
Transport Area working group (tsvwg) K. De Schepper
Internet-Draft Nokia Bell Labs
Intended status: Experimental B. Briscoe, Ed.
Expires: January 28, 2021 Independent
 G. White
 CableLabs
 July 27, 2020

DualQ Coupled AQMs for Low Latency, Low Loss and Scalable Throughput
(L4S)

draft-ietf-tsvwg-aqm-dualq-coupled-12

Abstract

 The Low Latency Low Loss Scalable Throughput (L4S) architecture
 allows data flows over the public Internet to achieve consistent low
 queuing latency, generally zero congestion loss and scaling of per-
 flow throughput without the scaling problems of standard TCP Reno-
 friendly congestion controls. To achieve this, L4S data flows have
 to use one of the family of 'Scalable' congestion controls (TCP
 Prague and Data Center TCP are examples) and a form of Explicit
 Congestion Notification (ECN) with modified behaviour. However,
 until now, Scalable congestion controls did not co-exist with
 existing Reno/Cubic traffic --- Scalable controls are so aggressive
 that 'Classic' (e.g. Reno-friendly) algorithms sharing an ECN-
 capable queue would drive themselves to a small capacity share.
 Therefore, until now, L4S controls could only be deployed where a
 clean-slate environment could be arranged, such as in private data
 centres (hence the name DCTCP). This specification defines `DualQ
 Coupled Active Queue Management (AQM)', which enables Scalable
 congestion controls that comply with the Prague L4S requirements to
 co-exist safely with Classic Internet traffic.

 Analytical study and implementation testing of the Coupled AQM have
 shown that Scalable and Classic flows competing under similar
 conditions run at roughly the same rate. It achieves this
 indirectly, without having to inspect transport layer flow
 identifiers. When tested in a residential broadband setting, DCTCP
 also achieves sub-millisecond average queuing delay and zero
 congestion loss under a wide range of mixes of DCTCP and `Classic'
 broadband Internet traffic, without compromising the performance of
 the Classic traffic. The solution has low complexity and requires no
 configuration for the public Internet.

De Schepper, et al. Expires January 28, 2021 [Page 1]

Internet-Draft DualQ Coupled AQMs July 2020

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 28, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Outline of the Problem 3
1.2. Scope . 6
1.3. Terminology . 7
1.4. Features . 9

2. DualQ Coupled AQM . 10
2.1. Coupled AQM . 10
2.2. Dual Queue . 12
2.3. Traffic Classification 12
2.4. Overall DualQ Coupled AQM Structure 13
2.5. Normative Requirements for a DualQ Coupled AQM 16
2.5.1. Functional Requirements 16
2.5.1.1. Requirements in Unexpected Cases 17

2.5.2. Management Requirements 18

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

De Schepper, et al. Expires January 28, 2021 [Page 2]

Internet-Draft DualQ Coupled AQMs July 2020

2.5.2.1. Configuration 18
2.5.2.2. Monitoring 19
2.5.2.3. Anomaly Detection 20
2.5.2.4. Deployment, Coexistence and Scaling 20

3. IANA Considerations . 21
4. Security Considerations 21
4.1. Overload Handling . 21

 4.1.1. Avoiding Classic Starvation: Sacrifice L4S Throughput
 or Delay? . 21
 4.1.2. Congestion Signal Saturation: Introduce L4S Drop or
 Delay? . 23
 4.1.3. Protecting against Unresponsive ECN-Capable Traffic . 24

5. Acknowledgements . 24
6. Contributors . 24
7. References . 25
7.1. Normative References 25
7.2. Informative References 26

Appendix A. Example DualQ Coupled PI2 Algorithm 30
A.1. Pass #1: Core Concepts 31
A.2. Pass #2: Overload Details 39

Appendix B. Example DualQ Coupled Curvy RED Algorithm 43
B.1. Curvy RED in Pseudocode 43
B.2. Efficient Implementation of Curvy RED 49

Appendix C. Choice of Coupling Factor, k 51
C.1. RTT-Dependence . 51
C.2. Guidance on Controlling Throughput Equivalence 52

 Authors' Addresses . 53

1. Introduction

 This document specifies a framework for DualQ Coupled AQMs, which is
 the network part of the L4S architecture [I-D.ietf-tsvwg-l4s-arch].
 L4S enables both ultra-low queuing latency (sub-millisecond on
 average) and high throughput at the same time, for ad hoc numbers of
 capacity-seeking applications all sharing the same capacity.

