
TRAM M. Petit-Huguenin
Internet-Draft Impedance Mismatch
Obsoletes: 5389 (if approved) G. Salgueiro
Intended status: Standards Track J. Rosenberg
Expires: July 18, 2018 Cisco
 D. Wing

 R. Mahy
 Unaffiliated
 P. Matthews
 Nokia
 January 14, 2018

Session Traversal Utilities for NAT (STUN)
draft-ietf-tram-stunbis-14

Abstract

 Session Traversal Utilities for NAT (STUN) is a protocol that serves
 as a tool for other protocols in dealing with Network Address
 Translator (NAT) traversal. It can be used by an endpoint to
 determine the IP address and port allocated to it by a NAT. It can
 also be used to check connectivity between two endpoints, and as a
 keep-alive protocol to maintain NAT bindings. STUN works with many
 existing NATs, and does not require any special behavior from them.

 STUN is not a NAT traversal solution by itself. Rather, it is a tool
 to be used in the context of a NAT traversal solution.

 This document obsoletes RFC 5389.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 18, 2018.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
2. Overview of Operation . 5
3. Terminology . 8
4. Definitions . 8
5. STUN Message Structure 10
6. Base Protocol Procedures 12
6.1. Forming a Request or an Indication 12
6.2. Sending the Request or Indication 13
6.2.1. Sending over UDP or DTLS-over-UDP 14
6.2.2. Sending over TCP or TLS-over-TCP 15
6.2.3. Sending over TLS-over-TCP or DTLS-over-UDP 16

6.3. Receiving a STUN Message 17
6.3.1. Processing a Request 17
6.3.1.1. Forming a Success or Error Response 18
6.3.1.2. Sending the Success or Error Response 19

6.3.2. Processing an Indication 19
6.3.3. Processing a Success Response 20
6.3.4. Processing an Error Response 20

7. FINGERPRINT Mechanism . 21
8. DNS Discovery of a Server 21
8.1. STUN URI Scheme Semantics 22

9. Authentication and Message-Integrity Mechanisms 23
9.1. Short-Term Credential Mechanism 23
9.1.1. HMAC Key . 23
9.1.2. Forming a Request or Indication 24
9.1.3. Receiving a Request or Indication 24
9.1.4. Receiving a Response 25
9.1.5. Sending Subsequent Requests 26

9.2. Long-Term Credential Mechanism 26
9.2.1. Bid Down Attack Prevention 27
9.2.2. HMAC Key . 28

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Petit-Huguenin, et al. Expires July 18, 2018 [Page 2]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

9.2.3. Forming a Request 28
9.2.3.1. First Request 29
9.2.3.2. Subsequent Requests 29

9.2.4. Receiving a Request 29
9.2.5. Receiving a Response 31

10. ALTERNATE-SERVER Mechanism 33
11. Backwards Compatibility with RFC 3489 34
12. Basic Server Behavior . 34
13. STUN Usages . 35
14. STUN Attributes . 36
14.1. MAPPED-ADDRESS . 37
14.2. XOR-MAPPED-ADDRESS 38
14.3. USERNAME . 39
14.4. USERHASH . 39
14.5. MESSAGE-INTEGRITY 39
14.6. MESSAGE-INTEGRITY-SHA256 40
14.7. FINGERPRINT . 41
14.8. ERROR-CODE . 41
14.9. REALM . 43
14.10. NONCE . 43
14.11. PASSWORD-ALGORITHMS 43
14.12. PASSWORD-ALGORITHM 44
14.13. UNKNOWN-ATTRIBUTES 45
14.14. SOFTWARE . 45
14.15. ALTERNATE-SERVER . 45
14.16. ALTERNATE-DOMAIN . 46

15. Security Considerations 46
15.1. Attacks against the Protocol 46
15.1.1. Outside Attacks 46
15.1.2. Inside Attacks 47

15.2. Attacks Affecting the Usage 47
 15.2.1. Attack I: Distributed DoS (DDoS) against a Target . 48

15.2.2. Attack II: Silencing a Client 48
15.2.3. Attack III: Assuming the Identity of a Client . . . 49
15.2.4. Attack IV: Eavesdropping 49

15.3. Hash Agility Plan 49
16. IAB Considerations . 50
17. IANA Considerations . 50
17.1. STUN Security Features Registry 50
17.2. STUN Methods Registry 50
17.3. STUN Attribute Registry 50
17.3.1. Updated Attributes 51
17.3.2. New Attributes 51

17.4. STUN Error Code Registry 51
17.5. Password Algorithm Registry 52
17.5.1. Password Algorithms 52
17.5.1.1. MD5 . 52
17.5.1.2. SHA256 . 52

https://datatracker.ietf.org/doc/html/rfc3489

Petit-Huguenin, et al. Expires July 18, 2018 [Page 3]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

17.6. STUN UDP and TCP Port Numbers 52
18. Changes since RFC 5389 53
19. References . 53
19.1. Normative References 53
19.2. Informative References 55

Appendix A. C Snippet to Determine STUN Message Types 57
Appendix B. Test Vectors . 58

 B.1. Sample Request with Long-Term Authentication with
 MESSAGE-INTEGRITY-SHA256 and USERHASH 58

Appendix C. Release notes 60
 C.1. Modifications between draft-ietf-tram-stunbis-14 and

draft-ietf-tram-stunbis-13 60
 C.2. Modifications between draft-ietf-tram-stunbis-13 and

draft-ietf-tram-stunbis-12 60
 C.3. Modifications between draft-ietf-tram-stunbis-12 and

draft-ietf-tram-stunbis-11 60
 C.4. Modifications between draft-ietf-tram-stunbis-11 and

draft-ietf-tram-stunbis-10 61
 C.5. Modifications between draft-ietf-tram-stunbis-10 and

draft-ietf-tram-stunbis-09 61
 C.6. Modifications between draft-ietf-tram-stunbis-09 and

draft-ietf-tram-stunbis-08 61
 C.7. Modifications between draft-ietf-tram-stunbis-09 and

draft-ietf-tram-stunbis-08 62
 C.8. Modifications between draft-ietf-tram-stunbis-08 and

draft-ietf-tram-stunbis-07 62
 C.9. Modifications between draft-ietf-tram-stunbis-07 and

draft-ietf-tram-stunbis-06 63
 C.10. Modifications between draft-ietf-tram-stunbis-06 and

draft-ietf-tram-stunbis-05 63
 C.11. Modifications between draft-ietf-tram-stunbis-05 and

draft-ietf-tram-stunbis-04 63
 C.12. Modifications between draft-ietf-tram-stunbis-04 and

draft-ietf-tram-stunbis-03 63
 C.13. Modifications between draft-ietf-tram-stunbis-03 and

draft-ietf-tram-stunbis-02 64
 C.14. Modifications between draft-ietf-tram-stunbis-02 and

draft-ietf-tram-stunbis-01 64
 C.15. Modifications between draft-ietf-tram-stunbis-01 and

draft-ietf-tram-stunbis-00 65
 C.16. Modifications between draft-salgueiro-tram-stunbis-02 and

draft-ietf-tram-stunbis-00 65
 C.17. Modifications between draft-salgueiro-tram-stunbis-02 and

draft-salgueiro-tram-stunbis-01 65
 C.18. Modifications between draft-salgueiro-tram-stunbis-01 and

draft-salgueiro-tram-stunbis-00 66
 Acknowledgements . 66
 Contributors . 66

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-14
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-13
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-13
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-12
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-12
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-11
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-11
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-10
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-10
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-09
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-09
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-09
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-07
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-07
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-06
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-06
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-05
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-05
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-03
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-03
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-00
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-00
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-00

Petit-Huguenin, et al. Expires July 18, 2018 [Page 4]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 Authors' Addresses . 67

1. Introduction

 The protocol defined in this specification, Session Traversal
 Utilities for NAT, provides a tool for dealing with NATs. It
 provides a means for an endpoint to determine the IP address and port
 allocated by a NAT that corresponds to its private IP address and
 port. It also provides a way for an endpoint to keep a NAT binding
 alive. With some extensions, the protocol can be used to do
 connectivity checks between two endpoints [I-D.ietf-ice-rfc5245bis],
 or to relay packets between two endpoints [RFC5766].

 In keeping with its tool nature, this specification defines an
 extensible packet format, defines operation over several transport
 protocols, and provides for two forms of authentication.

 STUN is intended to be used in context of one or more NAT traversal
 solutions. These solutions are known as STUN usages. Each usage
 describes how STUN is utilized to achieve the NAT traversal solution.
 Typically, a usage indicates when STUN messages get sent, which
 optional attributes to include, what server is used, and what
 authentication mechanism is to be used. Interactive Connectivity
 Establishment (ICE) [I-D.ietf-ice-rfc5245bis] is one usage of STUN.
 SIP Outbound [RFC5626] is another usage of STUN. In some cases, a
 usage will require extensions to STUN. A STUN extension can be in
 the form of new methods, attributes, or error response codes. More
 information on STUN usages can be found in Section 13.

 Implementations and deployments of a STUN usage using TLS or DTLS
 should follow the recommendations in [RFC7525].

2. Overview of Operation

 This section is descriptive only.

https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc7525

Petit-Huguenin, et al. Expires July 18, 2018 [Page 5]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 /-----\
 // STUN \\
 | Server |
 \\ //
 \-----/

 +--------------+ Public Internet
 | NAT 2 |.......................
 +--------------+

 +--------------+ Private NET 2
 | NAT 1 |.......................
 +--------------+

 /-----\
 // STUN \\
 | Client |
 \\ // Private NET 1
 \-----/

 Figure 1: One Possible STUN Configuration

 One possible STUN configuration is shown in Figure 1. In this
 configuration, there are two entities (called STUN agents) that
 implement the STUN protocol. The lower agent in the figure is the
 client, and is connected to private network 1. This network connects
 to private network 2 through NAT 1. Private network 2 connects to
 the public Internet through NAT 2. The upper agent in the figure is
 the server, and resides on the public Internet.

 STUN is a client-server protocol. It supports two types of
 transactions. One is a request/response transaction in which a
 client sends a request to a server, and the server returns a
 response. The second is an indication transaction in which either
 agent -- client or server -- sends an indication that generates no
 response. Both types of transactions include a transaction ID, which
 is a randomly selected 96-bit number. For request/response
 transactions, this transaction ID allows the client to associate the
 response with the request that generated it; for indications, the
 transaction ID serves as a debugging aid.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 6]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 All STUN messages start with a fixed header that includes a method, a
 class, and the transaction ID. The method indicates which of the
 various requests or indications this is; this specification defines
 just one method, Binding, but other methods are expected to be
 defined in other documents. The class indicates whether this is a
 request, a success response, an error response, or an indication.
 Following the fixed header comes zero or more attributes, which are
 Type-Length-Value extensions that convey additional information for
 the specific message.

 This document defines a single method called Binding. The Binding
 method can be used either in request/response transactions or in
 indication transactions. When used in request/response transactions,
 the Binding method can be used to determine the particular "binding"
 a NAT has allocated to a STUN client. When used in either request/
 response or in indication transactions, the Binding method can also
 be used to keep these "bindings" alive.

 In the Binding request/response transaction, a Binding request is
 sent from a STUN client to a STUN server. When the Binding request
 arrives at the STUN server, it may have passed through one or more
 NATs between the STUN client and the STUN server (in Figure 1, there
 were two such NATs). As the Binding request message passes through a
 NAT, the NAT will modify the source transport address (that is, the
 source IP address and the source port) of the packet. As a result,
 the source transport address of the request received by the server
 will be the public IP address and port created by the NAT closest to
 the server. This is called a reflexive transport address. The STUN
 server copies that source transport address into an XOR-MAPPED-
 ADDRESS attribute in the STUN Binding response and sends the Binding
 response back to the STUN client. As this packet passes back through
 a NAT, the NAT will modify the destination transport address in the
 IP header, but the transport address in the XOR-MAPPED-ADDRESS
 attribute within the body of the STUN response will remain untouched.
 In this way, the client can learn its reflexive transport address
 allocated by the outermost NAT with respect to the STUN server.

 In some usages, STUN must be multiplexed with other protocols (e.g.,
 [I-D.ietf-ice-rfc5245bis], [RFC5626]). In these usages, there must
 be a way to inspect a packet and determine if it is a STUN packet or
 not. STUN provides three fields in the STUN header with fixed values
 that can be used for this purpose. If this is not sufficient, then
 STUN packets can also contain a FINGERPRINT value, which can further
 be used to distinguish the packets.

 STUN defines a set of optional procedures that a usage can decide to
 use, called mechanisms. These mechanisms include DNS discovery, a
 redirection technique to an alternate server, a fingerprint attribute

https://datatracker.ietf.org/doc/html/rfc5626

Petit-Huguenin, et al. Expires July 18, 2018 [Page 7]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 for demultiplexing, and two authentication and message-integrity
 exchanges. The authentication mechanisms revolve around the use of a
 username, password, and message-integrity value. Two authentication
 mechanisms, the long-term credential mechanism and the short-term
 credential mechanism, are defined in this specification. Each usage
 specifies the mechanisms allowed with that usage.

 In the long-term credential mechanism, the client and server share a
 pre-provisioned username and password and perform a digest challenge/
 response exchange inspired by (but differing in details) to the one
 defined for HTTP [RFC7616]. In the short-term credential mechanism,
 the client and the server exchange a username and password through
 some out-of-band method prior to the STUN exchange. For example, in
 the ICE usage [I-D.ietf-ice-rfc5245bis] the two endpoints use out-of-
 band signaling to exchange a username and password. These are used
 to integrity protect and authenticate the request and response.
 There is no challenge or nonce used.

3. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in [RFC2119] and
 indicate requirement levels for compliant STUN implementations.

4. Definitions

 STUN Agent: A STUN agent is an entity that implements the STUN
 protocol. The entity can be either a STUN client or a STUN
 server.

 STUN Client: A STUN client is an entity that sends STUN requests and
 receives STUN responses. A STUN client can also send indications.
 In this specification, the terms STUN client and client are
 synonymous.

 STUN Server: A STUN server is an entity that receives STUN requests
 and sends STUN responses. A STUN server can also send
 indications. In this specification, the terms STUN server and
 server are synonymous.

 Transport Address: The combination of an IP address and port number
 (such as a UDP or TCP port number).

 Reflexive Transport Address: A transport address learned by a client
 that identifies that client as seen by another host on an IP
 network, typically a STUN server. When there is an intervening
 NAT between the client and the other host, the reflexive transport

https://datatracker.ietf.org/doc/html/rfc7616
https://datatracker.ietf.org/doc/html/rfc2119

Petit-Huguenin, et al. Expires July 18, 2018 [Page 8]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 address represents the mapped address allocated to the client on
 the public side of the NAT. Reflexive transport addresses are
 learned from the mapped address attribute (MAPPED-ADDRESS or XOR-
 MAPPED-ADDRESS) in STUN responses.

 Mapped Address: Same meaning as reflexive address. This term is
 retained only for historic reasons and due to the naming of the
 MAPPED-ADDRESS and XOR-MAPPED-ADDRESS attributes.

 Long-Term Credential: A username and associated password that
 represent a shared secret between client and server. Long-term
 credentials are generally granted to the client when a subscriber
 enrolls in a service and persist until the subscriber leaves the
 service or explicitly changes the credential.

 Long-Term Password: The password from a long-term credential.

 Short-Term Credential: A temporary username and associated password
 that represent a shared secret between client and server. Short-
 term credentials are obtained through some kind of protocol
 mechanism between the client and server, preceding the STUN
 exchange. A short-term credential has an explicit temporal scope,
 which may be based on a specific amount of time (such as 5
 minutes) or on an event (such as termination of a SIP dialog).
 The specific scope of a short-term credential is defined by the
 application usage.

 Short-Term Password: The password component of a short-term
 credential.

 STUN Indication: A STUN message that does not receive a response.

