
TRANS L. Nordberg
Internet-Draft NORDUnet
Intended status: Experimental D. Gillmor
Expires: July 18, 2018 ACLU
 T. Ritter
 January 14, 2018

Gossiping in CT
draft-ietf-trans-gossip-05

Abstract

 The logs in Certificate Transparency are untrusted in the sense that
 the users of the system don't have to trust that they behave
 correctly since the behavior of a log can be verified to be correct.

 This document tries to solve the problem with logs presenting a
 "split view" of their operations or failing to incorporate a
 submission within MMD. It describes three gossiping mechanisms for
 Certificate Transparency: SCT Feedback, STH Pollination and Trusted
 Auditor Relationship.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 18, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Nordberg, et al. Expires July 18, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Gossiping in CT January 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Defining the problem . 4
3. Overview . 4
4. Terminology . 5
4.1. Pre-Loaded vs Locally Added Anchors 5

5. Who gossips with whom . 5
6. What to gossip about and how 6
7. Data flow . 6
8. Gossip Mechanisms . 7
8.1. SCT Feedback . 7
8.1.1. SCT Feedback data format 8
8.1.2. HTTPS client to server 9
8.1.3. HTTPS server operation 11
8.1.4. HTTPS server to auditors 13

8.2. STH pollination . 14
8.2.1. HTTPS Clients and Proof Fetching 16
8.2.2. STH Pollination without Proof Fetching 17
8.2.3. Auditor Action 17
8.2.4. STH Pollination data format 18

8.3. Trusted Auditor Stream 18
8.3.1. Trusted Auditor data format 19

9. 3-Method Ecosystem . 20
9.1. SCT Feedback . 20
9.2. STH Pollination . 20
9.3. Trusted Auditor Relationship 21
9.4. Interaction . 22

10. Security considerations 23
10.1. Attacks by actively malicious logs 23
10.2. Dual-CA Compromise 23
10.3. Censorship/Blocking considerations 24
10.4. Flushing Attacks . 25
10.4.1. STHs . 25
10.4.2. SCTs & Certificate Chains on HTTPS Servers 26
10.4.3. SCTs & Certificate Chains on HTTPS Clients 27

10.5. Privacy considerations 27
10.5.1. Privacy and SCTs 27
10.5.2. Privacy in SCT Feedback 27

 10.5.3. Privacy for HTTPS clients performing STH Proof
 Fetching . 28

Nordberg, et al. Expires July 18, 2018 [Page 2]

Internet-Draft Gossiping in CT January 2018

10.5.4. Privacy in STH Pollination 29
10.5.5. Privacy in STH Interaction 29
10.5.6. Trusted Auditors for HTTPS Clients 30
10.5.7. HTTPS Clients as Auditors 30

11. Policy Recommendations 31
11.1. Blocking Recommendations 31
11.1.1. Frustrating blocking 31
11.1.2. Responding to possible blocking 31

11.2. Proof Fetching Recommendations 33
11.3. Record Distribution Recommendations 33
11.3.1. Mixing Algorithm 34
11.3.2. The Deletion Algorithm 35

11.4. Concrete Recommendations 36
11.4.1. STH Pollination 36
11.4.2. SCT Feedback . 40

12. IANA considerations . 53
13. Contributors . 53
14. ChangeLog . 53
14.1. Changes between ietf-04 and ietf-05 54
14.2. Changes between ietf-03 and ietf-04 54
14.3. Changes between ietf-02 and ietf-03 54
14.4. Changes between ietf-01 and ietf-02 54
14.5. Changes between ietf-00 and ietf-01 54
14.6. Changes between -01 and -02 55
14.7. Changes between -00 and -01 55

15. References . 55
15.1. Normative References 55
15.2. Informative References 56

 Authors' Addresses . 57

1. Introduction

 The purpose of the protocols in this document, collectively referred
 to as CT Gossip, is to detect certain misbehavior by CT logs. In
 particular, CT Gossip aims to detect logs that are providing
 inconsistent views to different log clients, and logs failing to
 include submitted certificates within the time period stipulated by
 MMD.

 One of the major challenges of any gossip protocol is limiting damage
 to user privacy. The goal of CT gossip is to publish and distribute
 information about the logs and their operations, but not to expose
 any additional information about the operation of any of the other
 participants. Privacy of consumers of log information (in
 particular, of web browsers and other TLS clients) should not be
 undermined by gossip.

Nordberg, et al. Expires July 18, 2018 [Page 3]

Internet-Draft Gossiping in CT January 2018

 This document presents three different, complementary mechanisms for
 non-log elements of the CT ecosystem to exchange information about
 logs in a manner that preserves the privacy of HTTPS clients. They
 should provide protective benefits for the system as a whole even if
 their adoption is not universal.

2. Defining the problem

 When a log provides different views of the log to different clients
 this is described as a partitioning attack. Each client would be
 able to verify the append-only nature of the log but, in the extreme
 case, each client might see a unique view of the log.

 The CT logs are public, append-only and untrusted and thus have to be
 audited for consistency, i.e., they should never rewrite history.
 Additionally, auditors and other log clients need to exchange
 information about logs in order to be able to detect a partitioning
 attack (as described above).

 Gossiping about log behavior helps address the problem of detecting
 malicious or compromised logs with respect to a partitioning attack.
 We want some side of the partitioned tree, and ideally all sides, to
 see at least one other side.

 Disseminating information about a log poses a potential threat to the
 privacy of end users. Some data of interest (e.g., SCTs) is linkable
 to specific log entries and thereby to specific websites, which makes
 sharing them with others a privacy concern. Gossiping about this
 data has to take privacy considerations into account in order not to
 expose associations between users of the log (e.g., web browsers) and
 certificate holders (e.g., web sites). Even sharing STHs (which do
 not link to specific log entries) can be problematic - user tracking
 by fingerprinting through rare STHs is one potential attack (see

Section 8.2).

3. Overview

 This document presents three gossiping mechanisms: SCT Feedback, STH
 Pollination, and a Trusted Auditor Relationship.

 SCT Feedback enables HTTPS clients to share Signed Certificate
 Timestamps (SCTs) (Section 4.8 of [RFC-6962-BIS-27]) with CT auditors
 in a privacy-preserving manner by sending SCTs to originating HTTPS
 servers, which in turn share them with CT auditors.

 In STH Pollination, HTTPS clients use HTTPS servers as pools to share
 Signed Tree Heads (STHs) (Section 4.10 of [RFC-6962-BIS-27]) with

Nordberg, et al. Expires July 18, 2018 [Page 4]

Internet-Draft Gossiping in CT January 2018

 other connecting clients in the hope that STHs will find their way to
 CT auditors.

 HTTPS clients in a Trusted Auditor Relationship share SCTs and STHs
 with trusted CT auditors directly, with expectations of privacy
 sensitive data being handled according to whatever privacy policy is
 agreed on between client and trusted party.

 Despite the privacy risks with sharing SCTs there is no loss in
 privacy if a client sends SCTs for a given site to the site
 corresponding to the SCT. This is because the site's cookies could
 already indicate that the client had accessed that site. In this way
 a site can accumulate records of SCTs that have been issued by
 various logs for that site, providing a consolidated repository of
 SCTs that could be shared with auditors. Auditors can use this
 information to detect a misbehaving log that fails to include a
 certificate within the time period stipulated by its MMD log
 parameter.

 Sharing an STH is considered reasonably safe from a privacy
 perspective as long as the same STH is shared by a large number of
 other log clients. This safety in numbers can be achieved by only
 allowing gossiping of STHs issued in a certain window of time, while
 also refusing to gossip about STHs from logs with too high an STH
 issuance frequency (see Section 8.2).

4. Terminology

 This document relies on terminology and data structures defined in
 [RFC-6962-BIS-27], including MMD, STH, SCT, Version, LogID, SCT
 timestamp, CtExtensions, SCT signature, Merkle Tree Hash.

 This document relies on terminology defined in
 [draft-ietf-trans-threat-analysis-12], including Auditing.

4.1. Pre-Loaded vs Locally Added Anchors

 Through the document, we refer to both Trust Anchors (Certificate
 Authorities) and Logs. Both Logs and Trust Anchors may be locally
 added by an administrator. Unless otherwise clarified, in both cases
 we refer to the set of Trust Anchors and Logs that come pre-loaded
 and pre-trusted in a piece of client software.

5. Who gossips with whom

 o HTTPS clients and servers (SCT Feedback and STH Pollination)

 o HTTPS servers and CT auditors (SCT Feedback and STH Pollination)

https://datatracker.ietf.org/doc/html/draft-ietf-trans-threat-analysis-12

Nordberg, et al. Expires July 18, 2018 [Page 5]

Internet-Draft Gossiping in CT January 2018

 o CT auditors (Trusted Auditor Relationship)

 Additionally, some HTTPS clients may engage with an auditor which
 they trust with their privacy:

 o HTTPS clients and CT auditors (Trusted Auditor Relationship)

6. What to gossip about and how

 There are three separate gossip streams:

 o SCT Feedback - transporting SCTs and certificate chains from HTTPS
 clients to CT auditors via HTTPS servers.

 o STH Pollination - HTTPS clients and CT auditors using HTTPS
 servers as STH pools for exchanging STHs.

 o Trusted Auditor Stream - HTTPS clients communicating directly with
 trusted CT auditors sharing SCTs, certificate chains and STHs.

 It is worthwhile to note that when an HTTPS client or CT auditor
 interacts with a log, they may equivalently interact with a log
 mirror or cache that replicates the log.

7. Data flow

 The following picture shows how certificates, SCTs and STHs flow
 through a CT system with SCT Feedback and STH Pollination. It does
 not show what goes in the Trusted Auditor Relationship stream.

Nordberg, et al. Expires July 18, 2018 [Page 6]

Internet-Draft Gossiping in CT January 2018

 +- Cert ---- +----------+
 | | CA | ----------+
 | + SCT -> +----------+ |
 v | Cert [& SCT]
 +----------+ |
 | Log | ---------- SCT -----------+
 +----------+ v
 | ^ +----------+
 | | SCTs & Certs --- | Website |
 | |[1] | +----------+
 | |[2] STHs ^ |
 | |[3] v | HTTPS traffic
 | | +----------+ | |
 | +--------> | Auditor | | SCT & Cert
 | +----------+ | |
 STH | STH & Inclusion proof
 | | |
 Log entries SCTs & Certs |
 | | |
 v STHs |
 +----------+ | v
 | Monitor | +----------+
 +----------+ | Browser |
 +----------+

 # Auditor Log
 [1] |--- get-sth ------------------->|
 |<-- STH ------------------------|
 [2] |--- leaf hash + tree size ----->|
 |<-- index + inclusion proof --->|
 [3] |--- tree size 1 + tree size 2 ->|
 |<-- consistency proof ----------|

8. Gossip Mechanisms

8.1. SCT Feedback

 The goal of SCT Feedback is for clients to share SCTs and certificate
 chains with CT auditors while still preserving the privacy of the end
 user. The sharing of SCTs contribute to the overall goal of
 detecting misbehaving logs by providing auditors with SCTs from many
 vantage points, making it more likely to catch a violation of a log's
 MMD or a log presenting inconsistent views. The sharing of
 certificate chains is beneficial to HTTPS server operators interested
 in direct feedback from clients for detecting bogus certificates
 issued in their name and therefore incentivizes server operators to
 take part in SCT Feedback.

Nordberg, et al. Expires July 18, 2018 [Page 7]

Internet-Draft Gossiping in CT January 2018

 SCT Feedback is the most privacy-preserving gossip mechanism, as it
 does not directly expose any links between an end user and the sites
 they've visited to any third party.

 HTTPS clients store SCTs and certificate chains they see, and later
 send them to the originating HTTPS server by posting them to a well-
 known URL (associated with that server), as described in

Section 8.1.2. Note that clients will send the same SCTs and chains
 to a server multiple times with the assumption that any man-in-the-
 middle attack eventually will cease, and an honest server will
 eventually receive collected malicious SCTs and certificate chains.

 HTTPS servers store SCTs and certificate chains received from
 clients, as described in Section 8.1.3. They later share them with
 CT auditors by either posting them to auditors or making them
 available via a well-known URL. This is described in Section 8.1.4.

8.1.1. SCT Feedback data format

 The data shared between HTTPS clients and servers, as well as between
 HTTPS servers and CT auditors, is a JSON array [RFC7159]. Each item
 in the array is a JSON object containing at least the first of the
 following members:

 o "x509_chain" : An array of PEM-encoded X.509 certificates. The
 first element is the end-entity certificate, the second certifies
 the first and so on. The "x509_chain" member is mandatory to
 include.

 o "sct_data_v1" : An array of base64 encoded
 "SignedCertificateTimestampList"s as defined in [RFC6962] section

3.3. The "sct_data_v1" member is optional.

 o "sct_data_v2" : An array of base64 encoded "TransItem" structures
 of type "x509_sct_v2" or "precert_sct_v2" as defined in
 [RFC-6962-BIS-27] section 4.8. The "sct_data_v2" member is
 optional.

