
TRANS (Public Notary Transparency) B. Laurie
Internet-Draft A. Langley
Intended status: Standards Track E. Kasper
Expires: May 28, 2017 E. Messeri
 Google
 R. Stradling
 Comodo
 November 24, 2016

Certificate Transparency
draft-ietf-trans-rfc6962-bis-21

Abstract

 This document describes a protocol for publicly logging the existence
 of Transport Layer Security (TLS) server certificates as they are
 issued or observed, in a manner that allows anyone to audit
 certification authority (CA) activity and notice the issuance of
 suspect certificates as well as to audit the certificate logs
 themselves. The intent is that eventually clients would refuse to
 honor certificates that do not appear in a log, effectively forcing
 CAs to add all issued certificates to the logs.

 Logs are network services that implement the protocol operations for
 submissions and queries that are defined in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 28, 2017.

Laurie, et al. Expires May 28, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Certificate Transparency November 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Requirements Language 5
1.2. Data Structures . 5

2. Cryptographic Components 5
2.1. Merkle Hash Trees . 5
2.1.1. Merkle Inclusion Proofs 6
2.1.2. Merkle Consistency Proofs 7
2.1.3. Example . 8
2.1.4. Signatures . 10

3. Submitters . 10
3.1. Certificates . 10
3.2. Precertificates . 10

4. Private Domain Name Labels 11
4.1. Wildcard Certificates 11
4.2. Using a Name-Constrained Intermediate CA 11

5. Log Format and Operation 12
5.1. Accepting Submissions 13
5.2. Log Entries . 13
5.3. Log ID . 14
5.4. TransItem Structure 15
5.5. Merkle Tree Leaves 16
5.6. Signed Certificate Timestamp (SCT) 17
5.7. Merkle Tree Head . 18
5.8. Signed Tree Head (STH) 19
5.9. Merkle Consistency Proofs 20
5.10. Merkle Inclusion Proofs 20
5.11. Shutting down a log 21

6. Log Client Messages . 21
6.1. Add Chain to Log . 23
6.2. Add PreCertChain to Log 24
6.3. Retrieve Latest Signed Tree Head 24

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Laurie, et al. Expires May 28, 2017 [Page 2]

Internet-Draft Certificate Transparency November 2016

 6.4. Retrieve Merkle Consistency Proof between Two Signed Tree
 Heads . 24

6.5. Retrieve Merkle Inclusion Proof from Log by Leaf Hash . . 25
 6.6. Retrieve Merkle Inclusion Proof, Signed Tree Head and
 Consistency Proof by Leaf Hash 26

6.7. Retrieve Entries and STH from Log 28
6.8. Retrieve Accepted Trust Anchors 29

7. TLS Servers . 29
7.1. Multiple SCTs . 30
7.2. TransItemList Structure 31
7.3. Presenting SCTs, inclusion proofs and STHs 31
7.4. Presenting SCTs only 32
7.5. transparency_info TLS Extension 32
7.6. cached_info TLS Extension 32

8. Certification Authorities 32
8.1. Transparency Information X.509v3 Extension 33
8.1.1. OCSP Response Extension 33
8.1.2. Certificate Extension 33

8.2. TLS Feature Extension 33
9. Clients . 33
9.1. Metadata . 34
9.2. TLS Client . 35
9.2.1. Receiving SCTs 35
9.2.2. Reconstructing the TBSCertificate 35
9.2.3. Validating SCTs 35
9.2.4. Validating inclusion proofs 36
9.2.5. Evaluating compliance 36
9.2.6. TLS Feature Extension 36
9.2.7. cached_info TLS Extension 36
9.2.8. Handling of Non-compliance 37

9.3. Monitor . 37
9.4. Auditing . 38
9.4.1. Verifying an inclusion proof 39
9.4.2. Verifying consistency between two STHs 40
9.4.3. Verifying root hash given entries 40

10. Algorithm Agility . 41
11. IANA Considerations . 42
11.1. TLS Extension Type 42
11.2. New Entry to the TLS CachedInformationType registry . . 42
11.3. Hash Algorithms . 42
11.4. Signature Algorithms 42
11.5. SCT Extensions . 43
11.6. STH Extensions . 43
11.7. Object Identifiers 43
11.7.1. Log ID Registry 1 43
11.7.2. Log ID Registry 2 44

12. Security Considerations 44
12.1. Misissued Certificates 44

Laurie, et al. Expires May 28, 2017 [Page 3]

Internet-Draft Certificate Transparency November 2016

12.2. Detection of Misissue 45
12.3. Misbehaving Logs . 45
12.4. Deterministic Signatures 45
12.5. Multiple SCTs . 46

13. Acknowledgements . 46
14. References . 46
14.1. Normative References 46
14.2. Informative References 48

Appendix A. Supporting v1 and v2 simultaneously 49
 Authors' Addresses . 50

1. Introduction

 Certificate transparency aims to mitigate the problem of misissued
 certificates by providing append-only logs of issued certificates.
 The logs do not need to be trusted because they are publicly
 auditable. Anyone may verify the correctness of each log and monitor
 when new certificates are added to it. The logs do not themselves
 prevent misissue, but they ensure that interested parties
 (particularly those named in certificates) can detect such
 misissuance. Note that this is a general mechanism that could be
 used for transparently logging any form of binary data, subject to
 some kind of inclusion criteria. In this document, we only describe
 its use for public TLS server certificates (i.e., where the inclusion
 criteria is a valid certificate issued by a public certification
 authority (CA)).

 Each log contains certificate chains, which can be submitted by
 anyone. It is expected that public CAs will contribute all their
 newly issued certificates to one or more logs; however certificate
 holders can also contribute their own certificate chains, as can
 third parties. In order to avoid logs being rendered useless by the
 submission of large numbers of spurious certificates, it is required
 that each chain ends with a trust anchor that is accepted by the log.
 When a chain is accepted by a log, a signed timestamp is returned,
 which can later be used to provide evidence to TLS clients that the
 chain has been submitted. TLS clients can thus require that all
 certificates they accept as valid are accompanied by signed
 timestamps.

 Those who are concerned about misissuance can monitor the logs,
 asking them regularly for all new entries, and can thus check whether
 domains for which they are responsible have had certificates issued
 that they did not expect. What they do with this information,
 particularly when they find that a misissuance has happened, is
 beyond the scope of this document. However, broadly speaking, they
 can invoke existing business mechanisms for dealing with misissued
 certificates, such as working with the CA to get the certificate

Laurie, et al. Expires May 28, 2017 [Page 4]

Internet-Draft Certificate Transparency November 2016

 revoked, or with maintainers of trust anchor lists to get the CA
 removed. Of course, anyone who wants can monitor the logs and, if
 they believe a certificate is incorrectly issued, take action as they
 see fit.

 Similarly, those who have seen signed timestamps from a particular
 log can later demand a proof of inclusion from that log. If the log
 is unable to provide this (or, indeed, if the corresponding
 certificate is absent from monitors' copies of that log), that is
 evidence of the incorrect operation of the log. The checking
 operation is asynchronous to allow clients to proceed without delay,
 despite possible issues such as network connectivity and the vagaries
 of firewalls.

 The append-only property of each log is achieved using Merkle Trees,
 which can be used to show that any particular instance of the log is
 a superset of any particular previous instance. Likewise, Merkle
 Trees avoid the need to blindly trust logs: if a log attempts to show
 different things to different people, this can be efficiently
 detected by comparing tree roots and consistency proofs. Similarly,
 other misbehaviors of any log (e.g., issuing signed timestamps for
 certificates they then don't log) can be efficiently detected and
 proved to the world at large.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Data Structures

 Data structures are defined according to the conventions laid out in
Section 4 of [RFC5246].

2. Cryptographic Components

2.1. Merkle Hash Trees

 Logs use a binary Merkle Hash Tree for efficient auditing. The
 hashing algorithm used by each log is expected to be specified as
 part of the metadata relating to that log (see Section 9.1). We have
 established a registry of acceptable algorithms, see Section 11.3.
 The hashing algorithm in use is referred to as HASH throughout this
 document and the size of its output in bytes as HASH_SIZE. The input
 to the Merkle Tree Hash is a list of data entries; these entries will
 be hashed to form the leaves of the Merkle Hash Tree. The output is
 a single HASH_SIZE Merkle Tree Hash. Given an ordered list of n

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246#section-4

Laurie, et al. Expires May 28, 2017 [Page 5]

Internet-Draft Certificate Transparency November 2016

 inputs, D[n] = {d(0), d(1), ..., d(n-1)}, the Merkle Tree Hash (MTH)
 is thus defined as follows:

 The hash of an empty list is the hash of an empty string:

 MTH({}) = HASH().

 The hash of a list with one entry (also known as a leaf hash) is:

 MTH({d(0)}) = HASH(0x00 || d(0)).

 For n > 1, let k be the largest power of two smaller than n (i.e., k
 < n <= 2k). The Merkle Tree Hash of an n-element list D[n] is then
 defined recursively as

 MTH(D[n]) = HASH(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

 where || is concatenation and D[k1:k2] denotes the list {d(k1),
 d(k1+1), ..., d(k2-1)} of length (k2 - k1). (Note that the hash
 calculations for leaves and nodes differ. This domain separation is
 required to give second preimage resistance.)

 Note that we do not require the length of the input list to be a
 power of two. The resulting Merkle Tree may thus not be balanced;
 however, its shape is uniquely determined by the number of leaves.
 (Note: This Merkle Tree is essentially the same as the history tree
 [CrosbyWallach] proposal, except our definition handles non-full
 trees differently.)

2.1.1. Merkle Inclusion Proofs

 A Merkle inclusion proof for a leaf in a Merkle Hash Tree is the
 shortest list of additional nodes in the Merkle Tree required to
 compute the Merkle Tree Hash for that tree. Each node in the tree is
 either a leaf node or is computed from the two nodes immediately
 below it (i.e., towards the leaves). At each step up the tree
 (towards the root), a node from the inclusion proof is combined with
 the node computed so far. In other words, the inclusion proof
 consists of the list of missing nodes required to compute the nodes
 leading from a leaf to the root of the tree. If the root computed
 from the inclusion proof matches the true root, then the inclusion
 proof proves that the leaf exists in the tree.

 Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
 d(n-1)}, the Merkle inclusion proof PATH(m, D[n]) for the (m+1)th
 input d(m), 0 <= m < n, is defined as follows:

Laurie, et al. Expires May 28, 2017 [Page 6]

Internet-Draft Certificate Transparency November 2016

 The proof for the single leaf in a tree with a one-element input list
 D[1] = {d(0)} is empty:

 PATH(0, {d(0)}) = {}

 For n > 1, let k be the largest power of two smaller than n. The
 proof for the (m+1)th element d(m) in a list of n > m elements is
 then defined recursively as

 PATH(m, D[n]) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

 PATH(m, D[n]) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

 where : is concatenation of lists and D[k1:k2] denotes the length (k2
 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

2.1.2. Merkle Consistency Proofs

 Merkle consistency proofs prove the append-only property of the tree.
 A Merkle consistency proof for a Merkle Tree Hash MTH(D[n]) and a
 previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n,
 is the list of nodes in the Merkle Tree required to verify that the
 first m inputs D[0:m] are equal in both trees. Thus, a consistency
 proof must contain a set of intermediate nodes (i.e., commitments to
 inputs) sufficient to verify MTH(D[n]), such that (a subset of) the
 same nodes can be used to verify MTH(D[0:m]). We define an algorithm
 that outputs the (unique) minimal consistency proof.

 Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
 d(n-1)}, the Merkle consistency proof PROOF(m, D[n]) for a previous
 Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:

 PROOF(m, D[n]) = SUBPROOF(m, D[n], true)

 In SUBPROOF, the boolean value represents whether the subtree created
 from D[0:m] is a complete subtree of the Merkle Tree created from
 D[n], and, consequently, whether the subtree Merkle Tree Hash
 MTH(D[0:m]) is known. The initial call to SUBPROOF sets this to be
 true, and SUBPROOF is then defined as follows:

 The subproof for m = n is empty if m is the value for which PROOF was
 originally requested (meaning that the subtree created from D[0:m] is
 a complete subtree of the Merkle Tree created from the original D[n]
 for which PROOF was requested, and the subtree Merkle Tree Hash
 MTH(D[0:m]) is known):

 SUBPROOF(m, D[m], true) = {}

Laurie, et al. Expires May 28, 2017 [Page 7]

Internet-Draft Certificate Transparency November 2016

 Otherwise, the subproof for m = n is the Merkle Tree Hash committing
 inputs D[0:m]:

 SUBPROOF(m, D[m], false) = {MTH(D[m])}

 For m < n, let k be the largest power of two smaller than n. The
 subproof is then defined recursively.

 If m <= k, the right subtree entries D[k:n] only exist in the current
 tree. We prove that the left subtree entries D[0:k] are consistent
 and add a commitment to D[k:n]:

 SUBPROOF(m, D[n], b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n])

 If m > k, the left subtree entries D[0:k] are identical in both
 trees. We prove that the right subtree entries D[k:n] are consistent
 and add a commitment to D[0:k].

 SUBPROOF(m, D[n], b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k])

 Here, : is a concatenation of lists, and D[k1:k2] denotes the length
 (k2 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

 The number of nodes in the resulting proof is bounded above by
 ceil(log2(n)) + 1.

2.1.3. Example

 The binary Merkle Tree with 7 leaves:

 hash
 / \
 / \
 / \
 / \
 / \
 k l
 / \ / \
 / \ / \
 / \ / \
 g h i j
 / \ / \ / \ |
 a b c d e f d6
 | | | | | |
 d0 d1 d2 d3 d4 d5

 The inclusion proof for d0 is [b, h, l].

Laurie, et al. Expires May 28, 2017 [Page 8]

Internet-Draft Certificate Transparency November 2016

 The inclusion proof for d3 is [c, g, l].

 The inclusion proof for d4 is [f, j, k].

 The inclusion proof for d6 is [i, k].

 The same tree, built incrementally in four steps:

 hash0 hash1=k
 / \ / \
 / \ / \
 / \ / \
 g c g h
 / \ | / \ / \
 a b d2 a b c d
 | | | | | |
 d0 d1 d0 d1 d2 d3

 hash2 hash
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 k i k l
 / \ / \ / \ / \
 / \ e f / \ / \
 / \ | | / \ / \
 g h d4 d5 g h i j
 / \ / \ / \ / \ / \ |
 a b c d a b c d e f d6
 | | | | | | | | | |
 d0 d1 d2 d3 d0 d1 d2 d3 d4 d5

 The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
 d, g, l]. c, g are used to verify hash0, and d, l are additionally
 used to show hash is consistent with hash0.

 The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
 hash can be verified using hash1=k and l.

 The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
 j, k]. k, i are used to verify hash2, and j is additionally used to
 show hash is consistent with hash2.

Laurie, et al. Expires May 28, 2017 [Page 9]

Internet-Draft Certificate Transparency November 2016

2.1.4. Signatures

 Various data structures are signed. A log MUST use one of the
 signature algorithms defined in Section 11.4.

3. Submitters

 Submitters submit certificates or preannouncements of certificates
 prior to issuance (precertificates) to logs for public auditing, as
 described below. In order to enable attribution of each logged
 certificate or precertificate to its issuer, each submission MUST be
 accompanied by all additional certificates required to verify the
 chain up to an accepted trust anchor. The trust anchor (a root or
 intermediate CA certificate) MAY be omitted from the submission.

 If a log accepts a submission, it will return a Signed Certificate
 Timestamp (SCT) (see Section 5.6). The submitter SHOULD validate the
 returned SCT as described in Section 9.2 if they understand its
 format and they intend to use it directly in a TLS handshake or to
 construct a certificate. If the submitter does not need the SCT (for
 example, the certificate is being submitted simply to make it
 available in the log), it MAY validate the SCT.

3.1. Certificates

 Any entity can submit a certificate (Section 6.1) to a log. Since it
 is anticipated that TLS clients will reject certificates that are not
 logged, it is expected that certificate issuers and subjects will be
 strongly motivated to submit them.

3.2. Precertificates

 CAs may preannounce a certificate prior to issuance by submitting a
 precertificate (Section 6.2) that the log can use to create an entry
 that will be valid against the issued certificate. The CA MAY
 incorporate the returned SCT in the issued certificate. One example
 of where the returned SCT is not incorporated in the issued
 certificate is when a CA sends the precertificate to multiple logs,
 but only incorporates the SCTs that are returned first.

 A precertificate is a CMS [RFC5652] "signed-data" object that
 conforms to the following requirements:

 o It MUST be DER encoded.

 o "SignedData.encapContentInfo.eContentType" MUST be the OID
 1.3.101.78.

https://datatracker.ietf.org/doc/html/rfc5652

Laurie, et al. Expires May 28, 2017 [Page 10]

Internet-Draft Certificate Transparency November 2016

 o "SignedData.encapContentInfo.eContent" MUST contain a
 TBSCertificate [RFC5280] that will be identical to the
 TBSCertificate in the issued certificate, except that the
 Transparency Information (Section 8.1) extension MUST be omitted.

 o "SignedData.signerInfos" MUST contain a signature from the same
 (root or intermediate) CA that will ultimately issue the
 certificate. This signature indicates the CA's intent to issue
 the certificate. This intent is considered binding (i.e.,
 misissuance of the precertificate is considered equivalent to
 misissuance of the certificate). (Note that, because of the
 structure of CMS, the signature on the CMS object will not be a
 valid X.509v3 signature and so cannot be used to construct a
 certificate from the precertificate).

 o "SignedData.certificates" SHOULD be omitted.

4. Private Domain Name Labels

 Some regard certain DNS domain name labels within their registered
 domain space as private and security sensitive. Even though these
 domains are often only accessible within the domain owner's private
 network, it's common for them to be secured using publicly trusted
 TLS server certificates.

4.1. Wildcard Certificates

 A certificate containing a DNS-ID [RFC6125] of "*.example.com" could
 be used to secure the domain "topsecret.example.com", without
 revealing the string "topsecret" publicly.

 Since TLS clients only match the wildcard character to the complete
 leftmost label of the DNS domain name (see Section 6.4.3 of
 [RFC6125]), a different approach is needed when any label other than
 the leftmost label in a DNS-ID is considered private (e.g.,
 "top.secret.example.com"). Also, wildcard certificates are
 prohibited in some cases, such as Extended Validation Certificates
 [EVSSLGuidelines].

4.2. Using a Name-Constrained Intermediate CA

 An intermediate CA certificate or intermediate CA precertificate that
 contains the Name Constraints [RFC5280] extension MAY be logged in
 place of end-entity certificates issued by that intermediate CA, as
 long as all of the following conditions are met:

 o there MUST be a non-critical extension (OID 1.3.101.76, whose
 extnValue OCTET STRING contains ASN.1 NULL data (0x05 0x00)).

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125#section-6.4.3
https://datatracker.ietf.org/doc/html/rfc6125#section-6.4.3
https://datatracker.ietf.org/doc/html/rfc5280

Laurie, et al. Expires May 28, 2017 [Page 11]

Internet-Draft Certificate Transparency November 2016

 This extension is an explicit indication that it is acceptable to
 not log certificates issued by this intermediate CA.

 o there MUST be a Name Constraints extension, in which:

 * permittedSubtrees MUST specify one or more dNSNames.

 * excludedSubtrees MUST specify the entire IPv4 and IPv6 address
 ranges.

 Below is an example Name Constraints extension that meets these
 conditions:

 SEQUENCE {
 OBJECT IDENTIFIER '2 5 29 30'
 OCTET STRING, encapsulates {
 SEQUENCE {
 [0] {
 SEQUENCE {
 [2] 'example.com'
 }
 }
 [1] {
 SEQUENCE {
 [7] 00 00 00 00 00 00 00 00
 }
 SEQUENCE {
 [7]
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 }
 }
 }
 }
 }

5. Log Format and Operation

 A log is a single, append-only Merkle Tree of submitted certificate
 and precertificate entries.

 When it receives a valid submission, the log MUST return an SCT that
 corresponds to the submitted certificate or precertificate. If the
 log has previously seen this valid submission, it SHOULD return the
 same SCT as it returned before (to reduce the ability to track
 clients as described in Section 12.4). If different SCTs are
 produced for the same submission, multiple log entries will have to
 be created, one for each SCT (as the timestamp is a part of the leaf

Laurie, et al. Expires May 28, 2017 [Page 12]

Internet-Draft Certificate Transparency November 2016

 structure). Note that if a certificate was previously logged as a
 precertificate, then the precertificate's SCT of type
 "precert_sct_v2" would not be appropriate; instead, a fresh SCT of
 type "x509_sct_v2" should be generated.

 An SCT is the log's promise to incorporate the submitted entry in its
 Merkle Tree no later than a fixed amount of time, known as the
 Maximum Merge Delay (MMD), after the issuance of the SCT.
 Periodically, the log MUST append all its new entries to its Merkle
 Tree and sign the root of the tree.

 Log operators MUST NOT impose any conditions on retrieving or sharing
 data from the log.

5.1. Accepting Submissions

 Logs MUST verify that each submitted certificate or precertificate
 has a valid signature chain to an accepted trust anchor, using the
 chain of intermediate CA certificates provided by the submitter.
 Logs SHOULD accept certificates and precertificates that are fully
 valid according to RFC 5280 [RFC5280] verification rules and are
 submitted with such a chain (A log may decide, for example, to
 temporarily reject valid submissions to protect itself against
 denial-of-service attacks).

