the VTS.

 Each VTSAgent is associated with a holder and provides a means for
 managing vouchers owned by the holder. The holder must be
 authenticated using the login() method before being called by any
 other method, or VTSSecurityException will be issue.

 Before calling any trading method, i.e., issue(), transfer(),
 consume(), and present(), the application must establish a session
 by the prepare() method.

 Sessions may often be suspended due to network failure when the
 voucher is sent via a network. The suspended sessions can be
 restarted by the resume() method. Details on the state management
 of a session are described in Section 5.5.

 Some VTSAgents may not have all of the trading methods; a voucher
 collecting system doesn't require its VTSAgent to provide method
 for issuing or creating vouchers. A VTSAgent returns
 FeatureNotAvailableException when an unsupported method is invoked.

5.4.1 login

 public void login(String passphrase)
 throws VTSException

 Authenticates the VTSAgent. The passphrase is specified if the VTS
 requires it for authentication, otherwise it must be null. Nothing
 is performed if the VTSAgent has already been logged-in. The
 authentication scheme is implementation-specific. Examples of the
 implementation are as follows:

 1) Vouchers are managed on a remote centralized server (centralized
 VTS), which requires a password to login. In this case, the
 application may prompt the user to input the password and can be
 given to the VTSAgent through this method. See Implementation
 Notes below.

 2) Vouchers are managed on a remote centralized server (centralized
 VTS), which requires challenge-and-response authentication using
 smartcards held by users. In this case, the passphrase may be
 null since access to the smartcard can be done without

 contacting the application or user, i.e., the VTSAgent receives
 the challenge from the server, sends the challenge to the

M. Terada, K. Fujimura [Page 10]

INTERNET-DRAFT VTS-API February 2004

 smartcard (within the VTS), and returns the response from the
 smartcard to the server. Note that a PIN to unlock the
 smartcard may be given through this method depending on the
 implementation.

 3) Each user holds their own smartcard in which their own vouchers
 are stored (distributed VTS). In this case, the passphrase may
 be null since no authentication is required. Note that a PIN to
 unlock the smartcard may be given through this depends on the
 implementation.

 Implementation Notes:

 A VTS is responsible for providing secure ways for users to
 login(); it is strongly recommended to utilize secure
 communication channels such as [TLS] if secret or privacy
 information is sent via networks. Fake server attacks including
 so-called MITM (man-in-the-middle) must be considered as well.

 Throws:

 VTSSecurityException - if authentication fails.

5.4.2 logout

 public void logout()
 throws VTSException

 Voids the authentication performed by the login() method.

 After calling this method, calling any other method (except
 login()) will cause VTSSecurityException.

 The VTSAgent can login again by the login() method.

 Throws:

 VTSSecurityException - if the VTSAgent is not authenticated
 correctly.

5.4.3 prepare

 public Session prepare(Participant receiver)
 throws VTSException

 Establishes a session that is required for trading vouchers. The
 trading partner who receives the vouchers is specified as receiver.
 The vouchers to be traded will be specified later (when a trading
 method is called).

 The establishment of a session is implementation-specific. A

M. Terada, K. Fujimura [Page 11]

INTERNET-DRAFT VTS-API February 2004

 centralized VTS implementation may start a transaction, while a
 distributed VTS implementation may get, from the receiver, the
 challenge needed to create an authentic response in the
 following trading method.

 If the VTSAgent has no ability to establish a session with the
 specified receiver (permanent error), the VTSAgent throws an
 InvalidParticipantExeption. If the VTSAgent can not establish a
 session due to network failure (transient error), the VTSAgent
 throws a CannotProceedException.

 Parameters:

 receiver - the trading partner who receives vouchers.

 Returns:

 an established session whose state is "prepared" (see Section 5.5).

