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Abstract

   This document describes a protocol for publicly logging the existence
   of Transport Layer Security (TLS) certificates as they are issued or
   observed, in a manner that allows anyone to audit certificate
   authority (CA) activity and notice the issuance of suspect
   certificates as well as to audit the certificate logs themselves.
   The intent is that eventually clients would refuse to honor
   certificates that do not appear in a log, effectively forcing CAs to
   add all issued certificates to the logs.

   Logs are network services that implement the protocol operations for
   submissions and queries that are defined in this document.
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   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
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   working documents as Internet-Drafts.  The list of current Internet-
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   Internet-Drafts are draft documents valid for a maximum of six months
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   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 11, 2015.
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   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Informal Introduction

   Certificate transparency aims to mitigate the problem of misissued
   certificates by providing publicly auditable, append-only, untrusted
   logs of all issued certificates.  The logs are publicly auditable so
   that it is possible for anyone to verify the correctness of each log
   and to monitor when new certificates are added to it.  The logs do
   not themselves prevent misissue, but they ensure that interested
   parties (particularly those named in certificates) can detect such
   misissuance.  Note that this is a general mechanism, but in this
   document, we only describe its use for public TLS server certificates
   issued by public certificate authorities (CAs).

   Each log consists of certificate chains, which can be submitted by
   anyone.  It is expected that public CAs will contribute all their
   newly issued certificates to one or more logs, however certificate
   holders can also contribute their own certificate chains, as can
   third parties.  In order to avoid logs being rendered useless by
   submitting large numbers of spurious certificates, it is required
   that each chain is rooted in a CA certificate accepted by the log.
   When a chain is submitted to a log, a signed timestamp is returned,
   which can later be used to provide evidence to TLS clients that the
   chain has been submitted.  TLS clients can thus require that all
   certificates they accept as valid have been logged.

   Those who are concerned about misissue can monitor the logs, asking
   them regularly for all new entries, and can thus check whether
   domains they are responsible for have had certificates issued that
   they did not expect.  What they do with this information,
   particularly when they find that a misissuance has happened, is
   beyond the scope of this document, but broadly speaking, they can
   invoke existing business mechanisms for dealing with misissued
   certificates, such as working with the CA to get the certificate
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   revoked, or with maintainers of trust anchor lists to get the CA
   removed.  Of course, anyone who wants can monitor the logs and, if
   they believe a certificate is incorrectly issued, take action as they
   see fit.

   Similarly, those who have seen signed timestamps from a particular
   log can later demand a proof of inclusion from that log.  If the log
   is unable to provide this (or, indeed, if the corresponding
   certificate is absent from monitors' copies of that log), that is
   evidence of the incorrect operation of the log.  The checking
   operation is asynchronous to allow TLS connections to proceed without
   delay, despite network connectivity issues and the vagaries of
   firewalls.

   The append-only property of each log is technically achieved using
   Merkle Trees, which can be used to show that any particular instance
   of the log is a superset of any particular previous instance.
   Likewise, Merkle Trees avoid the need to blindly trust logs: if a log
   attempts to show different things to different people, this can be
   efficiently detected by comparing tree roots and consistency proofs.
   Similarly, other misbehaviors of any log (e.g., issuing signed
   timestamps for certificates they then don't log) can be efficiently
   detected and proved to the world at large.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

1.2.  Data Structures

   Data structures are defined according to the conventions laid out in
Section 4 of [RFC5246].

2.  Cryptographic Components

2.1.  Merkle Hash Trees

   Logs use a binary Merkle Hash Tree for efficient auditing.  The
   hashing algorithm used by each log is expected to be specified as
   part of the metadata relating to that log.  We have established a
   registry of acceptable algorithms, see Section 6.2.  The hashing
   algorithm in use is referred to as HASH throughout this document.
   The input to the Merkle Tree Hash is a list of data entries; these
   entries will be hashed to form the leaves of the Merkle Hash Tree.
   The output is a single 32-byte Merkle Tree Hash.  Given an ordered

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246#section-4
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   list of n inputs, D[n] = {d(0), d(1), ..., d(n-1)}, the Merkle Tree
   Hash (MTH) is thus defined as follows:

   The hash of an empty list is the hash of an empty string:

   MTH({}) = HASH().

   The hash of a list with one entry (also known as a leaf hash) is:

   MTH({d(0)}) = HASH(0x00 || d(0)).

   For n > 1, let k be the largest power of two smaller than n (i.e., k
   < n <= 2k).  The Merkle Tree Hash of an n-element list D[n] is then
   defined recursively as

   MTH(D[n]) = HASH(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

   where || is concatenation and D[k1:k2] denotes the list {d(k1),
   d(k1+1),..., d(k2-1)} of length (k2 - k1).  (Note that the hash
   calculations for leaves and nodes differ.  This domain separation is
   required to give second preimage resistance.)

   Note that we do not require the length of the input list to be a
   power of two.  The resulting Merkle Tree may thus not be balanced;
   however, its shape is uniquely determined by the number of leaves.
   (Note: This Merkle Tree is essentially the same as the history tree
   [CrosbyWallach] proposal, except our definition handles non-full
   trees differently.)

2.1.1.  Merkle Audit Paths

   A Merkle audit path for a leaf in a Merkle Hash Tree is the shortest
   list of additional nodes in the Merkle Tree required to compute the
   Merkle Tree Hash for that tree.  Each node in the tree is either a
   leaf node or is computed from the two nodes immediately below it
   (i.e., towards the leaves).  At each step up the tree (towards the
   root), a node from the audit path is combined with the node computed
   so far.  In other words, the audit path consists of the list of
   missing nodes required to compute the nodes leading from a leaf to
   the root of the tree.  If the root computed from the audit path
   matches the true root, then the audit path is proof that the leaf
   exists in the tree.

   Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
   d(n-1)}, the Merkle audit path PATH(m, D[n]) for the (m+1)th input
   d(m), 0 <= m < n, is defined as follows:
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   The path for the single leaf in a tree with a one-element input list
   D[1] = {d(0)} is empty:

   PATH(0, {d(0)}) = {}

   For n > 1, let k be the largest power of two smaller than n. The path
   for the (m+1)th element d(m) in a list of n > m elements is then
   defined recursively as

   PATH(m, D[n]) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

   PATH(m, D[n]) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

   where : is concatenation of lists and D[k1:k2] denotes the length (k2
   - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

2.1.2.  Merkle Consistency Proofs

   Merkle consistency proofs prove the append-only property of the tree.
   A Merkle consistency proof for a Merkle Tree Hash MTH(D[n]) and a
   previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n,
   is the list of nodes in the Merkle Tree required to verify that the
   first m inputs D[0:m] are equal in both trees.  Thus, a consistency
   proof must contain a set of intermediate nodes (i.e., commitments to
   inputs) sufficient to verify MTH(D[n]), such that (a subset of) the
   same nodes can be used to verify MTH(D[0:m]).  We define an algorithm
   that outputs the (unique) minimal consistency proof.

   Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
   d(n-1)}, the Merkle consistency proof PROOF(m, D[n]) for a previous
   Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:

   PROOF(m, D[n]) = SUBPROOF(m, D[n], true)

   The subproof for m = n is empty if m is the value for which PROOF was
   originally requested (meaning that the subtree Merkle Tree Hash
   MTH(D[0:m]) is known):

   SUBPROOF(m, D[m], true) = {}

   The subproof for m = n is the Merkle Tree Hash committing inputs
   D[0:m]; otherwise:

   SUBPROOF(m, D[m], false) = {MTH(D[m])}

   For m < n, let k be the largest power of two smaller than n. The
   subproof is then defined recursively.
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   If m <= k, the right subtree entries D[k:n] only exist in the current
   tree.  We prove that the left subtree entries D[0:k] are consistent
   and add a commitment to D[k:n]:

   SUBPROOF(m, D[n], b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n])

   If m > k, the left subtree entries D[0:k] are identical in both
   trees.  We prove that the right subtree entries D[k:n] are consistent
   and add a commitment to D[0:k].

   SUBPROOF(m, D[n], b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k])

   Here, : is a concatenation of lists, and D[k1:k2] denotes the length
   (k2 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

   The number of nodes in the resulting proof is bounded above by
   ceil(log2(n)) + 1.

2.1.3.  Example

   The binary Merkle Tree with 7 leaves:

               hash
              /    \
             /      \
            /        \
           /          \
          /            \
         k              l
        / \            / \
       /   \          /   \
      /     \        /     \
     g       h      i      j
    / \     / \    / \     |
    a b     c d    e f     d6
    | |     | |    | |
   d0 d1   d2 d3  d4 d5

   The audit path for d0 is [b, h, l].

   The audit path for d3 is [c, g, l].

   The audit path for d4 is [f, j, k].

   The audit path for d6 is [i, k].

   The same tree, built incrementally in four steps:
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       hash0          hash1=k
       / \              /  \
      /   \            /    \
     /     \          /      \
     g      c         g       h
    / \     |        / \     / \
    a b     d2       a b     c d
    | |              | |     | |
   d0 d1            d0 d1   d2 d3

             hash2                    hash
             /  \                    /    \
            /    \                  /      \
           /      \                /        \
          /        \              /          \
         /          \            /            \
        k            i          k              l
       / \          / \        / \            / \
      /   \         e f       /   \          /   \
     /     \        | |      /     \        /     \
    g       h      d4 d5    g       h      i      j
   / \     / \             / \     / \    / \     |
   a b     c d             a b     c d    e f     d6
   | |     | |             | |     | |    | |
   d0 d1   d2 d3           d0 d1   d2 d3  d4 d5

   The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
   d, g, l]. c, g are used to verify hash0, and d, l are additionally
   used to show hash is consistent with hash0.

   The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
   hash can be verified using hash1=k and l.

   The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
   j, k]. k, i are used to verify hash2, and j is additionally used to
   show hash is consistent with hash2.

2.1.4.  Signatures

   Various data structures are signed.  A log MUST use either elliptic
   curve signatures using the NIST P-256 curve (Section D.1.2.3 of the
   Digital Signature Standard [DSS]) or RSA signatures (RSASSA-
   PKCS1-V1_5 with SHA-256, Section 8.2 of [RFC3447]) using a key of at
   least 2048 bits.

https://datatracker.ietf.org/doc/html/rfc3447#section-8.2
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3.  Log Format and Operation

   Anyone can submit certificates to certificate logs for public
   auditing; however, since certificates will not be accepted by TLS
   clients unless logged, it is expected that certificate owners or
   their CAs will usually submit them.  A log is a single, ever-growing,
   append-only Merkle Tree of such certificates.

   When a valid certificate is submitted to a log, the log MUST return a
   Signed Certificate Timestamp (SCT).  The SCT is the log's promise to
   incorporate the certificate in the Merkle Tree within a fixed amount
   of time known as the Maximum Merge Delay (MMD).  If the log has
   previously seen the certificate, it MAY return the same SCT as it
   returned before.  TLS servers MUST present an SCT from one or more
   logs to the TLS client together with the certificate.  TLS clients
   MUST reject certificates that are not accompanied by an SCT for
   either the end-entity certificate or for a name-constrained
   intermediate the end-entity certificate chains to.

