
Public Notary Transparency Working Group B. Laurie
Internet-Draft A. Langley
Intended status: Standards Track E. Kasper
Expires: January 11, 2015 Google
 R. Stradling
 Comodo
 July 10, 2014

Certificate Transparency
draft-ietf-trans-rfc6962-bis-03

Abstract

 This document describes a protocol for publicly logging the existence
 of Transport Layer Security (TLS) certificates as they are issued or
 observed, in a manner that allows anyone to audit certificate
 authority (CA) activity and notice the issuance of suspect
 certificates as well as to audit the certificate logs themselves.
 The intent is that eventually clients would refuse to honor
 certificates that do not appear in a log, effectively forcing CAs to
 add all issued certificates to the logs.

 Logs are network services that implement the protocol operations for
 submissions and queries that are defined in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 11, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Laurie, et al. Expires January 11, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Certificate Transparency July 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Informal Introduction . 3
1.1. Requirements Language 4
1.2. Data Structures . 4

2. Cryptographic Components 4
2.1. Merkle Hash Trees . 4
2.1.1. Merkle Audit Paths 5
2.1.2. Merkle Consistency Proofs 6
2.1.3. Example . 7
2.1.4. Signatures . 8

3. Log Format and Operation 9
3.1. Log Entries . 9
3.2. Private Domain Name Labels 12
3.2.1. Wildcard Certificates 12
3.2.2. Redacting Domain Name Labels in Precertificates . . . 12
3.2.3. Using a Name-Constrained Intermediate CA 13

3.3. Structure of the Signed Certificate Timestamp 14
 3.4. Including the Signed Certificate Timestamp in the TLS
 Handshake . 15

3.4.1. TLS Extension . 17
3.5. Merkle Tree . 17
3.6. Signed Tree Head . 18

4. Log Client Messages . 19
4.1. Add Chain to Log . 20
4.2. Add PreCertChain to Log 21
4.3. Retrieve Latest Signed Tree Head 21

 4.4. Retrieve Merkle Consistency Proof between Two Signed Tree
 Heads . 21

4.5. Retrieve Merkle Audit Proof from Log by Leaf Hash 22
4.6. Retrieve Entries from Log 22
4.7. Retrieve Accepted Root Certificates 23
4.8. Retrieve Entry+Merkle Audit Proof from Log 24

5. Clients . 24
5.1. Submitters . 24
5.2. TLS Client . 25
5.3. Monitor . 25
5.4. Auditor . 26

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Laurie, et al. Expires January 11, 2015 [Page 2]

Internet-Draft Certificate Transparency July 2014

6. IANA Considerations . 26
6.1. TLS Extension Type 26
6.2. Hash Algorithms . 26

7. Security Considerations 27
7.1. Misissued Certificates 27
7.2. Detection of Misissue 27
7.3. Redaction of Public Domain Name Labels 27
7.4. Misbehaving Logs . 28

8. Efficiency Considerations 28
9. Future Changes . 28
10. Acknowledgements . 29
11. References . 29
11.1. Normative Reference 29
11.2. Informative References 29

1. Informal Introduction

 Certificate transparency aims to mitigate the problem of misissued
 certificates by providing publicly auditable, append-only, untrusted
 logs of all issued certificates. The logs are publicly auditable so
 that it is possible for anyone to verify the correctness of each log
 and to monitor when new certificates are added to it. The logs do
 not themselves prevent misissue, but they ensure that interested
 parties (particularly those named in certificates) can detect such
 misissuance. Note that this is a general mechanism, but in this
 document, we only describe its use for public TLS server certificates
 issued by public certificate authorities (CAs).

 Each log consists of certificate chains, which can be submitted by
 anyone. It is expected that public CAs will contribute all their
 newly issued certificates to one or more logs, however certificate
 holders can also contribute their own certificate chains, as can
 third parties. In order to avoid logs being rendered useless by
 submitting large numbers of spurious certificates, it is required
 that each chain is rooted in a CA certificate accepted by the log.
 When a chain is submitted to a log, a signed timestamp is returned,
 which can later be used to provide evidence to TLS clients that the
 chain has been submitted. TLS clients can thus require that all
 certificates they accept as valid have been logged.

 Those who are concerned about misissue can monitor the logs, asking
 them regularly for all new entries, and can thus check whether
 domains they are responsible for have had certificates issued that
 they did not expect. What they do with this information,
 particularly when they find that a misissuance has happened, is
 beyond the scope of this document, but broadly speaking, they can
 invoke existing business mechanisms for dealing with misissued
 certificates, such as working with the CA to get the certificate

Laurie, et al. Expires January 11, 2015 [Page 3]

Internet-Draft Certificate Transparency July 2014

 revoked, or with maintainers of trust anchor lists to get the CA
 removed. Of course, anyone who wants can monitor the logs and, if
 they believe a certificate is incorrectly issued, take action as they
 see fit.

 Similarly, those who have seen signed timestamps from a particular
 log can later demand a proof of inclusion from that log. If the log
 is unable to provide this (or, indeed, if the corresponding
 certificate is absent from monitors' copies of that log), that is
 evidence of the incorrect operation of the log. The checking
 operation is asynchronous to allow TLS connections to proceed without
 delay, despite network connectivity issues and the vagaries of
 firewalls.

 The append-only property of each log is technically achieved using
 Merkle Trees, which can be used to show that any particular instance
 of the log is a superset of any particular previous instance.
 Likewise, Merkle Trees avoid the need to blindly trust logs: if a log
 attempts to show different things to different people, this can be
 efficiently detected by comparing tree roots and consistency proofs.
 Similarly, other misbehaviors of any log (e.g., issuing signed
 timestamps for certificates they then don't log) can be efficiently
 detected and proved to the world at large.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Data Structures

 Data structures are defined according to the conventions laid out in
Section 4 of [RFC5246].

2. Cryptographic Components

2.1. Merkle Hash Trees

 Logs use a binary Merkle Hash Tree for efficient auditing. The
 hashing algorithm used by each log is expected to be specified as
 part of the metadata relating to that log. We have established a
 registry of acceptable algorithms, see Section 6.2. The hashing
 algorithm in use is referred to as HASH throughout this document.
 The input to the Merkle Tree Hash is a list of data entries; these
 entries will be hashed to form the leaves of the Merkle Hash Tree.
 The output is a single 32-byte Merkle Tree Hash. Given an ordered

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246#section-4

Laurie, et al. Expires January 11, 2015 [Page 4]

Internet-Draft Certificate Transparency July 2014

 list of n inputs, D[n] = {d(0), d(1), ..., d(n-1)}, the Merkle Tree
 Hash (MTH) is thus defined as follows:

 The hash of an empty list is the hash of an empty string:

 MTH({}) = HASH().