 Throws:

 CannotProceedException - if the preparation of the session is
 aborted (e.g. network failures).
 FeatureNotAvailableException - if the VTSAgent does not provide
 any trading methods.
 InvalidParticipantException - if the specified participant is
 invalid.
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.4 issue

 public void issue(Session session,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Issues vouchers. This method creates the specified number of
 vouchers <this, promise, receiver> and adds them to the VVS. If
 the VTS is distributed, this method would create a "response"
 corresponding to the challenge received in the prepare() method and
 send it to the receiver. Note that the receiver is specified when
 prepare() is called. Nothing is performed if the specified
 number is 0.

 The session MUST be "prepared" when calling this method. The state
 of the session will be "activated" when the vouchers are created, and
 it will be "completed" when the transaction is successfully completed
 or "suspended" if the transaction is interrupted abnormally (e.g.,

 network failures).

M. Terada, K. Fujimura [Page 12]

INTERNET-DRAFT VTS-API February 2004

 Parameters:

 session - the session used by the issue transaction.
 promise - the promise part of the voucher.
 num - the number of vouchers to be issued.

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.
 FeatureNotAvailableException - if the VTSAgent does not provide
 a means of issuing vouchers.
 InvalidStateException - if the session is not "prepared".
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.5 transfer

 public void transfer(Session session,
 Participant issuer,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Transfers vouchers. This method rewrites the specified number of
 vouchers <issuer, promise, this> to <issuer, promise, receiver> in
 the VVS; i.e. deletes the vouchers from the sender and stores them
 for the receiver. Similar to issue(), this method would create
 and send the response to the receiver if the VTS is distributed.
 The VTSAgent must have sufficient vouchers in the VVS. Nothing is
 performed if the specified number is 0.

 The session MUST be "prepared" when calling this method. The state
 of the session will be "activated" when the voucher are retrieved
 from the sender, and it will be "completed" when the transaction is
 successfully completed or "suspended" if the transaction is
 interrupted abnormally (e.g., network failures).

 If null is specified for the issuer parameter, it indicates "any
 issuer". This method selects vouchers to be transferred from the set
 of vouchers returned by the getContents(null, promise).

 Parameters:

 session - the session used by the transfer transaction.
 issuer - the issuer part of the voucher, or null.
 promise - the promise part of the voucher.
 num - the number of vouchers to be transferred.

 Throws:

M. Terada, K. Fujimura [Page 13]

INTERNET-DRAFT VTS-API February 2004

 CannotProceedException - if the transaction cannot be successfully
 completed.
 FeatureNotAvailableException - if the VTSAgent does not provide
 a means of transferring vouchers.
 InsufficientVoucherException - if the VTSAgent doesn't have a
 sufficient number of vouchers to transfer.
 InvalidStateException - if the session is not "prepared".
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.6 consume

 public void consume(Session session,
 Participant issuer,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Consumes vouchers. This method deletes the specified number of
 vouchers <issuer, promise, this> from the VVS and notifies the
 deletion to the receiver. Similar to issue() and transfer(), the
 response would be created and sent to the receiver if the VTS is
 distributed so that the receiver can obtain proof of the deletion.
 The VTSAgent must have a sufficient number of vouchers in the VVS.
 Nothing is performed if the specified number is 0.

 The session MUST be "prepared" when calling this method. The state
 of the session will be "activated" when the vouchers are deleted,
 and it will be "completed" when the transaction is successfully
 completed or "suspended" if the transaction is interrupted
 abnormally (e.g., network failures).

 If null is specified for the issuer parameter, it indicates "any
 issuer". This method selects vouchers to be consumed from the set
 of vouchers returned by the getContents(null, promise).

 Parameters:

 session - the session used by the consume transaction.
 issuer - the issuer part of the voucher, or null.
 promise - the promise part of the voucher.
 num - the number of vouchers to be consumed.

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.
 FeatureNotAvailableException - if the VTSAgent does not provide
 a means of consuming vouchers.

 InsufficientVoucherException - if the VTSAgent doesn't have a
 sufficient number of vouchers to consume.