 Logs MAY accept certificates and precertificates that have expired,
 are not yet valid, have been revoked, or are otherwise not fully
 valid according to RFC 5280 verification rules in order to
 accommodate quirks of CA certificate-issuing software. However, logs
 MUST reject submissions without a valid signature chain to an
 accepted trust anchor. Logs MUST also reject precertificates that do
 not conform to the requirements in Section 3.2.

 Logs SHOULD limit the length of chain they will accept. The maximum
 chain length is specified in the log's metadata.

 The log SHALL allow retrieval of its list of accepted trust anchors
 (see Section 6.8), each of which is a root or intermediate CA
 certificate. This list might usefully be the union of root
 certificates trusted by major browser vendors.

5.2. Log Entries

 If a submission is accepted and an SCT issued, the accepting log MUST
 store the entire chain used for verification. This chain MUST
 include the certificate or precertificate itself, the zero or more
 intermediate CA certificates provided by the submitter, and the trust
 anchor used to verify the chain (even if it was omitted from the

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Laurie, et al. Expires May 28, 2017 [Page 13]

Internet-Draft Certificate Transparency November 2016

 submission). The log MUST present this chain for auditing upon
 request (see Section 6.7). This chain is required to prevent a CA
 from avoiding blame by logging a partial or empty chain.

 Each certificate entry in a log MUST include a "X509ChainEntry"
 structure, and each precertificate entry MUST include a
 "PrecertChainEntryV2" structure:

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 ASN.1Cert leaf_certificate;
 ASN.1Cert certificate_chain<0..2^24-1>;
 } X509ChainEntry;

 opaque CMSPrecert<1..2^24-1>;

 struct {
 CMSPrecert pre_certificate;
 ASN.1Cert precertificate_chain<1..2^24-1>;
 } PrecertChainEntryV2;

 "leaf_certificate" is a submitted certificate that has been accepted
 by the log.

 "certificate_chain" is a vector of 0 or more additional certificates
 required to verify "leaf_certificate". The first certificate MUST
 certify "leaf_certificate". Each following certificate MUST directly
 certify the one preceding it. The final certificate MUST be a trust
 anchor accepted by the log. If "leaf_certificate" is an accepted
 trust anchor, then this vector is empty.

 "pre_certificate" is a submitted precertificate that has been
 accepted by the log.

 "precertificate_chain" is a vector of 1 or more additional
 certificates required to verify "pre_certificate". The first
 certificate MUST certify "pre_certificate". Each following
 certificate MUST directly certify the one preceding it. The final
 certificate MUST be a trust anchor accepted by the log.

5.3. Log ID

 Each log is identified by an OID, which is specified in the log's
 metadata and which MUST NOT be used to identify any other log. A
 log's operator MUST either allocate the OID themselves or request an
 OID from one of the two Log ID Registries (see Section 11.7.1 and

Section 11.7.2). Various data structures include the DER encoding of

Laurie, et al. Expires May 28, 2017 [Page 14]

Internet-Draft Certificate Transparency November 2016

 this OID, excluding the ASN.1 tag and length bytes, in an opaque
 vector:

 opaque LogID<2..127>;

 Note that the ASN.1 length and the opaque vector length are identical
 in size (1 byte) and value, so the DER encoding of the OID can be
 reproduced simply by prepending an OBJECT IDENTIFIER tag (0x06) to
 the opaque vector length and contents.

 OIDs used to identify logs are limited such that the DER encoding of
 their value is less than or equal to 127 octets.

5.4. TransItem Structure

 Various data structures are encapsulated in the "TransItem" structure
 to ensure that the type and version of each one is identified in a
 common fashion:

 enum {
 reserved(0),
 x509_entry_v2(1), precert_entry_v2(2),
 x509_sct_v2(3), precert_sct_v2(4),
 signed_tree_head_v2(5), consistency_proof_v2(6),
 inclusion_proof_v2(7), x509_sct_with_proof_v2(8),
 precert_sct_with_proof_v2(9),
 (65535)
 } VersionedTransType;

 struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 case x509_sct_with_proof_v2: SCTWithProofDataV2;
 case precert_sct_with_proof_v2: SCTWithProofDataV2;
 } data;
 } TransItem;

 "versioned_type" is the type of the encapsulated data structure and
 the earliest version of this protocol to which it conforms. This
 document is v2.

Laurie, et al. Expires May 28, 2017 [Page 15]

Internet-Draft Certificate Transparency November 2016

 "data" is the encapsulated data structure. The various structures
 named with the "DataV2" suffix are defined in later sections of this
 document.

 Note that "VersionedTransType" combines the v1 [RFC6962] type
 enumerations "Version", "LogEntryType", "SignatureType" and
 "MerkleLeafType". Note also that v1 did not define "TransItem", but
 this document provides guidelines (see Appendix A) on how v2
 implementations can co-exist with v1 implementations.

 Future versions of this protocol may reuse "VersionedTransType"
 values defined in this document as long as the corresponding data
 structures are not modified, and may add new "VersionedTransType"
 values for new or modified data structures.

5.5. Merkle Tree Leaves

 The leaves of a log's Merkle Tree correspond to the log's entries
 (see Section 5.2). Each leaf is the leaf hash (Section 2.1) of a
 "TransItem" structure of type "x509_entry_v2" or "precert_entry_v2",
 which encapsulates a "TimestampedCertificateEntryDataV2" structure.
 Note that leaf hashes are calculated as HASH(0x00 || TransItem),
 where the hashing algorithm is specified in the log's metadata.

 opaque TBSCertificate<1..2^24-1>;

 struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 TBSCertificate tbs_certificate;
 SctExtension sct_extensions<0..2^16-1>;
 } TimestampedCertificateEntryDataV2;

 "timestamp" is the NTP Time [RFC5905] at which the certificate or
 precertificate was accepted by the log, measured in milliseconds
 since the epoch (January 1, 1970, 00:00 UTC), ignoring leap seconds.
 Note that the leaves of a log's Merkle Tree are not required to be in
 strict chronological order.

 "issuer_key_hash" is the HASH of the public key of the CA that issued
 the certificate or precertificate, calculated over the DER encoding
 of the key represented as SubjectPublicKeyInfo [RFC5280]. This is
 needed to bind the CA to the certificate or precertificate, making it
 impossible for the corresponding SCT to be valid for any other
 certificate or precertificate whose TBSCertificate matches
 "tbs_certificate". The length of the "issuer_key_hash" MUST match
 HASH_SIZE.

https://datatracker.ietf.org/doc/html/rfc6962
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5280

Laurie, et al. Expires May 28, 2017 [Page 16]

Internet-Draft Certificate Transparency November 2016

 "tbs_certificate" is the DER encoded TBSCertificate from either the
 "leaf_certificate" (in the case of an "X509ChainEntry") or the
 "pre_certificate" (in the case of a "PrecertChainEntryV2"). (Note
 that a precertificate's TBSCertificate can be reconstructed from the
 corresponding certificate as described in Section 9.2.2).

 "sct_extensions" matches the SCT extensions of the corresponding SCT.

5.6. Signed Certificate Timestamp (SCT)

 An SCT is a "TransItem" structure of type "x509_sct_v2" or
 "precert_sct_v2", which encapsulates a
 "SignedCertificateTimestampDataV2" structure:

 enum {
 reserved(65535)
 } SctExtensionType;

 struct {
 SctExtensionType sct_extension_type;
 opaque sct_extension_data<0..2^16-1>;
 } SctExtension;

 struct {
 LogID log_id;
 uint64 timestamp;
 SctExtension sct_extensions<0..2^16-1>;
 digitally-signed struct {
 TransItem timestamped_entry;
 } signature;
 } SignedCertificateTimestampDataV2;

 "log_id" is this log's unique ID, encoded in an opaque vector as
 described in Section 5.3.

 "timestamp" is equal to the timestamp from the
 "TimestampedCertificateEntryDataV2" structure encapsulated in the
 "timestamped_entry".

 "sct_extension_type" identifies a single extension from the IANA
 registry in Section 11.5. At the time of writing, no extensions are
 specified.

 The interpretation of the "sct_extension_data" field is determined
 solely by the value of the "sct_extension_type" field. Each document
 that registers a new "sct_extension_type" must describe how to
 interpret the corresponding "sct_extension_data".

Laurie, et al. Expires May 28, 2017 [Page 17]

Internet-Draft Certificate Transparency November 2016

 "sct_extensions" is a vector of 0 or more SCT extensions. This
 vector MUST NOT include more than one extension with the same
 "sct_extension_type". The extensions in the vector MUST be ordered
 by the value of the "sct_extension_type" field, smallest value first.
 If an implementation sees an extension that it does not understand,
 it SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

 The encoding of the digitally-signed element is defined in [RFC5246].

 "timestamped_entry" is a "TransItem" structure that MUST be of type
 "x509_entry_v2" or "precert_entry_v2" (see Section 5.5).

5.7. Merkle Tree Head

 The log stores information about its Merkle Tree in a
 "TreeHeadDataV2":

 opaque NodeHash<32..2^8-1>;

 enum {
 reserved(65535)
 } SthExtensionType;

 struct {
 SthExtensionType sth_extension_type;
 opaque sth_extension_data<0..2^16-1>;
 } SthExtension;

 struct {
 uint64 timestamp;
 uint64 tree_size;
 NodeHash root_hash;
 SthExtension sth_extensions<0..2^16-1>;
 } TreeHeadDataV2;

 The length of NodeHash MUST match HASH_SIZE of the log.

 "sth_extension_type" identifies a single extension from the IANA
 registry in Section 11.6. At the time of writing, no extensions are
 specified.

 The interpretation of the "sth_extension_data" field is determined
 solely by the value of the "sth_extension_type" field. Each document
 that registers a new "sth_extension_type" must describe how to
 interpret the corresponding "sth_extension_data".

https://datatracker.ietf.org/doc/html/rfc5246

Laurie, et al. Expires May 28, 2017 [Page 18]

Internet-Draft Certificate Transparency November 2016

 "timestamp" is the current NTP Time [RFC5905], measured in
 milliseconds since the epoch (January 1, 1970, 00:00 UTC), ignoring
 leap seconds.

 "tree_size" is the number of entries currently in the log's Merkle
 Tree.

 "root_hash" is the root of the Merkle Hash Tree.