 The hash of a list with one entry (also known as a leaf hash) is:

 MTH({d(0)}) = HASH(0x00 || d(0)).

 For n > 1, let k be the largest power of two smaller than n (i.e., k
 < n <= 2k). The Merkle Tree Hash of an n-element list D[n] is then
 defined recursively as

 MTH(D[n]) = HASH(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

 where || is concatenation and D[k1:k2] denotes the list {d(k1),
 d(k1+1),..., d(k2-1)} of length (k2 - k1). (Note that the hash
 calculations for leaves and nodes differ. This domain separation is
 required to give second preimage resistance.)

 Note that we do not require the length of the input list to be a
 power of two. The resulting Merkle Tree may thus not be balanced;
 however, its shape is uniquely determined by the number of leaves.
 (Note: This Merkle Tree is essentially the same as the history tree
 [CrosbyWallach] proposal, except our definition handles non-full
 trees differently.)

2.1.1. Merkle Audit Paths

 A Merkle audit path for a leaf in a Merkle Hash Tree is the shortest
 list of additional nodes in the Merkle Tree required to compute the
 Merkle Tree Hash for that tree. Each node in the tree is either a
 leaf node or is computed from the two nodes immediately below it
 (i.e., towards the leaves). At each step up the tree (towards the
 root), a node from the audit path is combined with the node computed
 so far. In other words, the audit path consists of the list of
 missing nodes required to compute the nodes leading from a leaf to
 the root of the tree. If the root computed from the audit path
 matches the true root, then the audit path is proof that the leaf
 exists in the tree.

 Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
 d(n-1)}, the Merkle audit path PATH(m, D[n]) for the (m+1)th input
 d(m), 0 <= m < n, is defined as follows:

Laurie, et al. Expires January 11, 2015 [Page 5]

Internet-Draft Certificate Transparency July 2014

 The path for the single leaf in a tree with a one-element input list
 D[1] = {d(0)} is empty:

 PATH(0, {d(0)}) = {}

 For n > 1, let k be the largest power of two smaller than n. The path
 for the (m+1)th element d(m) in a list of n > m elements is then
 defined recursively as

 PATH(m, D[n]) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

 PATH(m, D[n]) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

 where : is concatenation of lists and D[k1:k2] denotes the length (k2
 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

2.1.2. Merkle Consistency Proofs

 Merkle consistency proofs prove the append-only property of the tree.
 A Merkle consistency proof for a Merkle Tree Hash MTH(D[n]) and a
 previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n,
 is the list of nodes in the Merkle Tree required to verify that the
 first m inputs D[0:m] are equal in both trees. Thus, a consistency
 proof must contain a set of intermediate nodes (i.e., commitments to
 inputs) sufficient to verify MTH(D[n]), such that (a subset of) the
 same nodes can be used to verify MTH(D[0:m]). We define an algorithm
 that outputs the (unique) minimal consistency proof.

 Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
 d(n-1)}, the Merkle consistency proof PROOF(m, D[n]) for a previous
 Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:

 PROOF(m, D[n]) = SUBPROOF(m, D[n], true)

 The subproof for m = n is empty if m is the value for which PROOF was
 originally requested (meaning that the subtree Merkle Tree Hash
 MTH(D[0:m]) is known):

 SUBPROOF(m, D[m], true) = {}

 The subproof for m = n is the Merkle Tree Hash committing inputs
 D[0:m]; otherwise:

 SUBPROOF(m, D[m], false) = {MTH(D[m])}

 For m < n, let k be the largest power of two smaller than n. The
 subproof is then defined recursively.

Laurie, et al. Expires January 11, 2015 [Page 6]

Internet-Draft Certificate Transparency July 2014

 If m <= k, the right subtree entries D[k:n] only exist in the current
 tree. We prove that the left subtree entries D[0:k] are consistent
 and add a commitment to D[k:n]:

 SUBPROOF(m, D[n], b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n])

 If m > k, the left subtree entries D[0:k] are identical in both
 trees. We prove that the right subtree entries D[k:n] are consistent
 and add a commitment to D[0:k].

 SUBPROOF(m, D[n], b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k])

 Here, : is a concatenation of lists, and D[k1:k2] denotes the length
 (k2 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

 The number of nodes in the resulting proof is bounded above by
 ceil(log2(n)) + 1.

2.1.3. Example

 The binary Merkle Tree with 7 leaves:

 hash
 / \
 / \
 / \
 / \
 / \
 k l
 / \ / \
 / \ / \
 / \ / \
 g h i j
 / \ / \ / \ |
 a b c d e f d6
 | | | | | |
 d0 d1 d2 d3 d4 d5

 The audit path for d0 is [b, h, l].

 The audit path for d3 is [c, g, l].

 The audit path for d4 is [f, j, k].

 The audit path for d6 is [i, k].

 The same tree, built incrementally in four steps:

Laurie, et al. Expires January 11, 2015 [Page 7]

Internet-Draft Certificate Transparency July 2014

 hash0 hash1=k
 / \ / \
 / \ / \
 / \ / \
 g c g h
 / \ | / \ / \
 a b d2 a b c d
 | | | | | |
 d0 d1 d0 d1 d2 d3

 hash2 hash
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 k i k l
 / \ / \ / \ / \
 / \ e f / \ / \
 / \ | | / \ / \
 g h d4 d5 g h i j
 / \ / \ / \ / \ / \ |
 a b c d a b c d e f d6
 | | | | | | | | | |
 d0 d1 d2 d3 d0 d1 d2 d3 d4 d5

 The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
 d, g, l]. c, g are used to verify hash0, and d, l are additionally
 used to show hash is consistent with hash0.

 The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
 hash can be verified using hash1=k and l.

 The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
 j, k]. k, i are used to verify hash2, and j is additionally used to
 show hash is consistent with hash2.