 Attribute: The STUN term for a Type-Length-Value (TLV) object that
 can be added to a STUN message. Attributes are divided into two
 types: comprehension-required and comprehension-optional. STUN
 agents can safely ignore comprehension-optional attributes they
 don't understand, but cannot successfully process a message if it
 contains comprehension-required attributes that are not
 understood.

 RTO: Retransmission TimeOut, which defines the initial period of
 time between transmission of a request and the first retransmit of
 that request.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 9]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

5. STUN Message Structure

 STUN messages are encoded in binary using network-oriented format
 (most significant byte or octet first, also commonly known as big-
 endian). The transmission order is described in detail in Appendix B
 of [RFC0791]. Unless otherwise noted, numeric constants are in
 decimal (base 10).

 All STUN messages MUST start with a 20-byte header followed by zero
 or more Attributes. The STUN header contains a STUN message type,
 magic cookie, transaction ID, and message length.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0| STUN Message Type | Message Length |
 +-+
 | Magic Cookie |
 +-+
 | |
 | Transaction ID (96 bits) |
 | |
 +-+

 Figure 2: Format of STUN Message Header

 The most significant 2 bits of every STUN message MUST be zeroes.
 This can be used to differentiate STUN packets from other protocols
 when STUN is multiplexed with other protocols on the same port.

 The message type defines the message class (request, success
 response, failure response, or indication) and the message method
 (the primary function) of the STUN message. Although there are four
 message classes, there are only two types of transactions in STUN:
 request/response transactions (which consist of a request message and
 a response message) and indication transactions (which consist of a
 single indication message). Response classes are split into error
 and success responses to aid in quickly processing the STUN message.

 The message type field is decomposed further into the following
 structure:

https://datatracker.ietf.org/doc/html/rfc0791#appendix-B
https://datatracker.ietf.org/doc/html/rfc0791#appendix-B

Petit-Huguenin, et al. Expires July 18, 2018 [Page 10]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 0 1
 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+-+-+-+-+-+-+-+-+-+-+-+-+
 |M |M |M|M|M|C|M|M|M|C|M|M|M|M|
 |11|10|9|8|7|1|6|5|4|0|3|2|1|0|
 +--+--+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3: Format of STUN Message Type Field

 Here the bits in the message type field are shown as most significant
 (M11) through least significant (M0). M11 through M0 represent a
 12-bit encoding of the method. C1 and C0 represent a 2-bit encoding
 of the class. A class of 0b00 is a request, a class of 0b01 is an
 indication, a class of 0b10 is a success response, and a class of
 0b11 is an error response. This specification defines a single
 method, Binding. The method and class are orthogonal, so that for
 each method, a request, success response, error response, and
 indication are possible for that method. Extensions defining new
 methods MUST indicate which classes are permitted for that method.

 For example, a Binding request has class=0b00 (request) and
 method=0b000000000001 (Binding) and is encoded into the first 16 bits
 as 0x0001. A Binding response has class=0b10 (success response) and
 method=0b000000000001, and is encoded into the first 16 bits as
 0x0101.

 Note: This unfortunate encoding is due to assignment of values in
 [RFC3489] that did not consider encoding Indications, Success, and
 Errors using bit fields.

 The magic cookie field MUST contain the fixed value 0x2112A442 in
 network byte order. In [RFC3489], this field was part of the
 transaction ID; placing the magic cookie in this location allows a
 server to detect if the client will understand certain attributes
 that were added in this revised specification. In addition, it aids
 in distinguishing STUN packets from packets of other protocols when
 STUN is multiplexed with those other protocols on the same port.

 The transaction ID is a 96-bit identifier, used to uniquely identify
 STUN transactions. For request/response transactions, the
 transaction ID is chosen by the STUN client for the request and
 echoed by the server in the response. For indications, it is chosen
 by the agent sending the indication. It primarily serves to
 correlate requests with responses, though it also plays a small role
 in helping to prevent certain types of attacks. The server also uses
 the transaction ID as a key to identify each transaction uniquely
 across all clients. As such, the transaction ID MUST be uniformly
 and randomly chosen from the interval 0 .. 2**96-1, and SHOULD be

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Petit-Huguenin, et al. Expires July 18, 2018 [Page 11]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 cryptographically random. Resends of the same request reuse the same
 transaction ID, but the client MUST choose a new transaction ID for
 new transactions unless the new request is bit-wise identical to the
 previous request and sent from the same transport address to the same
 IP address. Success and error responses MUST carry the same
 transaction ID as their corresponding request. When an agent is
 acting as a STUN server and STUN client on the same port, the
 transaction IDs in requests sent by the agent have no relationship to
 the transaction IDs in requests received by the agent.

 The message length MUST contain the size, in bytes, of the message
 not including the 20-byte STUN header. Since all STUN attributes are
 padded to a multiple of 4 bytes, the last 2 bits of this field are
 always zero. This provides another way to distinguish STUN packets
 from packets of other protocols.

 Following the STUN fixed portion of the header are zero or more
 attributes. Each attribute is TLV (Type-Length-Value) encoded. The
 details of the encoding, and of the attributes themselves are given
 in Section 14.

6. Base Protocol Procedures

 This section defines the base procedures of the STUN protocol. It
 describes how messages are formed, how they are sent, and how they
 are processed when they are received. It also defines the detailed
 processing of the Binding method. Other sections in this document
 describe optional procedures that a usage may elect to use in certain
 situations. Other documents may define other extensions to STUN, by
 adding new methods, new attributes, or new error response codes.

6.1. Forming a Request or an Indication

 When formulating a request or indication message, the agent MUST
 follow the rules in Section 5 when creating the header. In addition,
 the message class MUST be either "Request" or "Indication" (as
 appropriate), and the method must be either Binding or some method
 defined in another document.

 The agent then adds any attributes specified by the method or the
 usage. For example, some usages may specify that the agent use an
 authentication method (Section 9) or the FINGERPRINT attribute
 (Section 7).

 If the agent is sending a request, it SHOULD add a SOFTWARE attribute
 to the request. Agents MAY include a SOFTWARE attribute in
 indications, depending on the method. Extensions to STUN should
 discuss whether SOFTWARE is useful in new indications.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 12]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 For the Binding method with no authentication, no attributes are
 required unless the usage specifies otherwise.

 All STUN messages sent over UDP or DTLS-over-UDP [RFC6347] SHOULD be
 less than the path MTU, if known.

 If the path MTU is unknown for UDP, messages SHOULD be the smaller of
 576 bytes and the first-hop MTU for IPv4 [RFC1122] and 1280 bytes for
 IPv6 [RFC8200]. This value corresponds to the overall size of the IP
 packet. Consequently, for IPv4, the actual STUN message would need
 to be less than 548 bytes (576 minus 20-byte IP header, minus 8-byte
 UDP header, assuming no IP options are used).

 If the path MTU is unknown for DTLS-over-UDP, the rules described in
 the previous paragraph need to be adjusted to take into account the
 size of the (13-byte) DTLS Record header, the MAC size, and the
 padding size.

 STUN provides no ability to handle the case where the request is
 under the MTU but the response would be larger than the MTU. It is
 not envisioned that this limitation will be an issue for STUN. The
 MTU limitation is a SHOULD, and not a MUST, to account for cases
 where STUN itself is being used to probe for MTU characteristics
 [RFC5780]. Outside of this or similar applications, the MTU
 constraint MUST be followed.

6.2. Sending the Request or Indication

 The agent then sends the request or indication. This document
 specifies how to send STUN messages over UDP, TCP, TLS-over-TCP, or
 DTLS-over-UDP; other transport protocols may be added in the future.
 The STUN usage must specify which transport protocol is used, and how
 the agent determines the IP address and port of the recipient.

Section 8 describes a DNS-based method of determining the IP address
 and port of a server that a usage may elect to use. STUN may be used
 with anycast addresses, but only with UDP and in usages where
 authentication is not used.

 At any time, a client MAY have multiple outstanding STUN requests
 with the same STUN server (that is, multiple transactions in
 progress, with different transaction IDs). Absent other limits to
 the rate of new transactions (such as those specified by ICE for
 connectivity checks or when STUN is run over TCP), a client SHOULD
 limit itself to ten outstanding transactions to the same server.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc5780

Petit-Huguenin, et al. Expires July 18, 2018 [Page 13]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

6.2.1. Sending over UDP or DTLS-over-UDP

 When running STUN over UDP or STUN over DTLS-over-UDP [RFC7350], it
 is possible that the STUN message might be dropped by the network.
 Reliability of STUN request/response transactions is accomplished
 through retransmissions of the request message by the client
 application itself. STUN indications are not retransmitted; thus,
 indication transactions over UDP or DTLS-over-UDP are not reliable.

 A client SHOULD retransmit a STUN request message starting with an
 interval of RTO ("Retransmission TimeOut"), doubling after each
 retransmission. The RTO is an estimate of the round-trip time (RTT),
 and is computed as described in [RFC6298], with two exceptions.
 First, the initial value for RTO SHOULD be greater than 500 ms. The
 exception cases for this "SHOULD" are when other mechanisms are used
 to derive congestion thresholds (such as the ones defined in ICE for
 fixed rate streams), or when STUN is used in non-Internet
 environments with known network capacities. In fixed-line access
 links, a value of 500 ms is RECOMMENDED. Second, the value of RTO
 SHOULD NOT be rounded up to the nearest second. Rather, a 1 ms
 accuracy SHOULD be maintained. As with TCP, the usage of Karn's
 algorithm is RECOMMENDED [KARN87]. When applied to STUN, it means
 that RTT estimates SHOULD NOT be computed from STUN transactions that
 result in the retransmission of a request.

 The value for RTO SHOULD be cached by a client after the completion
 of the transaction, and used as the starting value for RTO for the
 next transaction to the same server (based on equality of IP
 address). The value SHOULD be considered stale and discarded after
 10 minutes without any transactions to the same server.

 Retransmissions continue until a response is received, or until a
 total of Rc requests have been sent. Rc SHOULD be configurable and
 SHOULD have a default of 7. If, after the last request, a duration
 equal to Rm times the RTO has passed without a response (providing
 ample time to get a response if only this final request actually
 succeeds), the client SHOULD consider the transaction to have failed.
 Rm SHOULD be configurable and SHOULD have a default of 16. A STUN
 transaction over UDP or DTLS-over-UDP is also considered failed if
 there has been a hard ICMP error [RFC1122]. For example, assuming an
 RTO of 500ms, requests would be sent at times 0 ms, 500 ms, 1500 ms,
 3500 ms, 7500 ms, 15500 ms, and 31500 ms. If the client has not
 received a response after 39500 ms, the client will consider the
 transaction to have timed out.

https://datatracker.ietf.org/doc/html/rfc7350
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc1122

Petit-Huguenin, et al. Expires July 18, 2018 [Page 14]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

6.2.2. Sending over TCP or TLS-over-TCP

 For TCP and TLS-over-TCP [RFC5246], the client opens a TCP connection
 to the server.

 In some usages of STUN, STUN is sent as the only protocol over the
 TCP connection. In this case, it can be sent without the aid of any
 additional framing or demultiplexing. In other usages, or with other
 extensions, it may be multiplexed with other data over a TCP
 connection. In that case, STUN MUST be run on top of some kind of
 framing protocol, specified by the usage or extension, which allows
 for the agent to extract complete STUN messages and complete
 application layer messages. The STUN service running on the well-
 known port or ports discovered through the DNS procedures in

Section 8 is for STUN alone, and not for STUN multiplexed with other
 data. Consequently, no framing protocols are used in connections to
 those servers. When additional framing is utilized, the usage will
 specify how the client knows to apply it and what port to connect to.
 For example, in the case of ICE connectivity checks, this information
 is learned through out-of-band negotiation between client and server.

 Reliability of STUN over TCP and TLS-over-TCP is handled by TCP
 itself, and there are no retransmissions at the STUN protocol level.
 However, for a request/response transaction, if the client has not
 received a response by Ti seconds after it sent the SYN to establish
 the connection, it considers the transaction to have timed out. Ti
 SHOULD be configurable and SHOULD have a default of 39.5s. This
 value has been chosen to equalize the TCP and UDP timeouts for the
 default initial RTO.

 In addition, if the client is unable to establish the TCP connection,
 or the TCP connection is reset or fails before a response is
 received, any request/response transaction in progress is considered
 to have failed.

 The client MAY send multiple transactions over a single TCP (or TLS-
 over-TCP) connection, and it MAY send another request before
 receiving a response to the previous. The client SHOULD keep the
 connection open until it:

 o has no further STUN requests or indications to send over that
 connection, and

 o has no plans to use any resources (such as a mapped address
 (MAPPED-ADDRESS or XOR-MAPPED-ADDRESS) or relayed address
 [RFC5766]) that were learned though STUN requests sent over that
 connection, and

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5766

Petit-Huguenin, et al. Expires July 18, 2018 [Page 15]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 o if multiplexing other application protocols over that port, has
 finished using that other application, and

 o if using that learned port with a remote peer, has established
 communications with that remote peer, as is required by some TCP
 NAT traversal techniques (e.g., [RFC6544]).

 At the server end, the server SHOULD keep the connection open, and
 let the client close it, unless the server has determined that the
 connection has timed out (for example, due to the client
 disconnecting from the network). Bindings learned by the client will
 remain valid in intervening NATs only while the connection remains
 open. Only the client knows how long it needs the binding. The
 server SHOULD NOT close a connection if a request was received over
 that connection for which a response was not sent. A server MUST NOT
 ever open a connection back towards the client in order to send a
 response. Servers SHOULD follow best practices regarding connection
 management in cases of overload.

6.2.3. Sending over TLS-over-TCP or DTLS-over-UDP

 When STUN is run by itself over TLS-over-TCP or DTLS-over-UDP, the
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 and
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suites MUST be
 implemented and other cipher suites MAY be implemented. Perfect
 Forward Secrecy (PFS) cipher suites MUST be preferred over non-PFS
 cipher suites. Cipher suites with known weaknesses, such as those
 based on (single) DES and RC4, MUST NOT be used. Implementations
 MUST disable TLS-level compression.

 When it receives the TLS Certificate message, the client SHOULD
 verify the certificate and inspect the site identified by the
 certificate. If the certificate is invalid or revoked, or if it does
 not identify the appropriate party, the client MUST NOT send the STUN
 message or otherwise proceed with the STUN transaction. The client
 MUST verify the identity of the server. To do that, it follows the
 identification procedures defined in [RFC6125]. Alternatively, a
 client MAY be configured with a set of IP addresses that are trusted;
 if a certificate is received that identifies one of those IP
 addresses, the client considers the identity of the server to be
 verified.

 When STUN is run multiplexed with other protocols over a TLS-over-TCP
 connection or a DTLS-over-UDP association, the mandatory ciphersuites
 and TLS handling procedures operate as defined by those protocols.

https://datatracker.ietf.org/doc/html/rfc6544
https://datatracker.ietf.org/doc/html/rfc6125

Petit-Huguenin, et al. Expires July 18, 2018 [Page 16]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

6.3. Receiving a STUN Message

 This section specifies the processing of a STUN message. The
 processing specified here is for STUN messages as defined in this
 specification; additional rules for backwards compatibility are
 defined in Section 11. Those additional procedures are optional, and
 usages can elect to utilize them. First, a set of processing
 operations is applied that is independent of the class. This is
 followed by class-specific processing, described in the subsections
 that follow.

 When a STUN agent receives a STUN message, it first checks that the
 message obeys the rules of Section 5. It checks that the first two
 bits are 0, that the magic cookie field has the correct value, that
 the message length is sensible, and that the method value is a
 supported method. It checks that the message class is allowed for
 the particular method. If the message class is "Success Response" or
 "Error Response", the agent checks that the transaction ID matches a
 transaction that is still in progress. If the FINGERPRINT extension
 is being used, the agent checks that the FINGERPRINT attribute is
 present and contains the correct value. If any errors are detected,
 the message is silently discarded. In the case when STUN is being
 multiplexed with another protocol, an error may indicate that this is
 not really a STUN message; in this case, the agent should try to
 parse the message as a different protocol.