 "sth_extensions" is a vector of 0 or more STH extensions. This
 vector MUST NOT include more than one extension with the same
 "sth_extension_type". The extensions in the vector MUST be ordered
 by the value of the "sth_extension_type" field, smallest value first.
 If an implementation sees an extension that it does not understand,
 it SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

5.8. Signed Tree Head (STH)

 Periodically each log SHOULD sign its current tree head information
 (see Section 5.7) to produce an STH. When a client requests a log's
 latest STH (see Section 6.3), the log MUST return an STH that is no
 older than the log's MMD. However, STHs could be used to mark
 individual clients (by producing a new one for each query), so logs
 MUST NOT produce them more frequently than is declared in their
 metadata. In general, there is no need to produce a new STH unless
 there are new entries in the log; however, in the unlikely event that
 it receives no new submissions during an MMD period, the log SHALL
 sign the same Merkle Tree Hash with a fresh timestamp.

 An STH is a "TransItem" structure of type "signed_tree_head_v2",
 which encapsulates a "SignedTreeHeadDataV2" structure:

 struct {
 LogID log_id;
 TreeHeadDataV2 tree_head;
 digitally-signed struct {
 TreeHeadDataV2 tree_head;
 } signature;
 } SignedTreeHeadDataV2;

 "log_id" is this log's unique ID, encoded in an opaque vector as
 described in Section 5.3.

 The "timestamp" in "tree_head" MUST be at least as recent as the most
 recent SCT timestamp in the tree. Each subsequent timestamp MUST be
 more recent than the timestamp of the previous update.

https://datatracker.ietf.org/doc/html/rfc5905

Laurie, et al. Expires May 28, 2017 [Page 19]

Internet-Draft Certificate Transparency November 2016

 "tree_head" contains the latest tree head information (see
Section 5.7).

 "signature" is a signature over the encoded "tree_head" field.

5.9. Merkle Consistency Proofs

 To prepare a Merkle Consistency Proof for distribution to clients,
 the log produces a "TransItem" structure of type
 "consistency_proof_v2", which encapsulates a "ConsistencyProofDataV2"
 structure:

 struct {
 LogID log_id;
 uint64 tree_size_1;
 uint64 tree_size_2;
 NodeHash consistency_path<1..2^16-1>;
 } ConsistencyProofDataV2;

 "log_id" is this log's unique ID, encoded in an opaque vector as
 described in Section 5.3.

 "tree_size_1" is the size of the older tree.

 "tree_size_2" is the size of the newer tree.

 "consistency_path" is a vector of Merkle Tree nodes proving the
 consistency of two STHs.

5.10. Merkle Inclusion Proofs

 To prepare a Merkle Inclusion Proof for distribution to clients, the
 log produces a "TransItem" structure of type "inclusion_proof_v2",
 which encapsulates an "InclusionProofDataV2" structure:

 struct {
 LogID log_id;
 uint64 tree_size;
 uint64 leaf_index;
 NodeHash inclusion_path<1..2^16-1>;
 } InclusionProofDataV2;

 "log_id" is this log's unique ID, encoded in an opaque vector as
 described in Section 5.3.

 "tree_size" is the size of the tree on which this inclusion proof is
 based.

Laurie, et al. Expires May 28, 2017 [Page 20]

Internet-Draft Certificate Transparency November 2016

 "leaf_index" is the 0-based index of the log entry corresponding to
 this inclusion proof.

 "inclusion_path" is a vector of Merkle Tree nodes proving the
 inclusion of the chosen certificate or precertificate.

5.11. Shutting down a log

 Log operators may decide to shut down a log for various reasons, such
 as deprecation of the signature algorithm. If there are entries in
 the log for certificates that have not yet expired, simply making TLS
 clients stop recognizing that log will have the effect of
 invalidating SCTs from that log. To avoid that, the following
 actions are suggested:

 o Make it known to clients and monitors that the log will be frozen.

 o Stop accepting new submissions (the error code "shutdown" should
 be returned for such requests).

 o Once MMD from the last accepted submission has passed and all
 pending submissions are incorporated, issue a final STH and
 publish it as a part of the log's metadata. Having an STH with a
 timestamp that is after the MMD has passed from the last SCT
 issuance allows clients to audit this log regularly without
 special handling for the final STH. At this point the log's
 private key is no longer needed and can be destroyed.

 o Keep the log running until the certificates in all of its entries
 have expired or exist in other logs (this can be determined by
 scanning other logs or connecting to domains mentioned in the
 certificates and inspecting the SCTs served).

6. Log Client Messages

 Messages are sent as HTTPS GET or POST requests. Parameters for
 POSTs and all responses are encoded as JavaScript Object Notation
 (JSON) objects [RFC4627]. Parameters for GETs are encoded as order-
 independent key/value URL parameters, using the "application/x-www-
 form-urlencoded" format described in the "HTML 4.01 Specification"
 [HTML401]. Binary data is base64 encoded [RFC4648] as specified in
 the individual messages.

 Note that JSON objects and URL parameters may contain fields not
 specified here. These extra fields should be ignored.

 The <log server> prefix, which is part of the log's metadata, MAY
 include a path as well as a server name and a port.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648

Laurie, et al. Expires May 28, 2017 [Page 21]

Internet-Draft Certificate Transparency November 2016

 In practice, log servers may include multiple front-end machines.
 Since it is impractical to keep these machines in perfect sync,
 errors may occur that are caused by skew between the machines. Where
 such errors are possible, the front-end will return additional
 information (as specified below) making it possible for clients to
 make progress, if progress is possible. Front-ends MUST only serve
 data that is free of gaps (that is, for example, no front-end will
 respond with an STH unless it is also able to prove consistency from
 all log entries logged within that STH).

 For example, when a consistency proof between two STHs is requested,
 the front-end reached may not yet be aware of one or both STHs. In
 the case where it is unaware of both, it will return the latest STH
 it is aware of. Where it is aware of the first but not the second,
 it will return the latest STH it is aware of and a consistency proof
 from the first STH to the returned STH. The case where it knows the
 second but not the first should not arise (see the "no gaps"
 requirement above).

 If the log is unable to process a client's request, it MUST return an
 HTTP response code of 4xx/5xx (see [RFC2616]), and, in place of the
 responses outlined in the subsections below, the body SHOULD be a
 JSON structure containing at least the following field:

 error_message: A human-readable string describing the error which
 prevented the log from processing the request.

 In the case of a malformed request, the string SHOULD provide
 sufficient detail for the error to be rectified.

 error_code: An error code readable by the client. Some codes are
 generic and are detailed here. Others are detailed in the
 individual requests. Error codes are fixed text strings.

 +---------------+---+
 | Error Code | Meaning |
 +---------------+---+
 | not compliant | The request is not compliant with this RFC. |
 +---------------+---+

 e.g., In response to a request of "/ct/v2/get-
 entries?start=100&end=99", the log would return a "400 Bad Request"
 response code with a body similar to the following:

 {
 "error_message": "'start' cannot be greater than 'end'",
 "error_code": "not compliant",
 }

https://datatracker.ietf.org/doc/html/rfc2616

Laurie, et al. Expires May 28, 2017 [Page 22]

Internet-Draft Certificate Transparency November 2016

 Clients SHOULD treat "500 Internal Server Error" and "503 Service
 Unavailable" responses as transient failures and MAY retry the same
 request without modification at a later date. Note that as per
 [RFC2616], in the case of a 503 response the log MAY include a
 "Retry-After:" header in order to request a minimum time for the
 client to wait before retrying the request.

6.1. Add Chain to Log

 POST https://<log server>/ct/v2/add-chain

 Inputs:

 chain: An array of base64 encoded certificates. The first
 element is the certificate for which the submitter desires an
 SCT; the second certifies the first and so on to the last,
 which either is, or is certified by, an accepted trust anchor.

 Outputs:

 sct: A base64 encoded "TransItem" of type "x509_sct_v2", signed
 by this log, that corresponds to the submitted certificate.

 Error codes:

 +-------------+---+
 | Error Code | Meaning |
 +-------------+---+
unknown	The last certificate in the chain both is not, and
anchor	is not certified by, an accepted trust anchor.
bad chain	The alleged chain is not actually a chain of
	certificates.
bad	One or more certificates in the chain are not valid
certificate	(e.g., not properly encoded).
shutdown	The log has ceased operation and is not accepting
	new submissions.
 +-------------+---+

 If the version of "sct" is not v2, then a v2 client may be unable to
 verify the signature. It MUST NOT construe this as an error. This
 is to avoid forcing an upgrade of compliant v2 clients that do not
 use the returned SCTs.

 If a log detects bad encoding in a chain that otherwise verifies
 correctly then the log MUST either log the certificate or return the

https://datatracker.ietf.org/doc/html/rfc2616

Laurie, et al. Expires May 28, 2017 [Page 23]

Internet-Draft Certificate Transparency November 2016

 "bad certificate" error. If the certificate is logged, an SCT MUST
 be issued. Logging the certificate is useful, because monitors
 (Section 9.3) can then detect these encoding errors, which may be
 accepted by some TLS clients.

6.2. Add PreCertChain to Log

 POST https://<log server>/ct/v2/add-pre-chain

 Inputs:

 precertificate: The base64 encoded precertificate.

 chain: An array of base64 encoded CA certificates. The first
 element is the signer of the precertificate; the second
 certifies the first and so on to the last, which either is, or
 is certified by, an accepted trust anchor.

 Outputs:

 sct: A base64 encoded "TransItem" of type "precert_sct_v2",
 signed by this log, that corresponds to the submitted
 precertificate.

 Errors are the same as in Section 6.1.

6.3. Retrieve Latest Signed Tree Head

 GET https://<log server>/ct/v2/get-sth

 No inputs.

 Outputs:

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log, that is no older than the log's MMD.

6.4. Retrieve Merkle Consistency Proof between Two Signed Tree Heads

 GET https://<log server>/ct/v2/get-sth-consistency

 Inputs:

 first: The tree_size of the older tree, in decimal.

 second: The tree_size of the newer tree, in decimal (optional).

Laurie, et al. Expires May 28, 2017 [Page 24]

Internet-Draft Certificate Transparency November 2016

 Both tree sizes must be from existing v2 STHs. However, because
 of skew, the receiving front-end may not know one or both of the
 existing STHs. If both are known, then only the "consistency"
 output is returned. If the first is known but the second is not
 (or has been omitted), then the latest known STH is returned,
 along with a consistency proof between the first STH and the
 latest. If neither are known, then the latest known STH is
 returned without a consistency proof.

 Outputs:

 consistency: A base64 encoded "TransItem" of type
 "consistency_proof_v2", whose "tree_size_1" MUST match the
 "first" input. If the "sth" output is omitted, then
 "tree_size_2" MUST match the "second" input.

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 Note that no signature is required for the "consistency" output as
 it is used to verify the consistency between two STHs, which are
 signed.

 Error codes:

 +-------------+---+
 | Error Code | Meaning |
 +-------------+---+
first	"first" is before the latest known STH but is not
unknown	from an existing STH.
second	"second" is before the latest known STH but is not
unknown	from an existing STH.
 +-------------+---+

 See Section 9.4.2 for an outline of how to use the "consistency"
 output.