   Periodically, each log appends all its new entries to the Merkle Tree
   and signs the root of the tree.  The log MUST incorporate a
   certificate in its Merkle Tree within the Maximum Merge Delay period
   after the issuance of the SCT.  When encountering an SCT, an Auditor
   can verify that the certificate was added to the Merkle Tree within
   that timeframe.

   Log operators MUST NOT impose any conditions on retrieving or sharing
   data from the log.

3.1.  Log Entries

   In order to enable attribution of each logged certificate to its
   issuer, each submitted certificate MUST be accompanied by all
   additional certificates required to verify the certificate chain up
   to an accepted root certificate.  The root certificate itself MAY be
   omitted from the chain submitted to the log server.  The log SHALL
   allow retrieval of a list of acceptable root certificates (this list
   might usefully be the union of root certificates trusted by major
   browser vendors).

   Alternatively, (root as well as intermediate) certificate authorities
   may submit a certificate to logs prior to issuance in order to
   incorporate the SCT in the issued certificate.  To do so, the CA
   submits a Precertificate that the log can use to create an entry that
   will be valid against the issued certificate.  The Precertificate is
   an X.509v3 certificate for simplicity, but, since it isn't used for
   anything but logging, could equally be some other data structure.
   The Precertificate is constructed from the certificate to be issued
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   by adding a special critical poison extension (OID
   1.3.6.1.4.1.11129.2.4.3, whose extnValue OCTET STRING contains ASN.1
   NULL data (0x05 0x00)) to the end-entity TBSCertificate, minus the
   SCT extension, which is obviously unknown until after the
   Precertificate has been submitted to the log.  The poison extension
   is to ensure that the Precertificate cannot be validated by a
   standard X.509v3 client.  The Precertificate MAY redact certain
   domain name labels that will be present in the final certificate (see

Section 3.2.2).  The resulting TBSCertificate [RFC5280] is then
   signed with either

   o  a special-purpose (CA:true, Extended Key Usage: Certificate
      Transparency, OID 1.3.6.1.4.1.11129.2.4.4) Precertificate Signing
      Certificate.  The Precertificate Signing Certificate MUST be
      directly certified by the (root or intermediate) CA certificate
      that will ultimately sign the end-entity TBSCertificate yielding
      the end-entity certificate (note that the log may relax standard
      validation rules to allow this, so long as the issued certificate
      will be valid),

   o  or, the CA certificate that will sign the final certificate.

   As above, the Precertificate submission MUST be accompanied by the
   Precertificate Signing Certificate, if used, and all additional
   certificates required to verify the chain up to an accepted root
   certificate.  The signature on the TBSCertificate indicates the
   certificate authority's intent to issue a certificate.  This intent
   is considered binding (i.e., misissuance of the Precertificate is
   considered equal to misissuance of the final certificate).  Each log
   verifies the Precertificate signature chain and issues a Signed
   Certificate Timestamp on the corresponding TBSCertificate.

   Logs MUST verify that the submitted end-entity certificate or
   Precertificate has a valid signature chain leading back to a trusted
   root CA certificate, using the chain of intermediate CA certificates
   provided by the submitter.  Logs MAY accept certificates that have
   expired, are not yet valid, have been revoked, or are otherwise not
   fully valid according to X.509 verification rules in order to
   accommodate quirks of CA certificate-issuing software.  However, logs
   MUST refuse to publish certificates without a valid chain to a known
   root CA.  If a certificate is accepted and an SCT issued, the
   accepting log MUST store the entire chain used for verification,
   including the certificate or Precertificate itself and including the
   root certificate used to verify the chain (even if it was omitted
   from the submission), and MUST present this chain for auditing upon
   request.  This chain is required to prevent a CA from avoiding blame
   by logging a partial or empty chain.  (Note: This effectively
   excludes self-signed and DANE-based certificates until some mechanism

https://datatracker.ietf.org/doc/html/rfc5280
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   to limit the submission of spurious certificates is found.  The
   authors welcome suggestions.)

   Each certificate entry in a log MUST include the following
   components:

       enum { x509_entry(0), precert_entry(1), (65535) } LogEntryType;

       struct {
           LogEntryType entry_type;
           select (entry_type) {
               case x509_entry: X509ChainEntry;
               case precert_entry: PrecertChainEntry;
           } entry;
       } LogEntry;

       opaque ASN.1Cert<1..2^24-1>;

       struct {
           ASN.1Cert leaf_certificate;
           ASN.1Cert certificate_chain<0..2^24-1>;
       } X509ChainEntry;

       struct {
           ASN.1Cert pre_certificate;
           ASN.1Cert precertificate_chain<0..2^24-1>;
       } PrecertChainEntry;

   Logs SHOULD limit the length of chain they will accept.

   "entry_type" is the type of this entry.  Future revisions of this
   protocol may add new LogEntryType values.  Section 4 explains how
   clients should handle unknown entry types.

   "leaf_certificate" is the end-entity certificate submitted for
   auditing.

   "certificate_chain" is a chain of additional certificates required to
   verify the end-entity certificate.  The first certificate MUST
   certify the end-entity certificate.  Each following certificate MUST
   directly certify the one preceding it.  The final certificate MUST
   either be, or be issued by, a root certificate accepted by the log.

   "pre_certificate" is the Precertificate submitted for auditing.