2.1.4. Signatures

 Various data structures are signed. A log MUST use either elliptic
 curve signatures using the NIST P-256 curve (Section D.1.2.3 of the
 Digital Signature Standard [DSS]) or RSA signatures (RSASSA-
 PKCS1-V1_5 with SHA-256, Section 8.2 of [RFC3447]) using a key of at
 least 2048 bits.

https://datatracker.ietf.org/doc/html/rfc3447#section-8.2

Laurie, et al. Expires January 11, 2015 [Page 8]

Internet-Draft Certificate Transparency July 2014

3. Log Format and Operation

 Anyone can submit certificates to certificate logs for public
 auditing; however, since certificates will not be accepted by TLS
 clients unless logged, it is expected that certificate owners or
 their CAs will usually submit them. A log is a single, ever-growing,
 append-only Merkle Tree of such certificates.

 When a valid certificate is submitted to a log, the log MUST return a
 Signed Certificate Timestamp (SCT). The SCT is the log's promise to
 incorporate the certificate in the Merkle Tree within a fixed amount
 of time known as the Maximum Merge Delay (MMD). If the log has
 previously seen the certificate, it MAY return the same SCT as it
 returned before. TLS servers MUST present an SCT from one or more
 logs to the TLS client together with the certificate. TLS clients
 MUST reject certificates that are not accompanied by an SCT for
 either the end-entity certificate or for a name-constrained
 intermediate the end-entity certificate chains to.

 Periodically, each log appends all its new entries to the Merkle Tree
 and signs the root of the tree. The log MUST incorporate a
 certificate in its Merkle Tree within the Maximum Merge Delay period
 after the issuance of the SCT. When encountering an SCT, an Auditor
 can verify that the certificate was added to the Merkle Tree within
 that timeframe.

 Log operators MUST NOT impose any conditions on retrieving or sharing
 data from the log.

3.1. Log Entries

 In order to enable attribution of each logged certificate to its
 issuer, each submitted certificate MUST be accompanied by all
 additional certificates required to verify the certificate chain up
 to an accepted root certificate. The root certificate itself MAY be
 omitted from the chain submitted to the log server. The log SHALL
 allow retrieval of a list of acceptable root certificates (this list
 might usefully be the union of root certificates trusted by major
 browser vendors).

 Alternatively, (root as well as intermediate) certificate authorities
 may submit a certificate to logs prior to issuance in order to
 incorporate the SCT in the issued certificate. To do so, the CA
 submits a Precertificate that the log can use to create an entry that
 will be valid against the issued certificate. The Precertificate is
 an X.509v3 certificate for simplicity, but, since it isn't used for
 anything but logging, could equally be some other data structure.
 The Precertificate is constructed from the certificate to be issued

Laurie, et al. Expires January 11, 2015 [Page 9]

Internet-Draft Certificate Transparency July 2014

 by adding a special critical poison extension (OID
 1.3.6.1.4.1.11129.2.4.3, whose extnValue OCTET STRING contains ASN.1
 NULL data (0x05 0x00)) to the end-entity TBSCertificate, minus the
 SCT extension, which is obviously unknown until after the
 Precertificate has been submitted to the log. The poison extension
 is to ensure that the Precertificate cannot be validated by a
 standard X.509v3 client. The Precertificate MAY redact certain
 domain name labels that will be present in the final certificate (see

Section 3.2.2). The resulting TBSCertificate [RFC5280] is then
 signed with either

 o a special-purpose (CA:true, Extended Key Usage: Certificate
 Transparency, OID 1.3.6.1.4.1.11129.2.4.4) Precertificate Signing
 Certificate. The Precertificate Signing Certificate MUST be
 directly certified by the (root or intermediate) CA certificate
 that will ultimately sign the end-entity TBSCertificate yielding
 the end-entity certificate (note that the log may relax standard
 validation rules to allow this, so long as the issued certificate
 will be valid),

 o or, the CA certificate that will sign the final certificate.

 As above, the Precertificate submission MUST be accompanied by the
 Precertificate Signing Certificate, if used, and all additional
 certificates required to verify the chain up to an accepted root
 certificate. The signature on the TBSCertificate indicates the
 certificate authority's intent to issue a certificate. This intent
 is considered binding (i.e., misissuance of the Precertificate is
 considered equal to misissuance of the final certificate). Each log
 verifies the Precertificate signature chain and issues a Signed
 Certificate Timestamp on the corresponding TBSCertificate.

 Logs MUST verify that the submitted end-entity certificate or
 Precertificate has a valid signature chain leading back to a trusted
 root CA certificate, using the chain of intermediate CA certificates
 provided by the submitter. Logs MAY accept certificates that have
 expired, are not yet valid, have been revoked, or are otherwise not
 fully valid according to X.509 verification rules in order to
 accommodate quirks of CA certificate-issuing software. However, logs
 MUST refuse to publish certificates without a valid chain to a known
 root CA. If a certificate is accepted and an SCT issued, the
 accepting log MUST store the entire chain used for verification,
 including the certificate or Precertificate itself and including the
 root certificate used to verify the chain (even if it was omitted
 from the submission), and MUST present this chain for auditing upon
 request. This chain is required to prevent a CA from avoiding blame
 by logging a partial or empty chain. (Note: This effectively
 excludes self-signed and DANE-based certificates until some mechanism

https://datatracker.ietf.org/doc/html/rfc5280

Laurie, et al. Expires January 11, 2015 [Page 10]

Internet-Draft Certificate Transparency July 2014

 to limit the submission of spurious certificates is found. The
 authors welcome suggestions.)

 Each certificate entry in a log MUST include the following
 components:

 enum { x509_entry(0), precert_entry(1), (65535) } LogEntryType;

 struct {
 LogEntryType entry_type;
 select (entry_type) {
 case x509_entry: X509ChainEntry;
 case precert_entry: PrecertChainEntry;
 } entry;
 } LogEntry;

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 ASN.1Cert leaf_certificate;
 ASN.1Cert certificate_chain<0..2^24-1>;
 } X509ChainEntry;

 struct {
 ASN.1Cert pre_certificate;
 ASN.1Cert precertificate_chain<0..2^24-1>;
 } PrecertChainEntry;

 Logs SHOULD limit the length of chain they will accept.

 "entry_type" is the type of this entry. Future revisions of this
 protocol may add new LogEntryType values. Section 4 explains how
 clients should handle unknown entry types.

 "leaf_certificate" is the end-entity certificate submitted for
 auditing.