6.5. Retrieve Merkle Inclusion Proof from Log by Leaf Hash

 GET https://<log server>/ct/v2/get-proof-by-hash

 Inputs:

 hash: A base64 encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the proof,
 in decimal.

Laurie, et al. Expires May 28, 2017 [Page 25]

Internet-Draft Certificate Transparency November 2016

 The "hash" must be calculated as defined in Section 5.5. The
 "tree_size" must designate an existing v2 STH. Because of skew,
 the front-end may not know the requested STH. In that case, it
 will return the latest STH it knows, along with an inclusion proof
 to that STH. If the front-end knows the requested STH then only
 "inclusion" is returned.

 Outputs:

 inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the chosen certificate in
 the selected STH.

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 Note that no signature is required for the "inclusion" output as
 it is used to verify inclusion in the selected STH, which is
 signed.

 Error codes:

 +-----------+---+
 | Error | Meaning |
 | Code | |
 +-----------+---+
hash	"hash" is not the hash of a known leaf (may be caused
unknown	by skew or by a known certificate not yet merged).
tree_size	"hash" is before the latest known STH but is not from
unknown	an existing STH.
 +-----------+---+

 See Section 9.4.1 for an outline of how to use the "inclusion"
 output.

6.6. Retrieve Merkle Inclusion Proof, Signed Tree Head and Consistency
 Proof by Leaf Hash

 GET https://<log server>/ct/v2/get-all-by-hash

 Inputs:

 hash: A base64 encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the proofs,
 in decimal.

Laurie, et al. Expires May 28, 2017 [Page 26]

Internet-Draft Certificate Transparency November 2016

 The "hash" must be calculated as defined in Section 5.5. The
 "tree_size" must designate an existing v2 STH.

 Because of skew, the front-end may not know the requested STH or
 the requested hash, which leads to a number of cases.

 latest STH < requested STH Return latest STH.

 latest STH > requested STH Return latest STH and a consistency
 proof between it and the requested STH (see Section 6.4).

 index of requested hash < latest STH Return "inclusion".

 Note that more than one case can be true, in which case the
 returned data is their concatenation. It is also possible for
 none to be true, in which case the front-end MUST return an empty
 response.

 Outputs:

 inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the chosen certificate in
 the returned STH.

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 consistency: A base64 encoded "TransItem" of type
 "consistency_proof_v2" that proves the consistency of the
 requested STH and the returned STH.

 Note that no signature is required for the "inclusion" or
 "consistency" outputs as they are used to verify inclusion in and
 consistency of STHs, which are signed.

 Errors are the same as in Section 6.5.

 See Section 9.4.1 for an outline of how to use the "inclusion"
 output, and see Section 9.4.2 for an outline of how to use the
 "consistency" output.

Laurie, et al. Expires May 28, 2017 [Page 27]

Internet-Draft Certificate Transparency November 2016

6.7. Retrieve Entries and STH from Log

 GET https://<log server>/ct/v2/get-entries

 Inputs:

 start: 0-based index of first entry to retrieve, in decimal.

 end: 0-based index of last entry to retrieve, in decimal.

 Outputs:

 entries: An array of objects, each consisting of

 leaf_input: The base64 encoded "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" (see Section 5.5).

 log_entry: The base64 encoded log entry (see Section 5.2). In
 the case of an "x509_entry_v2" entry, this is the whole
 "X509ChainEntry"; and in the case of a "precert_entry_v2",
 this is the whole "PrecertChainEntryV2".

 sct: The base64 encoded "TransItem" of type "x509_sct_v2" or
 "precert_sct_v2" corresponding to this log entry.

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 Note that this message is not signed -- the "entries" data can be
 verified by constructing the Merkle Tree Hash corresponding to a
 retrieved STH. All leaves MUST be v2. However, a compliant v2
 client MUST NOT construe an unrecognized TransItem type as an error.
 This means it may be unable to parse some entries, but note that each
 client can inspect the entries it does recognize as well as verify
 the integrity of the data by treating unrecognized leaves as opaque
 input to the tree.

 The "start" and "end" parameters SHOULD be within the range 0 <= x <
 "tree_size" as returned by "get-sth" in Section 6.3.

 The "start" parameter MUST be less than or equal to the "end"
 parameter.

 Log servers MUST honor requests where 0 <= "start" < "tree_size" and
 "end" >= "tree_size" by returning a partial response covering only
 the valid entries in the specified range. "end" >= "tree_size" could
 be caused by skew. Note that the following restriction may also
 apply:

Laurie, et al. Expires May 28, 2017 [Page 28]

Internet-Draft Certificate Transparency November 2016

 Logs MAY restrict the number of entries that can be retrieved per
 "get-entries" request. If a client requests more than the permitted
 number of entries, the log SHALL return the maximum number of entries
 permissible. These entries SHALL be sequential beginning with the
 entry specified by "start".

 Because of skew, it is possible the log server will not have any
 entries between "start" and "end". In this case it MUST return an
 empty "entries" array.

 In any case, the log server MUST return the latest STH it knows
 about.

 See Section 9.4.3 for an outline of how to use a complete list of
 "leaf_input" entries to verify the "root_hash".

6.8. Retrieve Accepted Trust Anchors

 GET https://<log server>/ct/v2/get-anchors

 No inputs.

 Outputs:

 certificates: An array of base64 encoded trust anchors that are
 acceptable to the log.

 max_chain: If the server has chosen to limit the length of chains
 it accepts, this is the maximum number of certificates in the
 chain, in decimal. If there is no limit, this is omitted.

7. TLS Servers

 TLS servers MUST use at least one of the three mechanisms listed
 below to present one or more SCTs from one or more logs to each TLS
 client during full TLS handshakes, where each SCT corresponds to the
 server certificate or to a name-constrained intermediate the server
 certificate chains to. TLS servers SHOULD also present corresponding
 inclusion proofs and STHs (see Section 7.3).

 Three mechanisms are provided because they have different tradeoffs.

 o A TLS extension (Section 7.4.1.4 of [RFC5246]) with type
 "transparency_info" (see Section 7.5). This mechanism allows TLS
 servers to participate in CT without the cooperation of CAs,
 unlike the other two mechanisms. It also allows SCTs and
 inclusion proofs to be updated on the fly.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4

Laurie, et al. Expires May 28, 2017 [Page 29]

Internet-Draft Certificate Transparency November 2016

 o An Online Certificate Status Protocol (OCSP) [RFC6960] response
 extension (see Section 8.1.1), where the OCSP response is provided
 in the "CertificateStatus" message, provided that the TLS client
 included the "status_request" extension in the (extended)
 "ClientHello" (Section 8 of [RFC6066]). This mechanism, popularly
 known as OCSP stapling, is already widely (but not universally)
 implemented. It also allows SCTs and inclusion proofs to be
 updated on the fly.

 o An X509v3 certificate extension (see Section 8.1.2). This
 mechanism allows the use of unmodified TLS servers, but the SCTs
 and inclusion proofs cannot be updated on the fly. Since the logs
 from which the SCTs and inclusion proofs originated won't
 necessarily be accepted by TLS clients for the full lifetime of
 the certificate, there is a risk that TLS clients will
 subsequently consider the certificate to be non-compliant and in
 need of re-issuance.

 Additionally, a TLS server which supports presenting SCTs using an
 OCSP response MAY provide it when the TLS client included the
 "status_request_v2" extension ([RFC6961]) in the (extended)
 "ClientHello", but only in addition to at least one of the three
 mechanisms listed above.

7.1. Multiple SCTs

 TLS servers SHOULD send SCTs from multiple logs in case one or more
 logs are not acceptable to the TLS client (for example, if a log has
 been struck off for misbehavior, has had a key compromise, or is not
 known to the TLS client). For example:

 o If a CA and a log collude, it is possible to temporarily hide
 misissuance from clients. Including SCTs from different logs
 makes it more difficult to mount this attack.

 o If a log misbehaves, a consequence may be that clients cease to
 trust it. Since the time an SCT may be in use can be considerable
 (several years is common in current practice when embedded in a
 certificate), servers may wish to reduce the probability of their
 certificates being rejected as a result by including SCTs from
 different logs.

 o TLS clients may have policies related to the above risks requiring
 servers to present multiple SCTs. For example, at the time of
 writing, Chromium [Chromium.Log.Policy] requires multiple SCTs to
 be presented with EV certificates in order for the EV indicator to
 be shown.

https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6066#section-8
https://datatracker.ietf.org/doc/html/rfc6961

Laurie, et al. Expires May 28, 2017 [Page 30]

Internet-Draft Certificate Transparency November 2016

 To select the logs from which to obtain SCTs, a TLS server can, for
 example, examine the set of logs popular TLS clients accept and
 recognize.

7.2. TransItemList Structure

 Multiple SCTs, inclusion proofs, and indeed "TransItem" structures of
 any type, are combined into a list as follows:

 opaque SerializedTransItem<1..2^16-1>;

 struct {
 SerializedTransItem trans_item_list<1..2^16-1>;
 } TransItemList;

 Here, "SerializedTransItem" is an opaque byte string that contains
 the serialized "TransItem" structure. This encoding ensures that TLS
 clients can decode each "TransItem" individually (so, for example, if
 there is a version upgrade, out-of-date clients can still parse old
 "TransItem" structures while skipping over new "TransItem" structures
 whose versions they don't understand).

7.3. Presenting SCTs, inclusion proofs and STHs

 When constructing a "TransItemList" structure, a TLS server SHOULD
 construct and include "TransItem" structures of type
 "x509_sct_with_proof_v2" (for an SCT of type "x509_sct_v2") or
 "precert_sct_with_proof_v2" (for an SCT of type "precert_sct_v2"),
 both of which encapsulate a "SCTWithProofDataV2" structure:

 struct {
 SignedCertificateTimestampDataV2 sct;
 SignedTreeHeadDataV2 sth;
 InclusionProofDataV2 inclusion_proof;
 } SCTWithProofDataV2;

 "sct" is the encapsulated data structure from an SCT that corresponds
 to the server certificate or to a name-constrained intermediate the
 server certificate chains to.

 "sth" is the encapsulated data structure from an STH that was signed
 by the same log as "sct".

 "inclusion_proof" is the encapsulated data structure from an
 inclusion proof that corresponds to "sct" and can be used to compute
 the root in "sth".

Laurie, et al. Expires May 28, 2017 [Page 31]

Internet-Draft Certificate Transparency November 2016

7.4. Presenting SCTs only

 Presenting inclusion proofs and STHs in the TLS handshake helps to
 protect the client's privacy (see Section 9.2.4) and reduces load on
 log servers. However, if a TLS server is unable to obtain an
 inclusion proof and STH that correspond to an SCT, then it MUST
 include "TransItem" structures of type "x509_sct_v2" or
 "precert_sct_v2" in the "TransItemList".