   "precertificate_chain" is a chain of additional certificates required
   to verify the Precertificate submission.  The first certificate MAY
   be a valid Precertificate Signing Certificate and MUST certify the
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   first certificate.  Each following certificate MUST directly certify
   the one preceding it.  The final certificate MUST be a root
   certificate accepted by the log.

3.2.  Private Domain Name Labels

   Some regard some DNS domain name labels within their registered
   domain space as private and security sensitive.  Even though these
   domains are often only accessible within the domain owner's private
   network, it's common for them to be secured using publicly trusted
   TLS server certificates.  We define a mechanism to allow these
   private labels to not appear in public logs.

3.2.1.  Wildcard Certificates

   A certificate containing a DNS-ID [RFC6125] of "*.example.com" could
   be used to secure the domain "topsecret.example.com", without
   revealing the string "topsecret" publicly.

   Since TLS clients only match the wildcard character to the complete
   leftmost label of the DNS domain name (see Section 6.4.3 of
   [RFC6125]), this approach would not work for a DNS-ID such as
   "top.secret.example.com".  Also, wildcard certificates are prohibited
   in some cases, such as Extended Validation Certificates
   [EVSSLGuidelines].

3.2.2.  Redacting Domain Name Labels in Precertificates

   When creating a Precertificate, the CA MAY substitute one or more of
   the complete leftmost labels in each DNS-ID with the literal string
   "(PRIVATE)".  For example, if a certificate contains a DNS-ID of
   "top.secret.example.com", then the corresponding Precertificate could
   contain "(PRIVATE).example.com" instead.  Labels in a CN-ID [RFC6125]
   MUST remain unredacted.

   When a Precertificate contains one or more redacted labels, a non-
   critical extension (OID 1.3.6.1.4.1.11129.2.4.6, whose extnValue
   OCTET STRING contains an ASN.1 SEQUENCE OF INTEGERs) MUST be added to
   the corresponding certificate: the first INTEGER indicates the number
   of labels redacted in the Precertificate's first DNS-ID; the second
   INTEGER does the same for the Precertificate's second DNS-ID; etc.
   There MUST NOT be more INTEGERs than there are DNS-IDs.  If there are
   fewer INTEGERs than there are DNS-IDs, the shortfall is made up by
   implicitly repeating the last INTEGER.  Each INTEGER MUST have a
   value of zero or more.  The purpose of this extension is to enable
   TLS clients to accurately reconstruct the Precertificate from the
   certificate without having to perform any guesswork.

https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125#section-6.4.3
https://datatracker.ietf.org/doc/html/rfc6125#section-6.4.3
https://datatracker.ietf.org/doc/html/rfc6125
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3.2.3.  Using a Name-Constrained Intermediate CA

   An intermediate CA certificate or Precertificate that contains the
   critical or non-critical Name Constraints [RFC5280] extension MAY be
   logged in place of end-entity certificates issued by that
   intermediate CA, as long as all of the following conditions are met:

   o  there MUST be a non-critical extension (OID
      1.3.6.1.4.1.11129.2.4.7, whose extnValue OCTET STRING contains
      ASN.1 NULL data (0x05 0x00)).  This extension is an explicit
      indication that it is acceptable to not log certificates issued by
      this intermediate CA.

   o  permittedSubtrees MUST specify one or more dNSNames.

   o  excludedSubtrees MUST specify the entire IPv4 and IPv6 address
      ranges.

   Below is an example Name Constraints extension that meets these
   conditions:

   SEQUENCE {
     OBJECT IDENTIFIER '2 5 29 30'
     OCTET STRING, encapsulates {
       SEQUENCE {
         [0] {
           SEQUENCE {
             [2] 'example.com'
             }
           }
         [1] {
           SEQUENCE {
             [7] 00 00 00 00 00 00 00 00
             }
           SEQUENCE {
             [7]
               00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
               00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
             }
           }
         }
       }
     }

https://datatracker.ietf.org/doc/html/rfc5280
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3.3.  Structure of the Signed Certificate Timestamp

       enum { certificate_timestamp(0), tree_hash(1), (255) }
         SignatureType;

       enum { v1(0), (255) }
         Version;

         struct {
             opaque key_id[32];
         } LogID;

         opaque TBSCertificate<1..2^24-1>;

         struct {
           opaque issuer_key_hash[32];
           TBSCertificate tbs_certificate;
         } PreCert;

         opaque CtExtensions<0..2^16-1>;

   "key_id" is the SHA-256 hash of the log's public key, calculated over
   the DER encoding of the key represented as SubjectPublicKeyInfo.

   "issuer_key_hash" is the SHA-256 hash of the certificate issuer's
   public key, calculated over the DER encoding of the key represented
   as SubjectPublicKeyInfo.  This is needed to bind the issuer to the
   final certificate.

   "tbs_certificate" is the DER-encoded TBSCertificate (see [RFC5280])
   component of the Precertificate -- that is, without the signature and
   the poison extension.  If the Precertificate is not signed with the
   CA certificate that will issue the final certificate, then the
   TBSCertificate also has its issuer changed to that of the CA that
   will issue the final certificate.  Note that it is also possible to
   reconstruct this TBSCertificate from the final certificate by
   extracting the TBSCertificate from it and deleting the SCT extension.
   Also note that since the TBSCertificate contains an
   AlgorithmIdentifier that must match both the Precertificate signature
   algorithm and final certificate signature algorithm, they must be
   signed with the same algorithm and parameters.  If the Precertificate
   is issued using a Precertificate Signing Certificate and an Authority
   Key Identifier extension is present in the TBSCertificate, the
   corresponding extension must also be present in the Precertificate
   Signing Certificate -- in this case, the TBSCertificate also has its
   Authority Key Identifier changed to match the final issuer.

https://datatracker.ietf.org/doc/html/rfc5280
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       struct {
           Version sct_version;
           LogID id;
           uint64 timestamp;
           CtExtensions extensions;
           digitally-signed struct {
               Version sct_version;
               SignatureType signature_type = certificate_timestamp;
               uint64 timestamp;
               LogEntryType entry_type;
               select(entry_type) {
                   case x509_entry: ASN.1Cert;
                   case precert_entry: PreCert;
               } signed_entry;
              CtExtensions extensions;
           };
       } SignedCertificateTimestamp;

   The encoding of the digitally-signed element is defined in [RFC5246].