 "certificate_chain" is a chain of additional certificates required to
 verify the end-entity certificate. The first certificate MUST
 certify the end-entity certificate. Each following certificate MUST
 directly certify the one preceding it. The final certificate MUST
 either be, or be issued by, a root certificate accepted by the log.

 "pre_certificate" is the Precertificate submitted for auditing.

 "precertificate_chain" is a chain of additional certificates required
 to verify the Precertificate submission. The first certificate MAY
 be a valid Precertificate Signing Certificate and MUST certify the

Laurie, et al. Expires January 11, 2015 [Page 11]

Internet-Draft Certificate Transparency July 2014

 first certificate. Each following certificate MUST directly certify
 the one preceding it. The final certificate MUST be a root
 certificate accepted by the log.

3.2. Private Domain Name Labels

 Some regard some DNS domain name labels within their registered
 domain space as private and security sensitive. Even though these
 domains are often only accessible within the domain owner's private
 network, it's common for them to be secured using publicly trusted
 TLS server certificates. We define a mechanism to allow these
 private labels to not appear in public logs.

3.2.1. Wildcard Certificates

 A certificate containing a DNS-ID [RFC6125] of "*.example.com" could
 be used to secure the domain "topsecret.example.com", without
 revealing the string "topsecret" publicly.

 Since TLS clients only match the wildcard character to the complete
 leftmost label of the DNS domain name (see Section 6.4.3 of
 [RFC6125]), this approach would not work for a DNS-ID such as
 "top.secret.example.com". Also, wildcard certificates are prohibited
 in some cases, such as Extended Validation Certificates
 [EVSSLGuidelines].

3.2.2. Redacting Domain Name Labels in Precertificates

 When creating a Precertificate, the CA MAY substitute one or more of
 the complete leftmost labels in each DNS-ID with the literal string
 "(PRIVATE)". For example, if a certificate contains a DNS-ID of
 "top.secret.example.com", then the corresponding Precertificate could
 contain "(PRIVATE).example.com" instead. Labels in a CN-ID [RFC6125]
 MUST remain unredacted.

 When a Precertificate contains one or more redacted labels, a non-
 critical extension (OID 1.3.6.1.4.1.11129.2.4.6, whose extnValue
 OCTET STRING contains an ASN.1 SEQUENCE OF INTEGERs) MUST be added to
 the corresponding certificate: the first INTEGER indicates the number
 of labels redacted in the Precertificate's first DNS-ID; the second
 INTEGER does the same for the Precertificate's second DNS-ID; etc.
 There MUST NOT be more INTEGERs than there are DNS-IDs. If there are
 fewer INTEGERs than there are DNS-IDs, the shortfall is made up by
 implicitly repeating the last INTEGER. Each INTEGER MUST have a
 value of zero or more. The purpose of this extension is to enable
 TLS clients to accurately reconstruct the Precertificate from the
 certificate without having to perform any guesswork.

https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125#section-6.4.3
https://datatracker.ietf.org/doc/html/rfc6125#section-6.4.3
https://datatracker.ietf.org/doc/html/rfc6125

Laurie, et al. Expires January 11, 2015 [Page 12]

Internet-Draft Certificate Transparency July 2014

3.2.3. Using a Name-Constrained Intermediate CA

 An intermediate CA certificate or Precertificate that contains the
 critical or non-critical Name Constraints [RFC5280] extension MAY be
 logged in place of end-entity certificates issued by that
 intermediate CA, as long as all of the following conditions are met:

 o there MUST be a non-critical extension (OID
 1.3.6.1.4.1.11129.2.4.7, whose extnValue OCTET STRING contains
 ASN.1 NULL data (0x05 0x00)). This extension is an explicit
 indication that it is acceptable to not log certificates issued by
 this intermediate CA.

 o permittedSubtrees MUST specify one or more dNSNames.

 o excludedSubtrees MUST specify the entire IPv4 and IPv6 address
 ranges.

 Below is an example Name Constraints extension that meets these
 conditions:

 SEQUENCE {
 OBJECT IDENTIFIER '2 5 29 30'
 OCTET STRING, encapsulates {
 SEQUENCE {
 [0] {
 SEQUENCE {
 [2] 'example.com'
 }
 }
 [1] {
 SEQUENCE {
 [7] 00 00 00 00 00 00 00 00
 }
 SEQUENCE {
 [7]
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 }
 }
 }
 }
 }

https://datatracker.ietf.org/doc/html/rfc5280

Laurie, et al. Expires January 11, 2015 [Page 13]

Internet-Draft Certificate Transparency July 2014

3.3. Structure of the Signed Certificate Timestamp

 enum { certificate_timestamp(0), tree_hash(1), (255) }
 SignatureType;

 enum { v1(0), (255) }
 Version;

 struct {
 opaque key_id[32];
 } LogID;

 opaque TBSCertificate<1..2^24-1>;

 struct {
 opaque issuer_key_hash[32];
 TBSCertificate tbs_certificate;
 } PreCert;

 opaque CtExtensions<0..2^16-1>;

 "key_id" is the SHA-256 hash of the log's public key, calculated over
 the DER encoding of the key represented as SubjectPublicKeyInfo.

 "issuer_key_hash" is the SHA-256 hash of the certificate issuer's
 public key, calculated over the DER encoding of the key represented
 as SubjectPublicKeyInfo. This is needed to bind the issuer to the
 final certificate.

 "tbs_certificate" is the DER-encoded TBSCertificate (see [RFC5280])
 component of the Precertificate -- that is, without the signature and
 the poison extension. If the Precertificate is not signed with the
 CA certificate that will issue the final certificate, then the
 TBSCertificate also has its issuer changed to that of the CA that
 will issue the final certificate. Note that it is also possible to
 reconstruct this TBSCertificate from the final certificate by
 extracting the TBSCertificate from it and deleting the SCT extension.
 Also note that since the TBSCertificate contains an
 AlgorithmIdentifier that must match both the Precertificate signature
 algorithm and final certificate signature algorithm, they must be
 signed with the same algorithm and parameters. If the Precertificate
 is issued using a Precertificate Signing Certificate and an Authority
 Key Identifier extension is present in the TBSCertificate, the
 corresponding extension must also be present in the Precertificate
 Signing Certificate -- in this case, the TBSCertificate also has its
 Authority Key Identifier changed to match the final issuer.

https://datatracker.ietf.org/doc/html/rfc5280

Laurie, et al. Expires January 11, 2015 [Page 14]

Internet-Draft Certificate Transparency July 2014

 struct {
 Version sct_version;
 LogID id;
 uint64 timestamp;
 CtExtensions extensions;
 digitally-signed struct {
 Version sct_version;
 SignatureType signature_type = certificate_timestamp;
 uint64 timestamp;
 LogEntryType entry_type;
 select(entry_type) {
 case x509_entry: ASN.1Cert;
 case precert_entry: PreCert;
 } signed_entry;
 CtExtensions extensions;
 };
 } SignedCertificateTimestamp;

 The encoding of the digitally-signed element is defined in [RFC5246].