 The STUN agent then does any checks that are required by a
 authentication mechanism that the usage has specified (see

Section 9).

 Once the authentication checks are done, the STUN agent checks for
 unknown attributes and known-but-unexpected attributes in the
 message. Unknown comprehension-optional attributes MUST be ignored
 by the agent. Known-but-unexpected attributes SHOULD be ignored by
 the agent. Unknown comprehension-required attributes cause
 processing that depends on the message class and is described below.

 At this point, further processing depends on the message class of the
 request.

6.3.1. Processing a Request

 If the request contains one or more unknown comprehension-required
 attributes, the server replies with an error response with an error
 code of 420 (Unknown Attribute), and includes an UNKNOWN-ATTRIBUTES
 attribute in the response that lists the unknown comprehension-
 required attributes.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 17]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 The server then does any additional checking that the method or the
 specific usage requires. If all the checks succeed, the server
 formulates a success response as described below.

 When run over UDP or DTLS-over-UDP, a request received by the server
 could be the first request of a transaction, or a retransmission.
 The server MUST respond to retransmissions such that the following
 property is preserved: if the client receives the response to the
 retransmission and not the response that was sent to the original
 request, the overall state on the client and server is identical to
 the case where only the response to the original retransmission is
 received, or where both responses are received (in which case the
 client will use the first). The easiest way to meet this requirement
 is for the server to remember all transaction IDs received over UDP
 or DTLS-over-UDP and their corresponding responses in the last 40
 seconds. However, this requires the server to hold state, and will
 be inappropriate for any requests which are not authenticated.
 Another way is to reprocess the request and recompute the response.
 The latter technique MUST only be applied to requests that are
 idempotent (a request is considered idempotent when the same request
 can be safely repeated without impacting the overall state of the
 system) and result in the same success response for the same request.
 The Binding method is considered to be idempotent. Note that there
 are certain rare network events that could cause the reflexive
 transport address value to change, resulting in a different mapped
 address in different success responses. Extensions to STUN MUST
 discuss the implications of request retransmissions on servers that
 do not store transaction state.

6.3.1.1. Forming a Success or Error Response

 When forming the response (success or error), the server follows the
 rules of Section 6. The method of the response is the same as that
 of the request, and the message class is either "Success Response" or
 "Error Response".

 For an error response, the server MUST add an ERROR-CODE attribute
 containing the error code specified in the processing above. The
 reason phrase is not fixed, but SHOULD be something suitable for the
 error code. For certain errors, additional attributes are added to
 the message. These attributes are spelled out in the description
 where the error code is specified. For example, for an error code of
 420 (Unknown Attribute), the server MUST include an UNKNOWN-
 ATTRIBUTES attribute. Certain authentication errors also cause
 attributes to be added (see Section 9). Extensions may define other
 errors and/or additional attributes to add in error cases.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 18]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 If the server authenticated the request using an authentication
 mechanism, then the server SHOULD add the appropriate authentication
 attributes to the response (see Section 9).

 The server also adds any attributes required by the specific method
 or usage. In addition, the server SHOULD add a SOFTWARE attribute to
 the message.

 For the Binding method, no additional checking is required unless the
 usage specifies otherwise. When forming the success response, the
 server adds a XOR-MAPPED-ADDRESS attribute to the response, where the
 contents of the attribute are the source transport address of the
 request message. For UDP or DTLS-over-UDP this is the source IP
 address and source UDP port of the request message. For TCP and TLS-
 over-TCP, this is the source IP address and source TCP port of the
 TCP connection as seen by the server.

6.3.1.2. Sending the Success or Error Response

 The response (success or error) is sent over the same transport as
 the request was received on. If the request was received over UDP or
 DTLS-over-UDP the destination IP address and port of the response are
 the source IP address and port of the received request message, and
 the source IP address and port of the response are equal to the
 destination IP address and port of the received request message. If
 the request was received over TCP or TLS-over-TCP, the response is
 sent back on the same TCP connection as the request was received on.

6.3.2. Processing an Indication

 If the indication contains unknown comprehension-required attributes,
 the indication is discarded and processing ceases.

 The agent then does any additional checking that the method or the
 specific usage requires. If all the checks succeed, the agent then
 processes the indication. No response is generated for an
 indication.

 For the Binding method, no additional checking or processing is
 required, unless the usage specifies otherwise. The mere receipt of
 the message by the agent has refreshed the "bindings" in the
 intervening NATs.

 Since indications are not re-transmitted over UDP or DTLS-over-UDP
 (unlike requests), there is no need to handle re-transmissions of
 indications at the sending agent.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 19]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

6.3.3. Processing a Success Response

 If the success response contains unknown comprehension-required
 attributes, the response is discarded and the transaction is
 considered to have failed.

 The client then does any additional checking that the method or the
 specific usage requires. If all the checks succeed, the client then
 processes the success response.

 For the Binding method, the client checks that the XOR-MAPPED-ADDRESS
 attribute is present in the response. The client checks the address
 family specified. If it is an unsupported address family, the
 attribute SHOULD be ignored. If it is an unexpected but supported
 address family (for example, the Binding transaction was sent over
 IPv4, but the address family specified is IPv6), then the client MAY
 accept and use the value.

6.3.4. Processing an Error Response

 If the error response contains unknown comprehension-required
 attributes, or if the error response does not contain an ERROR-CODE
 attribute, then the transaction is simply considered to have failed.

 The client then does any processing specified by the authentication
 mechanism (see Section 9). This may result in a new transaction
 attempt.

 The processing at this point depends on the error code, the method,
 and the usage; the following are the default rules:

 o If the error code is 300 through 399, the client SHOULD consider
 the transaction as failed unless the ALTERNATE-SERVER extension is
 being used. See Section 10.

 o If the error code is 400 through 499, the client declares the
 transaction failed; in the case of 420 (Unknown Attribute), the
 response should contain a UNKNOWN-ATTRIBUTES attribute that gives
 additional information.

 o If the error code is 500 through 599, the client MAY resend the
 request; clients that do so MUST limit the number of times they do
 this.

 Any other error code causes the client to consider the transaction
 failed.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 20]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

7. FINGERPRINT Mechanism

 This section describes an optional mechanism for STUN that aids in
 distinguishing STUN messages from packets of other protocols when the
 two are multiplexed on the same transport address. This mechanism is
 optional, and a STUN usage must describe if and when it is used. The
 FINGERPRINT mechanism is not backwards compatible with RFC3489, and
 cannot be used in environments where such compatibility is required.

 In some usages, STUN messages are multiplexed on the same transport
 address as other protocols, such as the Real Time Transport Protocol
 (RTP). In order to apply the processing described in Section 6, STUN
 messages must first be separated from the application packets.

Section 5 describes three fixed fields in the STUN header that can be
 used for this purpose. However, in some cases, these three fixed
 fields may not be sufficient.

 When the FINGERPRINT extension is used, an agent includes the
 FINGERPRINT attribute in messages it sends to another agent.

Section 14.7 describes the placement and value of this attribute.

 When the agent receives what it believes is a STUN message, then, in
 addition to other basic checks, the agent also checks that the
 message contains a FINGERPRINT attribute and that the attribute
 contains the correct value. Section 6.3 describes when in the
 overall processing of a STUN message the FINGERPRINT check is
 performed. This additional check helps the agent detect messages of
 other protocols that might otherwise seem to be STUN messages.

8. DNS Discovery of a Server

 This section describes an optional procedure for STUN that allows a
 client to use DNS to determine the IP address and port of a server.
 A STUN usage must describe if and when this extension is used. To
 use this procedure, the client must know a STUN URI [RFC7064]; the
 usage must also describe how the client obtains this URI. Hard-
 coding a STUN URI into software is NOT RECOMMENDED in case the domain
 name is lost or needs to change for legal or other reasons.

 When a client wishes to locate a STUN server on the public Internet
 that accepts Binding request/response transactions, the STUN URI
 scheme is "stun". When it wishes to locate a STUN server that
 accepts Binding request/response transactions over a TLS, or DTLS
 session, the URI scheme is "stuns".

 The syntax of the "stun" and "stuns" URIs are defined in Section 3.1
 of [RFC7064]. STUN usages MAY define additional URI schemes.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc7064
https://datatracker.ietf.org/doc/html/rfc7064#section-3.1
https://datatracker.ietf.org/doc/html/rfc7064#section-3.1

Petit-Huguenin, et al. Expires July 18, 2018 [Page 21]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

8.1. STUN URI Scheme Semantics

 If the <host> part of a "stun" URI contains an IP address, then this
 IP address is used directly to contact the server. A "stuns" URI
 containing an IP address MUST be rejected, unless the domain name is
 provided by the same mechanism that provided the STUN URI, and that
 domain name can be passed to the verification code.

 If the URI does not contain an IP address, the domain name contained
 in the <host> part is resolved to a transport address using the SRV
 procedures specified in [RFC2782]. The DNS SRV service name is the
 content of the <scheme> part. The protocol in the SRV lookup is the
 transport protocol the client will run STUN over: "udp" for UDP and
 "tcp" for TCP.

 The procedures of RFC 2782 are followed to determine the server to
 contact. RFC 2782 spells out the details of how a set of SRV records
 is sorted and then tried. However, RFC 2782 only states that the
 client should "try to connect to the (protocol, address, service)"
 without giving any details on what happens in the event of failure.
 When following these procedures, if the STUN transaction times out
 without receipt of a response, the client SHOULD retry the request to
 the next server in the ordered defined by RFC 2782. Such a retry is
 only possible for request/response transmissions, since indication
 transactions generate no response or timeout.

 In addition, instead of querying either the A or the AAAA resource
 records for a domain name, the client MUST query both and try the
 requests with all the IP addresses received, as specified in
 [RFC6555].

 The default port for STUN requests is 3478, for both TCP and UDP.
 The default port for STUN over TLS and STUN over DTLS requests is
 5349. Servers can run STUN over DTLS on the same port as STUN over
 UDP if the server software supports determining whether the initial
 message is a DTLS or STUN message. Servers can run STUN over TLS on
 the same port as STUN over TCP if the server software supports
 determining whether the initial message is a TLS or STUN message.

 Administrators of STUN servers SHOULD use these ports in their SRV
 records for UDP and TCP. In all cases, the port in DNS MUST reflect
 the one on which the server is listening.

 If no SRV records were found, the client performs both an A and AAAA
 record lookup of the domain name, as described in [RFC6555]. The
 result will be a list of IP addresses, each of which can be
 simultaneously contacted at the default port using UDP or TCP,
 independent of the STUN usage. For usages that require TLS, the

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc6555

Petit-Huguenin, et al. Expires July 18, 2018 [Page 22]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 client connects to the IP addresses using the default STUN over TLS
 port. For usages that require DTLS, the client connects to the IP
 addresses using the default STUN over DTLS port.

9. Authentication and Message-Integrity Mechanisms

 This section defines two mechanisms for STUN that a client and server
 can use to provide authentication and message integrity; these two
 mechanisms are known as the short-term credential mechanism and the
 long-term credential mechanism. These two mechanisms are optional,
 and each usage must specify if and when these mechanisms are used.
 Consequently, both clients and servers will know which mechanism (if
 any) to follow based on knowledge of which usage applies. For
 example, a STUN server on the public Internet supporting ICE would
 have no authentication, whereas the STUN server functionality in an
 agent supporting connectivity checks would utilize short-term
 credentials. An overview of these two mechanisms is given in

Section 2.

 Each mechanism specifies the additional processing required to use
 that mechanism, extending the processing specified in Section 6. The
 additional processing occurs in three different places: when forming
 a message, when receiving a message immediately after the basic
 checks have been performed, and when doing the detailed processing of
 error responses.

9.1. Short-Term Credential Mechanism

 The short-term credential mechanism assumes that, prior to the STUN
 transaction, the client and server have used some other protocol to
 exchange a credential in the form of a username and password. This
 credential is time-limited. The time limit is defined by the usage.
 As an example, in the ICE usage [I-D.ietf-ice-rfc5245bis], the two
 endpoints use out-of-band signaling to agree on a username and
 password, and this username and password are applicable for the
 duration of the media session.

 This credential is used to form a message-integrity check in each
 request and in many responses. There is no challenge and response as
 in the long-term mechanism; consequently, replay is prevented by
 virtue of the time-limited nature of the credential.

9.1.1. HMAC Key

 For short-term credentials the HMAC key is defined as follow:

 key = OpaqueString(password)

Petit-Huguenin, et al. Expires July 18, 2018 [Page 23]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 where the OpaqueString profile is defined in [RFC7613].

9.1.2. Forming a Request or Indication

 For a request or indication message, the agent MUST include the
 USERNAME, MESSAGE-INTEGRITY-SHA256, and MESSAGE-INTEGRITY attributes
 in the message unless the agent knows from an external indication
 which message integrity algorithm is supported by both agents. In
 this case either MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256 MUST
 be included in addition to USERNAME. The HMAC for the MESSAGE-
 INTEGRITY attribute is computed as described in Section 14.5 and the
 HMAC for the MESSAGE-INTEGRITY-SHA256 attributes is computed as
 described in Section 14.6. Note that the password is never included
 in the request or indication.

9.1.3. Receiving a Request or Indication

 After the agent has done the basic processing of a message, the agent
 performs the checks listed below in order specified:

 o If the message does not contain 1) a MESSAGE-INTEGRITY or a
 MESSAGE-INTEGRITY-SHA256 attribute and 2) a USERNAME attribute:

 * If the message is a request, the server MUST reject the request
 with an error response. This response MUST use an error code
 of 400 (Bad Request).

 * If the message is an indication, the agent MUST silently
 discard the indication.

 o If the USERNAME does not contain a username value currently valid
 within the server:

 * If the message is a request, the server MUST reject the request
 with an error response. This response MUST use an error code
 of 401 (Unauthenticated).

 * If the message is an indication, the agent MUST silently
 discard the indication.

 o If the MESSAGE-INTEGRITY-SHA256 attribute is present compute the
 value for the message integrity as described in Section 14.6,
 using the password associated with the username. If the MESSAGE-
 INTEGRITY-SHA256 attribute is not present, and using the same
 password, compute the value for the message integrity as described
 in Section 14.5. If the resulting value does not match the
 contents of the corresponding attribute (MESSAGE-INTEGRITY-SHA256
 or MESSAGE-INTEGRITY):

https://datatracker.ietf.org/doc/html/rfc7613

Petit-Huguenin, et al. Expires July 18, 2018 [Page 24]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 * If the message is a request, the server MUST reject the request
 with an error response. This response MUST use an error code
 of 401 (Unauthenticated).

 * If the message is an indication, the agent MUST silently
 discard the indication.

 If these checks pass, the agent continues to process the request or
 indication. Any response generated by a server to a request that
 contains a MESSAGE-INTEGRITY-SHA256 attribute MUST include the
 MESSAGE-INTEGRITY-SHA256 attribute, computed using the password
 utilized to authenticate the request. Any response generated by a
 server to a request that contains only a MESSAGE-INTEGRITY attribute
 MUST include the MESSAGE-INTEGRITY attribute, computed using the
 password utilized to authenticate the request. This means that only
 one of these attributes can appear in a response. The response MUST
 NOT contain the USERNAME attribute.

 If any of the checks fail, a server MUST NOT include a MESSAGE-
 INTEGRITY-SHA256, MESSAGE-INTEGRITY, or USERNAME attribute in the
 error response. This is because, in these failure cases, the server
 cannot determine the shared secret necessary to compute the MESSAGE-
 INTEGRITY-SHA256 or MESSAGE-INTEGRITY attributes.

9.1.4. Receiving a Response

 The client looks for the MESSAGE-INTEGRITY or the MESSAGE-INTEGRITY-
 SHA256 attribute in the response. If present and if the client only
 sent only one of MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256
 attributes in the request (because of the external indication in
 section Section 9.2.3, or this being a subsequent request as defined
 in Section 9.1.5) the algorithm in the response has to match
 otherwise the response MUST be discarded.