7.5. transparency_info TLS Extension

 Provided that a TLS client includes the "transparency_info" extension
 type in the ClientHello, the TLS server SHOULD include the
 "transparency_info" extension in the ServerHello with
 "extension_data" set to a "TransItemList". The TLS server SHOULD
 ignore any "extension_data" sent by the TLS client. Additionally,
 the TLS server MUST NOT process or include this extension when a TLS
 session is resumed, since session resumption uses the original
 session information.

7.6. cached_info TLS Extension

 When a TLS server includes the "transparency_info" extension in the
 ServerHello, it SHOULD NOT include any "TransItem" structures of type
 "x509_sct_with_proof_v2", "x509_sct_v2", "precert_sct_with_proof_v2"
 or "precert_sct_v2" in the "TransItemList" if all of the following
 conditions are met:

 o The TLS client includes the "transparency_info" extension type in
 the ClientHello.

 o The TLS client includes the "cached_info" ([RFC7924]) extension
 type in the ClientHello, with a "CachedObject" of type
 "ct_compliant" (see Section 9.2.7) and at least one "CachedObject"
 of type "cert".

 o The TLS server sends a modified Certificate message (as described
 in section 4.1 of [RFC7924]).

 TLS servers SHOULD ignore the "hash_value" fields of each
 "CachedObject" of type "ct_compliant" sent by TLS clients.

8. Certification Authorities

https://datatracker.ietf.org/doc/html/rfc7924
https://datatracker.ietf.org/doc/html/rfc7924#section-4.1

Laurie, et al. Expires May 28, 2017 [Page 32]

Internet-Draft Certificate Transparency November 2016

8.1. Transparency Information X.509v3 Extension

 The Transparency Information X.509v3 extension, which has OID
 1.3.101.75 and SHOULD be non-critical, contains one or more
 "TransItem" structures in a "TransItemList". This extension MAY be
 included in OCSP responses (see Section 8.1.1) and certificates (see

Section 8.1.2). Since RFC5280 requires the "extnValue" field (an
 OCTET STRING) of each X.509v3 extension to include the DER encoding
 of an ASN.1 value, a "TransItemList" MUST NOT be included directly.
 Instead, it MUST be wrapped inside an additional OCTET STRING, which
 is then put into the "extnValue" field:

 TransparencyInformationSyntax ::= OCTET STRING

 "TransparencyInformationSyntax" contains a "TransItemList".

8.1.1. OCSP Response Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in the "singleExtensions" of a "SingleResponse" in
 an OCSP response. The included SCTs or inclusion proofs MUST be for
 the certificate identified by the "certID" of that "SingleResponse",
 or for a precertificate that corresponds to that certificate, or for
 a name-constrained intermediate to which that certificate chains.

8.1.2. Certificate Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in a certificate. Any included SCTs or inclusion
 proofs MUST be either for a precertificate that corresponds to this
 certificate, or for a name-constrained intermediate to which this
 certificate chains.

8.2. TLS Feature Extension

 A certification authority MAY include the transparency_info
 (Section 7.5) TLS extension identifier in the TLS Feature [RFC7633]
 certificate extension in root, intermediate and end-entity
 certificates. When a certificate chain includes such a certificate,
 this indicates that CT compliance is required.

9. Clients

 There are various different functions clients of logs might perform.
 We describe here some typical clients and how they should function.
 Any inconsistency may be used as evidence that a log has not behaved
 correctly, and the signatures on the data structures prevent the log
 from denying that misbehavior.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7633

Laurie, et al. Expires May 28, 2017 [Page 33]

Internet-Draft Certificate Transparency November 2016

 All clients need various metadata in order to communicate with logs
 and verify their responses. This metadata is described below, but
 note that this document does not describe how the metadata is
 obtained, which is implementation dependent (see, for example,
 [Chromium.Policy]).

 Clients should somehow exchange STHs they see, or make them available
 for scrutiny, in order to ensure that they all have a consistent
 view. The exact mechanisms will be in separate documents, but it is
 expected there will be a variety.

9.1. Metadata

 In order to communicate with and verify a log, clients need metadata
 about the log.

 Base URL: The URL to substitute for <log server> in Section 6.

 Hash Algorithm: The hash algorithm used for the Merkle Tree (see
Section 11.3).

 Signing Algorithm: The signing algorithm used (see Section 2.1.4).

 Public Key: The public key used to verify signatures generated by
 the log. A log MUST NOT use the same keypair as any other log.

 Log ID: The OID that uniquely identifies the log.

 Maximum Merge Delay: The MMD the log has committed to.

 Version: The version of the protocol supported by the log (currently
 1 or 2).

 Maximum Chain Length: The longest chain submission the log is
 willing to accept, if the log chose to limit it.

 STH Frequency Count: The maximum number of STHs the log may produce
 in any period equal to the "Maximum Merge Delay" (see

Section 5.8).

 Final STH: If a log has been closed down (i.e., no longer accepts
 new entries), existing entries may still be valid. In this case,
 the client should know the final valid STH in the log to ensure no
 new entries can be added without detection. The final STH should
 be provided in the form of a TransItem of type
 "signed_tree_head_v2".

Laurie, et al. Expires May 28, 2017 [Page 34]

Internet-Draft Certificate Transparency November 2016

 [JSON.Metadata] is an example of a metadata format which includes the
 above elements.

9.2. TLS Client

9.2.1. Receiving SCTs

 TLS clients receive SCTs alongside or in certificates. TLS clients
 MUST implement all of the three mechanisms by which TLS servers may
 present SCTs (see Section 7). TLS clients MAY also accept SCTs via
 the "status_request_v2" extension ([RFC6961]). TLS clients that
 support the "transparency_info" TLS extension SHOULD include it in
 ClientHello messages, with empty "extension_data". TLS clients may
 also receive inclusion proofs in addition to SCTs, which should be
 checked once the SCTs are validated.

9.2.2. Reconstructing the TBSCertificate

 To reconstruct the TBSCertificate component of a precertificate from
 a certificate, TLS clients should remove the Transparency Information
 extension described in Section 8.1.

 If the SCT checked is for a Precertificate (where the "type" of the
 "TransItem" is "precert_sct_v2"), then the client SHOULD also remove
 embedded v1 SCTs, identified by OID 1.3.6.1.4.1.11129.2.4.2 (See

Section 3.3. of [RFC6962]), in the process of reconstructing the
 TBSCertificate. That is to allow embedded v1 and v2 SCTs to co-exist
 in a certificate (See Appendix A).

9.2.3. Validating SCTs

 In addition to normal validation of the server certificate and its
 chain, TLS clients SHOULD validate each received SCT for which they
 have the corresponding log's metadata. To validate an SCT, a TLS
 client computes the signature input from the SCT data and the
 corresponding certificate, and then verifies the signature using the
 corresponding log's public key. TLS clients MUST NOT consider valid
 any SCT whose timestamp is in the future.

 Before considering any SCT to be invalid, the TLS client MUST attempt
 to validate it against the server certificate and against each of the
 zero or more suitable name-constrained intermediates (Section 4.2) in
 the chain. These certificates may be evaluated in the order they
 appear in the chain, or, indeed, in any order.

https://datatracker.ietf.org/doc/html/rfc6961
https://datatracker.ietf.org/doc/html/rfc6962#section-3.3

Laurie, et al. Expires May 28, 2017 [Page 35]

Internet-Draft Certificate Transparency November 2016

9.2.4. Validating inclusion proofs

 After validating a received SCT, a TLS client MAY request a
 corresponding inclusion proof (if one is not already available) and
 then verify it. An inclusion proof can be requested directly from a
 log using "get-proof-by-hash" (Section 6.5) or "get-all-by-hash"
 (Section 6.6), but note that this will disclose to the log which TLS
 server the client has been communicating with.

 Alternatively, if the TLS client has received an inclusion proof (and
 an STH) alongside the SCT, it can proceed to verifying the inclusion
 proof to the provided STH. The client then has to verify consistency
 between the provided STH and an STH it knows about, which is less
 sensitive from a privacy perspective.

 TLS clients SHOULD also verify each received inclusion proof (see
Section 9.4.1) for which they have the corresponding log's metadata,

 to audit the log and gain confidence that the certificate is logged.

 If the TLS client holds an STH that predates the SCT, it MAY, in the
 process of auditing, request a new STH from the log (Section 6.3),
 then verify it by requesting a consistency proof (Section 6.4). Note
 that if the TLS client uses "get-all-by-hash", then it will already
 have the new STH.

9.2.5. Evaluating compliance

 To be considered compliant, a certificate MUST be accompanied by at
 least one valid SCT. A certificate not accompanied by any valid SCTs
 MUST NOT be considered compliant by TLS clients.

 A TLS client MUST NOT evaluate compliance if it did not send both the
 "transparency_info" and "status_request" TLS extensions in the
 ClientHello.

9.2.6. TLS Feature Extension

 If any certificate in a chain includes the transparency_info
 (Section 7.5) TLS extension identifier in the TLS Feature [RFC7633]
 certificate extension, then CT compliance (using any of the
 mechanisms from Section 7) is required.

9.2.7. cached_info TLS Extension

 If a TLS client uses the "cached_info" TLS extension ([RFC7924]) to
 indicate 1 or more cached certificates, all of which it already
 considers to be CT compliant, the TLS client MAY also include a

https://datatracker.ietf.org/doc/html/rfc7633
https://datatracker.ietf.org/doc/html/rfc7924

Laurie, et al. Expires May 28, 2017 [Page 36]

Internet-Draft Certificate Transparency November 2016

 "CachedObject" of type "ct_compliant" in the "cached_info" extension.
 The "hash_value" field MUST be 1 byte long with the value 0.

9.2.8. Handling of Non-compliance

 If a TLS server presents a certificate chain that is non-compliant,
 and the use of a compliant certificate is mandated by an explicit
 security policy, application protocol specification, the TLS Feature
 extension or any other means, the TLS client MUST refuse the
 connection.

9.3. Monitor

 Monitors watch logs to check that they behave correctly, for
 certificates of interest, or both. For example, a monitor may be
 configured to report on all certificates that apply to a specific
 domain name when fetching new entries for consistency validation.

 A monitor needs to, at least, inspect every new entry in each log it
 watches. It may also want to keep copies of entire logs. In order
 to do this, it should follow these steps for each log:

 1. Fetch the current STH (Section 6.3).

 2. Verify the STH signature.

 3. Fetch all the entries in the tree corresponding to the STH
 (Section 6.7).

 4. Confirm that the tree made from the fetched entries produces the
 same hash as that in the STH.

 5. Fetch the current STH (Section 6.3). Repeat until the STH
 changes.

 6. Verify the STH signature.

 7. Fetch all the new entries in the tree corresponding to the STH
 (Section 6.7). If they remain unavailable for an extended
 period, then this should be viewed as misbehavior on the part of
 the log.