 We will refer to this object as 'sct_feedback'.

 The x509_chain element always contains a full chain from a leaf
 certificate to a self-signed trust anchor.

 See Section 8.1.2 for details on what the sct_data element contains
 as well as more details about the x509_chain element.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc6962

Nordberg, et al. Expires July 18, 2018 [Page 8]

Internet-Draft Gossiping in CT January 2018

8.1.2. HTTPS client to server

 When an HTTPS client connects to an HTTPS server, the client receives
 a set of SCTs as part of the TLS handshake. SCTs are included in the
 TLS handshake using one or more of the three mechanisms described in
 [RFC-6962-BIS-27] section 6 - in the server certificate, in a TLS
 extension, or in an OCSP extension. The client MUST discard SCTs
 that are not signed by a log known to the client and SHOULD store the
 remaining SCTs together with a locally constructed certificate chain
 which is trusted (i.e., terminated in a pre-loaded or locally
 installed Trust Anchor) in an sct_feedback object or equivalent data
 structure for later use in SCT Feedback.

 The SCTs stored on the client MUST be keyed by the exact domain name
 the client contacted. They MUST NOT be sent to the well-known URI of
 any domain not matching the original domain (e.g., if the original
 domain is sub.example.com they must not be sent to
 sub.sub.example.com or to example.com.) In particular, they MUST NOT
 be sent to the well-known URI of any Subject Alternate Names
 specified in the certificate. In the case of certificates that
 validate multiple domain names, after visiting a second domain name
 specified in the certificate, the same SCT is expected to be stored
 once under each domain name's key. If Connection Reuse as defined in
 [RFC7540] is available, reusing an existing connection to
 sub.example.com to send data to sub.sub.example.com is permitted.

 Not following these constraints would increase the risk for two types
 of privacy breaches. First, the HTTPS server receiving the SCT would
 learn about other sites visited by the HTTPS client. Second,
 auditors receiving SCTs from the HTTPS server would learn information
 about other HTTPS servers visited by its clients.

 If the client later again connects to the same HTTPS server, it again
 receives a set of SCTs and calculates a certificate chain, and again
 creates an sct_feedback or similar object. If this object does not
 exactly match an existing object in the store, then the client MUST
 add this new object to the store, associated with the exact domain
 name contacted, as described above. An exact comparison is needed to
 ensure that attacks involving alternate chains are detected. An
 example of such an attack is described in
 [dual-ca-compromise-attack]. However, at least one optimization is
 safe and MAY be performed: If the certificate chain exactly matches
 an existing certificate chain, the client MAY store the union of the
 SCTs from the two objects in the first (existing) object.

 If the client does connect to the same HTTPS server a subsequent
 time, it MUST send to the server sct_feedback objects in the store
 that are associated with that domain name. However, it is not

https://datatracker.ietf.org/doc/html/rfc7540

Nordberg, et al. Expires July 18, 2018 [Page 9]

Internet-Draft Gossiping in CT January 2018

 necessary to send an sct_feedback object constructed from the current
 TLS session, and if the client does so, it MUST NOT be marked as sent
 in any internal tracking done by the client.

 Refer to Section 11.3 for recommendations for implementation.

 Because SCTs can be used as a tracking mechanism (see
Section 10.5.2), they deserve special treatment when they are

 received from (and provided to) domains that are loaded as
 subresources from an origin domain. Such domains are commonly called
 'third party domains'. An HTTPS client SHOULD store SCT Feedback
 using a 'double-keying' approach, which isolates third party domains
 by the first party domain. This is described in [double-keying].
 Gossip would be performed normally for third party domains only when
 the user revisits the first party domain. In lieu of 'double-
 keying', an HTTPS client MAY treat SCT Feedback in the same manner it
 treats other security mechanisms that can enable tracking (such as
 HSTS and HPKP.)

 SCT Feedback is only performed when a user connects to a site via
 intentional web browsing or normal third party resource inclusion.
 It MUST NOT be performed automatically as part of some sort of
 background process.

 Finally, if the HTTPS client has configuration options for not
 sending cookies to third parties, SCTs of third parties MUST be
 treated as cookies with respect to this setting. This prevents third
 party tracking through the use of SCTs/certificates, which would
 bypass the cookie policy. For domains that are only loaded as third
 party domains, the client may never perform SCT Feedback; however the
 client may perform STH Pollination after fetching an inclusion proof,
 as specified in Section 8.2.

 SCTs and corresponding certificates are POSTed to the originating
 HTTPS server at the well-known URL:

 https://<domain>/.well-known/ct-gossip/v1/sct-feedback

 The data sent in the POST is defined in Section 8.1.1. This data
 SHOULD be sent in an already-established TLS session. This makes it
 hard for an attacker to disrupt SCT Feedback without also disturbing
 ordinary secure browsing (https://). This is discussed more in

Section 11.1.1.

 The HTTPS server SHOULD respond with an HTTP 200 response code and an
 empty body if it was able to process the request. An HTTPS client
 which receives any other response SHOULD consider it an error.

Nordberg, et al. Expires July 18, 2018 [Page 10]

Internet-Draft Gossiping in CT January 2018

 Some clients have trust anchors or logs that are locally added (e.g.,
 by an administrator or by the user themselves). These additions are
 potentially privacy-sensitive because they can carry information
 about the specific configuration, computer, or user.

 Certificates validated by locally added trust anchors will commonly
 have no SCTs associated with them, so in this case no action is
 needed with respect to CT Gossip. SCTs issued by locally added logs
 MUST NOT be reported via SCT Feedback.

 If a certificate is validated by SCTs that are issued by publicly
 trusted logs, but chains to a local trust anchor, the client MAY
 perform SCT Feedback for this SCT and certificate chain bundle. If
 it does so, the client MUST include the full chain of certificates
 chaining to the local trust anchor in the x509_chain array.
 Performing SCT Feedback in this scenario may be advantageous for the
 broader internet and CT ecosystem, but may also disclose information
 about the client. If the client elects to omit SCT Feedback, it can
 choose to perform STH Pollination after fetching an inclusion proof,
 as specified in Section 8.2.

 We require the client to send the full chain (or nothing at all) for
 two reasons. Firstly, it simplifies the operation on the server if
 there are not two code paths. Secondly, omitting the chain does not
 actually preserve user privacy. The Issuer field in the certificate
 describes the signing certificate. And if the certificate is being
 submitted at all, it means the certificate is logged, and has SCTs.
 This means that the Issuer can be queried and obtained from the log,
 so omitting the signing certificate from the client's submission does
 not actually help user privacy.

8.1.3. HTTPS server operation

 HTTPS servers can be configured (or omit configuration), resulting
 in, broadly, two modes of operation. In the simpler mode, the server
 will only track leaf certificates and SCTs applicable to those leaf
 certificates. In the more complex mode, the server will confirm the
 client's chain validation and store the certificate chain. The
 latter mode requires more configuration, but is necessary to prevent
 denial of service (DoS) attacks on the server's storage space.

 In the simple mode of operation, upon receiving a submission at the
 sct-feedback well-known URL, an HTTPS server will perform a set of
 operations, checking on each sct_feedback object before storing it:

 o (1) the HTTPS server MAY modify the sct_feedback object, and
 discard all items in the x509_chain array except the first item
 (which is the end-entity certificate)

Nordberg, et al. Expires July 18, 2018 [Page 11]

Internet-Draft Gossiping in CT January 2018

 o (2) if a bit-wise compare of the sct_feedback object matches one
 already in the store, this sct_feedback object SHOULD be discarded

 o (3) if the leaf cert is not for a domain for which the server is
 authoritative, the SCT MUST be discarded

 o (4) if an SCT in the sct_data array can't be verified to be a
 valid SCT for the accompanying leaf cert, and issued by a known
 log, the individual SCT SHOULD be discarded

 The modification in step number 1 is necessary to prevent a malicious
 client from exhausting the server's storage space. A client can
 generate their own issuing certificate authorities, and create an
 arbitrary number of chains that terminate in an end-entity
 certificate with an existing SCT. By discarding all but the end-
 entity certificate, we prevent a simple HTTPS server from storing
 this data. Note that operation in this mode will not prevent the
 attack described in [dual-ca-compromise-attack]. Skipping this step
 requires additional configuration as described below.

 The check in step 2 is for detecting duplicates and minimizing
 processing and storage by the server. As on the client, an exact
 comparison is needed to ensure that attacks involving alternate
 chains are detected. Again, at least one optimization is safe and
 MAY be performed. If the certificate chain exactly matches an
 existing certificate chain, the server MAY store the union of the
 SCTs from the two objects in the first (existing) object. If the
 validity check on any of the SCTs fails, the server SHOULD NOT store
 the union of the SCTs.

 The check in step 3 is to help malfunctioning clients from exposing
 which sites they visit. It additionally helps prevent DoS attacks on
 the server.

 The check in step 4 is to prevent DoS attacks where an adversary
 fills up the store prior to attacking a client (thus preventing the
 client's feedback from being recorded), or an attack where an
 adversary simply attempts to fill up server's storage space.

 The above describes the simpler mode of operation. In the more
 advanced server mode, the server will detect the attack described in
 [dual-ca-compromise-attack]. In this configuration the server will
 not modify the sct_feedback object prior to performing checks 2, 3,
 and 4. Instead, to prevent a malicious client from filling the
 server's data store, the HTTPS server SHOULD perform an additional
 check in the more advanced mode:

Nordberg, et al. Expires July 18, 2018 [Page 12]

Internet-Draft Gossiping in CT January 2018

 o (5) if the x509_chain consists of an invalid certificate chain, or
 the culminating trust anchor is not recognized by the server, the
 server SHOULD modify the sct_feedback object, discarding all items
 in the x509_chain array except the first item

 The HTTPS server MAY choose to omit checks 4 or 5. This will place
 the server at risk of having its data store filled up by invalid
 data, but can also allow a server to identify interesting certificate
 or certificate chains that omit valid SCTs, or do not chain to a
 trusted root. This information may enable an HTTPS server operator
 to detect attacks or unusual behavior of Certificate Authorities even
 outside the Certificate Transparency ecosystem.

8.1.4. HTTPS server to auditors

 HTTPS servers receiving SCTs from clients SHOULD share SCTs and
 certificate chains with CT auditors by either serving them on the
 well-known URL:

 https://<domain>/.well-known/ct-gossip/v1/collected-sct-feedback

 or by HTTPS POSTing them to a set of preconfigured auditors. This
 allows an HTTPS server to choose between an active push model or a
 passive pull model.

 The data received in a GET of the well-known URL or sent in the POST
 is defined in Section 8.1.1 with the following difference: The
 x509_chain element may contain only he end-entity certificate, as
 described below.

 HTTPS servers SHOULD share all sct_feedback objects they see that
 pass the checks in Section 8.1.3. If this is an infeasible amount of
 data, the server MAY choose to expire submissions according to an
 undefined policy. Suggestions for such a policy can be found in

Section 11.3.

 HTTPS servers MUST NOT share any other data that they may learn from
 the submission of SCT Feedback by HTTPS clients, like the HTTPS
 client IP address or the time of submission.

 As described above, HTTPS servers can be configured (or omit
 configuration), resulting in two modes of operation. In one mode,
 the x509_chain array will contain a full certificate chain. This
 chain may terminate in a trust anchor the auditor may recognize, or
 it may not. (One scenario where this could occur is if the client
 submitted a chain terminating in a locally added trust anchor, and
 the server kept this chain.) In the other mode, the x509_chain array

Nordberg, et al. Expires July 18, 2018 [Page 13]

Internet-Draft Gossiping in CT January 2018

 will consist of only a single element, which is the end-entity
 certificate.

 Auditors SHOULD provide the following URL accepting HTTPS POSTing of
 SCT feedback data:

 https://<auditor>/ct-gossip/v1/sct-feedback

 Auditors SHOULD regularly poll HTTPS servers at the well-known
 collected-sct-feedback URL. The frequency of the polling and how to
 determine which domains to poll is outside the scope of this
 document. However, the selection MUST NOT be influenced by potential
 HTTPS clients connecting directly to the auditor. For example, if a
 poll to example.com occurs directly after a client submits an SCT for
 example.com, an adversary observing the auditor can trivially
 conclude the activity of the client.