 The client then computes the message integrity over the response as
 defined in Section 14.5 or Section 14.6, respectively, using the same
 password it utilized for the request. If the resulting value matches
 the contents of the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256
 attribute, respectively, the response is considered authenticated.
 If the value does not match, or if both MESSAGE-INTEGRITY and
 MESSAGE-INTEGRITY-SHA256 were absent, the processing depends on the
 request been sent over a reliable or an unreliable transport.

 If the request was sent over an unreliable transport, the response
 MUST be discarded, as if it was never received. This means that
 retransmits, if applicable, will continue. If all the responses
 received are discarded then instead of signalling a timeout after

Petit-Huguenin, et al. Expires July 18, 2018 [Page 25]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 ending the transaction the layer MUST signal that an attack took
 place.

 If the request was sent over a reliable transport, the response MUST
 be discarded and the layer MUST immediately end the transaction and
 signal that an attack took place.

9.1.5. Sending Subsequent Requests

 A client sending subsequent requests to the same server MUST send
 only the MESSAGE-INTEGRITY-SHA256 or the MESSAGE-INTEGRITY attribute
 that matches the attribute that was received in the response to the
 initial request. Here same server means same IP address and port
 number, not just the same URI or SRV lookup result.

9.2. Long-Term Credential Mechanism

 The long-term credential mechanism relies on a long-term credential,
 in the form of a username and password that are shared between client
 and server. The credential is considered long-term since it is
 assumed that it is provisioned for a user, and remains in effect
 until the user is no longer a subscriber of the system, or is
 changed. This is basically a traditional "log-in" username and
 password given to users.

 Because these usernames and passwords are expected to be valid for
 extended periods of time, replay prevention is provided in the form
 of a digest challenge. In this mechanism, the client initially sends
 a request, without offering any credentials or any integrity checks.
 The server rejects this request, providing the user a realm (used to
 guide the user or agent in selection of a username and password) and
 a nonce. The nonce provides the replay protection. It is a cookie,
 selected by the server, and encoded in such a way as to indicate a
 duration of validity or client identity from which it is valid. The
 client retries the request, this time including its username and the
 realm, and echoing the nonce provided by the server. The client also
 includes a message-integrity, which provides an HMAC over the entire
 request, including the nonce. The server validates the nonce and
 checks the message integrity. If they match, the request is
 authenticated. If the nonce is no longer valid, it is considered
 "stale", and the server rejects the request, providing a new nonce.

 In subsequent requests to the same server, the client reuses the
 nonce, username, realm, and password it used previously. In this
 way, subsequent requests are not rejected until the nonce becomes
 invalid by the server, in which case the rejection provides a new
 nonce to the client.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 26]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 Note that the long-term credential mechanism cannot be used to
 protect indications, since indications cannot be challenged. Usages
 utilizing indications must either use a short-term credential or omit
 authentication and message integrity for them.

 To indicate that it supports this specification, a server MUST
 prepend the NONCE attribute value with the character string composed
 of "obMatJos2" concatenated with the Base64 [RFC4648] encoding of the
 24 bit STUN Security Features as defined in Section 17.1. The 24 bit
 Security Feature set is encoded as a 24 bit integer in network order.
 If no security features are used, then the value 0 MUST be encoded
 instead. For the remainder of this document the term "nonce cookie"
 will refer to the complete 13 character string prepended to the NONCE
 attribute value.

 Since the long-term credential mechanism is susceptible to offline
 dictionary attacks, deployments SHOULD utilize passwords that are
 difficult to guess. In cases where the credentials are not entered
 by the user, but are rather placed on a client device during device
 provisioning, the password SHOULD have at least 128 bits of
 randomness. In cases where the credentials are entered by the user,
 they should follow best current practices around password structure.

9.2.1. Bid Down Attack Prevention

 This document introduces two new security features that provide the
 ability to choose the algorithm used for password protection as well
 as the ability to use an anonymous username. Both of these
 capabilities are optional in order to remain backwards compatible
 with previous versions of the STUN protocol.

 These new capabilities are subject to bid down attacks whereby an
 attacker in the message path can remove these capabilities and force
 weaker security properties. To prevent these kinds of attacks from
 going undetected, the nonce is enhanced with additional information.

 The value of the "nonce cookie" will vary based on the specific STUN
 Security Features bit values selected. When this document makes
 reference to the "nonce cookie" in a section discussing a specific
 STUN Security Feature it is understood that the corresponding STUN
 Security Feature bit in the "nonce cookie" is set to 1.

 For example, in Section 9.2.4 discussing the PASSWORD-ALGORITHMS
 security feature, it is implied that the "Password algorithms" bit,
 as defined in Section 17.1, is set to 1 in the "nonce cookie".

https://datatracker.ietf.org/doc/html/rfc4648

Petit-Huguenin, et al. Expires July 18, 2018 [Page 27]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

9.2.2. HMAC Key

 For long-term credentials that do not use a different algorithm, as
 specified by the PASSWORD-ALGORITHM attribute, the key is 16 bytes:

 key = MD5(username ":" OpaqueString(realm) ":" OpaqueString(password))

 Where MD5 is defined in [RFC1321] and the OpaqueString profile is
 defined in [RFC7613].

 The 16-byte key is formed by taking the MD5 hash of the result of
 concatenating the following five fields: (1) the username, with any
 quotes and trailing nulls removed, as taken from the USERNAME
 attribute (in which case OpaqueString has already been applied); (2)
 a single colon; (3) the realm, with any quotes and trailing nulls
 removed and after processing using OpaqueString; (4) a single colon;
 and (5) the password, with any trailing nulls removed and after
 processing using OpaqueString. For example, if the username was
 'user', the realm was 'realm', and the password was 'pass', then the
 16-byte HMAC key would be the result of performing an MD5 hash on the
 string 'user:realm:pass', the resulting hash being
 0x8493fbc53ba582fb4c044c456bdc40eb.

 The structure of the key when used with long-term credentials
 facilitates deployment in systems that also utilize SIP. Typically,
 SIP systems utilizing SIP's digest authentication mechanism do not
 actually store the password in the database. Rather, they store a
 value called H(A1), which is equal to the key defined above.

 When a PASSWORD-ALGORITHM is used, the key length and algorithm to
 use are described in Section 17.5.1.

9.2.3. Forming a Request

 There are two cases when forming a request. In the first case, this
 is the first request from the client to the server (as identified by
 its IP address and port). In the second case, the client is
 submitting a subsequent request once a previous request/response
 transaction has completed successfully. Forming a request as a
 consequence of a 401 or 438 error response is covered in

Section 9.2.5 and is not considered a "subsequent request" and thus
 does not utilize the rules described in Section 9.2.3.2.

 The difference between a first request and a subsequent request is
 the presence or absence of some attributes, so omitting or including
 them is a MUST.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc7613

Petit-Huguenin, et al. Expires July 18, 2018 [Page 28]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

9.2.3.1. First Request

 If the client has not completed a successful request/response
 transaction with the server (as identified by hostname, if the DNS
 procedures of Section 8 are used, else IP address if not), it MUST
 omit the USERNAME, USERHASH, MESSAGE-INTEGRITY, MESSAGE-INTEGRITY-
 SHA256, REALM, NONCE, PASSWORD-ALGORITHMS, and PASSWORD-ALGORITHM
 attributes. In other words, the very first request is sent as if
 there were no authentication or message integrity applied.

9.2.3.2. Subsequent Requests

 Once a request/response transaction has completed successfully, the
 client will have been presented a realm and nonce by the server, and
 selected a username and password with which it authenticated. The
 client SHOULD cache the username, password, realm, and nonce for
 subsequent communications with the server. When the client sends a
 subsequent request, it MUST include either the USERNAME or USERHASH,
 REALM, NONCE, and PASSWORD-ALGORITHM attributes with these cached
 values. It MUST include a MESSAGE-INTEGRITY attribute or a MESSAGE-
 INTEGRITY-SHA256 attribute, computed as described in Section 14.5 and

Section 14.6 using the cached password. The choice between the two
 attributes depends on the attribute received in the response to the
 first request.

9.2.4. Receiving a Request

 After the server has done the basic processing of a request, it
 performs the checks listed below in the order specified:

 o If the message does not contain a MESSAGE-INTEGRITY or MESSAGE-
 INTEGRITY-SHA256 attribute, the server MUST generate an error
 response with an error code of 401 (Unauthenticated). This
 response MUST include a REALM value. It is RECOMMENDED that the
 REALM value be the domain name of the provider of the STUN server.
 The response MUST include a NONCE, selected by the server. The
 server MUST ensure that the same NONCE cannot be selected for
 clients that use different source IP addresses, different source
 ports, or both different source IP addresses and source ports.
 The server MAY support alternate password algorithms, in which
 case it can list them in preferential order in a PASSWORD-
 ALGORITHMS attribute. If the server adds a PASSWORD-ALGORITHMS
 attribute it MUST set the STUN Security Feature "Password
 algorithms" bit set to 1. The server MAY support anonymous
 username, in which case it MUST set the STUN Security Feature
 "Anonymous username" bit set to 1. The response SHOULD NOT
 contain a USERNAME, USERHASH, MESSAGE-INTEGRITY or MESSAGE-
 INTEGRITY-SHA256 attribute.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 29]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 Note: Reusing a NONCE for different source IP addresses or ports was
 not explicitly forbidden in [RFC5389].

 o If the message contains a MESSAGE-INTEGRITY or a MESSAGE-
 INTEGRITY-SHA256 attribute, but is missing either the USERNAME or
 USERHASH, REALM, or NONCE attribute, the server MUST generate an
 error response with an error code of 400 (Bad Request). This
 response SHOULD NOT include a USERNAME, USERHASH, NONCE, or REALM.
 The response cannot contain a MESSAGE-INTEGRITY or MESSAGE-
 INTEGRITY-SHA256 attribute, as the attributes required to generate
 them are missing.

 o If the NONCE attribute starts with the "nonce cookie" with the
 STUN Security Feature "Password algorithm" bit set to 1 but
 PASSWORD-ALGORITHMS does not match the value sent in the response
 that sent this NONCE, then the server MUST generate an error
 response with an error code of 400 (Bad Request).

 o If the NONCE attribute starts with the "nonce cookie" with the
 STUN Security Feature "Password algorithm" bit set to 1 but the
 request contains neither PASSWORD-ALGORITHMS nor PASSWORD-
 ALGORITHM, then the request is processed as though PASSWORD-
 ALGORITHM were MD5 (Note that if the original PASSWORD-ALGORITHMS
 attribute did not contain MD5, this will result in a 400 Bad
 Request in a later step below).

 o If the NONCE attribute starts with the "nonce cookie" with the
 STUN Security Feature "Password algorithm" bit set to 1 but only
 one of PASSWORD-ALGORITHM or PASSWORD-ALGORITHMS is present, then
 the server MUST generate an error response with an error code of
 400 (Bad Request).

 o If the NONCE attribute starts with the "nonce cookie" with the
 STUN Security Feature "Password algorithm" bit set to 1 but
 PASSWORD-ALGORITHM does not match one of the entries in PASSWORD-
 ALGORITHMS, then the server MUST generate an error response with
 an error code of 400 (Bad Request).

 o If the NONCE is no longer valid and at the same time the MESSAGE-
 INTEGRITY or a MESSAGE-INTEGRITY-SHA256 attribute is invalid, the
 server MUST generate an error response with an error code of 401.
 This response MUST include NONCE, REALM, and PASSWORD-ALGORITHMS
 attributes and SHOULD NOT include the USERNAME or USERHASH
 attribute. The response MAY include a MESSAGE-INTEGRITY or
 MESSAGE-INTEGRITY-SHA256 attribute, using the previous NONCE to
 calculate it.

https://datatracker.ietf.org/doc/html/rfc5389

Petit-Huguenin, et al. Expires July 18, 2018 [Page 30]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 o If the NONCE is no longer valid, the server MUST generate an error
 response with an error code of 438 (Stale Nonce). This response
 MUST include NONCE, REALM, and PASSWORD-ALGORITHMS attributes and
 SHOULD NOT include the USERNAME, USERHASH attribute, The response
 MAY include a MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256
 attribute, using the previous NONCE to calculate it. Servers can
 invalidate nonces in order to provide additional security. See

Section 4.3 of [RFC7616] for guidelines.

 o If the value of the USERNAME or USERHASH attribute is not valid,
 the server MUST generate an error response with an error code of
 401 (Unauthenticated). This response MUST include a REALM value.
 It is RECOMMENDED that the REALM value be the domain name of the
 provider of the STUN server. The response MUST include a NONCE,
 selected by the server. The response MUST include a PASSWORD-
 ALGORITHMS attribute. The response SHOULD NOT contain a USERNAME,
 USERHASH attribute. The response MAY include a MESSAGE-INTEGRITY
 or MESSAGE-INTEGRITY-SHA256 attribute, using the previous password
 to calculate it.

 o If the MESSAGE-INTEGRITY-SHA256 attribute is present compute the
 value for the message integrity as described in Section 14.6,
 using the password associated with the username. Else, using the
 same password, compute the value for the message integrity as
 described in Section 14.5. If the resulting value does not match
 the contents of the MESSAGE-INTEGRITY attribute or the MESSAGE-
 INTEGRITY-SHA256 attribute, the server MUST reject the request
 with an error response. This response MUST use an error code of
 401 (Unauthenticated). It MUST include REALM and NONCE attributes
 and SHOULD NOT include the USERNAME, USERHASH, MESSAGE-INTEGRITY,
 or MESSAGE-INTEGRITY-SHA256 attribute.

 If these checks pass, the server continues to process the request.
 Any response generated by the server MUST include MESSAGE-INTEGRITY-
 SHA256 attribute, computed using the username and password utilized
 to authenticate the request, unless the request was processed as
 though PASSWORD-ALGORITHM was MD5 (because the request contained
 neither PASSWORD-ALGORITHMS nor PASSWORD-ALGORITHM). In that case
 the MESSAGE-INTEGRITY attribute MUST be used instead of the MESSAGE-
 INTEGRITY-SHA256 attribute. The REALM, NONCE, USERNAME and USERHASH
 attributes SHOULD NOT be included.

9.2.5. Receiving a Response

 If the response is an error response with an error code of 401
 (Unauthenticated) or 438 (Stale Nonce), the client MUST test if the
 NONCE attribute value starts with the "nonce cookie". If the test
 succeeds and the "nonce cookie" has the STUN Security Feature

https://datatracker.ietf.org/doc/html/rfc7616#section-4.3

Petit-Huguenin, et al. Expires July 18, 2018 [Page 31]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 "Password algorithm" bit set to 1 but no PASSWORD-ALGORITHMS
 attribute is present, then the client MUST NOT retry the request with
 a new transaction. If the test succeeds and the "nonce cookie" has
 the STUN Security Feature "Username anonymity" bit set to 1 but no
 USERHASH attribute is present, then the client MUST NOT retry the
 request with a new transaction.

 If the response is an error response with an error code of 401
 (Unauthenticated), the client SHOULD retry the request with a new
 transaction. This request MUST contain a USERNAME or a USERHASH,
 determined by the client as the appropriate username for the REALM
 from the error response. If the "nonce cookie" was present and had
 the STUN Security Feature "Username anonymity" bit set to 1 then the
 USERHASH attribute MUST be used, else the USERNAME attribute MUST be
 used. The request MUST contain the REALM, copied from the error
 response. The request MUST contain the NONCE, copied from the error
 response. If the response contains a PASSWORD-ALGORITHMS attribute,
 the request MUST contain the PASSWORD-ALGORITHMS attribute with the
 same content. If the response contains a PASSWORD-ALGORITHMS
 attribute, and this attribute contains at least one algorithm that is
 supported by the client then the request MUST contain a PASSWORD-
 ALGORITHM attribute with the first algorithm supported on the list.
 If the response contains a PASSWORD-ALGORITHMS attribute, and this
 attribute does not contain any algorithm that is supported by the
 client, then the client MUST NOT retry the request with a new
 transaction. The client MUST NOT perform this retry if it is not
 changing the USERNAME or USERHASH or REALM or its associated
 password, from the previous attempt.