   "sct_version" is the version of the protocol to which the SCT
   conforms.  This version is v1.

   "timestamp" is the current NTP Time [RFC5905], measured since the
   epoch (January 1, 1970, 00:00), ignoring leap seconds, in
   milliseconds.

   "entry_type" may be implicit from the context in which the SCT is
   presented.

   "signed_entry" is the "leaf_certificate" (in the case of an
   X509ChainEntry) or is the PreCert (in the case of a
   PrecertChainEntry), as described above.

   "extensions" are future extensions to this protocol version (v1).
   Currently, no extensions are specified.

3.4.  Including the Signed Certificate Timestamp in the TLS Handshake

   The SCT data corresponding to at least one certificate in the chain
   from at least one log must be included in the TLS handshake, either
   by using an X509v3 certificate extension as described below, by using
   a TLS extension (Section 7.4.1.4 of [RFC5246]) with type
   "signed_certificate_timestamp", or by using Online Certificate Status
   Protocol (OCSP) Stapling (also known as the "Certificate Status
   Request" TLS extension; see [RFC6066]), where the OCSP response
   includes a non-critical extension with OID 1.3.6.1.4.1.11129.2.4.5
   (see [RFC2560]) and body:

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc2560
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       SignedCertificateTimestampList ::= OCTET STRING

   in the singleExtensions component of the SingleResponse pertaining to
   the end-entity certificate.

   At least one SCT MUST be included.  Server operators MAY include more
   than one SCT.

   Similarly, a certificate authority MAY submit a Precertificate to
   more than one log, and all obtained SCTs can be directly embedded in
   the final certificate, by encoding the SignedCertificateTimestampList
   structure as an ASN.1 OCTET STRING and inserting the resulting data
   in the TBSCertificate as a non-critical X.509v3 certificate extension
   (OID 1.3.6.1.4.1.11129.2.4.2).  Upon receiving the certificate,
   clients can reconstruct the original TBSCertificate to verify the SCT
   signature.

   The contents of the ASN.1 OCTET STRING embedded in an OCSP extension
   or X509v3 certificate extension are as follows:

        opaque SerializedSCT<1..2^16-1>;

        struct {
            SerializedSCT sct_list <1..2^16-1>;
        } SignedCertificateTimestampList;

   Here, "SerializedSCT" is an opaque byte string that contains the
   serialized SCT structure.  This encoding ensures that TLS clients can
   decode each SCT individually (i.e., if there is a version upgrade,
   out-of-date clients can still parse old SCTs while skipping over new
   SCTs whose versions they don't understand).

   Likewise, SCTs can be embedded in a TLS extension.  See below for
   details.

   TLS clients MUST implement all three mechanisms.  Servers MUST
   implement at least one of the three mechanisms.  Note that existing
   TLS servers can generally use the certificate extension mechanism
   without modification.

   TLS servers SHOULD send SCTs from multiple logs in case one or more
   logs are not acceptable to the client (for example, if a log has been
   struck off for misbehavior, has had a key compromise or is not known
   to the client).
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3.4.1.  TLS Extension

   The SCT can be sent during the TLS handshake using a TLS extension
   with type "signed_certificate_timestamp".

   Clients that support the extension SHOULD send a ClientHello
   extension with the appropriate type and empty "extension_data".

   Servers MUST only send SCTs to clients who have indicated support for
   the extension in the ClientHello, in which case the SCTs are sent by
   setting the "extension_data" to a "SignedCertificateTimestampList".

   Session resumption uses the original session information: clients
   SHOULD include the extension type in the ClientHello, but if the
   session is resumed, the server is not expected to process it or
   include the extension in the ServerHello.

3.5.  Merkle Tree

   The hashing algorithm for the Merkle Tree Hash is specified in the
   log's metadata.

   Structure of the Merkle Tree input:

       enum { v1(0), v2(1), (255) }
         LeafVersion;

       struct {
           uint64 timestamp;
           LogEntryType entry_type;
           select(entry_type) {
               case x509_entry: ASN.1Cert;
               case precert_entry: PreCert;
           } signed_entry;
           CtExtensions extensions;
       } TimestampedEntry;

       struct {
           LeafVersion version;
           TimestampedEntry timestamped_entry;
       } MerkleTreeLeaf;

   Here, "version" is the version of the MerkleTreeLeaf structure.  This
   version is v2.  Note that MerkleTreeLeaf v1 [RFC6962] had another
   layer of indirection which is removed in v2.

   "timestamp" is the timestamp of the corresponding SCT issued for this
   certificate.

https://datatracker.ietf.org/doc/html/rfc6962
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   "entry_type" is the type of entry stored in "signed_entry".  New
   "LogEntryType" values may be added to "signed_entry" without
   increasing the "MerkleTreeLeaf" version.  Section 4 explains how
   clients should handle unknown entry types.