M. Terada, K. Fujimura [Page 14]

INTERNET-DRAFT VTS-API February 2004

 InvalidStateException - if the session is not "prepared".
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.7 present

 public void present(Session session,
 Participant issuer,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Presents vouchers. This method shows that the sender has the
 specified number of vouchers <issuer, promise, this> in the VVS to
 the receiver of the session; No modification is performed to the
 VVS. However, the response would be sent in order to give the
 proof to the receiver as well as consume() if the VTS is
 distributed. The VTSAgent must have a sufficient number of
 vouchers in the VVS. Nothing is performed if the specified number
 is 0.

 The session MUST be "prepared" when calling this method. The state
 of the session will be "activated" when the vouchers are retrieved,
 and it will be "completed" when the transaction is successfully
 completed or "suspended" if the transaction is interrupted
 abnormally (e.g., by network failures).

 If null is specified for the issuer parameter, it indicates "any
 issuer". This method selects vouchers to be presented from the set
 of vouchers returned by the getContents(null, promise).

 Parameters:

 session - the session used by the present transaction.
 issuer - the issuer part of the voucher, or null.
 promise - the promise part of the voucher.
 num - the number of the voucher to be presented.

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.
 InsufficientVoucherException - if the VTSAgent doesn't have a
 sufficient number of vouchers to present.
 InvalidStateException - if the session is not "prepared".
 FeatureNotAvailableException - if the VTSAgent does not provide
 a means of presenting vouchers.
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.8 cancel

M. Terada, K. Fujimura [Page 15]

INTERNET-DRAFT VTS-API February 2004

 public void cancel(Session session)
 throws VTSException

 Releases the session. "Prepared" sessions MUST be canceled. An
 implementation MAY be permitted to cancel "activated" or
 "suspended" sessions.

 Throws:

 InvalidStateException - if the state of the session isn't
 cancelable.
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.9 resume

 public void resume(Session session)
 throws VTSException

 Restarts the session. Only "suspended" sessions can be resumed.
 The state of the session will be re-"activated" immediately, and it
 will be "completed" when the transaction is successfully completed
 or "suspended" again if the transaction is interrupted abnormally
 (e.g., network failures).

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.
 InvalidStateException - if the session is not "suspended".
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.10 create

 public void create(VoucherComponent promise, java.lang.Number num)
 throws VTSException

 Creates vouchers where the issuer is the VTSAgent itself. This
 method creates the specified number of vouchers <this, promise,
 this> and adds them to the VVS. Nothing is performed if the
 specified number is 0.

 Throws:

 FeatureNotAvailableException - if the VTSAgent does not provide
 a means of creating vouchers.
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.11 delete

M. Terada, K. Fujimura [Page 16]

INTERNET-DRAFT VTS-API February 2004

 public void delete(Participant issuer, VoucherComponent
promise, java.lang.Number num)
 throws VTSException

 Deletes vouchers. This method deletes the specified number of
 vouchers <issuer, promise, this> from the VVS. The VTSAgent must
 have sufficient vouchers in the VVS. Nothing is performed if the
 specified number is 0.

 Throws:

 InsufficientVoucherException - if the VTSAgent doesn't have
 sufficient number of vouchers to delete.
 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.12 getContents

 public java.util.Set getContents(Participant issuer,
 VoucherComponent promise)
 throws VTSException

 Returns the set of vouchers whose issuer and promise both match the
 issuer and promise specified in the parameters.

 If null is specified for the issuer or promise parameter, it
 indicates "any issuer" or "any promise", respectively. If null is
 specified for both parameters, this method selects all vouchers
 owned by the holder from the VVS.

 Returns:

 the set of vouchers held by the holder of the VTSAgent.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.13 getSessions

 public java.lang.Set getSessions()
 throws VTSException

 Returns a set of not-completed sessions prepared by the VTSAgent.

 Returns:

 the set of sessions prepared by the VTSAgent and not yet completed.

 Throws:

M. Terada, K. Fujimura [Page 17]

INTERNET-DRAFT VTS-API February 2004

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.14 getLog

 public java.lang.Set getLog()
 throws VTSException

 Returns a set of completed sessions prepared or received by the
 VTSAgent. This set represents the trading log of the VTSAgent. A
 VTS may delete an old log eventually, so that the entire log may
 not be returned; the amount of the log kept by the VTSAgent is
 implementation-specific.