8.2. STH pollination

 The goal of sharing Signed Tree Heads (STHs) through pollination is
 to share STHs between HTTPS clients and CT auditors while still
 preserving the privacy of the end user. The sharing of STHs
 contribute to the overall goal of detecting misbehaving logs by
 providing CT auditors with STHs from many vantage points, making it
 possible to detect logs that are presenting inconsistent views.

 HTTPS servers supporting the protocol act as STH pools. HTTPS
 clients and CT auditors in the possession of STHs can pollinate STH
 pools by sending STHs to them, and retrieving new STHs to send to
 other STH pools. CT auditors can improve the value of their auditing
 by retrieving STHs from pools.

 HTTPS clients send STHs to HTTPS servers by POSTing them to the well-
 known URL:

 https://<domain>/.well-known/ct-gossip/v1/sth-pollination

 The data sent in the POST is defined in Section 8.2.4. This data
 SHOULD be sent in an already established TLS session. This makes it
 hard for an attacker to disrupt STH gossiping without also disturbing
 ordinary secure browsing (https://). This is discussed more in

Section 11.1.1.

 On a successful connection to an HTTPS server implementing STH
 Pollination, the response code will be 200, and the response body is
 application/json, containing zero or more STHs in the same format, as
 described in Section 8.2.4.

Nordberg, et al. Expires July 18, 2018 [Page 14]

Internet-Draft Gossiping in CT January 2018

 An HTTPS client may acquire STHs by several methods:

 o in replies to pollination POSTs;

 o asking logs that it recognizes for the current STH, either
 directly (v2/get-sth) or indirectly (for example over DNS)

 o resolving an SCT and certificate to an STH via an inclusion proof

 o resolving one STH to another via a consistency proof

 HTTPS clients (that have STHs) and CT auditors SHOULD pollinate STH
 pools with STHs. Which STHs to send and how often pollination should
 happen is regarded as undefined policy with the exception of privacy
 concerns explained below. Suggestions for the policy can be found in

Section 11.3.

 An HTTPS client could be tracked by giving it a unique or rare STH.
 To address this concern, we place restrictions on different
 components of the system to ensure an STH will not be rare.

 o HTTPS clients silently ignore STHs from logs with an STH issuance
 frequency of more than one STH per hour. Logs use the STH
 Frequency Count log parameter to express this ([RFC-6962-BIS-27]

section 4.1).

 o HTTPS clients silently ignore STHs which are not fresh.

 An STH is considered fresh iff its timestamp is less than 14 days in
 the past. Given a maximum STH issuance rate of one per hour, an
 attacker has 336 unique STHs per log for tracking. Clients MUST
 ignore STHs older than 14 days. We consider STHs within this
 validity window not to be personally identifiable data, and STHs
 outside this window to be personally identifiable.

 When multiplied by the number of logs from which a client accepts
 STHs, this number of unique STHs grow and the negative privacy
 implications grow with it. It's important that this is taken into
 account when logs are chosen for default settings in HTTPS clients.
 This concern is discussed upon in Section 10.5.5.

 A log may cease operation, in which case there will soon be no STH
 within the validity window. Clients SHOULD perform all three methods
 of gossip about a log that has ceased operation since it is possible
 the log was still compromised and gossip can detect that. STH
 Pollination is the one mechanism where a client must know about a log
 shutdown. A client which does not know about a log shutdown MUST NOT
 attempt any heuristic to detect a shutdown. Instead the client MUST

Nordberg, et al. Expires July 18, 2018 [Page 15]

Internet-Draft Gossiping in CT January 2018

 be informed about the shutdown from a verifiable source (e.g., a
 software update), and be provided the final STH issued by the log.
 The client SHOULD resolve SCTs and STHs to this final STH. If an SCT
 or STH cannot be resolved to the final STH, clients SHOULD follow the
 requirements and recommendations set forth in Section 11.1.2.

8.2.1. HTTPS Clients and Proof Fetching

 There are two types of proofs a client may retrieve; inclusion proofs
 and consistency proofs.

 An HTTPS client will retrieve SCTs together with certificate chains
 from an HTTPS server. Using the timestamp in the SCT together with
 the end-entity certificate and the issuer key hash, it can obtain an
 inclusion proof to an STH in order to verify the promise made by the
 SCT.

 An HTTPS client will have STHs from performing STH Pollination, and
 may obtain a consistency proof to a more recent STH.

 An HTTPS client may also receive an SCT bundled with an inclusion
 proof to a historical STH via an unspecified future mechanism.
 Because this historical STH is considered personally identifiable
 information per above, the client needs to obtain a consistency proof
 to a more recent STH.

 A client SHOULD attempt proof fetching. A client MAY do network
 probing to determine if proof fetching may succeed, and if it learns
 that it does not, SHOULD periodically re-probe (especially after
 network change, if it is aware of these events.) If it does succeed,
 queued events can be processed.

 A client MUST NOT perform proof fetching for any SCTs or STHs issued
 by a locally added log. A client MAY fetch an inclusion proof for an
 SCT (issued by a pre-loaded log) that validates a certificate
 chaining to a locally added trust anchor.

 If a client requested either proof directly from a log or auditor, it
 would reveal the client's browsing habits to a third party. To
 mitigate this risk, an HTTPS client MUST retrieve the proof in a
 manner that disguises the client.

 Depending on the client's DNS provider, DNS may provide an
 appropriate intermediate layer that obfuscates the linkability
 between the user of the client and the request for inclusion (while
 at the same time providing a caching layer for oft-requested
 inclusion proofs). See [draft-ct-over-dns] for an example of how
 this can be done.

https://datatracker.ietf.org/doc/html/draft-ct-over-dns

Nordberg, et al. Expires July 18, 2018 [Page 16]

Internet-Draft Gossiping in CT January 2018

 Anonymity networks such as Tor also present a mechanism for a client
 to anonymously retrieve a proof from an auditor or log.

 Even when using a privacy-preserving layer between the client and the
 log, certain observations may be made about an anonymous client or
 general user behavior depending on how proofs are fetched. For
 example, if a client fetched all outstanding proofs at once, a log
 would know that SCTs or STHs received around the same time are more
 likely to come from a particular client. This could potentially go
 so far as correlation of activity at different times to a single
 client. In aggregate the data could reveal what sites are commonly
 visited together. HTTPS clients SHOULD use a strategy of proof
 fetching that attempts to obfuscate these patterns. A suggestion of
 such a policy can be found in Section 11.2.

 Resolving either SCTs and STHs may result in errors. These errors
 may be routine downtime or other transient errors, or they may be
 indicative of an attack. Clients SHOULD follow the requirements and
 recommendations set forth in Section 11.1.2 when handling these
 errors in order to give the CT ecosystem the greatest chance of
 detecting and responding to a compromise.

8.2.2. STH Pollination without Proof Fetching

 An HTTPS client MAY participate in STH Pollination without fetching
 proofs. In this situation, the client receives STHs from a server,
 applies the same validation logic to them (signed by a known log,
 within the validity window) and will later pass them to another HTTPS
 server.

 When operating in this fashion, the HTTPS client is promoting gossip
 for Certificate Transparency, but derives no direct benefit itself.
 In comparison, a client which resolves SCTs or historical STHs to
 recent STHs and pollinates them is assured that if it was attacked,
 there is a probability that the ecosystem will detect and respond to
 the attack (by distrusting the log).

8.2.3. Auditor Action

 CT auditors participate in STH pollination by retrieving STHs from
 HTTPS servers. They verify that the STH is valid by checking the
 signature, and requesting a consistency proof from the STH to the
 most recent STH.

 After retrieving the consistency proof to the most recent STH, they
 SHOULD pollinate this new STH among participating HTTPS servers. In
 this way, as STHs "age out" and are no longer fresh, their "lineage"
 continues to be tracked in the system.

Nordberg, et al. Expires July 18, 2018 [Page 17]

Internet-Draft Gossiping in CT January 2018

8.2.4. STH Pollination data format

 The data sent from HTTPS clients and CT auditors to HTTPS servers is
 a JSON object [RFC7159] with one or both of the following two
 members:

 o "v1" : array of 0 or more objects each containing an STH as
 returned from ct/v1/get-sth, see [RFC6962] section 4.3

 o "v2" : array of 0 or more objects each containing an STH as
 returned from ct/v2/get-sth, see [RFC-6962-BIS-27] section 5.2

 Note that all STHs MUST be fresh as defined in Section 8.2.

8.3. Trusted Auditor Stream

 HTTPS clients MAY send SCTs and cert chains, as well as STHs,
 directly to auditors. If sent, this data MAY include data that
 reflects locally added logs or trust anchors. Note that there are
 privacy implications in doing so, these are outlined in

Section 10.5.1 and Section 10.5.6.

 The most natural trusted auditor arrangement arguably is a web
 browser that is "logged in to" a provider of various internet
 services. Another equivalent arrangement is a trusted party like a
 corporation to which an employee is connected through a VPN or by
 other similar means. A third might be individuals or smaller groups
 of people running their own services. In such a setting, retrieving
 proofs from that third party could be considered reasonable from a
 privacy perspective. The HTTPS client may also do its own auditing
 and might additionally share SCTs and STHs with the trusted party to
 contribute to herd immunity. Here, the ordinary [RFC-6962-BIS-27]
 protocol is sufficient for the client to do the auditing while SCT
 Feedback and STH Pollination can be used in whole or in parts for the
 gossip part.

 Another well established trusted party arrangement on the internet
 today is the relation between internet users and their providers of
 DNS resolver services. DNS resolvers are typically provided by the
 internet service provider (ISP) used, which by the nature of name
 resolving already know a great deal about which sites their users
 visit. As mentioned in Section 8.2.1, in order for HTTPS clients to
 be able to retrieve proofs in a privacy preserving manner, logs could
 expose a DNS interface in addition to the ordinary HTTPS interface.
 A specification of such a protocol can be found in
 [draft-ct-over-dns].

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc6962#section-4.3
https://datatracker.ietf.org/doc/html/draft-ct-over-dns

Nordberg, et al. Expires July 18, 2018 [Page 18]

Internet-Draft Gossiping in CT January 2018

8.3.1. Trusted Auditor data format

 Trusted Auditors expose a REST API at the fixed URI:

 https://<auditor>/ct-gossip/v1/trusted-auditor

 Submissions are made by sending an HTTPS POST request, with the body
 of the POST in a JSON object. Upon successful receipt the Trusted
 Auditor returns 200 OK.

 The JSON object consists of two top-level keys: 'sct_feedback' and
 'sths'. The 'sct_feedback' value is an array of JSON objects as
 defined in Section 8.1.1. The 'sths' value is an array of STHs as
 defined in Section 8.2.4.

 Example:

 {
 'sct_feedback' :
 [
 {
 'x509_chain' :
 [
 '----BEGIN CERTIFICATE---\n
 AAA...',
 '----BEGIN CERTIFICATE---\n
 AAA...',
 ...
],
 'sct_data' :
 [
 'AAA...',
 'AAA...',
 ...
]
 }, ...
],
 'sths' :
 [
 'AAA...',
 'AAA...',
 ...
]
 }

Nordberg, et al. Expires July 18, 2018 [Page 19]

Internet-Draft Gossiping in CT January 2018

9. 3-Method Ecosystem

 The use of three distinct methods for auditing logs may seem
 excessive, but each represents a needed component in the CT
 ecosystem. To understand why, the drawbacks of each component must
 be outlined. In this discussion we assume that an attacker knows
 which mechanisms an HTTPS client and HTTPS server implement.

9.1. SCT Feedback

 SCT Feedback requires the cooperation of HTTPS clients and more
 importantly HTTPS servers. Although SCT Feedback does require a
 significant amount of server-side logic to respond to the
 corresponding APIs, this functionality does not require
 customization, so it may be pre-provided and work out of the box.
 However, to take full advantage of the system, an HTTPS server would
 wish to perform some configuration to optimize its operation:

 o Minimize its disk commitment by maintaining a list of known SCTs
 and certificate chains (or hashes thereof)

 o Maximize its chance of detecting a misissued certificate by
 configuring a trust store of CAs

 o Establish a "push" mechanism for POSTing SCTs to CT auditors

 These configuration needs, and the simple fact that it would require
 some deployment of software, means that some percentage of HTTPS
 servers will not deploy SCT Feedback.

 If SCT Feedback was the only mechanism in the ecosystem, any server
 that did not implement the feature would open itself and its users to
 attack without any possibility of detection.

 A webserver not deploying SCT Feedback (or an alternative method
 providing equivalent functionality) may never learn that it was a
 target of an attack by a malicious log, as described in Section 10.1,
 although the presence of an attack by the log could be learned
 through STH Pollination. Additionally, users who wish to have the
 strongest measure of privacy protection (by disabling STH Pollination
 Proof Fetching and forgoing a Trusted Auditor) could be attacked
 without risk of detection.