 If the response is an error response with an error code of 438 (Stale
 Nonce), the client MUST retry the request, using the new NONCE
 attribute supplied in the 438 (Stale Nonce) response. This retry
 MUST also include either the USERNAME or USERHASH, REALM and either
 the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256 attributes.

 For all other responses, if the NONCE attribute starts with the
 "nonce cookie" with the STUN Security Feature "Password algorithm"
 bit set to 1 but PASSWORD-ALGORITHMS is not present, the response
 MUST be ignored. For all other responses, if the NONCE attribute
 starts with the "nonce cookie" with the STUN Security Feature "User
 anonymity" bit set to 1 but USERHASH is not present, the response
 MUST be ignored.

 If the response is an error response with an error code of 400, and
 does not contains either MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-
 SHA256 attribute then the response MUST be discarded, as if it was
 never received. This means that retransmits, if applicable, will
 continue.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 32]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 The client looks for the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-
 SHA256 attribute in the response (either success or failure). If
 present, the client computes the message integrity over the response
 as defined in Section 14.5 or Section 14.6, using the same password
 it utilized for the request. If the resulting value matches the
 contents of the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256
 attribute, the response is considered authenticated. If the value
 does not match, or if both MESSAGE-INTEGRITY and MESSAGE-INTEGRITY-
 SHA256 were absent, the processing depends on the request been sent
 over a reliable or an unreliable transport.

 If the request was sent over an unreliable transport, the response
 MUST be discarded, as if it was never received. This means that
 retransmits, if applicable, will continue. If all the reponses
 received are discarded then instead of signalling a timeout after
 ending the transaction the layer MUST signal that an attack took
 place.

 If the request was sent over a reliable transport, the response MUST
 be discarded and the layer MUST immediately end the transaction and
 signal that an attack took place.

 If the response contains a PASSWORD-ALGORITHMS attribute, the
 subsequent request MUST be authenticated using MESSAGE-INTEGRITY-
 SHA256 only.

10. ALTERNATE-SERVER Mechanism

 This section describes a mechanism in STUN that allows a server to
 redirect a client to another server. This extension is optional, and
 a usage must define if and when this extension is used.

 A server using this extension redirects a client to another server by
 replying to a request message with an error response message with an
 error code of 300 (Try Alternate). The server MUST include an
 ALTERNATE-SERVER attribute in the error response. The error response
 message MAY be authenticated; however, there are uses cases for
 ALTERNATE-SERVER where authentication of the response is not possible
 or practical. If the transaction uses TLS or DTLS and if the
 transaction is authenticated by a MESSAGE-INTEGRITY-SHA256 attribute
 and if the server wants to redirect to a server that uses a different
 certificate, then it MUST include an ALTERNATE-DOMAIN attribute
 containing the subjectAltName of that certificate.

 A client using this extension handles a 300 (Try Alternate) error
 code as follows. The client looks for an ALTERNATE-SERVER attribute
 in the error response. If one is found, then the client considers
 the current transaction as failed, and reattempts the request with

Petit-Huguenin, et al. Expires July 18, 2018 [Page 33]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 the server specified in the attribute, using the same transport
 protocol used for the previous request. That request, if
 authenticated, MUST utilize the same credentials that the client
 would have used in the request to the server that performed the
 redirection. If the transport protocol uses TLS or DTLS, then the
 client looks for an ALTERNATE-DOMAIN attribute. If the attribute is
 found, the domain MUST be used to validate the certificate using the
 recommendations in [RFC6125]. If the attribute is not found, the
 same domain that was used for the original request MUST be used to
 validate the certificate. If the client has been redirected to a
 server on which it has already tried this request within the last
 five minutes, it MUST ignore the redirection and consider the
 transaction to have failed. This prevents infinite ping-ponging
 between servers in case of redirection loops.

11. Backwards Compatibility with RFC 3489

 In addition to the backward compatibility already described in
Section 12 of [RFC5389], DTLS MUST NOT be used with [RFC3489] (also

 referred to as "classic STUN"). Any STUN request or indication
 without the magic cookie (see Section 6 of [RFC5389]) over DTLS MUST
 always result in an error.

12. Basic Server Behavior

 This section defines the behavior of a basic, stand-alone STUN
 server.

 Historically, "classic STUN [RFC3489]" only defined the behavior of a
 server that was providing clients with server reflexive transport
 addresses by receiving and replying to STUN Binding requests.
 [RFC5389] redefined the protocol as an extensible framework and the
 server functionality became the sole STUN Usage defined in that
 document. This STUN Usage is also known as Basic STUN Server.

 The STUN server MUST support the Binding method. It SHOULD NOT
 utilize the short-term or long-term credential mechanism. This is
 because the work involved in authenticating the request is more than
 the work in simply processing it. It SHOULD NOT utilize the
 ALTERNATE-SERVER mechanism for the same reason. It MUST support UDP
 and TCP. It MAY support STUN over TCP/TLS or STUN over UDP/DTLS;
 however, DTLS and TLS provide minimal security benefits in this basic
 mode of operation. It MAY utilize the FINGERPRINT mechanism but MUST
 NOT require it. Since the stand-alone server only runs STUN,
 FINGERPRINT provides no benefit. Requiring it would break
 compatibility with RFC 3489, and such compatibility is desirable in a
 stand-alone server. Stand-alone STUN servers SHOULD support

https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc5389#section-12
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc5389#section-6
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc3489

Petit-Huguenin, et al. Expires July 18, 2018 [Page 34]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 backwards compatibility with [RFC3489] clients, as described in
Section 11.

 It is RECOMMENDED that administrators of STUN servers provide DNS
 entries for those servers as described in Section 8. If both A and
 AAAA Resource Records are returned then the client can simultaneously
 send STUN Binding requests to the IPv4 and IPv6 addresses (as
 specified in [RFC6555]), as the Binding request is idempotent. Note
 that the MAPPED-ADDRESS or XOR-MAPPED-ADDRESS attributes that are
 returned will not necessarily match the address family of the server
 address used.

 A basic STUN server is not a solution for NAT traversal by itself.
 However, it can be utilized as part of a solution through STUN
 usages. This is discussed further in Section 13.

13. STUN Usages

 STUN by itself is not a solution to the NAT traversal problem.
 Rather, STUN defines a tool that can be used inside a larger
 solution. The term "STUN usage" is used for any solution that uses
 STUN as a component.

 A STUN usage defines how STUN is actually utilized -- when to send
 requests, what to do with the responses, and which optional
 procedures defined here (or in an extension to STUN) are to be used.
 A usage would also define:

 o Which STUN methods are used.

 o What transports are used. If DTLS-over-UDP is used then
 implementing the denial-of-service countermeasure described in

Section 4.2.1 of [RFC6347] is mandatory.

 o What authentication and message-integrity mechanisms are used.

 o The considerations around manual vs. automatic key derivation for
 the integrity mechanism, as discussed in [RFC4107].

 o What mechanisms are used to distinguish STUN messages from other
 messages. When STUN is run over TCP, a framing mechanism may be
 required.

 o How a STUN client determines the IP address and port of the STUN
 server.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc4107

Petit-Huguenin, et al. Expires July 18, 2018 [Page 35]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 o How simultaneous use of IPv4 and IPv6 addresses (Happy Eyeballs
 [RFC6555]) works with non-idempotent transactions when both
 address families are found for the STUN server.

 o Whether backwards compatibility to RFC 3489 is required.

 o What optional attributes defined here (such as FINGERPRINT and
 ALTERNATE-SERVER) or in other extensions are required.

 o If MESSAGE-INTEGRITY-256 truncation is permitted, and the limits
 permitted for truncation.

 In addition, any STUN usage must consider the security implications
 of using STUN in that usage. A number of attacks against STUN are
 known (see the Security Considerations section in this document), and
 any usage must consider how these attacks can be thwarted or
 mitigated.

 Finally, a usage must consider whether its usage of STUN is an
 example of the Unilateral Self-Address Fixing approach to NAT
 traversal, and if so, address the questions raised in RFC 3424
 [RFC3424].

14. STUN Attributes

 After the STUN header are zero or more attributes. Each attribute
 MUST be TLV encoded, with a 16-bit type, 16-bit length, and value.
 Each STUN attribute MUST end on a 32-bit boundary. As mentioned
 above, all fields in an attribute are transmitted most significant
 bit first.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value (variable)
 +-+

 Figure 4: Format of STUN Attributes

 The value in the length field MUST contain the length of the Value
 part of the attribute, prior to padding, measured in bytes. Since
 STUN aligns attributes on 32-bit boundaries, attributes whose content
 is not a multiple of 4 bytes are padded with 1, 2, or 3 bytes of
 padding so that its value contains a multiple of 4 bytes. The
 padding bits are ignored, and may be any value.

https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Petit-Huguenin, et al. Expires July 18, 2018 [Page 36]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 Any attribute type MAY appear more than once in a STUN message.
 Unless specified otherwise, the order of appearance is significant:
 only the first occurrence needs to be processed by a receiver, and
 any duplicates MAY be ignored by a receiver.

 To allow future revisions of this specification to add new attributes
 if needed, the attribute space is divided into two ranges.
 Attributes with type values between 0x0000 and 0x7FFF are
 comprehension-required attributes, which means that the STUN agent
 cannot successfully process the message unless it understands the
 attribute. Attributes with type values between 0x8000 and 0xFFFF are
 comprehension-optional attributes, which means that those attributes
 can be ignored by the STUN agent if it does not understand them.

 The set of STUN attribute types is maintained by IANA. The initial
 set defined by this specification is found in Section 17.3.

 The rest of this section describes the format of the various
 attributes defined in this specification.

14.1. MAPPED-ADDRESS

 The MAPPED-ADDRESS attribute indicates a reflexive transport address
 of the client. It consists of an 8-bit address family and a 16-bit
 port, followed by a fixed-length value representing the IP address.
 If the address family is IPv4, the address MUST be 32 bits. If the
 address family is IPv6, the address MUST be 128 bits. All fields
 must be in network byte order.

 The format of the MAPPED-ADDRESS attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| Family | Port |
 +-+
 | |
 | Address (32 bits or 128 bits) |
 | |
 +-+

 Figure 5: Format of MAPPED-ADDRESS Attribute

 The address family can take on the following values:

 0x01:IPv4
 0x02:IPv6

Petit-Huguenin, et al. Expires July 18, 2018 [Page 37]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 The first 8 bits of the MAPPED-ADDRESS MUST be set to 0 and MUST be
 ignored by receivers. These bits are present for aligning parameters
 on natural 32-bit boundaries.

 This attribute is used only by servers for achieving backwards
 compatibility with [RFC3489] clients.

14.2. XOR-MAPPED-ADDRESS

 The XOR-MAPPED-ADDRESS attribute is identical to the MAPPED-ADDRESS
 attribute, except that the reflexive transport address is obfuscated
 through the XOR function.

 The format of the XOR-MAPPED-ADDRESS is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| Family | X-Port |
 +-+
 | X-Address (Variable)
 +-+

 Figure 6: Format of XOR-MAPPED-ADDRESS Attribute

 The Family represents the IP address family, and is encoded
 identically to the Family in MAPPED-ADDRESS.

 X-Port is computed by taking the mapped port in host byte order,
 XOR'ing it with the most significant 16 bits of the magic cookie, and
 then the converting the result to network byte order. If the IP
 address family is IPv4, X-Address is computed by taking the mapped IP
 address in host byte order, XOR'ing it with the magic cookie, and
 converting the result to network byte order. If the IP address
 family is IPv6, X-Address is computed by taking the mapped IP address
 in host byte order, XOR'ing it with the concatenation of the magic
 cookie and the 96-bit transaction ID, and converting the result to
 network byte order.

 The rules for encoding and processing the first 8 bits of the
 attribute's value, the rules for handling multiple occurrences of the
 attribute, and the rules for processing address families are the same
 as for MAPPED-ADDRESS.

 Note: XOR-MAPPED-ADDRESS and MAPPED-ADDRESS differ only in their
 encoding of the transport address. The former encodes the transport
 address by exclusive-or'ing it with the magic cookie. The latter
 encodes it directly in binary. RFC 3489 originally specified only

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Petit-Huguenin, et al. Expires July 18, 2018 [Page 38]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 MAPPED-ADDRESS. However, deployment experience found that some NATs
 rewrite the 32-bit binary payloads containing the NAT's public IP
 address, such as STUN's MAPPED-ADDRESS attribute, in the well-meaning
 but misguided attempt at providing a generic ALG function. Such
 behavior interferes with the operation of STUN and also causes
 failure of STUN's message-integrity checking.

14.3. USERNAME

 The USERNAME attribute is used for message integrity. It identifies
 the username and password combination used in the message-integrity
 check.

 The value of USERNAME is a variable-length value. It MUST contain a
 UTF-8 [RFC3629] encoded sequence of less than 513 bytes, and MUST
 have been processed using the OpaqueString profile [RFC7613].

14.4. USERHASH

 The USERHASH attribute is used as a replacement for the USERNAME
 attribute when username anonymity is supported.

 The value of USERHASH has a fixed length of 32 bytes. The username
 MUST have been processed using the OpaqueString profile [RFC7613]
 before hashing.

 The following is the operation that the client will perform to hash
 the username:

 userhash = SHA256(username ":" realm)

14.5. MESSAGE-INTEGRITY

 The MESSAGE-INTEGRITY attribute contains an HMAC-SHA1 [RFC2104] of
 the STUN message. The MESSAGE-INTEGRITY attribute can be present in
 any STUN message type. Since it uses the SHA1 hash, the HMAC will be
 at 20 bytes.

 The text used as input to HMAC is the STUN message, including the
 header, up to and including the attribute preceding the MESSAGE-
 INTEGRITY attribute. With the exception of the MESSAGE-INTEGRITY-
 SHA256 and FINGERPRINT attributes, which appear after MESSAGE-
 INTEGRITY, agents MUST ignore all other attributes that follow
 MESSAGE-INTEGRITY.

 The key for the HMAC depends on which credential mechanism is in use.
Section 9.1.1 defines the key for the short-term credential mechanism

 and Section 9.2.2 defines the key for the long-term credential

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc7613
https://datatracker.ietf.org/doc/html/rfc7613
https://datatracker.ietf.org/doc/html/rfc2104

Petit-Huguenin, et al. Expires July 18, 2018 [Page 39]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 mechanism. Other credential mechanisms MUST define the key that is
 used for the HMAC.

 Based on the rules above, the hash used to construct MESSAGE-
 INTEGRITY includes the length field from the STUN message header.
 Prior to performing the hash, the MESSAGE-INTEGRITY attribute MUST be
 inserted into the message (with dummy content). The length MUST then
 be set to point to the length of the message up to, and including,
 the MESSAGE-INTEGRITY attribute itself, but excluding any attributes
 after it. Once the computation is performed, the value of the
 MESSAGE-INTEGRITY attribute can be filled in, and the value of the
 length in the STUN header can be set to its correct value -- the
 length of the entire message. Similarly, when validating the
 MESSAGE-INTEGRITY, the length field should be adjusted to point to
 the end of the MESSAGE-INTEGRITY attribute prior to calculating the
 HMAC. Such adjustment is necessary when attributes, such as
 FINGERPRINT, appear after MESSAGE-INTEGRITY.

14.6. MESSAGE-INTEGRITY-SHA256

 The MESSAGE-INTEGRITY-SHA256 attribute contains an HMAC-SHA-256
 [RFC2104] of the STUN message. The MESSAGE-INTEGRITY-SHA256
 attribute can be present in any STUN message type. Since it uses the
 SHA256 hash, the HMAC will be at most 32 bytes. The HMAC MUST NOT be
 truncated below a minimum size of 16 bytes. If truncation is
 employed then the HMAC size MUST be a multiple of 4. Truncation MUST
 be done by stripping off the final bytes. STUN Usages can define
 their own truncation limits, as long as they adhere to the guidelines
 specificed above. STUN Usages that do not define truncation limits
 MUST NOT use truncation at all.