 Returns:

 the set of completed sessions prepared or received by the VTSAgent.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.15 addReceptionListener

 public void addReceptionListener(ReceptionListener l)
 throws VTSException

 Adds a ReceptionListener to the listener list.

 After a ReceptionListener l is registered by this method, l.arrive()
 will be called whenever the VTSAgent receives a voucher.

 Nothing is performed if the specified listener is null.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.16 removeReceptionListener

 public void removeReceptionListener(ReceptionListener l)
 throws VTSException

 Removes a ReceptionListener from the listener list.

 Nothing is performed when the specified listener is null or not
 registered.

 Throws:

M. Terada, K. Fujimura [Page 18]

INTERNET-DRAFT VTS-API February 2004

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.5 Session

 public interface Session

 Represents the logical connection established by the trade.
 Sessions are established by VTSAgent#prepare().

 A session has four states: prepared, activated, suspended, and
 completed. The initial state of a session is "prepared", and the
 session will be "activated" immediately when any of the trading
 methods of VTSAgent is called. The "activated" session will be
 "completed" after the trading method is successfully completed. If
 the trading method is transiently failed (e.g. network failure),
 the session will be "suspended". Suspended sessions can be
 re-"activated" and restarted by calling VTSAgent#resume().

 A completed session may disappear from the VTSAgent; the session
 will be collected by the GC unless other objects keep its
 reference.

5.5.1 getIdentifier

 public String getIdentifier()

 Returns the identifier of the session. The generation scheme of
 the identifier is implementation-specific. An implementation may
 use a transaction ID as the identifier of the session.

 Returns:

 the string of the identifier of the session.

5.5.2 getVoucher

 public Voucher getVoucher()

 Returns the voucher to be traded using the session, or returns null
 if the session has not been activated.

 Returns:

 the voucher to be traded or null if the state of the session is
 "prepared".

5.5.3 getSender

 public Participant getSender()

M. Terada, K. Fujimura [Page 19]

INTERNET-DRAFT VTS-API February 2004

 Returns the sender of the session, i.e., the creator who prepared
 the session.

 Returns:

 the sender of the session.

5.5.4 getReceiver

 public Participant getReceiver()

 Returns the receiver of the session, i.e., the participant
 specified when preparing the session (by the VTSAgent#prepare()
 method).

 Returns:

 the receiver of the session.

5.5.5 isPrepared

 public boolean isPrepared()

 Verifies if the session is "prepared".

 Returns:

 true if the session is in "prepared" state, or false.

5.5.6 isActivated

 public boolean isActivated()

 Verifies if the session is "activated".

 Returns:

 true if the session is in "activated" state, or false.

5.5.7 isSuspended

 public boolean isSuspended()

 Verifies if the session is "suspended".

 Returns:

 true if the session is in "suspended" state, or false.

5.5.8 isCompleted

M. Terada, K. Fujimura [Page 20]

INTERNET-DRAFT VTS-API February 2004

 public boolean isCompleted()

 Verifies if the session is "completed".

 Returns:

 true if the session is in "completed" state, or false.

5.6 Voucher

 public interface Voucher

 Represents voucher(s) described in [VTS]. An object implementing
 this interface can represent more than one voucher if all of the
 issuer part and the promise part of the vouchers are the same.

5.6.1 getIssuer

 public Participant getIssuer()

 Returns the issuer part of the voucher(s).

 Returns:

 the participant who issued the voucher(s).

5.6.2 getPromise

 public VoucherComponent getPromise()

 Returns the promise part of the voucher(s).

 Returns:

 the voucher component that defines the promise of the voucher.

5.6.3 getCount

 public java.lang.Number getCount()

 Returns the number of the voucher(s).

 Returns:

 the positive (>0) number of the voucher(s).

5.7 VoucherComponentRepository

 public interface VoucherComponentRepository

 Maintains VoucherComponents.