9.2. STH Pollination

 STH Pollination requires the cooperation of HTTPS clients, HTTPS
 servers, and logs.

Nordberg, et al. Expires July 18, 2018 [Page 20]

Internet-Draft Gossiping in CT January 2018

 For a client to fully participate in STH Pollination, and have this
 mechanism detect attacks against it, the client must have a way to
 safely perform Proof Fetching in a privacy preserving manner. (The
 client may pollinate STHs it receives without performing Proof
 Fetching, but we do not consider this option in this section.)

 HTTPS servers must deploy software (although, as in the case with SCT
 Feedback this logic can be pre-provided) and commit some configurable
 amount of disk space to the endeavor.

 Logs (or a third party mirroring the logs) must provide access to
 clients to query proofs in a privacy preserving manner, most likely
 through DNS.

 Unlike SCT Feedback, the STH Pollination mechanism is not hampered if
 only a minority of HTTPS servers deploy it. However, it makes an
 assumption that an HTTPS client performs Proof Fetching (such as the
 DNS mechanism discussed). Unfortunately, any manner that is
 anonymous for some (such as clients which use shared DNS services
 such as a large ISP), may not be anonymous for others.

 For instance, DNS requests expose a considerable amount of sensitive
 information (including what data is already present in the cache) in
 plaintext over the network. For this reason, some percentage of
 HTTPS clients may choose to not enable the Proof Fetching component
 of STH Pollination. (Although they can still request and send STHs
 among participating HTTPS servers, even when this affords them no
 direct benefit.)

 If STH Pollination was the only mechanism deployed, users that
 disable it would be able to be attacked without risk of detection.

 If STH Pollination (or an alternative method providing equivalent
 functionality) was not deployed, HTTPS clients visiting HTTPS Servers
 which did not deploy SCT Feedback could be attacked without risk of
 detection.

9.3. Trusted Auditor Relationship

 The Trusted Auditor Relationship is expected to be the rarest gossip
 mechanism, as an HTTPS client is providing an unadulterated report of
 its browsing history to a third party. While there are valid and
 common reasons for doing so, there is no appropriate way to enter
 into this relationship without retrieving informed consent from the
 user.

 However, the Trusted Auditor Relationship mechanism still provides
 value to a class of HTTPS clients. For example, web crawlers have no

Nordberg, et al. Expires July 18, 2018 [Page 21]

Internet-Draft Gossiping in CT January 2018

 concept of a "user" and no expectation of privacy. Organizations
 already performing network auditing for anomalies or attacks can run
 their own Trusted Auditor for the same purpose with marginal increase
 in privacy concerns.

 The ability to change one's Trusted Auditor is a form of Trust
 Agility that allows a user to choose who to trust, and be able to
 revise that decision later without consequence. A Trusted Auditor
 connection can be made more confidential than DNS (through the use of
 TLS), and can even be made (somewhat) anonymous through the use of
 anonymity services such as Tor. (Note that this does ignore the de-
 anonymization possibilities available from viewing a user's browsing
 history.)

 If the Trusted Auditor relationship was the only mechanism deployed,
 users who do not enable it (the majority) would be able to be
 attacked without risk of detection.

 If the Trusted Auditor relationship was not deployed, crawlers and
 organizations would build it themselves for their own needs. By
 standardizing it, users who wish to opt-in (for instance those
 unwilling to participate fully in STH Pollination) can have an
 interoperable standard they can use to choose and change their
 trusted auditor.

9.4. Interaction

 Assuming no other log consistency measures exist, clients who perform
 only a subset of the mechanisms described in this document are
 exposed to the following vulnerabilities:

 HTTPS clients can be attacked without risk of detection if they do
 not participate in any of the three mechanisms.

 HTTPS clients are afforded the greatest chance of detecting an attack
 when they either participate in both SCT Feedback and STH Pollination
 with Proof Fetching or if they have a Trusted Auditor relationship.
 (Participating in SCT Feedback is the only way specified in this
 document to prevent a malicious log from refusing to ever resolve an
 SCT to an STH, as put forward in Section 10.1). Additionally,
 participating in SCT Feedback enables an HTTPS client to assist in
 detecting the exact target of an attack.

 HTTPS servers that omit SCT Feedback enable malicious logs to carry
 out attacks without risk of detection. If these servers are targeted
 specifically, even if the attack is detected, without SCT Feedback
 they may never learn that they were specifically targeted. HTTPS
 servers without SCT Feedback do gain some measure of herd immunity,

Nordberg, et al. Expires July 18, 2018 [Page 22]

Internet-Draft Gossiping in CT January 2018

 but only because their clients participate in STH Pollination (with
 Proof Fetching) or have a Trusted Auditor Relationship.

 When HTTPS servers omit SCT feedback, it allows their users to be
 attacked without detection by a malicious log; the vulnerable users
 are those who do not have a Trusted Auditor relationship.

10. Security considerations

10.1. Attacks by actively malicious logs

 One of the most powerful attacks possible in the CT ecosystem is a
 trusted log that has actively decided to be malicious. It can carry
 out an attack in at least two ways:

 In the first attack, the log can present a split view of the log for
 all time. This attack can be detected by CT auditors, but a naive
 auditor implementation may fail to do so. The simplest, least
 efficient way to detect the attack is to mirror the entire log and
 assert inclusion of every peice of data. If an auditor does not
 mirror the log, one way to detect this attack is to resolve each view
 of the log to the most recent STHs available and then force the log
 to present a consistency proof. (Which it cannot.) We highly
 recommend auditors plan for this attack scenario and ensure it will
 be detected.

 In the second attack, the log can sign an SCT, and refuse to ever
 include the certificate that the SCT refers to in the tree.
 (Alternately, it can include it in a branch of the tree and issue an
 STH, but then abandon that branch.) Whenever someone requests an
 inclusion proof for that SCT (or a consistency proof from that STH),
 the log would respond with an error, and a client may simply regard
 the response as a transient error. This attack can be detected using
 SCT Feedback, or an Auditor of Last Resort, as presented in

Section 11.1.2.

 Both of these attack variants can be detected by CT auditors who have
 obtained an STH of an 'abnormal' view of the log. However, they may
 not be able to link the STH to any particular SCT or Certificate.
 This means that while the log misbehavior was successfully detected,
 the target of the attack was not identified. To assertively identify
 the target(s) of the attack, SCT Feedback is necessary.

10.2. Dual-CA Compromise

 [dual-ca-compromise-attack] describes an attack possible by an
 adversary who compromises two Certificate Authorities and a Log. This
 attack is difficult to defend against in the CT ecosystem, and

Nordberg, et al. Expires July 18, 2018 [Page 23]

Internet-Draft Gossiping in CT January 2018

 [dual-ca-compromise-attack] describes a few approaches to doing so.
 We note that Gossip is not intended to defend against this attack,
 but can in certain modes.

 Defending against the Dual-CA Compromise attack requires SCT
 Feedback, and explicitly requires the server to save full certificate
 chains (described in Section 8.1.3 as the 'complex' configuration.)
 After CT auditors receive the full certificate chains from servers,
 they MAY compare the chain built by clients to the chain supplied by
 the log. If the chains differ significantly, the auditor SHOULD
 raise a concern. A method of determining if chains differ
 significantly is by asserting that one chain is not a subset of the
 other and that the roots of the chains are different.

10.3. Censorship/Blocking considerations

 We assume a network attacker who is able to fully control the
 client's internet connection for some period of time, including
 selectively blocking requests to certain hosts and truncating TLS
 connections based on information observed or guessed about client
 behavior. In order to successfully detect log misbehavior, the
 gossip mechanisms must still work even in these conditions.

 There are several gossip connections that can be blocked:

 1. Clients sending SCTs to servers in SCT Feedback

 2. Servers sending SCTs to auditors in SCT Feedback (server push
 mechanism)

 3. Servers making SCTs available to auditors (auditor pull
 mechanism)

 4. Clients fetching proofs in STH Pollination

 5. Clients sending STHs to servers in STH Pollination

 6. Servers sending STHs to clients in STH Pollination

 7. Clients sending SCTs to Trusted Auditors

 If a party cannot connect to another party, it can be assured that
 the connection did not succeed. While it may not have been
 maliciously blocked, it knows the transaction did not succeed.
 Mechanisms which result in a positive affirmation from the recipient
 that the transaction succeeded allow confirmation that a connection
 was not blocked. In this situation, the party can factor this into
 strategies suggested in Section 11.3 and in Section 11.1.2.

Nordberg, et al. Expires July 18, 2018 [Page 24]

Internet-Draft Gossiping in CT January 2018

 The connections that allow positive affirmation are 1, 2, 4, 5, and
 7.

 More insidious is blocking the connections that do not allow positive
 confirmation: 3 and 6. An attacker may truncate or drop a response
 from a server to a client, such that the server believes it has
 shared data with the recipient, when it has not. However, in both
 scenarios (3 and 6), the server cannot distinguish the client as a
 cooperating member of the CT ecosystem or as an attacker performing a
 Sybil attack, aiming to flush the server's data store. Therefore the
 fact that these connections can be undetectably blocked does not
 actually alter the threat model of servers responding to these
 requests. The choice of algorithm to release data is crucial to
 protect against these attacks; strategies are suggested in

Section 11.3.

 Handling censorship and network blocking (which is indistinguishable
 from network error) is relegated to the implementation policy chosen
 by clients. Suggestions for client behavior are specified in

Section 11.1.

10.4. Flushing Attacks

 A flushing attack is an attempt by an adversary to flush a particular
 piece of data from a pool. In the CT Gossip ecosystem, an attacker
 may have performed an attack and left evidence of a compromised log
 on a client or server. They would be interested in flushing that
 data, i.e. tricking the target into gossiping or pollinating the
 incriminating evidence with only attacker-controlled clients or
 servers with the hope they trick the target into deleting it.

 Flushing attacks may be defended against differently depending on the
 entity (HTTPS client or HTTPS server) and record (STHs or SCTs with
 Certificate Chains).

10.4.1. STHs

 For both HTTPS clients and HTTPS servers, STHs within the validity
 window SHOULD NOT be deleted. An attacker cannot flush an item from
 the cache if it is never removed so flushing attacks are completely
 mitigated.

 The required disk space for all STHs within the validity window is
 336 STHs per log that is trusted. If 20 logs are trusted, and each
 STH takes 1 Kilobytes, this is 6.56 Megabytes.

 Note that it is important that implementors do not calculate the
 exact size of cache expected - if an attack does occur, a small

Nordberg, et al. Expires July 18, 2018 [Page 25]

Internet-Draft Gossiping in CT January 2018

 number of additional, fraudulent STHs will enter into the cache.
 These STHs will be in addition to the expected set, and will be
 evidence of the attack. Flooding the cache will not work, as an
 attacker would have to include fraudulent STHs in the flood.

 If an HTTPS client or HTTPS server is operating in a constrained
 environment and cannot devote enough storage space to hold all STHs
 within the validity window it is recommended to use the below
 Deletion Algorithm in section Section 11.3.2 to make it more
 difficult for the attacker to perform a flushing attack.

10.4.2. SCTs & Certificate Chains on HTTPS Servers

 An HTTPS server will only accept SCTs and Certificate Chains for
 domains it is authoritative for. Therefore the storage space needed
 is bound by the number of logs it accepts, multiplied by the number
 of domains it is authoritative for, multiplied by the number of
 certificates issued for those domains.

 Imagine a server authoritative for 10,000 domains, and each domain
 has 3 certificate chains, and 10 SCTs. A certificate chain is 5
 Kilobytes in size and an SCT 1 Kilobyte. This yields 732 Megabytes.

 This data can be large, but it is calculable. Web properties with
 more certificates and domains are more likely to be able to handle
 the increased storage need, while small web properties will not seen
 an undue burden. Therefore HTTPS servers SHOULD NOT delete SCTs or
 Certificate Chains. This completely mitigates flushing attacks.

 Again, note that it is important that implementors do not calculate
 the exact size of cache expected - if an attack does occur, the new
 SCT(s) and Certificate Chain(s) will enter into the cache. This data
 will be in addition to the expected set, and will be evidence of the
 attack.

 If an HTTPS server is operating in a constrained environment and
 cannot devote enough storage space to hold all SCTs and Certificate
 Chains it is authoritative for it is recommended to configure the SCT
 Feedback mechanism to allow only certain certificates that are known
 to be valid. These chains and SCTs can then be discarded without
 being stored or subsequently provided to any clients or auditors. If
 the allowlist is not sufficient, the below Deletion Algorithm in

Section 11.3.2 is recommended to make it more difficult for the
 attacker to perform a flushing attack.