 The text used as input to HMAC is the STUN message, including the
 header, up to and including the attribute preceding the MESSAGE-
 INTEGRITY-SHA256 attribute. With the exception of the FINGERPRINT
 attribute, which appears after MESSAGE-INTEGRITY-SHA256, agents MUST
 ignore all other attributes that follow MESSAGE-INTEGRITY-SHA256.

 The key for the HMAC depends on which credential mechanism is in use.
Section 9.1.1 defines the key for the short-term credential mechanism

 and Section 9.2.2 defines the key for the long-term credential
 mechanism. Other credential mechanism MUST define the key that is
 used for the HMAC.

 Based on the rules above, the hash used to construct MESSAGE-
 INTEGRITY-SHA256 includes the length field from the STUN message
 header. Prior to performing the hash, the MESSAGE-INTEGRITY-SHA256
 attribute MUST be inserted into the message (with dummy content).
 The length MUST then be set to point to the length of the message up

https://datatracker.ietf.org/doc/html/rfc2104

Petit-Huguenin, et al. Expires July 18, 2018 [Page 40]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 to, and including, the MESSAGE-INTEGRITY-SHA256 attribute itself, but
 excluding any attributes after it. Once the computation is
 performed, the value of the MESSAGE-INTEGRITY-SHA256 attribute can be
 filled in, and the value of the length in the STUN header can be set
 to its correct value -- the length of the entire message. Similarly,
 when validating the MESSAGE-INTEGRITY-SHA256, the length field should
 be adjusted to point to the end of the MESSAGE-INTEGRITY-SHA256
 attribute prior to calculating the HMAC. Such adjustment is
 necessary when attributes, such as FINGERPRINT, appear after MESSAGE-
 INTEGRITY-SHA256.

14.7. FINGERPRINT

 The FINGERPRINT attribute MAY be present in all STUN messages. The
 value of the attribute is computed as the CRC-32 of the STUN message
 up to (but excluding) the FINGERPRINT attribute itself, XOR'ed with
 the 32-bit value 0x5354554e (the XOR helps in cases where an
 application packet is also using CRC-32 in it). The 32-bit CRC is
 the one defined in ITU V.42 [ITU.V42.1994], which has a generator
 polynomial of x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1.
 See the sample code for the CRC-32 in Section 8 of [RFC1952].

 When present, the FINGERPRINT attribute MUST be the last attribute in
 the message, and thus will appear after MESSAGE-INTEGRITY.

 The FINGERPRINT attribute can aid in distinguishing STUN packets from
 packets of other protocols. See Section 7.

 As with MESSAGE-INTEGRITY, the CRC used in the FINGERPRINT attribute
 covers the length field from the STUN message header. Therefore,
 this value must be correct and include the CRC attribute as part of
 the message length, prior to computation of the CRC. When using the
 FINGERPRINT attribute in a message, the attribute is first placed
 into the message with a dummy value, then the CRC is computed, and
 then the value of the attribute is updated. If the MESSAGE-INTEGRITY
 attribute is also present, then it must be present with the correct
 message-integrity value before the CRC is computed, since the CRC is
 done over the value of the MESSAGE-INTEGRITY attribute as well.

14.8. ERROR-CODE

 The ERROR-CODE attribute is used in error response messages. It
 contains a numeric error code value in the range of 300 to 699 plus a
 textual reason phrase encoded in UTF-8 [RFC3629], and is consistent
 in its code assignments and semantics with SIP [RFC3261] and HTTP
 [RFC7231]. The reason phrase is meant for user consumption, and can
 be anything appropriate for the error code. Recommended reason
 phrases for the defined error codes are included in the IANA registry

https://datatracker.ietf.org/doc/html/rfc1952#section-8
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc7231

Petit-Huguenin, et al. Expires July 18, 2018 [Page 41]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 for error codes. The reason phrase MUST be a UTF-8 [RFC3629] encoded
 sequence of less than 128 characters (which can be as long as 763
 bytes).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved, should be 0 |Class| Number |
 +-+
 | Reason Phrase (variable) ..
 +-+

 Figure 7: ERROR-CODE Attribute

 To facilitate processing, the class of the error code (the hundreds
 digit) is encoded separately from the rest of the code, as shown in
 Figure 7.

 The Reserved bits SHOULD be 0, and are for alignment on 32-bit
 boundaries. Receivers MUST ignore these bits. The Class represents
 the hundreds digit of the error code. The value MUST be between 3
 and 6. The Number represents the error code modulo 100, and its
 value MUST be between 0 and 99.

 The following error codes, along with their recommended reason
 phrases, are defined:

 300 Try Alternate: The client should contact an alternate server for
 this request. This error response MUST only be sent if the
 request included either a USERNAME or USERHASH attribute and a
 valid MESSAGE-INTEGRITY attribute; otherwise, it MUST NOT be sent
 and error code 400 (Bad Request) is suggested. This error
 response MUST be protected with the MESSAGE-INTEGRITY attribute,
 and receivers MUST validate the MESSAGE-INTEGRITY of this response
 before redirecting themselves to an alternate server.

 Note: Failure to generate and validate message integrity for a 300
 response allows an on-path attacker to falsify a 300 response thus
 causing subsequent STUN messages to be sent to a victim.

 400 Bad Request: The request was malformed. The client SHOULD NOT
 retry the request without modification from the previous attempt.
 The server may not be able to generate a valid MESSAGE-INTEGRITY
 for this error, so the client MUST NOT expect a valid MESSAGE-
 INTEGRITY attribute on this response.

https://datatracker.ietf.org/doc/html/rfc3629

Petit-Huguenin, et al. Expires July 18, 2018 [Page 42]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 401 Unauthenticated: The request did not contain the correct
 credentials to proceed. The client should retry the request with
 proper credentials.

 420 Unknown Attribute: The server received a STUN packet containing
 a comprehension-required attribute that it did not understand.
 The server MUST put this unknown attribute in the UNKNOWN-
 ATTRIBUTE attribute of its error response.

 438 Stale Nonce: The NONCE used by the client was no longer valid.
 The client should retry, using the NONCE provided in the response.

 500 Server Error: The server has suffered a temporary error. The
 client should try again.

14.9. REALM

 The REALM attribute may be present in requests and responses. It
 contains text that meets the grammar for "realm-value" as described
 in [RFC3261] but without the double quotes and their surrounding
 whitespace. That is, it is an unquoted realm-value (and is therefore
 a sequence of qdtext or quoted-pair). It MUST be a UTF-8 [RFC3629]
 encoded sequence of less than 128 characters (which can be as long as
 763 bytes), and MUST have been processed using the OpaqueString
 profile [RFC7613].

 Presence of the REALM attribute in a request indicates that long-term
 credentials are being used for authentication. Presence in certain
 error responses indicates that the server wishes the client to use a
 long-term credential for authentication.

14.10. NONCE

 The NONCE attribute may be present in requests and responses. It
 contains a sequence of qdtext or quoted-pair, which are defined in

RFC 3261 [RFC3261]. Note that this means that the NONCE attribute
 will not contain actual quote characters. See [RFC7616],
 Section 5.4, for guidance on selection of nonce values in a server.
 It MUST be less than 128 characters (which can be as long as 763
 bytes).

14.11. PASSWORD-ALGORITHMS

 The PASSWORD-ALGORITHMS attribute may be present in requests and
 responses. It contains the list of algorithms that the server can
 use to derive the long-term password.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc7613
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc7616#section-5.4
https://datatracker.ietf.org/doc/html/rfc7616#section-5.4

Petit-Huguenin, et al. Expires July 18, 2018 [Page 43]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 The set of known algorithms is maintained by IANA. The initial set
 defined by this specification is found in Section 17.5.

 The attribute contains a list of algorithm numbers and variable
 length parameters. The algorithm number is a 16-bit value as defined
 in Section 17.5. The parameters start with the actual length of the
 parameters as a 16-bit value, followed by the parameters that are
 specific to each algorithm. The parameters are padded to a 32-bit
 boundary, in the same manner as an attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Algorithm 1 | Algorithm 1 Parameters Length |
 +-+
 | Algorithm 1 Parameters (variable)
 +-+
 | Algorithm 2 | Algorithm 2 Parameters Length |
 +-+
 | Algorithm 2 Parameter (variable)
 +-+
 | ...

 Figure 8: Format of PASSWORD-ALGORITHMS Attribute

14.12. PASSWORD-ALGORITHM

 The PASSWORD-ALGORITHM attribute is present only in requests. It
 contains the algorithms that the server must use to derive the long-
 term password.

 The set of known algorithms is maintained by IANA. The initial set
 defined by this specification is found in Section 17.5.

 The attribute contains an algorithm number and variable length
 parameters. The algorithm number is a 16-bit value as defined in

Section 17.5. The parameters starts with the actual length of the
 parameters as a 16-bit value, followed by the parameters that are
 specific to the algorithm. The parameters are padded to a 32-bit
 boundary, in the same manner as an attribute.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 44]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Algorithm | Algorithm Parameters Length |
 +-+
 | Algorithm Parameters (variable)
 +-+

 Figure 9: Format of PASSWORD-ALGORITHM Attribute

14.13. UNKNOWN-ATTRIBUTES

 The UNKNOWN-ATTRIBUTES attribute is present only in an error response
 when the response code in the ERROR-CODE attribute is 420.

 The attribute contains a list of 16-bit values, each of which
 represents an attribute type that was not understood by the server.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Attribute 1 Type | Attribute 2 Type |
 +-+
 | Attribute 3 Type | Attribute 4 Type ...
 +-+

 Figure 10: Format of UNKNOWN-ATTRIBUTES Attribute

 Note: In [RFC3489], this field was padded to 32 by duplicating the
 last attribute. In this version of the specification, the normal
 padding rules for attributes are used instead.

14.14. SOFTWARE

 The SOFTWARE attribute contains a textual description of the software
 being used by the agent sending the message. It is used by clients
 and servers. Its value SHOULD include manufacturer and version
 number. The attribute has no impact on operation of the protocol,
 and serves only as a tool for diagnostic and debugging purposes. The
 value of SOFTWARE is variable length. It MUST be a UTF-8 [RFC3629]
 encoded sequence of less than 128 characters (which can be as long as
 763 bytes).

14.15. ALTERNATE-SERVER

 The alternate server represents an alternate transport address
 identifying a different STUN server that the STUN client should try.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3629

Petit-Huguenin, et al. Expires July 18, 2018 [Page 45]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 It is encoded in the same way as MAPPED-ADDRESS, and thus refers to a
 single server by IP address. The IP address family MUST be identical
 to that of the source IP address of the request.

14.16. ALTERNATE-DOMAIN

 The alternate domain represents the domain name that is used to
 verify the IP address in the ALTERNATE-SERVER attribute when the
 transport protocol uses TLS or DTLS.

 The value of ALTERNATE-DOMAIN is variable length. It MUST be a UTF-8
 [RFC3629] encoded sequence of less than 128 characters (which can be
 as long as 763 bytes).

15. Security Considerations

15.1. Attacks against the Protocol

15.1.1. Outside Attacks

 An attacker can try to modify STUN messages in transit, in order to
 cause a failure in STUN operation. These attacks are detected for
 both requests and responses through the message-integrity mechanism,
 using either a short-term or long-term credential. Of course, once
 detected, the manipulated packets will be dropped, causing the STUN
 transaction to effectively fail. This attack is possible only by an
 on-path attacker.

 An attacker that can observe, but not modify, STUN messages in-
 transit (for example, an attacker present on a shared access medium,
 such as Wi-Fi), can see a STUN request, and then immediately send a
 STUN response, typically an error response, in order to disrupt STUN
 processing. This attack is also prevented for messages that utilize
 MESSAGE-INTEGRITY. However, some error responses, those related to
 authentication in particular, cannot be protected by MESSAGE-
 INTEGRITY. When STUN itself is run over a secure transport protocol
 (e.g., TLS), these attacks are completely mitigated.

 Depending on the STUN usage, these attacks may be of minimal
 consequence and thus do not require message integrity to mitigate.
 For example, when STUN is used to a basic STUN server to discover a
 server reflexive candidate for usage with ICE, authentication and
 message integrity are not required since these attacks are detected
 during the connectivity check phase. The connectivity checks
 themselves, however, require protection for proper operation of ICE
 overall. As described in Section 13, STUN usages describe when
 authentication and message integrity are needed.

https://datatracker.ietf.org/doc/html/rfc3629

Petit-Huguenin, et al. Expires July 18, 2018 [Page 46]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 Since STUN uses the HMAC of a shared secret for authentication and
 integrity protection, it is subject to offline dictionary attacks.
 When authentication is utilized, it SHOULD be with a strong password
 that is not readily subject to offline dictionary attacks.
 Protection of the channel itself, using TLS or DTLS, mitigates these
 attacks.

 STUN supports both MESSAGE-INTEGRITY and MESSAGE-INTEGRITY-SHA256,
 which is subject to bid down attacks by an on-path attacker.
 Protection of the channel itself, using TLS or DTLS, mitigates these
 attacks. Timely removal of the support of MESSAGE-INTEGRITY in a
 future version of STUN is necessary.

15.1.2. Inside Attacks

 A rogue client may try to launch a DoS attack against a server by
 sending it a large number of STUN requests. Fortunately, STUN
 requests can be processed statelessly by a server, making such
 attacks hard to launch.

 A rogue client may use a STUN server as a reflector, sending it
 requests with a falsified source IP address and port. In such a
 case, the response would be delivered to that source IP and port.
 There is no amplification of the number of packets with this attack
 (the STUN server sends one packet for each packet sent by the
 client), though there is a small increase in the amount of data,
 since STUN responses are typically larger than requests. This attack
 is mitigated by ingress source address filtering.

 Revealing the specific software version of the agent through the
 SOFTWARE attribute might allow them to become more vulnerable to
 attacks against software that is known to contain security holes.
 Implementers SHOULD make usage of the SOFTWARE attribute a
 configurable option.

15.2. Attacks Affecting the Usage

 This section lists attacks that might be launched against a usage of
 STUN. Each STUN usage must consider whether these attacks are
 applicable to it, and if so, discuss counter-measures.

 Most of the attacks in this section revolve around an attacker
 modifying the reflexive address learned by a STUN client through a
 Binding request/response transaction. Since the usage of the
 reflexive address is a function of the usage, the applicability and
 remediation of these attacks are usage-specific. In common
 situations, modification of the reflexive address by an on-path
 attacker is easy to do. Consider, for example, the common situation

Petit-Huguenin, et al. Expires July 18, 2018 [Page 47]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 where STUN is run directly over UDP. In this case, an on-path
 attacker can modify the source IP address of the Binding request
 before it arrives at the STUN server. The STUN server will then
 return this IP address in the XOR-MAPPED-ADDRESS attribute to the
 client, and send the response back to that (falsified) IP address and
 port. If the attacker can also intercept this response, it can
 direct it back towards the client. Protecting against this attack by
 using a message-integrity check is impossible, since a message-
 integrity value cannot cover the source IP address, since the
 intervening NAT must be able to modify this value. Instead, one
 solution to preventing the attacks listed below is for the client to
 verify the reflexive address learned, as is done in ICE
 [I-D.ietf-ice-rfc5245bis]. Other usages may use other means to
 prevent these attacks.

15.2.1. Attack I: Distributed DoS (DDoS) against a Target

 In this attack, the attacker provides one or more clients with the
 same faked reflexive address that points to the intended target.
 This will trick the STUN clients into thinking that their reflexive
 addresses are equal to that of the target. If the clients hand out
 that reflexive address in order to receive traffic on it (for
 example, in SIP messages), the traffic will instead be sent to the
 target. This attack can provide substantial amplification,
 especially when used with clients that are using STUN to enable
 multimedia applications. However, it can only be launched against
 targets for which packets from the STUN server to the target pass
 through the attacker, limiting the cases in which it is possible.