M. Terada, K. Fujimura [Page 21]

INTERNET-DRAFT VTS-API February 2004

 An object implementing VoucherComponentRepository provides a means
 of retrieving the voucher components that are the promises of
 vouchers in the VVS.

 Before issuing a voucher, the promise of the voucher must be
 registered with this repository. The repository can be implemented
 as either a network-wide directory service or personal storage like
 the ParticipantRepository.

5.7.1 register

 public VoucherComponent register(org.w3c.dom.Document document)

 Creates a voucher component associated with the specified DOM
 object and registers the voucher component with the repository.

 A voucher component of the voucher to be issued must be registered
 using this method.

 Nothing is performed (and the method returns null) if the specified
 document is null or the syntax of the document does not conform to
 the VTS.

 The method returns the registered voucher component if the
 specified DOM object has been already registered. (No new voucher
 component is created in this case).

 Returns:

 a registered voucher component associated with the specified
 document, or null if the document is null or has wrong syntax.

5.8 VoucherComponent

 public interface VoucherComponent

 Represents the voucher component that defines the promise of the
 voucher.

 Each VoucherComponent object has its own unique identifier, and it
 is associated with an XML document that describes the promise made
 by the issuer of the voucher, e.g., the goods or services can be
 claimed in exchange for redeeming the voucher.

 This interface can be implemented as sort of a "smart pointer" to
 the XML document. An implementation may have a reference to a
 voucher component repository instead of the voucher component and
 retrieve the document dynamically from the repository when the
 getDocument() method is called.

5.8.1 getIdentifier

M. Terada, K. Fujimura [Page 22]

INTERNET-DRAFT VTS-API February 2004

 public String getIdentifier()

 Returns the identifier of the voucher component. Each voucher
 component must have a unique identifier. The identifier may be
 used to check for equivalence of voucher components.

 The format of the identifier is implementation-specific, however,
 it is RECOMMENDED to include the hash value of the voucher
 component in the identifier to assure its uniqueness. For
 generating the hash value, it is desirable to use a secure hash
 function, e.g., [SHA-1], and to apply a canonicalization function,
 e.g., [EXC-C14N], before applying the hash function to minimize the
 impact of insignificant format changes to the voucher component,
 e.g., line breaks or character encoding.

 Returns:

 The identifier string of the voucher component.

5.8.2 getDocument

 public org.w3c.dom.Document getDocument()

 Returns a Document Object Model [DOM] representation of the
 document associated with the voucher component by the
 VoucherComponentRepository#register() method.

 The DOM object to be returned may be retrieved from a
 VoucherComponentRepository on demand, instead of the
 VoucherComponent always keeping a reference to the DOM object.

 The VTS must guarantee that the getDocument method will eventually
 return the DOM object provided that the voucher associated with the
 corresponding voucher component exists in the VVS.

 Returns:

 a DOM representation of the document associated with the voucher
 component.

 Throws:

 DocumentNotFoundException - if the associated DOM object cannot be
 retrieved.

5.9 ReceptionListener

 public interface ReceptionListener extends java.util.EventListener

 Provides a listener interface that provides notification that a
 VTSAgent has been received a voucher.

M. Terada, K. Fujimura [Page 23]

INTERNET-DRAFT VTS-API February 2004

 When a voucher arrives at VTSAgent, the VTSAgent invokes arrive()
 method of each registered ReceptionListener. ReceptionListeners
 can obtain a Session object, which contains information about the
 received voucher and the sender of the voucher.

 This interface is intended to provide a means of notifying a wallet
 that "You have new vouchers", so that this interface may be
 implemented by wallets or other applications using VTS.

5.9.1 arrive

 public void arrive(Session session)

 Provides notification of the arrival of a voucher.

 After the listener is registered to a VTSAgent (by the
 VTSAgent#addReceptionListener() method), the VTSAgent invokes this
 method whenever it receives a voucher.

 The specified session is equivalent to the session used by the
 sender to trade the voucher. The state of the session is
 "completed" when this method is called.