Nordberg, et al. Expires July 18, 2018 [Page 26]

Internet-Draft Gossiping in CT January 2018

10.4.3. SCTs & Certificate Chains on HTTPS Clients

 HTTPS clients will accumulate SCTs and Certificate Chains without
 bound. It is expected they will choose a particular cache size and
 delete entries when the cache size meets its limit. This does not
 mitigate flushing attacks, and such an attack is documented in
 [gossip-mixing].

 The below Deletion Algorithm Section 11.3.2 is recommended to make it
 more difficult for the attacker to perform a flushing attack.

10.5. Privacy considerations

 CT Gossip deals with HTTPS clients which are trying to share
 indicators that correspond to their browsing history. The most
 sensitive relationships in the CT ecosystem are the relationships
 between HTTPS clients and HTTPS servers. Client-server relationships
 can be aggregated into a network graph with potentially serious
 implications for correlative de-anonymization of clients and
 relationship-mapping or clustering of servers or of clients.

 There are, however, certain clients that do not require privacy
 protection. Examples of these clients are web crawlers or robots.
 But even in this case, the method by which these clients crawl the
 web may in fact be considered sensitive information. In general, it
 is better to err on the side of safety, and not assume a client is
 okay with giving up its privacy.

10.5.1. Privacy and SCTs

 An SCT contains information that links it to a particular web site.
 Because the client-server relationship is sensitive, gossip between
 clients and servers about unrelated SCTs is risky. Therefore, a
 client with an SCT for a given server SHOULD NOT transmit that
 information in any other than the following two channels: to the
 server associated with the SCT itself (via a TLS connection with a
 certificate identifying the Domain Name of the web site with a Host
 header specifying the domain name); or to a Trusted Auditor, if one
 exists.

10.5.2. Privacy in SCT Feedback

 SCTs introduce yet another mechanism for HTTPS servers to store state
 on an HTTPS client, and potentially track users. HTTPS clients which
 allow users to clear history or cookies associated with an origin
 MUST clear stored SCTs and certificate chains associated with the
 origin as well.

Nordberg, et al. Expires July 18, 2018 [Page 27]

Internet-Draft Gossiping in CT January 2018

 Auditors should treat all SCTs as sensitive data. SCTs received
 directly from an HTTPS client are especially sensitive, because the
 auditor is a trusted by the client to not reveal their associations
 with servers. Auditors MUST NOT share such SCTs in any way,
 including sending them to an external log, without first mixing them
 with multiple other SCTs learned through submissions from multiple
 other clients. Suggestions for mixing SCTs are presented in

Section 11.3.

 There is a possible fingerprinting attack where a log issues a unique
 SCT for targeted log client(s). A colluding log and HTTPS server
 operator could therefore be a threat to the privacy of an HTTPS
 client. Given all the other opportunities for HTTPS servers to
 fingerprint clients - TLS session tickets, HPKP and HSTS headers,
 HTTP Cookies, etc. - this is considered acceptable.

 The fingerprinting attack described above would be mitigated by a
 requirement that logs must use a deterministic signature scheme when
 signing SCTs ([RFC-6962-BIS-27] section 2.2). A log signing using
 RSA is not required to use a deterministic signature scheme.

 Since logs are allowed to issue a new SCT for a certificate already
 present in the log, mandating deterministic signatures does not stop
 this fingerprinting attack altogether. It does make the attack
 harder to pull off without being detected though.

 There is another similar fingerprinting attack where an HTTPS server
 tracks a client by using a unique certificate or a variation of cert
 chains. The risk for this attack is accepted on the same grounds as
 the unique SCT attack described above.

10.5.3. Privacy for HTTPS clients performing STH Proof Fetching

 An HTTPS client performing Proof Fetching SHOULD NOT request proofs
 from a CT log that it doesn't accept SCTs from. An HTTPS client
 SHOULD regularly request an STH from all logs it is willing to
 accept, even if it has seen no SCTs from that log.

 The time between two polls for new STH's SHOULD NOT be significantly
 shorter than the MMD of the polled log divided by its STH Frequency
 Count ([RFC-6962-BIS-27] section 4.1).

 The actual mechanism by which Proof Fetching is done carries
 considerable privacy concerns. Although out of scope for the
 document, DNS is a mechanism currently discussed. DNS exposes data
 in plaintext over the network (including what sites the user is
 visiting and what sites they have previously visited) and may not be
 suitable for some.

Nordberg, et al. Expires July 18, 2018 [Page 28]

Internet-Draft Gossiping in CT January 2018

10.5.4. Privacy in STH Pollination

 An STH linked to an HTTPS client may indicate the following about
 that client:

 o that the client gossips;

 o that the client has been using CT at least until the time that the
 timestamp and the tree size indicate;

 o that the client is talking, possibly indirectly, to the log
 indicated by the tree hash;

 o which software and software version is being used.

 There is a possible fingerprinting attack where a log issues a unique
 STH for a targeted HTTPS client. This is similar to the
 fingerprinting attack described in Section 10.5.2, but can operate
 cross-origin. If a log (or HTTPS server cooperating with a log)
 provides a unique STH to a client, the targeted client will be the
 only client pollinating that STH cross-origin.

 It is mitigated partially because the log is limited in the number of
 STHs it can issue. It must 'save' one of its STHs each MMD to
 perform the attack. A log violating its STH Frequency Count
 ([RFC-6962-BIS-27] section 4.1) can be identified as non-compliant by
 CT auditors following the procedure described in [RFC-6962-BIS-27]

section 8.3.

10.5.5. Privacy in STH Interaction

 An HTTPS client may pollinate any STH within the last 14 days. An
 HTTPS client may also pollinate an STH for any log that it knows
 about. When a client pollinates STHs to a server, it will release
 more than one STH at a time. It is unclear if a server may 'prime' a
 client and be able to reliably detect the client at a later time.

 It's clear that a single site can track a user any way they wish, but
 this attack works cross-origin and is therefore more concerning. Two
 independent sites A and B want to collaborate to track a user cross-
 origin. A feeds a client Carol some N specific STHs from the M logs
 Carol trusts, chosen to be older and less common, but still in the
 validity window. Carol visits B and chooses to release some of the
 STHs she has stored, according to some policy.

 Modeling a representation for how common older STHs are in the pools
 of clients, and examining that with a given policy of how to choose
 which of those STHs to send to B, it should be possible to calculate

Nordberg, et al. Expires July 18, 2018 [Page 29]

Internet-Draft Gossiping in CT January 2018

 statistics about how unique Carol looks when talking to B and how
 useful/accurate such a tracking mechanism is.

 Building such a model is likely impossible without some real world
 data, and requires a given implementation of a policy. To combat
 this attack, suggestions are provided in Section 11.3 to attempt to
 minimize it, but follow-up testing with real world deployment to
 improve the policy will be required.

10.5.6. Trusted Auditors for HTTPS Clients

 Some HTTPS clients may choose to use a trusted auditor. This trust
 relationship exposes a large amount of information about the client
 to the auditor. In particular, it will identify the web sites that
 the client has visited to the auditor. Some clients may already
 share this information to a third party, for example, when using a
 server to synchronize browser history across devices in a server-
 visible way, or when doing DNS lookups through a trusted DNS
 resolver. For clients with such a relationship already established,
 sending SCTs to a trusted auditor run by the same organization does
 not appear to expose any additional information to the trusted third
 party.

 Clients which wish to contact a CT auditor without associating their
 identities with their SCTs may wish to use an anonymizing network
 like Tor to submit SCT Feedback to the auditor. Auditors SHOULD
 accept SCT Feedback that arrives over such anonymizing networks.

 Clients sending feedback to an auditor may prefer to reduce the
 temporal granularity of the history exposure to the auditor by
 caching and delaying their SCT Feedback reports. This is elaborated
 upon in Section 11.3. This strategy is only as effective as the
 granularity of the timestamps embedded in the SCTs and STHs.

10.5.7. HTTPS Clients as Auditors

 Some HTTPS clients may choose to act as CT auditors themselves. A
 Client taking on this role needs to consider the following:

 o an Auditing HTTPS client potentially exposes its history to the
 logs that they query. Querying the log through a cache or a proxy
 with many other users may avoid this exposure, but may expose
 information to the cache or proxy, in the same way that a non-
 Auditing HTTPS Client exposes information to a Trusted Auditor.

 o an effective CT auditor needs a strategy about what to do in the
 event that it discovers misbehavior from a log. Misbehavior from
 a log involves the log being unable to provide either (a) a

Nordberg, et al. Expires July 18, 2018 [Page 30]

Internet-Draft Gossiping in CT January 2018

 consistency proof between two valid STHs or (b) an inclusion proof
 for a certificate to an STH any time after the log's MMD has
 elapsed from the issuance of the SCT. The log's inability to
 provide either proof will not be externally cryptographically-
 verifiable, as it may be indistinguishable from a network error.

11. Policy Recommendations

 This section is intended as suggestions to implementors of HTTPS
 Clients, HTTPS servers, and CT auditors. It is not a requirement for
 technique of implementation, so long as the privacy considerations
 established above are obeyed.

11.1. Blocking Recommendations

11.1.1. Frustrating blocking

 When making gossip connections to HTTPS servers or Trusted Auditors,
 it is desirable to minimize the plaintext metadata in the connection
 that can be used to identify the connection as a gossip connection
 and therefore be of interest to block. Additionally, introducing
 some randomness into client behavior may be important. We assume
 that the adversary is able to inspect the behavior of the HTTPS
 client and understand how it makes gossip connections.

 As an example, if a client, after establishing a TLS connection (and
 receiving an SCT, but not making its own HTTP request yet),
 immediately opens a second TLS connection for the purpose of gossip,
 the adversary can reliably block this second connection to block
 gossip without affecting normal browsing. For this reason it is
 recommended to run the gossip protocols over an existing connection
 to the server, making use of connection multiplexing such as HTTP
 Keep-Alive or SPDY.

 Truncation is also a concern. If a client always establishes a TLS
 connection, makes a request, receives a response, and then always
 attempts a gossip communication immediately following the first
 response, truncation will allow an attacker to block gossip reliably.

 For these reasons, we recommend that, if at all possible, clients
 SHOULD send gossip data in an already established TLS session. This
 can be done through the use of HTTP Pipelining, SPDY, or HTTP/2.

11.1.2. Responding to possible blocking

 In some circumstances a client may have a piece of data that they
 have attempted to share (via SCT Feedback or STH Pollination), but

Nordberg, et al. Expires July 18, 2018 [Page 31]

Internet-Draft Gossiping in CT January 2018

 have been unable to do so: with every attempt they receive an error.
 These situations are:

 1. The client has an SCT and a certificate, and attempts to retrieve
 an inclusion proof - but receives an error on every attempt.

 2. The client has an STH, and attempts to resolve it to a newer STH
 via a consistency proof - but receives an error on every attempt.

 3. The client has attempted to share an SCT and constructed
 certificate via SCT Feedback - but receives an error on every
 attempt.

 4. The client has attempted to share an STH via STH Pollination -
 but receives an error on every attempt.

 5. The client has attempted to share a specific piece of data with a
 Trusted Auditor - but receives an error on every attempt.

 In the case of 1 or 2, it is conceivable that the reason for the
 errors is that the log acted improperly, either through malicious
 actions or compromise. A proof may not be able to be fetched because
 it does not exist (and only errors or timeouts occur). One such
 situation may arise because of an actively malicious log, as
 presented in Section 10.1. This data is especially important to
 share with the broader internet to detect this situation.

 If an SCT has attempted to be resolved to an STH via an inclusion
 proof multiple times, and each time has failed, this SCT might very
 well be a compromising proof of an attack. However the client MUST
 NOT share the data with any other third party (excepting a Trusted
 Auditor should one exist).

 If an STH has attempted to be resolved to a newer STH via a
 consistency proof multiple times, and each time has failed, a client
 MAY share the STH with an "Auditor of Last Resort" even if the STH in
 question is no longer within the validity window. This auditor may
 be pre-configured in the client, but the client SHOULD permit a user
 to disable the functionality or change whom data is sent to. The
 Auditor of Last Resort itself represents a point of failure and
 privacy concerns, so if implemented, it SHOULD connect using public
 key pinning and not consider an item delivered until it receives a
 confirmation.

 In the cases 3, 4, and 5, we assume that the webserver(s) or trusted
 auditor in question is either experiencing an operational failure, or
 being attacked. In both cases, a client SHOULD retain the data for
 later submission (subject to Private Browsing or other history-

Nordberg, et al. Expires July 18, 2018 [Page 32]

Internet-Draft Gossiping in CT January 2018

 clearing actions taken by the user.) This is elaborated upon more in
Section 11.3.