 "sct_version" is the version of the protocol to which the SCT
 conforms. This version is v1.

 "timestamp" is the current NTP Time [RFC5905], measured since the
 epoch (January 1, 1970, 00:00), ignoring leap seconds, in
 milliseconds.

 "entry_type" may be implicit from the context in which the SCT is
 presented.

 "signed_entry" is the "leaf_certificate" (in the case of an
 X509ChainEntry) or is the PreCert (in the case of a
 PrecertChainEntry), as described above.

 "extensions" are future extensions to this protocol version (v1).
 Currently, no extensions are specified.

3.4. Including the Signed Certificate Timestamp in the TLS Handshake

 The SCT data corresponding to at least one certificate in the chain
 from at least one log must be included in the TLS handshake, either
 by using an X509v3 certificate extension as described below, by using
 a TLS extension (Section 7.4.1.4 of [RFC5246]) with type
 "signed_certificate_timestamp", or by using Online Certificate Status
 Protocol (OCSP) Stapling (also known as the "Certificate Status
 Request" TLS extension; see [RFC6066]), where the OCSP response
 includes a non-critical extension with OID 1.3.6.1.4.1.11129.2.4.5
 (see [RFC2560]) and body:

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc2560

Laurie, et al. Expires January 11, 2015 [Page 15]

Internet-Draft Certificate Transparency July 2014

 SignedCertificateTimestampList ::= OCTET STRING

 in the singleExtensions component of the SingleResponse pertaining to
 the end-entity certificate.

 At least one SCT MUST be included. Server operators MAY include more
 than one SCT.

 Similarly, a certificate authority MAY submit a Precertificate to
 more than one log, and all obtained SCTs can be directly embedded in
 the final certificate, by encoding the SignedCertificateTimestampList
 structure as an ASN.1 OCTET STRING and inserting the resulting data
 in the TBSCertificate as a non-critical X.509v3 certificate extension
 (OID 1.3.6.1.4.1.11129.2.4.2). Upon receiving the certificate,
 clients can reconstruct the original TBSCertificate to verify the SCT
 signature.

 The contents of the ASN.1 OCTET STRING embedded in an OCSP extension
 or X509v3 certificate extension are as follows:

 opaque SerializedSCT<1..2^16-1>;

 struct {
 SerializedSCT sct_list <1..2^16-1>;
 } SignedCertificateTimestampList;

 Here, "SerializedSCT" is an opaque byte string that contains the
 serialized SCT structure. This encoding ensures that TLS clients can
 decode each SCT individually (i.e., if there is a version upgrade,
 out-of-date clients can still parse old SCTs while skipping over new
 SCTs whose versions they don't understand).

 Likewise, SCTs can be embedded in a TLS extension. See below for
 details.

 TLS clients MUST implement all three mechanisms. Servers MUST
 implement at least one of the three mechanisms. Note that existing
 TLS servers can generally use the certificate extension mechanism
 without modification.

 TLS servers SHOULD send SCTs from multiple logs in case one or more
 logs are not acceptable to the client (for example, if a log has been
 struck off for misbehavior, has had a key compromise or is not known
 to the client).

Laurie, et al. Expires January 11, 2015 [Page 16]

Internet-Draft Certificate Transparency July 2014

3.4.1. TLS Extension

 The SCT can be sent during the TLS handshake using a TLS extension
 with type "signed_certificate_timestamp".

 Clients that support the extension SHOULD send a ClientHello
 extension with the appropriate type and empty "extension_data".

 Servers MUST only send SCTs to clients who have indicated support for
 the extension in the ClientHello, in which case the SCTs are sent by
 setting the "extension_data" to a "SignedCertificateTimestampList".

 Session resumption uses the original session information: clients
 SHOULD include the extension type in the ClientHello, but if the
 session is resumed, the server is not expected to process it or
 include the extension in the ServerHello.

3.5. Merkle Tree

 The hashing algorithm for the Merkle Tree Hash is specified in the
 log's metadata.

 Structure of the Merkle Tree input:

 enum { v1(0), v2(1), (255) }
 LeafVersion;

 struct {
 uint64 timestamp;
 LogEntryType entry_type;
 select(entry_type) {
 case x509_entry: ASN.1Cert;
 case precert_entry: PreCert;
 } signed_entry;
 CtExtensions extensions;
 } TimestampedEntry;

 struct {
 LeafVersion version;
 TimestampedEntry timestamped_entry;
 } MerkleTreeLeaf;

 Here, "version" is the version of the MerkleTreeLeaf structure. This
 version is v2. Note that MerkleTreeLeaf v1 [RFC6962] had another
 layer of indirection which is removed in v2.

 "timestamp" is the timestamp of the corresponding SCT issued for this
 certificate.

https://datatracker.ietf.org/doc/html/rfc6962

Laurie, et al. Expires January 11, 2015 [Page 17]

Internet-Draft Certificate Transparency July 2014

 "entry_type" is the type of entry stored in "signed_entry". New
 "LogEntryType" values may be added to "signed_entry" without
 increasing the "MerkleTreeLeaf" version. Section 4 explains how
 clients should handle unknown entry types.

 "signed_entry" is the "signed_entry" of the corresponding SCT.

 "extensions" are "extensions" of the corresponding SCT.

 The leaves of the Merkle Tree are the leaf hashes of the
 corresponding "MerkleTreeLeaf" structures.

3.6. Signed Tree Head

 Every time a log appends new entries to the tree, the log SHOULD sign
 the corresponding tree hash and tree information (see the
 corresponding Signed Tree Head client message in Section 4.3). The
 signature for that data is structured as follows:

 opaque CtSthExtensions<0..2^16-1>;

 enum { v1(0), v2(1), (255) }
 TreeHeadVersion;

 digitally-signed struct {
 TreeHeadVersion version;
 SignatureType signature_type = tree_hash;
 uint64 timestamp;
 uint64 tree_size;
 opaque sha256_root_hash[32];
 CtSthExtensions extensions;
 } TreeHeadSignature;

 "version" is the version of the TreeHeadSignature structure. This
 version is v2.