 8. Either:

 1. Verify that the updated list of all entries generates a tree
 with the same hash as the new STH.

 Or, if it is not keeping all log entries:

Laurie, et al. Expires May 28, 2017 [Page 37]

Internet-Draft Certificate Transparency November 2016

 1. Fetch a consistency proof for the new STH with the previous
 STH (Section 6.4).

 2. Verify the consistency proof.

 3. Verify that the new entries generate the corresponding
 elements in the consistency proof.

 9. Go to Step 5.

9.4. Auditing

 Auditing ensures that the current published state of a log is
 reachable from previously published states that are known to be good,
 and that the promises made by the log in the form of SCTs have been
 kept. Audits are performed by monitors or TLS clients.

 In particular, there are four log behaviour properties that should be
 checked:

 o The Maximum Merge Delay (MMD).

 o The STH Frequency Count.

 o The append-only property.

 o The consistency of the log view presented to all query sources.

 A benign, conformant log publishes a series of STHs over time, each
 derived from the previous STH and the submitted entries incorporated
 into the log since publication of the previous STH. This can be
 proven through auditing of STHs. SCTs returned to TLS clients can be
 audited by verifying against the accompanying certificate, and using
 Merkle Inclusion Proofs, against the log's Merkle tree.

 The action taken by the auditor if an audit fails is not specified,
 but note that in general if audit fails, the auditor is in possession
 of signed proof of the log's misbehavior.

 A monitor (Section 9.3) can audit by verifying the consistency of
 STHs it receives, ensure that each entry can be fetched and that the
 STH is indeed the result of making a tree from all fetched entries.

 A TLS client (Section 9.2) can audit by verifying an SCT against any
 STH dated after the SCT timestamp + the Maximum Merge Delay by
 requesting a Merkle inclusion proof (Section 6.5). It can also
 verify that the SCT corresponds to the certificate it arrived with
 (i.e., the log entry is that certificate, is a precertificate for

Laurie, et al. Expires May 28, 2017 [Page 38]

Internet-Draft Certificate Transparency November 2016

 that certificate or is an appropriate name-constrained intermediate
 (Section 4.2).

 Checking of the consistency of the log view presented to all entities
 is more difficult to perform because it requires a way to share log
 responses among a set of CT-aware entities, and is discussed in

Section 12.3.

 The following algorithm outlines may be useful for clients that wish
 to perform various audit operations.

9.4.1. Verifying an inclusion proof

 When a client has received a "TransItem" of type "inclusion_proof_v2"
 and wishes to verify inclusion of an input "hash" for an STH with a
 given "tree_size" and "root_hash", the following algorithm may be
 used to prove the "hash" was included in the "root_hash":

 1. Compare "leaf_index" against "tree_size". If "leaf_index" is
 greater than or equal to "tree_size" fail the proof verification.

 2. Set "fn" to "leaf_index" and "sn" to "tree_size - 1".

 3. Set "r" to "hash".

 4. For each value "p" in the "inclusion_path" array:

 If "sn" is 0, stop the iteration and fail the proof verification.

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "r" to "HASH(0x01 || p || r)"

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

 1. Set "r" to "HASH(0x01 || r || p)"

 Finally, right-shift both "fn" and "sn" one time.

 5. Compare "sn" to 0. Compare "r" against the "root_hash". If "sn"
 is equal to 0, and "r" and the "root_hash" are equal, then the
 log has proven the inclusion of "hash". Otherwise, fail the
 proof verification.

Laurie, et al. Expires May 28, 2017 [Page 39]

Internet-Draft Certificate Transparency November 2016

9.4.2. Verifying consistency between two STHs

 When a client has an STH "first_hash" for tree size "first", an STH
 "second_hash" for tree size "second" where "0 < first < second", and
 has received a "TransItem" of type "consistency_proof_v2" that they
 wish to use to verify both hashes, the following algorithm may be
 used:

 1. If "first" is an exact power of 2, then prepend "first_hash" to
 the "consistency_path" array.

 2. Set "fn" to "first - 1" and "sn" to "second - 1".

 3. If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally
 until "LSB(fn)" is not set.

 4. Set both "fr" and "sr" to the first value in the
 "consistency_path" array.

 5. For each subsequent value "c" in the "consistency_path" array:

 If "sn" is 0, stop the iteration and fail the proof verification.

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "fr" to "HASH(0x01 || c || fr)"
 Set "sr" to "HASH(0x01 || c || sr)"

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

 1. Set "sr" to "HASH(0x01 || sr || c)"

 Finally, right-shift both "fn" and "sn" one time.

 6. After completing iterating through the "consistency_path" array
 as described above, verify that the "fr" calculated is equal to
 the "first_hash" supplied, that the "sr" calculated is equal to
 the "second_hash" supplied and that "sn" is 0.

9.4.3. Verifying root hash given entries

 When a client has a complete list of leaf input "entries" from "0" up
 to "tree_size - 1" and wishes to verify this list against an STH
 "root_hash" returned by the log for the same "tree_size", the
 following algorithm may be used:

Laurie, et al. Expires May 28, 2017 [Page 40]

Internet-Draft Certificate Transparency November 2016

 1. Set "stack" to an empty stack.

 2. For each "i" from "0" up to "tree_size - 1":

 1. Push "HASH(0x00 || entries[i])" to "stack".

 2. Set "merge_count" to the lowest value ("0" included) such
 that "LSB(i >> merge_count)" is not set. In other words, set
 "merge_count" to the number of consecutive "1"s found
 starting at the least significant bit of "i".

 3. Repeat "merge_count" times:

 1. Pop "right" from "stack".

 2. Pop "left" from "stack".

 3. Push "HASH(0x01 || left || right)" to "stack".

 3. If there is more than one element in the "stack", repeat the same
 merge procedure (Step 2.3 above) until only a single element
 remains.

 4. The remaining element in "stack" is the Merkle Tree hash for the
 given "tree_size" and should be compared by equality against the
 supplied "root_hash".

10. Algorithm Agility

 It is not possible for a log to change any of its algorithms part way
 through its lifetime:

 Signature algorithm: SCT signatures must remain valid so signature
 algorithms can only be added, not removed.

 Hash algorithm: A log would have to support the old and new hash
 algorithms to allow backwards-compatibility with clients that are
 not aware of a hash algorithm change.

 Allowing multiple signature or hash algorithms for a log would
 require that all data structures support it and would significantly
 complicate client implementation, which is why it is not supported by
 this document.

 If it should become necessary to deprecate an algorithm used by a
 live log, then the log should be frozen as specified in Section 9.1
 and a new log should be started. Certificates in the frozen log that

Laurie, et al. Expires May 28, 2017 [Page 41]

Internet-Draft Certificate Transparency November 2016

 have not yet expired and require new SCTs SHOULD be submitted to the
 new log and the SCTs from that log used instead.

11. IANA Considerations

11.1. TLS Extension Type

 IANA is asked to allocate an RFC 5246 ExtensionType value for the
 "transparency_info" TLS extension. IANA should update this extension
 type to point at this document.

11.2. New Entry to the TLS CachedInformationType registry

 IANA is asked to add an entry for "ct_compliant(TBD)" to the "TLS
 CachedInformationType Values" registry that was defined in [RFC7924].

11.3. Hash Algorithms

 IANA is asked to establish a registry of hash algorithm values,
 initially consisting of:

 +-------+---------------------+
 | Index | Hash |
 +-------+---------------------+
 | 0 | SHA-256 [FIPS180-4] |
 | | |
 | 255 | reserved |
 +-------+---------------------+

11.4. Signature Algorithms

 IANA is asked to establish a registry of signature algorithm values,
 initially consisting of:

 +-------+---+
 | Index | Signature Algorithm |
 +-------+---+
0	deterministic ECDSA [RFC6979] using the NIST P-256 curve
	(Section D.1.2.3 of the Digital Signature Standard [DSS])
	and HMAC-SHA256.
1	RSA signatures (RSASSA-PKCS1-v1_5 with SHA-256, Section
	8.2 of [RFC3447]) using a key of at least 2048 bits.
 +-------+---+

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7924
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc3447

Laurie, et al. Expires May 28, 2017 [Page 42]

Internet-Draft Certificate Transparency November 2016

11.5. SCT Extensions

 IANA is asked to establish a registry of SCT extensions, initially
 consisting of:

 +-------+-----------+
 | Type | Extension |
 +-------+-----------+
 | 65535 | reserved |
 +-------+-----------+

 TBD: policy for adding to the registry

11.6. STH Extensions

 IANA is asked to establish a registry of STH extensions, initially
 consisting of:

 +-------+-----------+
 | Type | Extension |
 +-------+-----------+
 | 65535 | reserved |
 +-------+-----------+

 TBD: policy for adding to the registry

11.7. Object Identifiers

 This document uses object identifiers (OIDs) to identify Log IDs (see
Section 5.3), the precertificate CMS "eContentType" (see
Section 3.2), and X.509v3 extensions in certificates (see Section 4.2

 and Section 8.1.2) and OCSP responses (see Section 8.1.1). The OIDs
 are defined in an arc that was selected due to its short encoding.

11.7.1. Log ID Registry 1

 All OIDs in the range from 1.3.101.8192 to 1.3.101.16383 have been
 reserved. This is a limited resource of 8,192 OIDs, each of which
 has an encoded length of 4 octets.

 IANA is requested to establish a registry that will allocate Log IDs
 from this range.

 TBD: policy for adding to the registry. Perhaps "Expert Review"?

Laurie, et al. Expires May 28, 2017 [Page 43]

Internet-Draft Certificate Transparency November 2016

11.7.2. Log ID Registry 2

 The 1.3.101.80 arc has been delegated. This is an unlimited
 resource, but only the 128 OIDs from 1.3.101.80.0 to 1.3.101.80.127
 have an encoded length of only 4 octets.

 IANA is requested to establish a registry that will allocate Log IDs
 from this arc.

 TBD: policy for adding to the registry. Perhaps "Expert Review"?

12. Security Considerations

 With CAs, logs, and servers performing the actions described here,
 TLS clients can use logs and signed timestamps to reduce the
 likelihood that they will accept misissued certificates. If a server
 presents a valid signed timestamp for a certificate, then the client
 knows that a log has committed to publishing the certificate. From
 this, the client knows that monitors acting for the subject of the
 certificate have had some time to notice the misissue and take some
 action, such as asking a CA to revoke a misissued certificate, or
 that the log has misbehaved, which will be discovered when the SCT is
 audited. A signed timestamp is not a guarantee that the certificate
 is not misissued, since appropriate monitors might not have checked
 the logs or the CA might have refused to revoke the certificate.