   "signed_entry" is the "signed_entry" of the corresponding SCT.

   "extensions" are "extensions" of the corresponding SCT.

   The leaves of the Merkle Tree are the leaf hashes of the
   corresponding "MerkleTreeLeaf" structures.

3.6.  Signed Tree Head

   Every time a log appends new entries to the tree, the log SHOULD sign
   the corresponding tree hash and tree information (see the
   corresponding Signed Tree Head client message in Section 4.3).  The
   signature for that data is structured as follows:

       opaque CtSthExtensions<0..2^16-1>;

       enum { v1(0), v2(1), (255) }
         TreeHeadVersion;

       digitally-signed struct {
           TreeHeadVersion version;
           SignatureType signature_type = tree_hash;
           uint64 timestamp;
           uint64 tree_size;
           opaque sha256_root_hash[32];
           CtSthExtensions extensions;
       } TreeHeadSignature;

   "version" is the version of the TreeHeadSignature structure.  This
   version is v2.

   "timestamp" is the current time.  The timestamp MUST be at least as
   recent as the most recent SCT timestamp in the tree.  Each subsequent
   timestamp MUST be more recent than the timestamp of the previous
   update.

   "tree_size" equals the number of entries in the new tree.

   "sha256_root_hash" is the root of the Merkle Hash Tree.

   "extensions" are future extensions to TreeHeadSignature v2.
   Currently, no extensions are specified.  Note that TreeHeadSignature
   v1 [RFC6962] does not include this field.  The purpose of the

https://datatracker.ietf.org/doc/html/rfc6962
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   "extensions" field is to allow augmenting the TreeHeadSignature
   without increasing its version.

   Each log MUST produce on demand a Signed Tree Head that is no older
   than the Maximum Merge Delay.  In the unlikely event that it receives
   no new submissions during an MMD period, the log SHALL sign the same
   Merkle Tree Hash with a fresh timestamp.

4.  Log Client Messages

   Messages are sent as HTTPS GET or POST requests.  Parameters for
   POSTs and all responses are encoded as JavaScript Object Notation
   (JSON) objects [RFC4627].  Parameters for GETs are encoded as order-
   independent key/value URL parameters, using the "application/x-www-
   form-urlencoded" format described in the "HTML 4.01 Specification"
   [HTML401].  Binary data is base64 encoded [RFC4648] as specified in
   the individual messages.

   Note that JSON objects and URL parameters may contain fields not
   specified here.  These extra fields should be ignored.

   The <log server> prefix MAY include a path as well as a server name
   and a port.

   In general, where needed, the "version" is v1 and the "id" is the log
   id for the log server queried.

   If the log is unable to process a client's request, it MUST return an
   HTTP response code of 4xx/5xx (see [RFC2616]), and, in place of the
   responses outlined in the subsections below, the body SHOULD be a
   JSON structure containing at least the following field:

   error_message:

         A human-readable string describing the error which prevented
         the log from processing the request.

         In the case of a malformed request, the string SHOULD provide
         sufficient detail for the error to be rectified.

   e.g. In response to a request of "/ct/v1/get-
   entries?start=100&end=99", the log would return a "400 Bad Request"
   response code with a body similar to the following:

     {
       "error_message": "'start' cannot be greater than 'end'",
     }

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc2616
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   Clients SHOULD treat "500 Internal Server Error" and "503 Service
   Unavailable" responses as transient failures and MAY retry the same
   request without modification at a later date.  Note that as per
   [RFC2616], in the case of a 503 response the log MAY include a
   "Retry-After:" header in order to request a minimum time for the
   client to wait before retrying the request.

4.1.  Add Chain to Log

   POST https://<log server>/ct/v1/add-chain

   Inputs:

      chain:  An array of base64-encoded certificates.  The first
         element is the end-entity certificate; the second chains to the
         first and so on to the last, which is either the root
         certificate or a certificate that chains to a known root
         certificate.

   Outputs:

      sct_version:  The version of the SignedCertificateTimestamp
         structure, in decimal.  A compliant v1 implementation MUST NOT
         expect this to be 0 (i.e., v1).

      id:  The log ID, base64 encoded.

      timestamp:  The SCT timestamp, in decimal.

      extensions:  An opaque type for future expansion.  It is likely
         that not all participants will need to understand data in this
         field.  Logs should set this to the empty string.  Clients
         should decode the base64-encoded data and include it in the
         SCT.

      signature:  The SCT signature, base64 encoded.

   If the "sct_version" is not v1, then a v1 client may be unable to
   verify the signature.  It MUST NOT construe this as an error.  This
   is to avoid forcing an upgrade of compliant v1 clients that do not
   use the returned SCTs.

https://datatracker.ietf.org/doc/html/rfc2616
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4.2.  Add PreCertChain to Log

   POST https://<log server>/ct/v1/add-pre-chain

   Inputs:

      chain:  An array of base64-encoded Precertificates.  The first
         element is the end-entity certificate; the second chains to the
         first and so on to the last, which is either the root
         certificate or a certificate that chains to a known root
         certificate.

   Outputs are the same as in Section 4.1.

4.3.  Retrieve Latest Signed Tree Head

   GET https://<log server>/ct/v1/get-sth

   No inputs.

   Outputs:

      tree_size:  The size of the tree, in entries, in decimal.

      timestamp:  The timestamp, in decimal.

      sha256_root_hash:  The Merkle Tree Hash of the tree, in base64.

      tree_head_signature:  A TreeHeadSignature for the above data.