 "timestamp" is the current time. The timestamp MUST be at least as
 recent as the most recent SCT timestamp in the tree. Each subsequent
 timestamp MUST be more recent than the timestamp of the previous
 update.

 "tree_size" equals the number of entries in the new tree.

 "sha256_root_hash" is the root of the Merkle Hash Tree.

 "extensions" are future extensions to TreeHeadSignature v2.
 Currently, no extensions are specified. Note that TreeHeadSignature
 v1 [RFC6962] does not include this field. The purpose of the

https://datatracker.ietf.org/doc/html/rfc6962

Laurie, et al. Expires January 11, 2015 [Page 18]

Internet-Draft Certificate Transparency July 2014

 "extensions" field is to allow augmenting the TreeHeadSignature
 without increasing its version.

 Each log MUST produce on demand a Signed Tree Head that is no older
 than the Maximum Merge Delay. In the unlikely event that it receives
 no new submissions during an MMD period, the log SHALL sign the same
 Merkle Tree Hash with a fresh timestamp.

4. Log Client Messages

 Messages are sent as HTTPS GET or POST requests. Parameters for
 POSTs and all responses are encoded as JavaScript Object Notation
 (JSON) objects [RFC4627]. Parameters for GETs are encoded as order-
 independent key/value URL parameters, using the "application/x-www-
 form-urlencoded" format described in the "HTML 4.01 Specification"
 [HTML401]. Binary data is base64 encoded [RFC4648] as specified in
 the individual messages.

 Note that JSON objects and URL parameters may contain fields not
 specified here. These extra fields should be ignored.

 The <log server> prefix MAY include a path as well as a server name
 and a port.

 In general, where needed, the "version" is v1 and the "id" is the log
 id for the log server queried.

 If the log is unable to process a client's request, it MUST return an
 HTTP response code of 4xx/5xx (see [RFC2616]), and, in place of the
 responses outlined in the subsections below, the body SHOULD be a
 JSON structure containing at least the following field:

 error_message:

 A human-readable string describing the error which prevented
 the log from processing the request.

 In the case of a malformed request, the string SHOULD provide
 sufficient detail for the error to be rectified.

 e.g. In response to a request of "/ct/v1/get-
 entries?start=100&end=99", the log would return a "400 Bad Request"
 response code with a body similar to the following:

 {
 "error_message": "'start' cannot be greater than 'end'",
 }

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc2616

Laurie, et al. Expires January 11, 2015 [Page 19]

Internet-Draft Certificate Transparency July 2014

 Clients SHOULD treat "500 Internal Server Error" and "503 Service
 Unavailable" responses as transient failures and MAY retry the same
 request without modification at a later date. Note that as per
 [RFC2616], in the case of a 503 response the log MAY include a
 "Retry-After:" header in order to request a minimum time for the
 client to wait before retrying the request.

4.1. Add Chain to Log

 POST https://<log server>/ct/v1/add-chain

 Inputs:

 chain: An array of base64-encoded certificates. The first
 element is the end-entity certificate; the second chains to the
 first and so on to the last, which is either the root
 certificate or a certificate that chains to a known root
 certificate.

 Outputs:

 sct_version: The version of the SignedCertificateTimestamp
 structure, in decimal. A compliant v1 implementation MUST NOT
 expect this to be 0 (i.e., v1).

 id: The log ID, base64 encoded.

 timestamp: The SCT timestamp, in decimal.

 extensions: An opaque type for future expansion. It is likely
 that not all participants will need to understand data in this
 field. Logs should set this to the empty string. Clients
 should decode the base64-encoded data and include it in the
 SCT.

 signature: The SCT signature, base64 encoded.

 If the "sct_version" is not v1, then a v1 client may be unable to
 verify the signature. It MUST NOT construe this as an error. This
 is to avoid forcing an upgrade of compliant v1 clients that do not
 use the returned SCTs.

https://datatracker.ietf.org/doc/html/rfc2616

Laurie, et al. Expires January 11, 2015 [Page 20]

Internet-Draft Certificate Transparency July 2014

4.2. Add PreCertChain to Log

 POST https://<log server>/ct/v1/add-pre-chain

 Inputs:

 chain: An array of base64-encoded Precertificates. The first
 element is the end-entity certificate; the second chains to the
 first and so on to the last, which is either the root
 certificate or a certificate that chains to a known root
 certificate.

 Outputs are the same as in Section 4.1.

4.3. Retrieve Latest Signed Tree Head

 GET https://<log server>/ct/v1/get-sth

 No inputs.

 Outputs:

 tree_size: The size of the tree, in entries, in decimal.

 timestamp: The timestamp, in decimal.

 sha256_root_hash: The Merkle Tree Hash of the tree, in base64.

 tree_head_signature: A TreeHeadSignature for the above data.

4.4. Retrieve Merkle Consistency Proof between Two Signed Tree Heads

 GET https://<log server>/ct/v1/get-sth-consistency

 Inputs:

 first: The tree_size of the older tree, in decimal.

 second: The tree_size of the newer tree, in decimal.

 Both tree sizes must be from existing v1 STHs (Signed Tree Heads).

Laurie, et al. Expires January 11, 2015 [Page 21]

Internet-Draft Certificate Transparency July 2014

 Outputs:

 consistency: An array of Merkle Tree nodes, base64 encoded.

 Note that no signature is required on this data, as it is used to
 verify an STH, which is signed.

4.5. Retrieve Merkle Audit Proof from Log by Leaf Hash

 GET https://<log server>/ct/v1/get-proof-by-hash

 Inputs:

 hash: A base64-encoded v1 leaf hash.

 tree_size: The tree_size of the tree on which to base the proof,
 in decimal.

 The "hash" must be calculated as defined in Section 3.5. The
 "tree_size" must designate an existing v1 STH.

 Outputs:

 leaf_index: The 0-based index of the entry corresponding to the
 "hash" parameter.

 audit_path: An array of base64-encoded Merkle Tree nodes proving
 the inclusion of the chosen certificate.