5.10 Exceptions

 java.lang.Exception
 +-- VTSException
 +-- CannotProceedException
 +-- DocumentNotFoundException
 +-- FeatureNotAvailableException
 +-- InsufficientVoucherException
 +-- InvalidParticipantException
 +-- InvalidStateException
 +-- VTSSecurityException

 VTSException
 This is the superclass of all exceptions thrown by the methods
 in the interfaces constructs the VTS-API.

 CannotProceedException
 This exception is thrown when a trading is interrupted due to
 network failures or other errors.

 DocumentNotFoundException
 This exception is thrown when the document associated with a
 voucher component cannot be found.

 FeatureNotAvailableException

 This exception is thrown when the invoked method is not sup-
 ported.

M. Terada, K. Fujimura [Page 24]

INTERNET-DRAFT VTS-API February 2004

 InsufficientVoucherException
 This exception is thrown when the number of the voucher is
 less than the number specified to trade.

 InvalidParticipantException
 This exception is thrown when the specified participant cannot
 be located.

 InvalidStateException
 This exception is thrown when the state of the session is
 invalid to proceed the operation.

 VTSSecurityException
 This exception is thrown when authentication fails or a method
 which requires authentication in advance is called without
 authentication.

6. Example Code

 // Issue a voucher

 VTSManager vts = new FooVTSManager();
 ParticipantRepository addrBook = vts.getParticipantRepository();
 VoucherComponentRepository vcr = vts.getVoucherComponentRepository();

 Participant you = addrBook.lookup("http://example.org/foo");
 // looks up a trading partner identified as "http://example.org/foo".
 VTSAgent me = addrBook.lookup("myName").getVTSAgent();
 // a short-cut name may be used if VTS implementation allows.

 VoucherComponent promise = vcr.register(anXMLVoucherDocument);
 // registers a voucher component corresponding to the voucher to
 // be issued.

 try {
 me.login();
 // sets up the issuer's smartcard (assuming distributed VTS).
 s = me.prepare(you);
 // receives a challenge from the partner.
 me.issue(s, promise, 1);
 // sends a voucher using the received challenge.
 me.logout();
 } catch (VTSException e) {
 // if an error (e.g. a network trouble) occurs...
 System.err.println("Sorry.");
 e.printStackTrace();
 // this example simply prints a stack trace, but a real wallet
 // may prompt the user to retry (or cancel).

 }

M. Terada, K. Fujimura [Page 25]

INTERNET-DRAFT VTS-API February 2004

 // Transfer all my vouchers

 VTSManager vts = new FooVTSManager();
 ParticipantRepository addrBook = vts.getParticipantRepository();

 Participant you = addrBook.lookup("8f42 5aab ffff cafe babe...");
 // some VTS implementations would use a hash value of a public key
 // (aka fingerprint) as an identifier of a participant.
 VTSAgent me = addrBook.lookup("myName").getVTSAgent();

 try {
 me.login();
 Iterator i = me.getContents(null, null).iterator();

 while (i.hasNext()) {
 Voucher v = (Voucher) i.next();
 s = me.prepare(you);
 me.transfer(s, v.getIssuer(), v.getPromise(), v.getCount());
 }

 me.logout();
 } catch (VTSException e) {
 System.err.println("Sorry.");
 e.printStackTrace();
 }

 // Register an incoming voucher notifier (biff)

 VTSManager vts = new FooVTSManager();

 ParticipantRepository addrBook = vts.getParticipantRepository();
 VTSAgent me = addrBook.lookup("myName").getVTSAgent();

 ReceptionListener listener = new ReceptionListener() {
 public void arrive(Session s) {
 System.out.println("You got a new voucher.");
 }
 };

 try {
 me.login();
 me.addReceptionListener(listener);
 me.logout();
 } catch (VTSException e) {
 System.err.println("Sorry.");
 e.printStackTrace();
 }

7. Security Considerations

M. Terada, K. Fujimura [Page 26]

INTERNET-DRAFT VTS-API February 2004

 Security is very important for trading vouchers. VTS implementations
 are responsible for preventing illegal acts upon vouchers as
 described in [VTS], as well as preventing malicious accesses from
 invalid users and fake server attacks including man-in-the-middle
 attacks.