4.4.  Retrieve Merkle Consistency Proof between Two Signed Tree Heads

   GET https://<log server>/ct/v1/get-sth-consistency

   Inputs:

      first:  The tree_size of the older tree, in decimal.

      second:  The tree_size of the newer tree, in decimal.

   Both tree sizes must be from existing v1 STHs (Signed Tree Heads).
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   Outputs:

      consistency:  An array of Merkle Tree nodes, base64 encoded.

   Note that no signature is required on this data, as it is used to
   verify an STH, which is signed.

4.5.  Retrieve Merkle Audit Proof from Log by Leaf Hash

   GET https://<log server>/ct/v1/get-proof-by-hash

   Inputs:

      hash:  A base64-encoded v1 leaf hash.

      tree_size:  The tree_size of the tree on which to base the proof,
         in decimal.

   The "hash" must be calculated as defined in Section 3.5.  The
   "tree_size" must designate an existing v1 STH.

   Outputs:

      leaf_index:  The 0-based index of the entry corresponding to the
         "hash" parameter.

      audit_path:  An array of base64-encoded Merkle Tree nodes proving
         the inclusion of the chosen certificate.

4.6.  Retrieve Entries from Log

   GET https://<log server>/ct/v1/get-entries

   Inputs:

      start:  0-based index of first entry to retrieve, in decimal.

      end:  0-based index of last entry to retrieve, in decimal.

   Outputs:
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      entries:  An array of objects, each consisting of

         leaf_input:  The base64-encoded MerkleTreeLeaf structure.

         extra_data:  The base64-encoded unsigned data pertaining to the
            log entry.  In the case of an X509ChainEntry, this is the
            "certificate_chain".  In the case of a PrecertChainEntry,
            this is the whole "PrecertChainEntry".

   Note that this message is not signed -- the retrieved data can be
   verified by constructing the Merkle Tree Hash corresponding to a
   retrieved STH.  All leaves MUST be v1 or v2.  However, a compliant v1
   client MUST NOT construe an unrecognized LogEntryType value as an
   error.  This means it may be unable to parse some entries, but note
   that each client can inspect the entries it does recognize as well as
   verify the integrity of the data by treating unrecognized leaves as
   opaque input to the tree.

   The "start" and "end" parameters SHOULD be within the range 0 <= x <
   "tree_size" as returned by "get-sth" in Section 4.3.

   Logs MAY honor requests where 0 <= "start" < "tree_size" and "end" >=
   "tree_size" by returning a partial response covering only the valid
   entries in the specified range.  Note that the following restriction
   may also apply:

   Logs MAY restrict the number of entries that can be retrieved per
   "get-entries" request.  If a client requests more than the permitted
   number of entries, the log SHALL return the maximum number of entries
   permissible.  These entries SHALL be sequential beginning with the
   entry specified by "start".

4.7.  Retrieve Accepted Root Certificates

   GET https://<log server>/ct/v1/get-roots

   No inputs.

   Outputs:

      certificates:  An array of base64-encoded root certificates that
         are acceptable to the log.
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4.8.  Retrieve Entry+Merkle Audit Proof from Log

   GET https://<log server>/ct/v1/get-entry-and-proof

   Inputs:

      leaf_index:  The index of the desired entry.

      tree_size:  The tree_size of the tree for which the proof is
         desired.

   The tree size must designate an existing STH.

   Outputs:

      leaf_input:  The base64-encoded MerkleTreeLeaf structure.

      extra_data:  The base64-encoded unsigned data, same as in
Section 4.6.

      audit_path:  An array of base64-encoded Merkle Tree nodes proving
         the inclusion of the chosen certificate.

   This API is probably only useful for debugging.

5.  Clients

   There are various different functions clients of logs might perform.
   We describe here some typical clients and how they could function.
   Any inconsistency may be used as evidence that a log has not behaved
   correctly, and the signatures on the data structures prevent the log
   from denying that misbehavior.

   All clients should gossip with each other, exchanging STHs at least;
   this is all that is required to ensure that they all have a
   consistent view.  The exact mechanism for gossip will be described in
   a separate document, but it is expected there will be a variety.

5.1.  Submitters

   Submitters submit certificates or Precertificates to the log as
   described above.  When a Submitter intends to use the returned SCT
   directly in a TLS handshake or to construct a certificate, they
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   SHOULD validate the SCT as described in Section 5.2 if they
   understand its format.

5.2.  TLS Client

   TLS clients receive SCTs alongside or in server certificates.  In
   addition to normal validation of the certificate and its chain, TLS
   clients SHOULD validate the SCT by computing the signature input from
   the SCT data as well as the certificate and verifying the signature,
   using the corresponding log's public key.  TLS clients MAY audit the
   corresponding log by requesting, and verifying, a Merkle audit proof
   for said certificate.  Note that this document does not describe how
   clients obtain the logs' public keys or URLs.

   TLS clients MUST reject SCTs whose timestamp is in the future.

5.3.  Monitor

   Monitors watch logs and check that they behave correctly.  They also
   watch for certificates of interest.

   A monitor needs to, at least, inspect every new entry in each log it
   watches.  It may also want to keep copies of entire logs.  In order
   to do this, it should follow these steps for each log:

   1.  Fetch the current STH (Section 4.3).

   2.  Verify the STH signature.

   3.  Fetch all the entries in the tree corresponding to the STH
       (Section 4.6).

   4.  Confirm that the tree made from the fetched entries produces the
       same hash as that in the STH.

   5.  Fetch the current STH (Section 4.3).  Repeat until the STH
       changes.

   6.  Verify the STH signature.

   7.  Fetch all the new entries in the tree corresponding to the STH
       (Section 4.6).  If they remain unavailable for an extended
       period, then this should be viewed as misbehavior on the part of
       the log.