4.6. Retrieve Entries from Log

 GET https://<log server>/ct/v1/get-entries

 Inputs:

 start: 0-based index of first entry to retrieve, in decimal.

 end: 0-based index of last entry to retrieve, in decimal.

 Outputs:

Laurie, et al. Expires January 11, 2015 [Page 22]

Internet-Draft Certificate Transparency July 2014

 entries: An array of objects, each consisting of

 leaf_input: The base64-encoded MerkleTreeLeaf structure.

 extra_data: The base64-encoded unsigned data pertaining to the
 log entry. In the case of an X509ChainEntry, this is the
 "certificate_chain". In the case of a PrecertChainEntry,
 this is the whole "PrecertChainEntry".

 Note that this message is not signed -- the retrieved data can be
 verified by constructing the Merkle Tree Hash corresponding to a
 retrieved STH. All leaves MUST be v1 or v2. However, a compliant v1
 client MUST NOT construe an unrecognized LogEntryType value as an
 error. This means it may be unable to parse some entries, but note
 that each client can inspect the entries it does recognize as well as
 verify the integrity of the data by treating unrecognized leaves as
 opaque input to the tree.

 The "start" and "end" parameters SHOULD be within the range 0 <= x <
 "tree_size" as returned by "get-sth" in Section 4.3.

 Logs MAY honor requests where 0 <= "start" < "tree_size" and "end" >=
 "tree_size" by returning a partial response covering only the valid
 entries in the specified range. Note that the following restriction
 may also apply:

 Logs MAY restrict the number of entries that can be retrieved per
 "get-entries" request. If a client requests more than the permitted
 number of entries, the log SHALL return the maximum number of entries
 permissible. These entries SHALL be sequential beginning with the
 entry specified by "start".

4.7. Retrieve Accepted Root Certificates

 GET https://<log server>/ct/v1/get-roots

 No inputs.

 Outputs:

 certificates: An array of base64-encoded root certificates that
 are acceptable to the log.

Laurie, et al. Expires January 11, 2015 [Page 23]

Internet-Draft Certificate Transparency July 2014

4.8. Retrieve Entry+Merkle Audit Proof from Log

 GET https://<log server>/ct/v1/get-entry-and-proof

 Inputs:

 leaf_index: The index of the desired entry.

 tree_size: The tree_size of the tree for which the proof is
 desired.

 The tree size must designate an existing STH.

 Outputs:

 leaf_input: The base64-encoded MerkleTreeLeaf structure.

 extra_data: The base64-encoded unsigned data, same as in
Section 4.6.

 audit_path: An array of base64-encoded Merkle Tree nodes proving
 the inclusion of the chosen certificate.

 This API is probably only useful for debugging.

5. Clients

 There are various different functions clients of logs might perform.
 We describe here some typical clients and how they could function.
 Any inconsistency may be used as evidence that a log has not behaved
 correctly, and the signatures on the data structures prevent the log
 from denying that misbehavior.

 All clients should gossip with each other, exchanging STHs at least;
 this is all that is required to ensure that they all have a
 consistent view. The exact mechanism for gossip will be described in
 a separate document, but it is expected there will be a variety.

5.1. Submitters

 Submitters submit certificates or Precertificates to the log as
 described above. When a Submitter intends to use the returned SCT
 directly in a TLS handshake or to construct a certificate, they

Laurie, et al. Expires January 11, 2015 [Page 24]

Internet-Draft Certificate Transparency July 2014

 SHOULD validate the SCT as described in Section 5.2 if they
 understand its format.

5.2. TLS Client

 TLS clients receive SCTs alongside or in server certificates. In
 addition to normal validation of the certificate and its chain, TLS
 clients SHOULD validate the SCT by computing the signature input from
 the SCT data as well as the certificate and verifying the signature,
 using the corresponding log's public key. TLS clients MAY audit the
 corresponding log by requesting, and verifying, a Merkle audit proof
 for said certificate. Note that this document does not describe how
 clients obtain the logs' public keys or URLs.

 TLS clients MUST reject SCTs whose timestamp is in the future.

5.3. Monitor

 Monitors watch logs and check that they behave correctly. They also
 watch for certificates of interest.

 A monitor needs to, at least, inspect every new entry in each log it
 watches. It may also want to keep copies of entire logs. In order
 to do this, it should follow these steps for each log:

 1. Fetch the current STH (Section 4.3).

 2. Verify the STH signature.

 3. Fetch all the entries in the tree corresponding to the STH
 (Section 4.6).

 4. Confirm that the tree made from the fetched entries produces the
 same hash as that in the STH.

 5. Fetch the current STH (Section 4.3). Repeat until the STH
 changes.

 6. Verify the STH signature.

 7. Fetch all the new entries in the tree corresponding to the STH
 (Section 4.6). If they remain unavailable for an extended
 period, then this should be viewed as misbehavior on the part of
 the log.

 8. Either:

Laurie, et al. Expires January 11, 2015 [Page 25]

Internet-Draft Certificate Transparency July 2014

 1. Verify that the updated list of all entries generates a tree
 with the same hash as the new STH.

 Or, if it is not keeping all log entries:

 1. Fetch a consistency proof for the new STH with the previous
 STH (Section 4.4).

 2. Verify the consistency proof.

 3. Verify that the new entries generate the corresponding
 elements in the consistency proof.

 9. Go to Step 5.

5.4. Auditor

 Auditors take partial information about a log as input and verify
 that this information is consistent with other partial information
 they have. An auditor might be an integral component of a TLS
 client; it might be a standalone service; or it might be a secondary
 function of a monitor.

 Any pair of STHs from the same log can be verified by requesting a
 consistency proof (Section 4.4).

 A certificate accompanied by an SCT can be verified against any STH
 dated after the SCT timestamp + the Maximum Merge Delay by requesting
 a Merkle audit proof (Section 4.5).

 Auditors can fetch STHs from time to time of their own accord, of
 course (Section 4.3).

6. IANA Considerations

6.1. TLS Extension Type

 IANA has allocated an RFC 5246 ExtensionType value (18) for the SCT
 TLS extension. The extension name is "signed_certificate_timestamp".
 IANA should update this extension type to point at this document.