 The means to achieve the above requirements are not specified in this
 document since it depends on VTS implementation, however, securing
 communication channels (e.g. using TLS) between client VTS plug-ins
 and the central server in a centralized VTS (as described in 5.4.1
 login()) and applying cryptographic challenge-and-response techniques
 in a distributed VTS are likely helpful and strongly recommended to
 implement a secure VTS.

 This document assumes that the VTS plug-in is trusted by its user.
 The caller application of a VTS should authenticate the VTS plug-in
 and bind it securely using the VTS Provider information specified in
 the Voucher Component. This document, however, does not specify any
 application authentication scheme and it is assumed to be specified
 by other related standards. Until various VTS systems are deployed,
 it is enough to manually check and install VTS plug-ins like other
 download applications.

8. Normative References

 [DOM] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le
 Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood. "Docu-
 ment Object Model (DOM) Level 1 Specification", W3C Recommendation,
 October 1998, <http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/>

 [GVL] K. Fujimura and M. Terada, "XML Voucher: Generic Voucher Lan-
 guage", draft-ietf-trade-voucher-lang-06.txt, 2004.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Require-
 ment Levels", BCP 14, RFC 2119, 1997.

9. Informative References

 [ECML] J. W. Parsons and D. Eastlake "Electronic Commerce Modeling
 Language (ECML) Version 2 Specification", draft-ietf-trade-

ecml2-spec-09.txt, 2004.

 [EXC-C14N] J. Boyer, D. Eastlake, and J. Reagle, "Exclusive XML
 Canonicalization Version 1.0", W3C Recommendation, July 2002,
 <http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/>

 [GPSF] G. Lacoste, B. Pfitzmann, M. Steiner, and M. Waidner (Eds.),
 "SEMPER - Secure Electronic Marketplace for Europe," LNCS 1854,
 Springer-Verlag, 2000.

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
https://datatracker.ietf.org/doc/html/draft-ietf-trade-voucher-lang-06.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-trade-ecml2-spec-09.txt
https://datatracker.ietf.org/doc/html/draft-ietf-trade-ecml2-spec-09.txt
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

 [IOTP] D. Burdett, "Internet Open Trading Protocol - IOTP Version

M. Terada, K. Fujimura [Page 27]

INTERNET-DRAFT VTS-API February 2004

 1.0", RFC 2801, 2000.

 [JCC] T. Goldstein, "The Gateway Security Model in the Java Elec-
 tronic Commerce Framework", Proc. of Financial Cryptography '97,
 1997.

 [SHA-1] Department of Commerce/National Institute of Standards and
 Technology, "FIPS PUB 180-1. Secure Hash Standard. U.S.",
 <http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt>

 [VTS] K. Fujimura and D. Eastlake, "Requirements and Design for
 Voucher Trading System (VTS)", RFC3506, 2003.

10. Author's Address

 Masayuki Terada
 NTT DoCoMo, Inc.
 3-5 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-0847 JAPAN
 Phone: +81-(0)46-840-3809
 Fax: +81-(0)46-840-3364
 Email: te@mml.yrp.nttdocomo.co.jp

 Ko Fujimura
 NTT Corporation
 1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-0847 JAPAN
 Phone: +81-(0)46-859-3814
 Fax: +81-(0)46-859-8329
 Email: fujimura@isl.ntt.co.jp

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this doc-
 ument itself may not be modified in any way, such as by removing the
 copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of develop-
 ing Internet standards in which case the procedures for copyrights
 defined in the Internet Standards process must be followed, or as
 required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

https://datatracker.ietf.org/doc/html/rfc2801
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
https://datatracker.ietf.org/doc/html/rfc3506

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

M. Terada, K. Fujimura [Page 28]

INTERNET-DRAFT VTS-API February 2004

 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MER-
 CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

M. Terada, K. Fujimura [Page 29]