11.2. Proof Fetching Recommendations

 Proof fetching (both inclusion proofs and consistency proofs) SHOULD
 be performed at random time intervals. If proof fetching occurred
 all at once, in a flurry of activity, a log would know that SCTs or
 STHs received around the same time are more likely to come from a
 particular client. While proof fetching is required to be done in a
 manner that attempts to be anonymous from the perspective of the log,
 the correlation of activity to a single client would still reveal
 patterns of user behavior we wish to keep confidential. These
 patterns could be recognizable as a single user, or could reveal what
 sites are commonly visited together in the aggregate.

11.3. Record Distribution Recommendations

 In several components of the CT Gossip ecosystem, the recommendation
 is made that data from multiple sources be ingested, mixed, stored
 for an indeterminate period of time, provided (multiple times) to a
 third party, and eventually deleted. The instances of these
 recommendations in this draft are:

 o When a client receives SCTs during SCT Feedback, it should store
 the SCTs and Certificate Chain for some amount of time, provide
 some of them back to the server at some point, and may eventually
 remove them from its store

 o When a client receives STHs during STH Pollination, it should
 store them for some amount of time, mix them with other STHs,
 release some of them them to various servers at some point,
 resolve some of them to new STHs, and eventually remove them from
 its store

 o When a server receives SCTs during SCT Feedback, it should store
 them for some period of time, provide them to auditors some number
 of times, and may eventually remove them

 o When a server receives STHs during STH Pollination, it should
 store them for some period of time, mix them with other STHs,
 provide some of them to connecting clients, may resolve them to
 new STHs via Proof Fetching, and eventually remove them from its
 store

 o When a Trusted Auditor receives SCTs or historical STHs from
 clients, it should store them for some period of time, mix them

Nordberg, et al. Expires July 18, 2018 [Page 33]

Internet-Draft Gossiping in CT January 2018

 with SCTs received from other clients, and act upon them at some
 period of time

 Each of these instances have specific requirements for user privacy,
 and each have options that may not be invoked. As one example, an
 HTTPS client should not mix SCTs from server A with SCTs from server
 B and release server B's SCTs to Server A. As another example, an
 HTTPS server may choose to resolve STHs to a single more current STH
 via proof fetching, but it is under no obligation to do so.

 These requirements should be met, but the general problem of
 aggregating multiple pieces of data, choosing when and how many to
 release, and when to remove them is shared. This problem has
 previously been considered in the case of Mix Networks and Remailers,
 including papers such as [trickle].

 There are several concerns to be addressed in this area, outlined
 below.

11.3.1. Mixing Algorithm

 When SCTs or STHs are recorded by a participant in CT Gossip and
 later used, it is important that they are selected from the datastore
 in a non-deterministic fashion.

 This is most important for servers, as they can be queried for SCTs
 and STHs anonymously. If the server used a predictable ordering
 algorithm, an attacker could exploit the predictability to learn
 information about a client. One such method would be by observing
 the (encrypted) traffic to a server. When a client of interest
 connects, the attacker makes a note. They observe more clients
 connecting, and predicts at what point the client-of-interest's data
 will be disclosed, and ensures that they query the server at that
 point.

 Although most important for servers, random ordering is still
 strongly recommended for clients and Trusted Auditors. The above
 attack can still occur for these entities, although the circumstances
 are less straightforward. For clients, an attacker could observe
 their behavior, note when they receive an STH from a server, and use
 javascript to cause a network connection at the correct time to force
 a client to disclose the specific STH. Trusted Auditors are stewards
 of sensitive client data. If an attacker had the ability to observe
 the activities of a Trusted Auditor (perhaps by being a log, or
 another auditor), they could perform the same attack - noting the
 disclosure of data from a client to the Trusted Auditor, and then
 correlating a later disclosure from the Trusted Auditor as coming
 from that client.

Nordberg, et al. Expires July 18, 2018 [Page 34]

Internet-Draft Gossiping in CT January 2018

 Random ordering can be ensured by several mechanisms. A datastore
 can be shuffled, using a secure shuffling algorithm such as Fisher-
 Yates. Alternately, a series of random indexes into the data store
 can be selected (if a collision occurs, a new index is selected.) A
 cryptographically secure random number generator must be used in
 either case. If shuffling is performed, the datastore must be marked
 'dirty' upon item insertion, and at least one shuffle operation
 occurs on a dirty datastore before data is retrieved from it for use.

11.3.2. The Deletion Algorithm

 No entity in CT Gossip is required to delete records at any time,
 except to respect user's wishes such as private browsing mode or
 clearing history. However, it is likely that over time the
 accumulated storage will grow in size and need to be pruned.

 While deletion of data will occur, proof fetching can ensure that any
 misbehavior from a log will still be detected, even after the direct
 evidence from the attack is deleted. Proof fetching ensures that if
 a log presents a split view for a client, they must maintain that
 split view in perpetuity. An inclusion proof from an SCT to an STH
 does not erase the evidence - the new STH is evidence itself. A
 consistency proof from that STH to a new one likewise - the new STH
 is every bit as incriminating as the first. (Client behavior in the
 situation where an SCT or STH cannot be resolved is suggested in

Section 11.1.2.) Because of this property, we recommend that if a
 client is performing proof fetching, that they make every effort to
 not delete data until it has been successfully resolved to a new STH
 via a proof.

 When it is time to delete a record, it can be done in a way that
 makes it more difficult for a successful flushing attack to to be
 performed.

 1. When the record cache has reached a certain size that is yet
 under the limit, aggressively perform proof fetching. This
 should resolve records to a small set of STHs that can be
 retained. Once a proof has been fetched, the record is safer to
 delete.

 2. If proof fetching has failed, or is disabled, begin by deleting
 SCTs and Certificate Chains that have been successfully reported.
 Deletion from this set of SCTs should be done at random. For a
 client, a submission is not counted as being reported unless it
 is sent over a connection using a different SCT, so the attacker
 is faced with a recursive problem. (For a server, this step does
 not apply.)

Nordberg, et al. Expires July 18, 2018 [Page 35]

Internet-Draft Gossiping in CT January 2018

 3. Attempt to save any submissions that have failed proof fetching
 repeatedly, as these are the most likely to be indicative of an
 attack.

 4. Finally, if the above steps have been followed and have not
 succeeded in reducing the size sufficiently, records may be
 deleted at random.

 Note that if proof fetching is disabled (which is expected although
 not required for servers) - the algorithm collapses down to 'delete
 at random'.

 The decision to delete records at random is intentional. Introducing
 non-determinism in the decision is absolutely necessary to make it
 more difficult for an adversary to know with certainty or high
 confidence that the record has been successfully flushed from a
 target.

11.4. Concrete Recommendations

 We present the following pseudocode as a concrete outline of our
 policy recommendations.

 Both suggestions presented are applicable to both clients and
 servers. Servers may not perform proof fetching, in which case large
 portions of the pseudocode are not applicable. But it should work in
 either case.

 Note that we use a function 'rand()' in the pseudocode, this function
 is assumed to be a cryptographically secure pseudorandom number
 generator. Additionally, when N unique items are needed, they are
 chosen at random by drawing a random index repeatedly until the N
 unique items from an array have been chosen. Although simple, when
 the array is N or near-N items in length this is inefficient. A
 secure shuffle algorithm followed by selecting the first N items may
 be more efficient, especially when N is large.

11.4.1. STH Pollination

 The STH class contains data pertaining specifically to the STH
 itself.

Nordberg, et al. Expires July 18, 2018 [Page 36]

Internet-Draft Gossiping in CT January 2018

 class STH
 {
 uint16 proof_attempts
 uint16 proof_failure_count
 uint32 num_reports_to_thirdparty
 datetime timestamp
 byte[] data
 }

 The broader STH store itself would contain all the STHs known by an
 entity participating in STH Pollination (either client or server).
 This simplistic view of the class does not take into account the
 complicated locking that would likely be required for a data
 structure being accessed by multiple threads. Something to note
 about this pseudocode is that it does not remove STHs once they have
 been resolved to a newer STH. Doing so might make older STHs within
 the validity window rarer and thus enable tracking.

 class STHStore
 {
 STH[] sth_list

 // This function is run after receiving a set of STHs from
 // a third party in response to a pollination submission
 def insert(STH[] new_sths) {
 foreach(new in new_sths) {
 if(this.sth_list.contains(new))
 continue
 this.sth_list.insert(new)
 }
 }

 // This function is called to delete the given STH
 // from the data store
 def delete_now(STH s) {
 this.sth_list.remove(s)
 }

 // When it is time to perform STH Pollination, the HTTPS client
 // calls this function to get a selection of STHs to send as
 // feedback
 def get_pollination_selection() {
 if(len(this.sth_list) < MAX_STH_TO_GOSSIP)
 return this.sth_list
 else {
 indexes = set()
 modulus = len(this.sth_list)
 outdated_sths = 0

Nordberg, et al. Expires July 18, 2018 [Page 37]

Internet-Draft Gossiping in CT January 2018

 while(len(indexes) + outdated_sths < MAX_STH_TO_GOSSIP) {
 r = randomInt() % modulus
 if(r not in indexes)
 // Ignore STHs that are past the validity window but not
 // yet removed.
 if(now() - this.sth_list[i].timestamp < TWO_WEEKS)
 outdated_sths++;
 else
 indexes.insert(r)
 }

 return_selection = []
 foreach(i in indexes) {
 return_selection.insert(this.sth_list[i])
 }
 return return_selection
 }
 }
 }

 We also suggest a function that will be called periodically in the
 background, iterating through the STH store, performing a cleaning
 operation and queuing consistency proofs. This function can live as
 a member functions of the STHStore class.

Nordberg, et al. Expires July 18, 2018 [Page 38]

Internet-Draft Gossiping in CT January 2018

//Just a suggestion:
#define MIN_PROOF_FAILURES_CONSIDERED_SUSPICIOUS 3

def clean_list() {
 foreach(sth in this.sth_list) {

 if(now() - sth.timestamp > TWO_WEEKS) {
 //STH is too old, we must remove it
 if(proof_fetching_enabled
 && auditor_of_last_resort_enabled
 && sth.proof_failure_count
 > MIN_PROOF_FAILURES_CONSIDERED_SUSPICIOUS) {
 queue_for_auditor_of_last_resort(sth,
 auditor_of_last_resort_callback)
 } else {
 delete_now(sth)
 }
 }

 else if(proof_fetching_enabled
 && now() - sth.timestamp > LOG_MMD
 && sth.proof_attempts != UINT16_MAX
 // Only fetch a proof is we have never received a proof
 // before. (This also avoids submitting something
 // already in the queue.)
 && sth.proof_attempts == sth.proof_failure_count) {
 sth.proof_attempts++
 queue_consistency_proof(sth, consistency_proof_callback)
 }
 }
}

 These functions also exist in the STHStore class.

Nordberg, et al. Expires July 18, 2018 [Page 39]

Internet-Draft Gossiping in CT January 2018

// This function is called after successfully pollinating STHs
// to a third party. It is passed the STHs sent to the third
// party, which is the output of get_gossip_selection(), as well
// as the STHs received in the response.
def successful_thirdparty_submission_callback(STH[] submitted_sth_list,
 STH[] new_sths)
{
 foreach(sth in submitted_sth_list) {
 sth.num_reports_to_thirdparty++
 }

 this.insert(new_sths);
}

// Attempt auditor of last resort submissions until it succeeds
def auditor_of_last_resort_callback(original_sth, error) {
 if(!error) {
 delete_now(original_sth)
 }
}

def consistency_proof_callback(consistency_proof, original_sth, error) {
 if(!error) {
 insert(consistency_proof.current_sth)
 } else {
 original_sth.proof_failure_count++
 }
}

11.4.2. SCT Feedback

 The SCT class contains data pertaining specifically to an SCT itself.

 class SCT
 {
 uint16 proof_failure_count
 bool has_been_resolved_to_sth
 bool proof_outstanding
 byte[] data
 }

 The SCT bundle will contain the trusted certificate chain the HTTPS
 client built (chaining to a trusted root certificate.) It also
 contains the list of associated SCTs, the exact domain it is
 applicable to, and metadata pertaining to how often it has been
 reported to the third party.