15.2.2. Attack II: Silencing a Client

 In this attack, the attacker provides a STUN client with a faked
 reflexive address. The reflexive address it provides is a transport
 address that routes to nowhere. As a result, the client won't
 receive any of the packets it expects to receive when it hands out
 the reflexive address. This exploitation is not very interesting for
 the attacker. It impacts a single client, which is frequently not
 the desired target. Moreover, any attacker that can mount the attack
 could also deny service to the client by other means, such as
 preventing the client from receiving any response from the STUN
 server, or even a DHCP server. As with the attack in Section 15.2.1,
 this attack is only possible when the attacker is on path for packets
 sent from the STUN server towards this unused IP address.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 48]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

15.2.3. Attack III: Assuming the Identity of a Client

 This attack is similar to attack II. However, the faked reflexive
 address points to the attacker itself. This allows the attacker to
 receive traffic that was destined for the client.

15.2.4. Attack IV: Eavesdropping

 In this attack, the attacker forces the client to use a reflexive
 address that routes to itself. It then forwards any packets it
 receives to the client. This attack would allow the attacker to
 observe all packets sent to the client. However, in order to launch
 the attack, the attacker must have already been able to observe
 packets from the client to the STUN server. In most cases (such as
 when the attack is launched from an access network), this means that
 the attacker could already observe packets sent to the client. This
 attack is, as a result, only useful for observing traffic by
 attackers on the path from the client to the STUN server, but not
 generally on the path of packets being routed towards the client.

15.3. Hash Agility Plan

 This specification uses both HMAC-SHA-1 and HMAC-SHA-256 for
 computation of the message integrity. If, at a later time, HMAC-
 SHA-256 is found to be compromised, the following is the remedy that
 will be applied:

 o Both a new message-integrity attribute and a new STUN Security
 Feature bit will be allocated in a Standard Track document. The
 new message-integrity attribute will have its value computed using
 a new hash. The STUN Security Feature bit will be used to
 simultaneously signal to a STUN client using the Long Term
 Credential Mechanism that this server supports this new hash
 algorithm, and will prevent bid down attacks on the new message-
 integrity attribute.

 o STUN Client and Server using the Short Term Credential Mechanism
 will need to get an updated external mechanism that they can use
 to signal what message-integrity attributes are in use.

 The bid down protection mechanism described in this document is new,
 and thus cannot currently protect against a bid down attack that
 lowers the strength of the hash algorithm to HMAC-SHA-1. This is
 why, after a transition period, a new document updating this document
 will assign a new STUN Security Feature bit for deprecating HMAC-SHA-
 1. When used, this bit will signal that HMAC-SHA-1 is deprecated and
 should no longer be used.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 49]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

16. IAB Considerations

 The IAB has studied the problem of Unilateral Self-Address Fixing
 (UNSAF), which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol reflection mechanism ([RFC3424]).
 STUN can be used to perform this function using a Binding request/
 response transaction if one agent is behind a NAT and the other is on
 the public side of the NAT.

 The IAB has suggested that protocols developed for this purpose
 document a specific set of considerations. Because some STUN usages
 provide UNSAF functions (such as ICE [I-D.ietf-ice-rfc5245bis]), and
 others do not (such as SIP Outbound [RFC5626]), answers to these
 considerations need to be addressed by the usages themselves.

17. IANA Considerations

17.1. STUN Security Features Registry

 A STUN Security Feature set is a 24 bit value.

 IANA is requested to create a new registry containing the STUN
 Security Features that are protected by the bid down attack
 prevention mechanism described in section Section 9.2.1.

 The initial STUN Security Features are:

 0x000001: Password algorithms
 0x000002: Username anonymity

 New Security Features are assigned by a Standard Action [RFC8126].

17.2. STUN Methods Registry

 IANA is requested to update the name for method 0x002 and the
 reference from RFC 5389 to RFC-to-be for the following STUN methods:

 0x000: (Reserved)
 0x001: Binding
 0x002: (Reserved; prior to [RFC5389] this was SharedSecret)

17.3. STUN Attribute Registry

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389

Petit-Huguenin, et al. Expires July 18, 2018 [Page 50]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

17.3.1. Updated Attributes

 IANA is requested to update the names for attributes 0x0002, 0x0003,
 0x0004, 0x0005, 0x0007, and 0x000B, and the reference from RFC 5389
 to RFC-to-be for the following STUN methods:

 Comprehension-required range (0x0000-0x7FFF):
 0x0000: (Reserved)
 0x0001: MAPPED-ADDRESS
 0x0002: (Reserved; prior to [RFC5389] this was RESPONSE-ADDRESS)
 0x0003: (Reserved; prior to [RFC5389] this was CHANGE-REQUEST)
 0x0004: (Reserved; prior to [RFC5389] this was SOURCE-ADDRESS)
 0x0005: (Reserved; prior to [RFC5389] this was CHANGED-ADDRESS)
 0x0006: USERNAME
 0x0007: (Reserved; prior to [RFC5389] this was PASSWORD)
 0x0008: MESSAGE-INTEGRITY
 0x0009: ERROR-CODE
 0x000A: UNKNOWN-ATTRIBUTES
 0x000B: (Reserved; prior to [RFC5389] this was REFLECTED-FROM)
 0x0014: REALM
 0x0015: NONCE
 0x0020: XOR-MAPPED-ADDRESS

 Comprehension-optional range (0x8000-0xFFFF)
 0x8022: SOFTWARE
 0x8023: ALTERNATE-SERVER
 0x8028: FINGERPRINT

17.3.2. New Attributes

 IANA is requested to add the following attribute to the STUN
 Attribute Registry:

 Comprehension-required range (0x0000-0x7FFF):
 0xXXXX: MESSAGE-INTEGRITY-SHA256
 0xXXXX: PASSWORD-ALGORITHM
 0xXXXX: USERHASH

 Comprehension-optional range (0x8000-0xFFFF)
 0xXXXX: PASSSORD-ALGORITHMS
 0xXXXX: ALTERNATE-DOMAIN

17.4. STUN Error Code Registry

 IANA is requested to update the reference from RFC 5389 to RFC-to-be
 for the Error Codes given in Section 14.8.

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389

Petit-Huguenin, et al. Expires July 18, 2018 [Page 51]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

17.5. Password Algorithm Registry

 IANA is requested to create a new registry for Password Algorithm.

 A Password Algorithm is a hex number in the range 0x0000 - 0xFFFF.

 The initial Password Algorithms are:

 0x0001: MD5
 0x0002: SHA256

 Password Algorithms in the first half of the range (0x0000 - 0x7FFF)
 are assigned by IETF Review [RFC8126]. Password Algorithms in the
 second half of the range (0x8000 - 0xFFFF) are assigned by Designated
 Expert [RFC8126].

17.5.1. Password Algorithms

17.5.1.1. MD5

 This password algorithm is taken from [RFC1321].

 The key length is 20 bytes and the parameters value is empty.

 Note: This algorithm MUST only be used for compatibility with legacy
 systems.

 key = MD5(username ":" realm ":" OpaqueString(password))

17.5.1.2. SHA256

 This password algorithm is taken from [RFC7616].

 The key length is 32 bytes and the parameters value is empty.

 key = SHA256(username ":" realm ":" OpaqueString(password))

17.6. STUN UDP and TCP Port Numbers

 IANA is requested to update the reference from RFC 5389 to RFC-to-be
 for the following ports:

 stun 3478/tcp Session Traversal Utilities for NAT (STUN) port
 stun 3478/udp Session Traversal Utilities for NAT (STUN) port
 stuns 5349/tcp Session Traversal Utilities for NAT (STUN) port

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc7616
https://datatracker.ietf.org/doc/html/rfc5389

Petit-Huguenin, et al. Expires July 18, 2018 [Page 52]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

18. Changes since RFC 5389

 This specification obsoletes [RFC5389]. This specification differs
 from RFC 5389 in the following ways:

 o Added support for DTLS-over-UDP (RFC 6347).

 o Made clear that the RTO is considered stale if there is no
 transactions with the server.

 o Aligned the RTO calculation with RFC 6298.

 o Updated the cipher suites for TLS.

 o Added support for STUN URI (RFC 7064).

 o Added support for SHA256 message integrity.

 o Updated the PRECIS support to RFC 7613.

 o Added protocol and registry to choose the password encryption
 algorithm.

 o Added support for anonymous username.

 o Added protocol and registry for preventing biddown attacks.

 o Sharing a NONCE is no longer permitted.

 o Added the possibility of using a domain name in the alternate
 server mechanism.

 o Added more C snippets.

 o Added test vector.

19. References

19.1. Normative References

 [ITU.V42.1994]
 International Telecommunications Union, "Error-correcting
 Procedures for DCEs Using Asynchronous-to-Synchronous
 Conversion", ITU-T Recommendation V.42, 1994.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7064
https://datatracker.ietf.org/doc/html/rfc7613
https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791

Petit-Huguenin, et al. Expires July 18, 2018 [Page 53]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989, <https://www.rfc-

editor.org/info/rfc1122>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992, <https://www.rfc-

editor.org/info/rfc1321>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000, <https://www.rfc-

editor.org/info/rfc2782>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-

editor.org/info/rfc5246>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011, <https://www.rfc-

editor.org/info/rfc6298>.

https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1321
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298

Petit-Huguenin, et al. Expires July 18, 2018 [Page 54]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April
 2012, <https://www.rfc-editor.org/info/rfc6555>.

 [RFC7064] Nandakumar, S., Salgueiro, G., Jones, P., and M. Petit-
 Huguenin, "URI Scheme for the Session Traversal Utilities
 for NAT (STUN) Protocol", RFC 7064, DOI 10.17487/RFC7064,
 November 2013, <https://www.rfc-editor.org/info/rfc7064>.

 [RFC7350] Petit-Huguenin, M. and G. Salgueiro, "Datagram Transport
 Layer Security (DTLS) as Transport for Session Traversal
 Utilities for NAT (STUN)", RFC 7350, DOI 10.17487/RFC7350,
 August 2014, <https://www.rfc-editor.org/info/rfc7350>.

 [RFC7613] Saint-Andre, P. and A. Melnikov, "Preparation,
 Enforcement, and Comparison of Internationalized Strings
 Representing Usernames and Passwords", RFC 7613,
 DOI 10.17487/RFC7613, August 2015, <https://www.rfc-

editor.org/info/rfc7613>.

 [RFC7616] Shekh-Yusef, R., Ahrens, D., and S. Bremer, "HTTP Digest
 Access Authentication", RFC 7616, DOI 10.17487/RFC7616,
 September 2015, <https://www.rfc-editor.org/info/rfc7616>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 8200, STD 86,
 DOI 10.17487/RFC8200, July 2017, <https://www.rfc-

editor.org/info/rf8200>.

19.2. Informative References

 [I-D.ietf-ice-rfc5245bis]
 Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
 Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal", draft-ietf-ice-

rfc5245bis-15 (work in progress), November 2017.

 [KARN87] Karn, P. and C. Partridge, "Improving Round-Trip Time
 Estimates in Reliable Transport Protocols", August 1987.

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
RFC 1952, DOI 10.17487/RFC1952, May 1996,

 <https://www.rfc-editor.org/info/rfc1952>.

https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6555
https://www.rfc-editor.org/info/rfc6555
https://datatracker.ietf.org/doc/html/rfc7064
https://www.rfc-editor.org/info/rfc7064
https://datatracker.ietf.org/doc/html/rfc7350
https://www.rfc-editor.org/info/rfc7350
https://datatracker.ietf.org/doc/html/rfc7613
https://www.rfc-editor.org/info/rfc7613
https://www.rfc-editor.org/info/rfc7613
https://datatracker.ietf.org/doc/html/rfc7616
https://www.rfc-editor.org/info/rfc7616
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rf8200
https://www.rfc-editor.org/info/rf8200
https://datatracker.ietf.org/doc/html/draft-ietf-ice-rfc5245bis-15
https://datatracker.ietf.org/doc/html/draft-ietf-ice-rfc5245bis-15
https://datatracker.ietf.org/doc/html/rfc1952
https://www.rfc-editor.org/info/rfc1952

Petit-Huguenin, et al. Expires July 18, 2018 [Page 55]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

 [RFC3424] Daigle, L., Ed. and IAB, "IAB Considerations for
 UNilateral Self-Address Fixing (UNSAF) Across Network
 Address Translation", RFC 3424, DOI 10.17487/RFC3424,
 November 2002, <https://www.rfc-editor.org/info/rfc3424>.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 DOI 10.17487/RFC3489, March 2003, <https://www.rfc-

editor.org/info/rfc3489>.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, DOI 10.17487/RFC4107,
 June 2005, <https://www.rfc-editor.org/info/rfc4107>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008, <https://www.rfc-

editor.org/info/rfc5389>.

 [RFC5626] Jennings, C., Ed., Mahy, R., Ed., and F. Audet, Ed.,
 "Managing Client-Initiated Connections in the Session
 Initiation Protocol (SIP)", RFC 5626,
 DOI 10.17487/RFC5626, October 2009, <https://www.rfc-

editor.org/info/rfc5626>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010, <https://www.rfc-

editor.org/info/rfc5766>.

 [RFC5769] Denis-Courmont, R., "Test Vectors for Session Traversal
 Utilities for NAT (STUN)", RFC 5769, DOI 10.17487/RFC5769,
 April 2010, <https://www.rfc-editor.org/info/rfc5769>.

 [RFC5780] MacDonald, D. and B. Lowekamp, "NAT Behavior Discovery
 Using Session Traversal Utilities for NAT (STUN)",

RFC 5780, DOI 10.17487/RFC5780, May 2010,
 <https://www.rfc-editor.org/info/rfc5780>.

https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc3424
https://www.rfc-editor.org/info/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489
https://www.rfc-editor.org/info/rfc3489
https://www.rfc-editor.org/info/rfc3489
https://datatracker.ietf.org/doc/html/bcp107
https://datatracker.ietf.org/doc/html/rfc4107
https://www.rfc-editor.org/info/rfc4107
https://datatracker.ietf.org/doc/html/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://datatracker.ietf.org/doc/html/rfc5626
https://www.rfc-editor.org/info/rfc5626
https://www.rfc-editor.org/info/rfc5626
https://datatracker.ietf.org/doc/html/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://datatracker.ietf.org/doc/html/rfc5769
https://www.rfc-editor.org/info/rfc5769
https://datatracker.ietf.org/doc/html/rfc5780
https://www.rfc-editor.org/info/rfc5780

Petit-Huguenin, et al. Expires July 18, 2018 [Page 56]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 [RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
 "TCP Candidates with Interactive Connectivity
 Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
 March 2012, <https://www.rfc-editor.org/info/rfc6544>.

 [RFC7231] Fielding, R. and R. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, May 2008,
 <https://www.rfc-editor.org/info/rfc8126>.

Appendix A. C Snippet to Determine STUN Message Types

 Given a 16-bit STUN message type value in host byte order in msg_type
 parameter, below are C macros to determine the STUN message types:

 <CODE BEGINS>
 #define IS_REQUEST(msg_type) (((msg_type) & 0x0110) == 0x0000)
 #define IS_INDICATION(msg_type) (((msg_type) & 0x0110) == 0x0010)
 #define IS_SUCCESS_RESP(msg_type) (((msg_type) & 0x0110) == 0x0100)
 #define IS_ERR_RESP(msg_type) (((msg_type) & 0x0110) == 0x0110)
 <CODE ENDS>

 A function to convert method and class into a message type:

 <CODE BEGINS>
 int type(int method, int cls) {
 return (method & 0x0F80) << 9 | (method & 0x0070) << 5
 | (method & 0x000F) | (cls & 0x0002) << 8
 | (cls & 0x0001) << 4;
 }
 <CODE ENDS>

 A function to extract the method from the message type:

https://datatracker.ietf.org/doc/html/rfc6544
https://www.rfc-editor.org/info/rfc6544
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126

Petit-Huguenin, et al. Expires July 18, 2018 [Page 57]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 <CODE BEGINS>
 int method(int type) {
 return (type & 0x3E00) >> 2 | (type & 0x00E0) >> 1
 | (type & 0x000F);
 }
 <CODE ENDS>

 A function to extract the class from the message type:

 <CODE BEGINS>
 int cls(int type) {
 return (type & 0x0100) >> 7 | (type & 0x0010) >> 4;
 }
 <CODE ENDS>

Appendix B. Test Vectors

 This section augments the list of test vectors defined in [RFC5769]
 with MESSAGE-INTEGRITY-SHA256. All the formats and definitions
 listed in Section 2 of [RFC5769] apply here.