6.2. Hash Algorithms

 IANA is asked to establish a registry of hash values, initially
 consisting of:

https://datatracker.ietf.org/doc/html/rfc5246

Laurie, et al. Expires January 11, 2015 [Page 26]

Internet-Draft Certificate Transparency July 2014

 +-------+----------------------+
 | Index | Hash |
 +-------+----------------------+
 | 0 | SHA-256 [FIPS.180-4] |
 +-------+----------------------+

7. Security Considerations

 With CAs, logs, and servers performing the actions described here,
 TLS clients can use logs and signed timestamps to reduce the
 likelihood that they will accept misissued certificates. If a server
 presents a valid signed timestamp for a certificate, then the client
 knows that a log has committed to publishing the certificate. From
 this, the client knows that the subject of the certificate has had
 some time to notice the misissue and take some action, such as asking
 a CA to revoke a misissued certificate, or that the log has
 misbehaved, which will be discovered when the SCT is audited. A
 signed timestamp is not a guarantee that the certificate is not
 misissued, since the subject of the certificate might not have
 checked the logs or the CA might have refused to revoke the
 certificate.

 In addition, if TLS clients will not accept unlogged certificates,
 then site owners will have a greater incentive to submit certificates
 to logs, possibly with the assistance of their CA, increasing the
 overall transparency of the system.

7.1. Misissued Certificates

 Misissued certificates that have not been publicly logged, and thus
 do not have a valid SCT, will be rejected by TLS clients. Misissued
 certificates that do have an SCT from a log will appear in that
 public log within the Maximum Merge Delay, assuming the log is
 operating correctly. Thus, the maximum period of time during which a
 misissued certificate can be used without being available for audit
 is the MMD.

7.2. Detection of Misissue

 The logs do not themselves detect misissued certificates; they rely
 instead on interested parties, such as domain owners, to monitor them
 and take corrective action when a misissue is detected.

7.3. Redaction of Public Domain Name Labels

 CAs SHOULD NOT redact domain name labels in Precertificates to the
 extent that domain name ownership becomes unclear (e.g.
 "(PRIVATE).com" and "(PRIVATE).co.uk" would both be problematic).

Laurie, et al. Expires January 11, 2015 [Page 27]

Internet-Draft Certificate Transparency July 2014

 Logs MUST NOT reject any Precertificate that is overly redacted but
 which is otherwise considered compliant. It is expected that
 monitors will treat overly redacted Precertificates as potentially
 misissued. TLS clients MAY reject a certificate whose corresponding
 Precertificate would be overly redacted.

7.4. Misbehaving Logs

 A log can misbehave in two ways: (1) by failing to incorporate a
 certificate with an SCT in the Merkle Tree within the MMD and (2) by
 violating its append-only property by presenting two different,
 conflicting views of the Merkle Tree at different times and/or to
 different parties. Both forms of violation will be promptly and
 publicly detectable.

 Violation of the MMD contract is detected by log clients requesting a
 Merkle audit proof for each observed SCT. These checks can be
 asynchronous and need only be done once per each certificate. In
 order to protect the clients' privacy, these checks need not reveal
 the exact certificate to the log. Clients can instead request the
 proof from a trusted auditor (since anyone can compute the audit
 proofs from the log) or request Merkle proofs for a batch of
 certificates around the SCT timestamp.

 Violation of the append-only property is detected by global
 gossiping, i.e., everyone auditing logs comparing their instances of
 the latest Signed Tree Heads. As soon as two conflicting Signed Tree
 Heads for the same log are detected, this is cryptographic proof of
 that log's misbehavior.

8. Efficiency Considerations

 The Merkle Tree design serves the purpose of keeping communication
 overhead low.

 Auditing logs for integrity does not require third parties to
 maintain a copy of each entire log. The Signed Tree Heads can be
 updated as new entries become available, without recomputing entire
 trees. Third-party auditors need only fetch the Merkle consistency
 proofs against a log's existing STH to efficiently verify the append-
 only property of updates to their Merkle Trees, without auditing the
 entire tree.

9. Future Changes

 This section lists things we might address in a Standards Track
 version of this document.

Laurie, et al. Expires January 11, 2015 [Page 28]

Internet-Draft Certificate Transparency July 2014

 o Rather than forcing a log operator to create a new log in order to
 change the log signing key, we may allow some key roll mechanism.

 o We may add hash and signing algorithm agility.

 o We may describe some gossip protocols.

10. Acknowledgements

 The authors would like to thank Erwann Abelea, Robin Alden, Al
 Cutter, Francis Dupont, Stephen Farrell, Brad Hill, Jeff Hodges, Paul
 Hoffman, Jeffrey Hutzelman, SM, Alexey Melnikov, Chris Palmer, Trevor
 Perrin, Ryan Sleevi and Carl Wallace for their valuable
 contributions.

11. References

11.1. Normative Reference

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2. Informative References

 [CrosbyWallach]
 Crosby, S. and D. Wallach, "Efficient Data Structures for
 Tamper-Evident Logging", Proceedings of the 18th USENIX
 Security Symposium, Montreal, August 2009,
 <http://static.usenix.org/event/sec09/tech/full_papers/

crosby.pdf>.

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS 186-3, June 2009,
 <http://csrc.nist.gov/publications/fips/fips186-3/

fips_186-3.pdf>.

 [EVSSLGuidelines]
 CA/Browser Forum, "Guidelines For The Issuance And
 Management Of Extended Validation Certificates", 2007,
 <https://cabforum.org/wp-content/uploads/

EV_Certificate_Guidelines.pdf>.

 [FIPS.180-4]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://cabforum.org/wp-content/uploads/EV_Certificate_Guidelines.pdf
https://cabforum.org/wp-content/uploads/EV_Certificate_Guidelines.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Laurie, et al. Expires January 11, 2015 [Page 29]

Internet-Draft Certificate Transparency July 2014

 [HTML401] Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium Recommendation
 REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560, June 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, June 2013.

http://www.w3.org/TR/1999/REC-html401-19991224
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6962

Laurie, et al. Expires January 11, 2015 [Page 30]

Internet-Draft Certificate Transparency July 2014

Authors' Addresses

 Ben Laurie
 Google UK Ltd.

 EMail: benl@google.com

 Adam Langley
 Google Inc.

 EMail: agl@google.com

 Emilia Kasper
 Google Switzerland GmbH

 EMail: ekasper@google.com

 Rob Stradling
 Comodo CA, Ltd.

 EMail: rob.stradling@comodo.com

Laurie, et al. Expires January 11, 2015 [Page 31]