1.1. Outline of the Problem

 Latency is becoming the critical performance factor for many (most?)
 applications on the public Internet, e.g. interactive Web, Web
 services, voice, conversational video, interactive video, interactive
 remote presence, instant messaging, online gaming, remote desktop,
 cloud-based applications, and video-assisted remote control of
 machinery and industrial processes. In the developed world, further
 increases in access network bit-rate offer diminishing returns,
 whereas latency is still a multi-faceted problem. In the last decade
 or so, much has been done to reduce propagation time by placing

De Schepper, et al. Expires January 28, 2021 [Page 3]

Internet-Draft DualQ Coupled AQMs July 2020

 caches or servers closer to users. However, queuing remains a major
 intermittent component of latency.

 Traditionally ultra-low latency has only been available for a few
 selected low rate applications, that confine their sending rate
 within a specially carved-off portion of capacity, which is
 prioritized over other traffic, e.g. Diffserv EF [RFC3246]. Up to
 now it has not been possible to allow any number of low latency, high
 throughput applications to seek to fully utilize available capacity,
 because the capacity-seeking process itself causes too much queuing
 delay.

 To reduce this queuing delay caused by the capacity seeking process,
 changes either to the network alone or to end-systems alone are in
 progress. L4S involves a recognition that both approaches are
 yielding diminishing returns:

 o Recent state-of-the-art active queue management (AQM) in the
 network, e.g. fq_CoDel [RFC8290], PIE [RFC8033], Adaptive
 RED [ARED01]) has reduced queuing delay for all traffic, not just
 a select few applications. However, no matter how good the AQM,
 the capacity-seeking (sawtoothing) rate of TCP-like congestion
 controls represents a lower limit that will either cause queuing
 delay to vary or cause the link to be under-utilized. These AQMs
 are tuned to allow a typical capacity-seeking Reno-friendly flow
 to induce an average queue that roughly doubles the base RTT,
 adding 5-15 ms of queuing on average (cf. 500 microseconds with
 L4S for the same mix of long-running and web traffic). However,
 for many applications low delay is not useful unless it is
 consistently low. With these AQMs, 99th percentile queuing delay
 is 20-30 ms (cf. 2 ms with the same traffic over L4S).

 o Similarly, recent research into using e2e congestion control
 without needing an AQM in the network (e.g.BBRv1 [BBRv1]) seems to
 have hit a similar lower limit to queuing delay of about 20ms on
 average (and any additional BBRv1 flow adds another 20ms of
 queuing) but there are also regular 25ms delay spikes due to
 bandwidth probes and 60ms spikes due to flow-starts.

 L4S learns from the experience of Data Center TCP [RFC8257], which
 shows the power of complementary changes both in the network and on
 end-systems. DCTCP teaches us that two small but radical changes to
 congestion control are needed to cut the two major outstanding causes
 of queuing delay variability:

 1. Far smaller rate variations (sawteeth) than Reno-friendly
 congestion controls;

https://datatracker.ietf.org/doc/html/rfc3246
https://datatracker.ietf.org/doc/html/rfc8290
https://datatracker.ietf.org/doc/html/rfc8033
https://datatracker.ietf.org/doc/html/rfc8257

De Schepper, et al. Expires January 28, 2021 [Page 4]

Internet-Draft DualQ Coupled AQMs July 2020

 2. A shift of smoothing and hence smoothing delay from network to
 sender.

 Without the former, a 'Classic' (e.g. Reno-friendly) flow's round
 trip time (RTT) varies between roughly 1 and 2 times the base RTT
 between the machines in question. Without the latter a 'Classic'
 flow's response to changing events is delayed by a worst-case
 (transcontinental) RTT, which could be hundreds of times the actual
 smoothing delay needed for the RTT of typical traffic from localized
 CDNs.