   8.  Either:
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       1.  Verify that the updated list of all entries generates a tree
           with the same hash as the new STH.

       Or, if it is not keeping all log entries:

       1.  Fetch a consistency proof for the new STH with the previous
           STH (Section 4.4).

       2.  Verify the consistency proof.

       3.  Verify that the new entries generate the corresponding
           elements in the consistency proof.

   9.  Go to Step 5.

5.4.  Auditor

   Auditors take partial information about a log as input and verify
   that this information is consistent with other partial information
   they have.  An auditor might be an integral component of a TLS
   client; it might be a standalone service; or it might be a secondary
   function of a monitor.

   Any pair of STHs from the same log can be verified by requesting a
   consistency proof (Section 4.4).

   A certificate accompanied by an SCT can be verified against any STH
   dated after the SCT timestamp + the Maximum Merge Delay by requesting
   a Merkle audit proof (Section 4.5).

   Auditors can fetch STHs from time to time of their own accord, of
   course (Section 4.3).

6.  IANA Considerations

6.1.  TLS Extension Type

   IANA has allocated an RFC 5246 ExtensionType value (18) for the SCT
   TLS extension.  The extension name is "signed_certificate_timestamp".
   IANA should update this extension type to point at this document.

6.2.  Hash Algorithms

   IANA is asked to establish a registry of hash values, initially
   consisting of:

https://datatracker.ietf.org/doc/html/rfc5246
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                     +-------+----------------------+
                     | Index | Hash                 |
                     +-------+----------------------+
                     | 0     | SHA-256 [FIPS.180-4] |
                     +-------+----------------------+

7.  Security Considerations

   With CAs, logs, and servers performing the actions described here,
   TLS clients can use logs and signed timestamps to reduce the
   likelihood that they will accept misissued certificates.  If a server
   presents a valid signed timestamp for a certificate, then the client
   knows that a log has committed to publishing the certificate.  From
   this, the client knows that the subject of the certificate has had
   some time to notice the misissue and take some action, such as asking
   a CA to revoke a misissued certificate, or that the log has
   misbehaved, which will be discovered when the SCT is audited.  A
   signed timestamp is not a guarantee that the certificate is not
   misissued, since the subject of the certificate might not have
   checked the logs or the CA might have refused to revoke the
   certificate.

   In addition, if TLS clients will not accept unlogged certificates,
   then site owners will have a greater incentive to submit certificates
   to logs, possibly with the assistance of their CA, increasing the
   overall transparency of the system.

7.1.  Misissued Certificates

   Misissued certificates that have not been publicly logged, and thus
   do not have a valid SCT, will be rejected by TLS clients.  Misissued
   certificates that do have an SCT from a log will appear in that
   public log within the Maximum Merge Delay, assuming the log is
   operating correctly.  Thus, the maximum period of time during which a
   misissued certificate can be used without being available for audit
   is the MMD.

7.2.  Detection of Misissue

   The logs do not themselves detect misissued certificates; they rely
   instead on interested parties, such as domain owners, to monitor them
   and take corrective action when a misissue is detected.

7.3.  Redaction of Public Domain Name Labels

   CAs SHOULD NOT redact domain name labels in Precertificates to the
   extent that domain name ownership becomes unclear (e.g.
   "(PRIVATE).com" and "(PRIVATE).co.uk" would both be problematic).
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   Logs MUST NOT reject any Precertificate that is overly redacted but
   which is otherwise considered compliant.  It is expected that
   monitors will treat overly redacted Precertificates as potentially
   misissued.  TLS clients MAY reject a certificate whose corresponding
   Precertificate would be overly redacted.

7.4.  Misbehaving Logs

   A log can misbehave in two ways: (1) by failing to incorporate a
   certificate with an SCT in the Merkle Tree within the MMD and (2) by
   violating its append-only property by presenting two different,
   conflicting views of the Merkle Tree at different times and/or to
   different parties.  Both forms of violation will be promptly and
   publicly detectable.

   Violation of the MMD contract is detected by log clients requesting a
   Merkle audit proof for each observed SCT.  These checks can be
   asynchronous and need only be done once per each certificate.  In
   order to protect the clients' privacy, these checks need not reveal
   the exact certificate to the log.  Clients can instead request the
   proof from a trusted auditor (since anyone can compute the audit
   proofs from the log) or request Merkle proofs for a batch of
   certificates around the SCT timestamp.

   Violation of the append-only property is detected by global
   gossiping, i.e., everyone auditing logs comparing their instances of
   the latest Signed Tree Heads.  As soon as two conflicting Signed Tree
   Heads for the same log are detected, this is cryptographic proof of
   that log's misbehavior.

8.  Efficiency Considerations

   The Merkle Tree design serves the purpose of keeping communication
   overhead low.

   Auditing logs for integrity does not require third parties to
   maintain a copy of each entire log.  The Signed Tree Heads can be
   updated as new entries become available, without recomputing entire
   trees.  Third-party auditors need only fetch the Merkle consistency
   proofs against a log's existing STH to efficiently verify the append-
   only property of updates to their Merkle Trees, without auditing the
   entire tree.

9.  Future Changes

   This section lists things we might address in a Standards Track
   version of this document.
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   o  Rather than forcing a log operator to create a new log in order to
      change the log signing key, we may allow some key roll mechanism.

   o  We may add hash and signing algorithm agility.

   o  We may describe some gossip protocols.
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