Nordberg, et al. Expires July 18, 2018 [Page 40]

Internet-Draft Gossiping in CT January 2018

 class SCTBundle
 {
 X509[] certificate_chain
 SCT[] sct_list
 string domain
 uint32 num_reports_to_thirdparty

 def equals(sct_bundle) {
 if(sct_bundle.domain != this.domain)
 return false
 if(sct_bundle.certificate_chain != this.certificate_chain)
 return false
 if(sct_bundle.sct_list != this.sct_list)
 return false

 return true
 }
 def approx_equals(sct_bundle) {
 if(sct_bundle.domain != this.domain)
 return false
 if(sct_bundle.certificate_chain != this.certificate_chain)
 return false

 return true
 }

 def insert_scts(sct[] sct_list) {
 this.sct_list.union(sct_list)
 this.num_reports_to_thirdparty = 0
 }

 def has_been_fully_resolved_to_sths() {
 foreach(s in this.sct_list) {
 if(!s.has_been_resolved_to_sth && !s.proof_outstanding)
 return false
 }
 return true
 }

 def max_proof_failures() {
 uint max = 0
 foreach(sct in this.sct_list) {
 if(sct.proof_failure_count > max)
 max = sct.proof_failure_count
 }
 return max
 }
 }

Nordberg, et al. Expires July 18, 2018 [Page 41]

Internet-Draft Gossiping in CT January 2018

 For each domain, we store a SCTDomainEntry that holds the SCTBundles
 seen for that domain, as well as encapsulating some logic relating to
 SCT Feedback for that particular domain. In particular, this data
 structure also contains the logic that handles domains not supporting
 SCT Feedback. Its behavior is:

 1. When a user visits a domain, SCT Feedback is attempted for it.
 If it fails, it will retry after a month (configurable). If it
 succeeds, excellent. SCT Feedback data is still collected and
 stored even if SCT Feedback failed.

 2. After 3 month-long waits between failures, the domain will be
 marked as failing long-term. No SCT Feedback data will be stored
 beyond meta-data, but SCT Feedback will still be attempted after
 month-long waits

 3. If at any point in time, SCT Feedback succeeds, all failure
 counters are reset

 4. If a domain succeeds, but then begins failing, it must fail more
 than 90% of the time (configurable) and then the process begins
 at (2).

 If a domain is visited infrequently (say, once every 7 months) then
 it will be evicted from the cache and start all over again (according
 to the suggestion values in the below pseudocode).

//Suggestions:
// After concluding a domain doesn't support feedback, we try again
// after WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS amount of time to see if
// they added support
#define WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS 1 month

// If we've waited MIN_SCT_FEEDBACK_ATTEMPTS_BEFORE_OMITTING_STORAGE
// multiplied by WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS amount of time, we
// still attempt SCT Feedback, but no longer bother storing any data
// until the domain supports SCT Feedback
#define MIN_SCT_FEEDBACK_ATTEMPTS_BEFORE_OMITTING_STORAGE 3

// If this percentage of SCT Feedback attempts previously succeeded,
// we consider the domain as supporting feedback and is just having
// transient errors
#define MIN_RATIO_FOR_SCT_FEEDBACK_TO_BE_WORKING .10

class SCTDomainEntry
{
 // This is the primary key of the object, the exact domain name it
 // is valid for

Nordberg, et al. Expires July 18, 2018 [Page 42]

Internet-Draft Gossiping in CT January 2018

 string domain

 // This is the last time the domain was contacted. For client
 // operations it is updated whenever the client makes any request
 // (not just feedback) to the domain. For server operations, it is
 // updated whenever any client contacts the domain. Responsibility
 // for updating lies OUTSIDE of the class
 public datetime last_contact_for_domain

 // This is the last time SCT Feedback was attempted for the domain.
 // It is updated whenever feedback is attempted - responsibility for
 // updating lies OUTSIDE of the class
 // This is not used when this algorithm runs on servers
 public datetime last_sct_feedback_attempt

 // This is the number of times we have waited an
 // WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS amount of time, and still failed
 // e.g., 10 months of failures
 // This is not used when this algorithm runs on servers
 private uint16 num_feedback_loop_failures

 // This is whether or not SCT Feedback has failed enough times that we
 // should not bother storing data for it anymore. It is a small
 // function used for illustrative purposes.
 // This is not used when this algorithm runs on servers
 private bool sct_feedback_failing_longterm()
 { num_feedback_loop_failures >=
 MIN_SCT_FEEDBACK_ATTEMPTS_BEFORE_OMITTING_STORAGE }

 // This is the number of SCT Feedback submissions attempted.
 // Responsibility for incrementing lies OUTSIDE of the class
 // (And watch for integer overflows)
 // This is not used when this algorithm runs on servers
 public uint16 num_submissions_attempted

 // This is the number of successful SCT Feedback submissions. This
 // variable is updated by the class.
 // This is not used when this algorithm runs on servers
 private uint16 num_submissions_succeeded

 // This contains all the bundles of SCT data we have observed for
 // this domain
 SCTBundle[] observed_records

 // This function can be called to determine if we should attempt
 // SCT Feedback for this domain.
 def should_attempt_feedback() {

Nordberg, et al. Expires July 18, 2018 [Page 43]

Internet-Draft Gossiping in CT January 2018

 // Servers always perform feedback!
 if(operator_is_server)
 return true

 // If we have not tried in a month, try again
 if(now() - last_sct_feedback_attempt >
 WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS)
 return true

 // If we have tried recently, and it seems to be working, go for it!
 if((num_submissions_succeeded / num_submissions_attempted) >
 MIN_RATIO_FOR_SCT_FEEDBACK_TO_BE_WORKING)
 return true

 // Otherwise don't try
 return false
 }

 // For Clients, this function is called after a successful
 // connection to an HTTPS server, with a single SCTBundle
 // constructed from that connection's certificate chain and SCTs.
 // For Servers, this is called after receiving SCT Feedback with
 // all the bundles sent in the feedback.
 def insert(SCTBundle[] bundles) {
 // Do not store data for long-failing domains
 if(sct_feedback_failing_longterm()) {
 return
 }

 foreach(b in bundles) {
 if(operator_is_server) {
 if(!passes_validity_checks(b))
 return
 }

 bool have_inserted = false
 foreach(e in this.observed_records) {
 if(e.equals(b))
 return
 else if(e.approx_equals(b)) {
 have_inserted = true
 e.insert_scts(b.sct_list)
 }
 }
 if(!have_inserted)
 this.observed_records.insert(b)
 }
 SCTStoreManager.update_cache_percentage()

Nordberg, et al. Expires July 18, 2018 [Page 44]

Internet-Draft Gossiping in CT January 2018

 }

 // When it is time to perform SCT Feedback, the HTTPS client
 // calls this function to get a selection of SCTBundles to send
 // as feedback
 def get_gossip_selection() {
 if(len(observed_records) > MAX_SCT_RECORDS_TO_GOSSIP) {
 indexes = set()
 modulus = len(observed_records)
 while(len(indexes) < MAX_SCT_RECORDS_TO_GOSSIP) {
 r = randomInt() % modulus
 if(r not in indexes)
 indexes.insert(r)
 }

 return_selection = []
 foreach(i in indexes) {
 return_selection.insert(this.observed_records[i])
 }

 return return_selection
 }
 else
 return this.observed_records
 }

 def passes_validity_checks(SCTBundle b) {
 // This function performs the validity checks specified in
 // {{feedback-srvop}}
 }
}

 The SCTDomainEntry is responsible for handling the outcome of a
 submission report for that domain using its member function:

// This function is called after providing SCT Feedback
// to a server. It is passed the feedback sent to the other party, which
// is the output of get_gossip_selection(), and also the SCTBundle
// representing the connection the data was sent on.
// (When this code runs on the server, connectionBundle is NULL)
// If the Feedback was not sent successfully, error is True
def after_submit_to_thirdparty(error, SCTBundle[] submittedBundles,
 SCTBundle connectionBundle)
{
 // Server operation in this instance is exceedingly simple
 if(operator_is_server) {
 if(error)
 return

Nordberg, et al. Expires July 18, 2018 [Page 45]

Internet-Draft Gossiping in CT January 2018

 foreach(bundle in submittedBundles)
 bundle.num_reports_to_thirdparty++
 return
 }

 // Client behavior is much more complicated
 if(error) {
 if(sct_feedback_failing_longterm()) {
 num_feedback_loop_failures++
 }
 else if((num_submissions_succeeded / num_submissions_attempted)
 > MIN_RATIO_FOR_SCT_FEEDBACK_TO_BE_WORKING) {
 // Do nothing. num_submissions_succeeded will not be incremented
 // After enough of these failures, the ratio will fall beyond
 // acceptable
 } else {
 // The domain has begun its three-month grace period. We will
 // attempt submissions once a month
 num_feedback_loop_failures++
 }
 return
 }
 // We succeeded, so reset all of our failure states
 // Note, there is a race condition here if clear_old_data() is called
 // while this callback is outstanding.
 num_feedback_loop_failures = 0
 if(num_submissions_succeeded != UINT16_MAX)
 num_submissions_succeeded++

 foreach(bundle in submittedBundles)
 {
 // Compare Certificate Chains, if they do not match, it counts as a
 // submission.
 if(!connectionBundle.approx_equals(bundle))
 bundle.num_reports_to_thirdparty++
 else {
 // This check ensures that a SCT Bundle is not considered reported
 // if it is submitted over a connection with the same SCTs. This
 // satisfies the constraint in Paragraph 5 of {{feedback-clisrv}}
 // Consider three submission scenarios:
 // Submitted SCTs Connection SCTs Considered Submitted
 // A, B A, B No - no new information
 // A A, B Yes - B is a new SCT
 // A, B A No - no new information
 if(connectionBundle.sct_list is NOT a subset of bundle.sct_list)
 bundle.num_reports_to_thirdparty++
 }

Nordberg, et al. Expires July 18, 2018 [Page 46]

Internet-Draft Gossiping in CT January 2018

 }
}

 Instances of the SCTDomainEntry class are stored as part of a larger
 class that manages the entire SCT Cache, storing them in a hashmap
 keyed by domain. This class also tracks the current size of the
 cache, and will trigger cache eviction.

Nordberg, et al. Expires July 18, 2018 [Page 47]

Internet-Draft Gossiping in CT January 2018

//Suggestions:
#define CACHE_PRESSURE_SAFE .50
#define CACHE_PRESSURE_IMMINENT .70
#define CACHE_PRESSURE_ALMOST_FULL .85
#define CACHE_PRESSURE_FULL .95
#define WAIT_BETWEEN_IMMINENT_CACHE_EVICTION 5 minutes

class SCTStoreManager
{
 hashmap<String, SCTDomainEntry> all_sct_entries
 uint32 current_cache_size
 datetime imminent_cache_pressure_check_performed

 float current_cache_percentage() {
 return current_cache_size / MAX_CACHE_SIZE;
 }

 static def update_cache_percentage() {
 // This function calculates the current size of the cache
 // and updates current_cache_size
 /* ... perform calculations ... */
 current_cache_size = /* new calculated value */

 // Perform locking to prevent multiple of these functions being
 // called concurrently or unnecessarily
 if(current_cache_percentage() > CACHE_PRESSURE_FULL) {
 cache_is_full()
 }

 else if(current_cache_percentage() > CACHE_PRESSURE_ALMOST_FULL) {
 cache_pressure_almost_full()
 }

 else if(current_cache_percentage() > CACHE_PRESSURE_IMMINENT) {
 // Do not repeatedly perform the imminent cache pressure operation
 if(now() - imminent_cache_pressure_check_performed >
 WAIT_BETWEEN_IMMINENT_CACHE_EVICTION) {
 cache_pressure_is_imminent()
 }
 }
 }
}

 The SCTStoreManager contains a function that will be called
 periodically in the background, iterating through all SCTDomainEntry
 objects and performing maintenance tasks. It removes data for
 domains we have not contacted in a long time. This function is not

Nordberg, et al. Expires July 18, 2018 [Page 48]

Internet-Draft Gossiping in CT January 2018

 intended to clear data if the cache is getting full, separate
 functions are used for that.