B.1. Sample Request with Long-Term Authentication with MESSAGE-
 INTEGRITY-SHA256 and USERHASH

 This request uses the following parameters:

 Username: "<U+30DE><U+30C8><U+30EA><U+30C3><U+30AF><U+30B9>" (without
 quotes) unaffected by OpaqueString [RFC7613] processing

 Password: "The<U+00AD>M<U+00AA>tr<U+2168>" and "TheMatrIX" (without
 quotes) respectively before and after OpaqueString processing

 Nonce: "obMatJos2AAACf//499k954d6OL34oL9FSTvy64sA" (without quotes)

 Realm: "example.org" (without quotes)

https://datatracker.ietf.org/doc/html/rfc5769
https://datatracker.ietf.org/doc/html/rfc5769#section-2
https://datatracker.ietf.org/doc/html/rfc7613

Petit-Huguenin, et al. Expires July 18, 2018 [Page 58]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 00 01 00 9c Request type and message length
 21 12 a4 42 Magic cookie
 78 ad 34 33 }
 c6 ad 72 c0 } Transaction ID
 29 da 41 2e }
 XX XX 00 20 USERHASH attribute header
 4a 3c f3 8f }
 ef 69 92 bd }
 a9 52 c6 78 }
 04 17 da 0f } Userhash value (32 bytes)
 24 81 94 15 }
 56 9e 60 b2 }
 05 c4 6e 41 }
 40 7f 17 04 }
 00 15 00 29 NONCE attribute header
 6f 62 4d 61 }
 74 4a 6f 73 }
 32 41 41 41 }
 43 66 2f 2f }
 34 39 39 6b } Nonce value and padding (3 bytes)
 39 35 34 64 }
 36 4f 4c 33 }
 34 6f 4c 39 }
 46 53 54 76 }
 79 36 34 73 }
 41 00 00 00 }
 00 14 00 0b REALM attribute header
 65 78 61 6d }
 70 6c 65 2e } Realm value (11 bytes) and padding (1 byte)
 6f 72 67 00 }
 XX XX 00 20 MESSAGE-INTEGRITY-SHA256 attribute header
 c4 ec a2 b6 }
 24 6f 26 be }
 bc 2f 77 49 }
 07 c2 00 a3 } HMAC-SHA256 value
 76 c7 c2 8e }
 b4 d1 26 60 }
 bb fe 9f 28 }
 0e 85 71 f2 }

 Note: Before publication, the XX XX placeholder must be replaced by
 the value assigned to MESSAGE-INTEGRITY-SHA256 and USERHASH by
 IANA. The MESSAGE-INTEGRITY-SHA256 attribute value will need to
 be updated after this.

Petit-Huguenin, et al. Expires July 18, 2018 [Page 59]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

Appendix C. Release notes

 This section must be removed before publication as an RFC.

C.1. Modifications between draft-ietf-tram-stunbis-14 and draft-ietf-
tram-stunbis-13

 o Reorder the paragraphs in section 9.1.4.

 o The realm is now processed through Opaque in section 9.2.2.

 o Make clear in section 9.2.4 that it is an exclusive-xor.

 o Removed text that implied that nonce sharing was explicitly
 permitted in RFC 5389.

 o In same section, s/username/value/ for USERCASH.

 o Modify the IANA requests to explicitly say that the reserved
 codepoints were prior to RFC 5389.

C.2. Modifications between draft-ietf-tram-stunbis-13 and draft-ietf-
tram-stunbis-12

 o Update references.

 o Fixes some text following Shepherd review.

 o Update co-author info.

C.3. Modifications between draft-ietf-tram-stunbis-12 and draft-ietf-
tram-stunbis-11

 o Clarifies the procedure to define a new hash algorithm for
 message-integrity.

 o Explain the procedure to deprecate SHA1 as message-integrity.

 o Added procedure for Happy Eyeballs (RFC 6555).

 o Added verification that Happy Eyeballs works in the STUN Usage
 checklist.

 o Add reference to Base64 RFC.

 o Changed co-author affiliation.

https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-14
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-13
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-13
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-13
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-12
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-12
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-12
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-11
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-11
https://datatracker.ietf.org/doc/html/rfc6555

Petit-Huguenin, et al. Expires July 18, 2018 [Page 60]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

C.4. Modifications between draft-ietf-tram-stunbis-11 and draft-ietf-
tram-stunbis-10

 o Made clear that the same HMAC than received in response of short
 term credential must be used for subsequent transactions.

 o s/URL/URI/

 o The "nonce cookie" is now mandatory to signal that SHA256 must be
 used in the next transaction.

 o s/SHA1/SHA256/

 o Changed co-author affiliation.

C.5. Modifications between draft-ietf-tram-stunbis-10 and draft-ietf-
tram-stunbis-09

 o Removed the reserved value in the security registry, as it does
 not make sense in a bitset.

 o Updated change list.

 o Updated the minimum truncation size for M-I-256 to 16 bytes.

 o Changed the truncation order to match RFC 7518.

 o Fixed bugs in truncation boundary text.

 o Stated that STUN Usages have to explicitly state that they can use
 truncation.

 o Removed truncation from the MESSAGE-INTEGRITY attribute.

 o Add reference to C code in RFC 1952.

 o Replaced RFC 2818 reference to RFC 6125.

C.6. Modifications between draft-ietf-tram-stunbis-09 and draft-ietf-
tram-stunbis-08

 o Removed the reserved value in the security registry, as it does
 not make sense in a bitset.

 o Updated change list.

 o Updated the minimum truncation size for M-I-256 to 16 bytes.

https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-11
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-10
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-10
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-10
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-09
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-09
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-09
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08

Petit-Huguenin, et al. Expires July 18, 2018 [Page 61]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 o Changed the truncation order to match RFC 7518.

 o Fixed bugs in truncation boundary text.

 o Stated that STUN Usages have to explicitly state that they can use
 truncation.

 o Removed truncation from the MESSAGE-INTEGRITY attribute.

 o Add reference to C code in RFC 1952.

 o Replaced RFC 2818 reference to RFC 6125.

C.7. Modifications between draft-ietf-tram-stunbis-09 and draft-ietf-
tram-stunbis-08

 o Packets discarded in a reliable or unreliable transaction triggers
 an attack error instead of a timeout error. An attack error on a
 reliable transport is signaled immediately instead of waiting for
 the timeout.

 o Explicitly state that a received 400 response without
 authentication will be dropped until timeout.

 o Clarify the SHOULD omit/include rules in LTCM.

 o If the nonce and the hmac are both invalid, then a 401 is sent
 instead of a 438.

 o The 401 and 438 error response to subsequent requests may use the
 previous NONCE/password to authenticate, if they are still
 available.

 o Change "401 Unauthorized" to "401 Unauthenticated"

 o Make clear that in some cases it is impossible to add a MI or MI2
 even if the text says SHOULD NOT.

C.8. Modifications between draft-ietf-tram-stunbis-08 and draft-ietf-
tram-stunbis-07

 o Updated list of changes since RFC 5389.

 o More examples are automatically generated.

 o Message integrity truncation is fixed at a multiple of 4 bytes,
 because the padding will not decrease by more than this.

https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-09
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-08
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-07
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-07
https://datatracker.ietf.org/doc/html/rfc5389

Petit-Huguenin, et al. Expires July 18, 2018 [Page 62]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 o USERHASH contains the 32 bytes of the hash, not a character
 string.

 o Updated the example to use the USERHASH attribute and the modified
 NONCE attribute.

 o Updated ICEbis reference.

C.9. Modifications between draft-ietf-tram-stunbis-07 and draft-ietf-
tram-stunbis-06

 o Add USERHASH attribute to carry the hashed version of the
 username.

 o Add IANA registry and nonce encoding for Security Features that
 need to be protected from bid down attacks.

 o Modified MESSAGE-INTEGRITY and MESSAGE-INTEGRITY-SHA256 to support
 truncation limits (pending cryptographic review),

C.10. Modifications between draft-ietf-tram-stunbis-06 and draft-ietf-
tram-stunbis-05

 o Changed I-D references to RFC references.

 o Changed CHANGE-ADDRESS to CHANGE-REQUEST (Errata #4233).

 o Added test vector for MESSAGE-INTEGRITY-SHA256.

 o Address additional review comments from Jonathan Lennox and
 Brandon Williams.

C.11. Modifications between draft-ietf-tram-stunbis-05 and draft-ietf-
tram-stunbis-04

 o Address review comments from Jonathan Lennox and Brandon Williams.

C.12. Modifications between draft-ietf-tram-stunbis-04 and draft-ietf-
tram-stunbis-03

 o Remove SCTP.

 o Remove DANE.

 o s/MESSAGE-INTEGRITY2/MESSAGE-INTEGRITY-SHA256/

 o Remove Salted SHA256 password hash.

https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-07
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-06
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-06
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-06
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-05
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-05
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-05
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-03
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-03

Petit-Huguenin, et al. Expires July 18, 2018 [Page 63]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 o The RTO delay between transactions is removed.

 o Make clear that reusing NONCE will trigger a wasted round trip.

C.13. Modifications between draft-ietf-tram-stunbis-03 and draft-ietf-
tram-stunbis-02

 o SCTP prefix is now 0b00000101 instead of 0x11.

 o Add SCTP at various places it was needed.

 o Update the hash agility plan to take in account HMAC-SHA-256.

 o Adds the bid down attack on message-integrity in the security
 section.

C.14. Modifications between draft-ietf-tram-stunbis-02 and draft-ietf-
tram-stunbis-01

 o STUN hash algorithm agility (currently only SHA-1 is allowed).

 o Clarify terminology, text and guidance for STUN fragmentation.

 o Clarify whether it's valid to share nonces across TURN
 allocations.

 o Prevent the server to allocate the same NONCE to clients with
 different IP address and/or different port. This prevent sharing
 the nonce between TURN allocations in TURN.

 o Add reference to draft-ietf-uta-tls-bcp

 o Add a new attribute ALTERNATE-DOMAIN to verify the certificate of
 the ALTERNATE-SERVER after a 300 over (D)TLS.

 o The RTP delay between transactions applies only to parallel
 transactions, not to serial transactions. That prevents a 3RTT
 delay between the first transaction and the second transaction
 with long term authentication.

 o Add text saying ORIGIN can increase a request size beyond the MTU
 and so require an SCTPoUDP transport.

 o Move the Acknowledgments and Contributor sections to the end of
 the document, in accordance with RFC 7322 section 4.

https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-03
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls-bcp
https://datatracker.ietf.org/doc/html/rfc7322#section-4

Petit-Huguenin, et al. Expires July 18, 2018 [Page 64]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

C.15. Modifications between draft-ietf-tram-stunbis-01 and draft-ietf-
tram-stunbis-00

 o Add negotiation mechanism for new password algorithms.

 o Describe the MESSAGE-INTEGRITY/MESSAGE-INTEGRITY2 protocol.

 o Add support for SCTP to solve the fragmentation problem.

 o Merge RFC 7350:

 * Split the "Sending over..." sections in 3.

 * Add DTLS-over-UDP as transport.

 * Update the cipher suites and cipher/compression restrictions.

 * A stuns uri with an IP address is rejected.

 * Replace most of the RFC 3489 compatibility by a reference to
 the section in RFC 5389.

 * Update the STUN Usages list with transport applicability.

 o Merge RFC 7064:

 * DNS discovery is done from the URI.

 * Reorganized the text about default ports.

 o Add more C snippets.

 o Make clear that the cached RTO is discarded only if there is no
 new transations for 10 minutes.

C.16. Modifications between draft-salgueiro-tram-stunbis-02 and draft-
ietf-tram-stunbis-00

 o Draft adopted as WG item.

C.17. Modifications between draft-salgueiro-tram-stunbis-02 and draft-
salgueiro-tram-stunbis-01

 o Add definition of MESSAGE-INTEGRITY2.

 o Update text and reference from RFC 2988 to RFC 6298.

 o s/The IAB has mandated/The IAB has suggested/ (Errata #3737).

https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-00
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-00
https://datatracker.ietf.org/doc/html/rfc7350
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc7064
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-00
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-00
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-02
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-01
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc6298

Petit-Huguenin, et al. Expires July 18, 2018 [Page 65]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

 o Fix the figure for the UNKNOWN-ATTRIBUTES (Errata #2972).

 o Fix section number and make clear that the original domain name is
 used for the server certificate verification. This is consistent
 with what RFC 5922 (section 4) is doing. (Errata #2010)

 o Remove text transitioning from RFC 3489.

 o Add definition of MESSAGE-INTEGRITY2.

 o Update text and reference from RFC 2988 to RFC 6298.

 o s/The IAB has mandated/The IAB has suggested/ (Errata #3737).

 o Fix the figure for the UNKNOWN-ATTRIBUTES (Errata #2972).

 o Fix section number and make clear that the original domain name is
 used for the server certificate verification. This is consistent
 with what RFC 5922 (section 4) is doing. (Errata #2010)

C.18. Modifications between draft-salgueiro-tram-stunbis-01 and draft-
salgueiro-tram-stunbis-00

 o Restore the RFC 5389 text.

 o Add list of open issues.

Acknowledgements

 Thanks to Michael Tuexen, Tirumaleswar Reddy, Oleg Moskalenko, Simon
 Perreault, Benjamin Schwartz, Rifaat Shekh-Yusef, Alan Johnston,
 Jonathan Lennox, Brandon Williams, Olle Johansson, Martin Thomson,
 Mihaly Meszaros and Tolga Asveren for the comments, suggestions, and
 questions that helped improve this document.

 The authors of RFC 5389 would like to thank Cedric Aoun, Pete
 Cordell, Cullen Jennings, Bob Penfield, Xavier Marjou, Magnus
 Westerlund, Miguel Garcia, Bruce Lowekamp, and Chris Sullivan for
 their comments, and Baruch Sterman and Alan Hawrylyshen for initial
 implementations. Thanks for Leslie Daigle, Allison Mankin, Eric
 Rescorla, and Henning Schulzrinne for IESG and IAB input on this
 work.

Contributors

 Christian Huitema and Joel Weinberger were original co-authors of RFC
3489.

https://datatracker.ietf.org/doc/html/rfc5922
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5922
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-01
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-00
https://datatracker.ietf.org/doc/html/draft-salgueiro-tram-stunbis-00
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Petit-Huguenin, et al. Expires July 18, 2018 [Page 66]

Internet-Draft Session Traversal Utilities for NAT (STUN) January 2018

Authors' Addresses

 Marc Petit-Huguenin
 Impedance Mismatch

 Email: marc@petit-huguenin.org

 Gonzalo Salgueiro
 Cisco
 7200-12 Kit Creek Road
 Research Triangle Park, NC 27709
 US

 Email: gsalguei@cisco.com

 Jonathan Rosenberg
 Cisco
 Edison, NJ
 US

 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

 Dan Wing

 Email: dwing-ietf@fuggles.com

 Rohan Mahy
 Unaffiliated

 Email: rohan.ietf@gmail.com

 Philip Matthews
 Nokia
 600 March Road
 Ottawa, Ontario K2K 2T6
 Canada

 Phone: 613-784-3139
 Email: philip_matthews@magma.ca

http://www.jdrosen.net

Petit-Huguenin, et al. Expires July 18, 2018 [Page 67]