 In addition, if TLS clients will not accept unlogged certificates,
 then site owners will have a greater incentive to submit certificates
 to logs, possibly with the assistance of their CA, increasing the
 overall transparency of the system.

 [I-D.ietf-trans-threat-analysis] provides a more detailed threat
 analysis of the Certificate Transparency architecture.

12.1. Misissued Certificates

 Misissued certificates that have not been publicly logged, and thus
 do not have a valid SCT, are not considered compliant. Misissued
 certificates that do have an SCT from a log will appear in that
 public log within the Maximum Merge Delay, assuming the log is
 operating correctly. Thus, the maximum period of time during which a
 misissued certificate can be used without being available for audit
 is the MMD.

Laurie, et al. Expires May 28, 2017 [Page 44]

Internet-Draft Certificate Transparency November 2016

12.2. Detection of Misissue

 The logs do not themselves detect misissued certificates; they rely
 instead on interested parties, such as domain owners, to monitor them
 and take corrective action when a misissue is detected.

12.3. Misbehaving Logs

 A log can misbehave in several ways. Examples include failing to
 incorporate a certificate with an SCT in the Merkle Tree within the
 MMD, presenting different, conflicting views of the Merkle Tree at
 different times and/or to different parties and issuing STHs too
 frequently. Such misbehavior is detectable and the
 [I-D.ietf-trans-threat-analysis] provides more details on how this
 can be done.

 Violation of the MMD contract is detected by log clients requesting a
 Merkle inclusion proof (Section 6.5) for each observed SCT. These
 checks can be asynchronous and need only be done once per each
 certificate. In order to protect the clients' privacy, these checks
 need not reveal the exact certificate to the log. Instead, clients
 can request the proof from a trusted auditor (since anyone can
 compute the proofs from the log) or communicate with the log via
 proxies.

 Violation of the append-only property or the STH issuance rate limit
 can be detected by clients comparing their instances of the Signed
 Tree Heads. There are various ways this could be done, for example
 via gossip (see [I-D.ietf-trans-gossip]) or peer-to-peer
 communications or by sending STHs to monitors (who could then
 directly check against their own copy of the relevant log). A proof
 of misbehavior in such cases would be a series of STHs that were
 issued too closely together, proving violation of the STH issuance
 rate limit, or an STH with a root hash that does not match the one
 calculated from a copy of the log, proving violation of the append-
 only property.

12.4. Deterministic Signatures

 Logs are required to use deterministic signatures for the following
 reasons:

 o Using non-deterministic ECDSA with a predictable source of
 randomness means that each signature can potentially expose the
 secret material of the signing key.

Laurie, et al. Expires May 28, 2017 [Page 45]

Internet-Draft Certificate Transparency November 2016

 o Clients that gossip STHs or report back SCTs can be tracked or
 traced if a log was to produce multiple STHs or SCTs with the same
 timestamp and data but different signatures.

12.5. Multiple SCTs

 By offering multiple SCTs, each from a different log, TLS servers
 reduce the effectiveness of an attack where a CA and a log collude
 (see Section 7.1).

13. Acknowledgements

 The authors would like to thank Erwann Abelea, Robin Alden, Andrew
 Ayer, Al Cutter, David Drysdale, Francis Dupont, Adam Eijdenberg,
 Stephen Farrell, Daniel Kahn Gillmor, Paul Hadfield, Brad Hill, Jeff
 Hodges, Paul Hoffman, Jeffrey Hutzelman, Kat Joyce, Stephen Kent, SM,
 Alexey Melnikov, Linus Nordberg, Chris Palmer, Trevor Perrin, Pierre
 Phaneuf, Melinda Shore, Ryan Sleevi, Martin Smith, Carl Wallace and
 Paul Wouters for their valuable contributions.

 A big thank you to Symantec for kindly donating the OIDs from the
 1.3.101 arc that are used in this document.

14. References

14.1. Normative References

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS 186-3, June 2009,
 <http://csrc.nist.gov/publications/fips/fips186-3/

fips_186-3.pdf>.

 [FIPS180-4]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

 [HTML401] Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium Recommendation
 REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.w3.org/TR/1999/REC-html401-19991224
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Laurie, et al. Expires May 28, 2017 [Page 46]

Internet-Draft Certificate Transparency November 2016

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, DOI 10.17487/

RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
 2003, <http://www.rfc-editor.org/info/rfc3447>.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, DOI 10.17487
 /RFC4627, July 2006,
 <http://www.rfc-editor.org/info/rfc4627>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066, DOI 10.17487
 /RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
http://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc3447
http://www.rfc-editor.org/info/rfc3447
https://datatracker.ietf.org/doc/html/rfc4627
http://www.rfc-editor.org/info/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
http://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5652
http://www.rfc-editor.org/info/rfc5652
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6066
http://www.rfc-editor.org/info/rfc6066

Laurie, et al. Expires May 28, 2017 [Page 47]

Internet-Draft Certificate Transparency November 2016

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <http://www.rfc-editor.org/info/rfc6960>.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <http://www.rfc-editor.org/info/rfc6961>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <http://www.rfc-editor.org/info/rfc6979>.

 [RFC7633] Hallam-Baker, P., "X.509v3 Transport Layer Security (TLS)
 Feature Extension", RFC 7633, DOI 10.17487/RFC7633,
 October 2015, <http://www.rfc-editor.org/info/rfc7633>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924, DOI
 10.17487/RFC7924, July 2016,
 <http://www.rfc-editor.org/info/rfc7924>.

14.2. Informative References

 [Chromium.Log.Policy]
 The Chromium Projects, "Chromium Certificate Transparency
 Log Policy", 2014, <http://www.chromium.org/Home/

chromium-security/certificate-transparency/log-policy>.

 [Chromium.Policy]
 The Chromium Projects, "Chromium Certificate
 Transparency", 2014, <http://www.chromium.org/Home/

chromium-security/certificate-transparency>.

https://datatracker.ietf.org/doc/html/rfc6125
http://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc6960
http://www.rfc-editor.org/info/rfc6960
https://datatracker.ietf.org/doc/html/rfc6961
http://www.rfc-editor.org/info/rfc6961
https://datatracker.ietf.org/doc/html/rfc6979
http://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc7633
http://www.rfc-editor.org/info/rfc7633
https://datatracker.ietf.org/doc/html/rfc7924
http://www.rfc-editor.org/info/rfc7924
http://www.chromium.org/Home/chromium-security/certificate-transparency/log-policy
http://www.chromium.org/Home/chromium-security/certificate-transparency/log-policy
http://www.chromium.org/Home/chromium-security/certificate-transparency
http://www.chromium.org/Home/chromium-security/certificate-transparency

Laurie, et al. Expires May 28, 2017 [Page 48]

Internet-Draft Certificate Transparency November 2016

 [CrosbyWallach]
 Crosby, S. and D. Wallach, "Efficient Data Structures for
 Tamper-Evident Logging", Proceedings of the 18th USENIX
 Security Symposium, Montreal, August 2009,
 <http://static.usenix.org/event/sec09/tech/full_papers/

crosby.pdf>.

 [EVSSLGuidelines]
 CA/Browser Forum, "Guidelines For The Issuance And
 Management Of Extended Validation Certificates", 2007,
 <https://cabforum.org/wp-content/uploads/

EV_Certificate_Guidelines.pdf>.

 [I-D.ietf-trans-gossip]
 Nordberg, L., Gillmor, D., and T. Ritter, "Gossiping in
 CT", draft-ietf-trans-gossip-03 (work in progress), July
 2016.

 [I-D.ietf-trans-threat-analysis]
 Kent, S., "Attack and Threat Model for Certificate
 Transparency", draft-ietf-trans-threat-analysis-10 (work
 in progress), October 2016.

 [JSON.Metadata]
 The Chromium Projects, "Chromium Log Metadata JSON
 Schema", 2014, <http://www.certificate-transparency.org/

known-logs/log_list_schema.json>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <http://www.rfc-editor.org/info/rfc6962>.

Appendix A. Supporting v1 and v2 simultaneously

 Certificate Transparency logs have to be either v1 (conforming to
 [RFC6962]) or v2 (conforming to this document), as the data
 structures are incompatible and so a v2 log could not issue a valid
 v1 SCT.

 CT clients, however, can support v1 and v2 SCTs, for the same
 certificate, simultaneously, as v1 SCTs are delivered in different
 TLS, X.509 and OCSP extensions than v2 SCTs.

 v1 and v2 SCTs for X.509 certificates can be validated independently.
 For precertificates, v2 SCTs should be embedded in the TBSCertificate
 before submission of the TBSCertificate (inside a v1 precertificate,
 as described in Section 3.1. of [RFC6962]) to a v1 log so that TLS
 clients conforming to [RFC6962] but not this document are oblivious

http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
https://cabforum.org/wp-content/uploads/EV_Certificate_Guidelines.pdf
https://cabforum.org/wp-content/uploads/EV_Certificate_Guidelines.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-trans-gossip-03
https://datatracker.ietf.org/doc/html/draft-ietf-trans-threat-analysis-10
http://www.certificate-transparency.org/known-logs/log_list_schema.json
http://www.certificate-transparency.org/known-logs/log_list_schema.json
https://datatracker.ietf.org/doc/html/rfc6962
http://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc6962
https://datatracker.ietf.org/doc/html/rfc6962#section-3.1
https://datatracker.ietf.org/doc/html/rfc6962

Laurie, et al. Expires May 28, 2017 [Page 49]

Internet-Draft Certificate Transparency November 2016

 to the embedded v2 SCTs. An issuer can follow these steps to produce
 an X.509 certificate with embedded v1 and v2 SCTs:

 o Create a CMS precertificate as described in Section 3.2 and submit
 it to v2 logs.

 o Embed the obtained v2 SCTs in the TBSCertificate, as described in
Section 8.1.2.

 o Use that TBSCertificate to create a v1 precertificate, as
 described in Section 3.1. of [RFC6962] and submit it to v1 logs.

 o Embed the v1 SCTs in the TBSCertificate, as described in
Section 3.3. of [RFC6962].

 o Sign that TBSCertificate (which now contains v1 and v2 SCTs) to
 issue the final X.509 certificate.

Authors' Addresses

 Ben Laurie
 Google UK Ltd.

 Email: benl@google.com

 Adam Langley
 Google Inc.

 Email: agl@google.com

 Emilia Kasper
 Google Switzerland GmbH

 Email: ekasper@google.com

 Eran Messeri
 Google UK Ltd.

 Email: eranm@google.com

 Rob Stradling
 Comodo CA, Ltd.

 Email: rob.stradling@comodo.com

https://datatracker.ietf.org/doc/html/rfc6962#section-3.1
https://datatracker.ietf.org/doc/html/rfc6962#section-3.3

Laurie, et al. Expires May 28, 2017 [Page 50]