 // Suggestions:
 #define TIME_UNTIL_OLD_SUBMITTED_SCTDATA_ERASED 3 months
 #define TIME_UNTIL_OLD_UNSUBMITTED_SCTDATA_ERASED 6 months

 def clear_old_data()
 {
 foreach(domainEntry in all_sct_stores)
 {
 // Queue proof fetches
 if(proof_fetching_enabled) {
 foreach(sctBundle in domainEntry.observed_records) {
 if(!sctBundle.has_been_fully_resolved_to_sths()) {
 foreach(s in bundle.sct_list) {
 if(!s.has_been_resolved_to_sth && !s.proof_outstanding) {
 sct.proof_outstanding = True
 queue_inclusion_proof(sct, inclusion_proof_callback)
 }
 }
 }
 }
 }

 // Do not store data for domains who are not supporting SCT
 if(!operator_is_server
 && domainEntry.sct_feedback_failing_longterm())
 {
 // Note that reseting these variables every single time is
 // necessary to avoid a bug
 all_sct_stores[domainEntry].num_submissions_attempted = 0
 all_sct_stores[domainEntry].num_submissions_succeeded = 0
 delete all_sct_stores[domainEntry].observed_records
 all_sct_stores[domainEntry].observed_records = NULL
 }

 // This check removes successfully submitted data for
 // old domains we have not dealt with in a long time
 if(domainEntry.num_submissions_succeeded > 0
 && now() - domainEntry.last_contact_for_domain
 > TIME_UNTIL_OLD_SUBMITTED_SCTDATA_ERASED)
 {
 all_sct_stores.remove(domainEntry)
 }

 // This check removes unsuccessfully submitted data for
 // old domains we have not dealt with in a very long time

Nordberg, et al. Expires July 18, 2018 [Page 49]

Internet-Draft Gossiping in CT January 2018

 if(now() - domainEntry.last_contact_for_domain
 > TIME_UNTIL_OLD_UNSUBMITTED_SCTDATA_ERASED)
 {
 all_sct_stores.remove(domainEntry)
 }

 SCTStoreManager.update_cache_percentage()
 }

 Inclusion Proof Fetching is handled fairly independently

 // This function is a callback invoked after an inclusion proof
 // has been retrieved. It can exist on the SCT class or independently,
 // so long as it can modify the SCT class' members
 def inclusion_proof_callback(inclusion_proof, original_sct, error)
 {
 // Unlike the STH code, this counter must be incremented on the
 // callback as there is a race condition on using this counter in the
 // cache_* functions.
 original_sct.proof_attempts++
 original_sct.proof_outstanding = False
 if(!error) {
 original_sct.has_been_resolved_to_sth = True
 insert_to_sth_datastore(inclusion_proof.new_sth)
 } else {
 original_sct.proof_failure_count++
 }
 }

 If the cache is getting full, these three member functions of the
 SCTStoreManager class will be used.

 // ---
 // This function is called when the cache is not yet full, but is
 // nearing it. It prioritizes deleting data that should be safe
 // to delete (because it has been shared with the site or resolved
 // to an STH)
 def cache_pressure_is_imminent()
 {
 bundlesToDelete = []
 foreach(domainEntry in all_sct_stores) {
 foreach(sctBundle in domainEntry.observed_records) {

 if(proof_fetching_enabled) {
 // First, queue proofs for anything not already queued.
 if(!sctBundle.has_been_fully_resolved_to_sths()) {
 foreach(sct in bundle.sct_list) {
 if(!sct.has_been_resolved_to_sth

Nordberg, et al. Expires July 18, 2018 [Page 50]

Internet-Draft Gossiping in CT January 2018

 && !sct.proof_outstanding) {
 sct.proof_outstanding = True
 queue_inclusion_proof(sct, inclusion_proof_callback)
 }
 }
 }

 // Second, consider deleting entries that have been fully
 // resolved.
 else {
 bundlesToDelete.append(Struct(domainEntry, sctBundle))
 }
 }

 // Third, consider deleting entries that have been successfully
 // reported
 if(sctBundle.num_reports_to_thirdparty > 0) {
 bundlesToDelete.append(Struct(domainEntry, sctBundle))
 }
 }
 }

 // Third, delete the eligible entries at random until the cache is
 // at a safe level
 uint recalculateIndex = 0
 #define RECALCULATE_EVERY_N_OPERATIONS 50

 while(bundlesToDelete.length > 0 &&
 current_cache_percentage() > CACHE_PRESSURE_SAFE) {
 uint rndIndex = rand() % bundlesToDelete.length
 bundlesToDelete[rndIndex].domainEntry.observed_records.remove(
 bundlesToDelete[rndIndex].sctBundle)
 bundlesToDelete.removeAt(rndIndex)

 recalculateIndex++
 if(recalculateIndex % RECALCULATE_EVERY_N_OPERATIONS == 0) {
 update_cache_percentage()
 }
 }

 // Finally, tell the proof fetching engine to go faster
 if(proof_fetching_enabled) {
 // This function would speed up proof fetching until an
 // arbitrary time has passed. Perhaps until it has fetched
 // proofs for the number of items currently in its queue? Or
 // a percentage of them?
 proof_fetch_faster_please()
 }

Nordberg, et al. Expires July 18, 2018 [Page 51]

Internet-Draft Gossiping in CT January 2018

 update_cache_percentage();
 }

 // ---
 // This function is called when the cache is almost full. It will
 // evict entries at random, while attempting to save entries that
 // appear to have proof fetching failures
 def cache_pressure_almost_full()
 {
 uint recalculateIndex = 0
 uint savedRecords = 0
 #define RECALCULATE_EVERY_N_OPERATIONS 50

 while(all_sct_stores.length > savedRecords &&
 current_cache_percentage() > CACHE_PRESSURE_SAFE) {
 uint rndIndex1 = rand() % all_sct_stores.length
 uint rndIndex2 = rand() %
 all_sct_stores[rndIndex1].observed_records.length

 if(proof_fetching_enabled) {
 if(all_sct_stores[rndIndex1].observed_records[
 rndIndex2].max_proof_failures() >
 MIN_PROOF_FAILURES_CONSIDERED_SUSPICIOUS) {
 savedRecords++
 continue
 }
 }

 // If proof fetching is not enabled we need some other logic
 else {
 if(sctBundle.num_reports_to_thirdparty == 0) {
 savedRecords++
 continue
 }
 }

 all_sct_stores[rndIndex1].observed_records.removeAt(rndIndex2)
 if(all_sct_stores[rndIndex1].observed_records.length == 0) {
 all_sct_stores.removeAt(rndIndex1)
 }

 recalculateIndex++
 if(recalculateIndex % RECALCULATE_EVERY_N_OPERATIONS == 0) {
 update_cache_percentage()
 }
 }

 update_cache_percentage();

Nordberg, et al. Expires July 18, 2018 [Page 52]

Internet-Draft Gossiping in CT January 2018

 }

 // ---
 // This function is called when the cache is full, and will evict
 // cache entries at random
 def cache_is_full()
 {
 uint recalculateIndex = 0
 #define RECALCULATE_EVERY_N_OPERATIONS 50

 while(all_sct_stores.length > 0 &&
 current_cache_percentage() > CACHE_PRESSURE_SAFE) {
 uint rndIndex1 = rand() % all_sct_stores.length
 uint rndIndex2 = rand() %
 all_sct_stores[rndIndex1].observed_records.length

 all_sct_stores[rndIndex1].observed_records.removeAt(rndIndex2)
 if(all_sct_stores[rndIndex1].observed_records.length == 0) {
 all_sct_stores.removeAt(rndIndex1)
 }

 recalculateIndex++
 if(recalculateIndex % RECALCULATE_EVERY_N_OPERATIONS == 0) {
 update_cache_percentage()
 }
 }

 update_cache_percentage();
 }

12. IANA considerations

 There are no IANA considerations.

13. Contributors

 The authors would like to thank the following contributors for
 valuable suggestions: Al Cutter, Andrew Ayer, Ben Laurie, Benjamin
 Kaduk, Graham Edgecombe, Josef Gustafsson, Karen Seo, Magnus Ahltorp,
 Steven Kent, Yan Zhu.

14. ChangeLog

Nordberg, et al. Expires July 18, 2018 [Page 53]

Internet-Draft Gossiping in CT January 2018

14.1. Changes between ietf-04 and ietf-05

 o STH and SCT data formats changed to support CT v1 and v2.

 o Address ED review comments.

14.2. Changes between ietf-03 and ietf-04

 o No changes.

14.3. Changes between ietf-02 and ietf-03

 o TBD's resolved.

 o References added.

 o Pseduocode changed to work for both clients and servers.

14.4. Changes between ietf-01 and ietf-02

 o Requiring full certificate chain in SCT Feedback.

 o Clarifications on what clients store for and send in SCT Feedback
 added.

 o SCT Feedback server operation updated to protect against DoS
 attacks on servers.

 o Pre-Loaded vs Locally Added Anchors explained.

 o Base for well-known URL's changed.

 o Remove all mentions of monitors - gossip deals with auditors.

 o New sections added: Trusted Auditor protocol, attacks by actively
 malicious log, the Dual-CA compromise attack, policy
 recommendations,

14.5. Changes between ietf-00 and ietf-01

 o Improve language and readability based on feedback from Stephen
 Kent.

 o STH Pollination Proof Fetching defined and indicated as optional.

 o 3-Method Ecosystem section added.

 o Cases with Logs ceasing operation handled.

Nordberg, et al. Expires July 18, 2018 [Page 54]

Internet-Draft Gossiping in CT January 2018

 o Text on tracking via STH Interaction added.

 o Section with some early recommendations for mixing added.

 o Section detailing blocking connections, frustrating it, and the
 implications added.

14.6. Changes between -01 and -02

 o STH Pollination defined.

 o Trusted Auditor Relationship defined.

 o Overview section rewritten.

 o Data flow picture added.

 o Section on privacy considerations expanded.

14.7. Changes between -00 and -01

 o Add the SCT feedback mechanism: Clients send SCTs to originating
 web server which shares them with auditors.

 o Stop assuming that clients see STHs.

 o Don't use HTTP headers but instead .well-known URL's - avoid that
 battle.

 o Stop referring to trans-gossip and trans-gossip-transport-https -
 too complicated.

 o Remove all protocols but HTTPS in order to simplify - let's come
 back and add more later.

 o Add more reasoning about privacy.

 o Do specify data formats.

15. References

15.1. Normative References

 [RFC-6962-BIS-27]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency", October 2017,
 <https://datatracker.ietf.org/doc/draft-ietf-trans-

rfc6962-bis/>.

https://datatracker.ietf.org/doc/draft-ietf-trans-rfc6962-bis/
https://datatracker.ietf.org/doc/draft-ietf-trans-rfc6962-bis/

Nordberg, et al. Expires July 18, 2018 [Page 55]

Internet-Draft Gossiping in CT January 2018

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015, <https://www.rfc-

editor.org/info/rfc7540>.

15.2. Informative References

 [double-keying]
 Perry, M., Clark, E., and S. Murdoch, "Cross-Origin
 Identifier Unlinkability", May 2015,
 <https://www.torproject.org/projects/torbrowser/

design/#identifier-linkability>.

 [draft-ct-over-dns]
 Laurie, B., Phaneuf, P., and A. Eijdenberg, "Certificate
 Transparency over DNS", February 2016,
 <https://github.com/google/certificate-transparency-

rfcs/blob/master/dns/draft-ct-over-dns.md>.

 [draft-ietf-trans-threat-analysis-12]
 Kent, S., "Attack and Threat Model for Certificate
 Transparency", October 2017,
 <https://datatracker.ietf.org/doc/draft-ietf-trans-threat-

analysis/>.

 [dual-ca-compromise-attack]
 Gillmor, D., "can CT defend against dual CA compromise?",
 n.d., <https://www.ietf.org/mail-

archive/web/trans/current/msg01984.html>.

 [gossip-mixing]
 Ritter, T., "A Bit on Certificate Transparency Gossip",
 June 2016, <https://ritter.vg/blog-

a_bit_on_certificate_transparency_gossip.html>.

 [trickle] Serjantov, A., Dingledine, R., and . Paul Syverson, "From
 a Trickle to a Flood: Active Attacks on Several Mix
 Types", October 2002,
 <http://freehaven.net/doc/batching-taxonomy/taxonomy.pdf>.

https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.torproject.org/projects/torbrowser/design/#identifier-linkability
https://www.torproject.org/projects/torbrowser/design/#identifier-linkability
https://datatracker.ietf.org/doc/html/draft-ct-over-dns
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://datatracker.ietf.org/doc/html/draft-ietf-trans-threat-analysis-12
https://datatracker.ietf.org/doc/draft-ietf-trans-threat-analysis/
https://datatracker.ietf.org/doc/draft-ietf-trans-threat-analysis/
https://www.ietf.org/mail-archive/web/trans/current/msg01984.html
https://www.ietf.org/mail-archive/web/trans/current/msg01984.html
https://ritter.vg/blog-a_bit_on_certificate_transparency_gossip.html
https://ritter.vg/blog-a_bit_on_certificate_transparency_gossip.html
http://freehaven.net/doc/batching-taxonomy/taxonomy.pdf

Nordberg, et al. Expires July 18, 2018 [Page 56]

Internet-Draft Gossiping in CT January 2018

Authors' Addresses

 Linus Nordberg
 NORDUnet

 Email: linus@nordu.net

 Daniel Kahn Gillmor
 ACLU

 Email: dkg@fifthhorseman.net

 Tom Ritter

 Email: tom@ritter.vg

Nordberg, et al. Expires July 18, 2018 [Page 57]