 These changes are the two main features of the family of so-called
 'Scalable' congestion controls (which includes DCTCP). Both these
 changes only reduce delay in combination with a complementary change
 in the network and they are both only feasible with ECN, not drop,
 for the signalling:

 1. The smaller sawteeth allow an extremely shallow ECN packet-
 marking threshold in the queue.

 2. And no smoothing in the network means that every fluctuation of
 the queue is signalled immediately.

 Without ECN, either of these would lead to very high loss levels.
 But, with ECN, the resulting high marking levels are just signals,
 not impairments.

 However, until now, Scalable congestion controls (like DCTCP) did not
 co-exist well in a shared ECN-capable queue with existing ECN-capable
 TCP Reno [RFC5681] or Cubic [RFC8312] congestion controls ---
 Scalable controls are so aggressive that these 'Classic' algorithms
 would drive themselves to a small capacity share. Therefore, until
 now, L4S controls could only be deployed where a clean-slate
 environment could be arranged, such as in private data centres (hence
 the name DCTCP).

 This document specifies a `DualQ Coupled AQM' extension that solves
 the problem of coexistence between Scalable and Classic flows,
 without having to inspect flow identifiers. It is not like flow-
 queuing approaches [RFC8290] that classify packets by flow identifier
 into separate queues in order to isolate sparse flows from the higher
 latency in the queues assigned to heavier flows. If a flow needs
 both low delay and high throughput, having a queue to itself does not
 isolate it from the harm it causes to itself. In contrast, L4S
 addresses the root cause of the latency problem --- it is an enabler
 for the smooth low latency scalable behaviour of Scalable congestion
 controls, so that every packet in every flow can enjoy very low

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc8290

De Schepper, et al. Expires January 28, 2021 [Page 5]

Internet-Draft DualQ Coupled AQMs July 2020

 latency, then there is no need to isolate each flow into a separate
 queue.

1.2. Scope

 L4S involves complementary changes in the network and on end-systems:

 Network: A DualQ Coupled AQM (defined in the present document);

 End-system: A Scalable congestion control (defined in Section 2.1).

 Packet identifier: The network and end-system parts of L4S can be
 deployed incrementally, because they both identify L4S packets
 using the experimentally assigned explicit congestion notification
 (ECN) codepoints in the IP header: ECT(1) and CE [RFC8311]
 [I-D.ietf-tsvwg-ecn-l4s-id].

 Data Center TCP (DCTCP [RFC8257]) is an example of a Scalable
 congestion control that has been deployed for some time in Linux,
 Windows and FreeBSD operating systems and Relentless TCP [Mathis09]
 is another example. During the progress of this document through the
 IETF a number of other Scalable congestion controls were implemented,
 e.g. TCP Prague [PragueLinux], QUIC Prague and the L4S variant of
 SCREAM for real-time media [RFC8298]. (Note: after the v3.19 Linux
 kernel, bugs were introduced into DCTCP's scalable behaviour and not
 all the patches applied for L4S evaluation had been applied to the
 mainline Linux kernel, which was at v5.5 at the time of writing. TCP
 Prague includes these patches and is available for all these Linux
 kernels).

 The focus of this specification is to enable deployment of the
 network part of the L4S service. Then, without any management
 intervention, applications can exploit this new network capability as
 their operating systems migrate to Scalable congestion controls,
 which can then evolve _while_ their benefits are being enjoyed by
 everyone on the Internet.

 The DualQ Coupled AQM framework can incorporate any AQM designed for
 a single queue that generates a statistical or deterministic mark/
 drop probability driven by the queue dynamics. Pseudocode examples
 of two different DualQ Coupled AQMs are given in the appendices. In
 many cases the framework simplifies the basic control algorithm, and
 requires little extra processing. Therefore it is believed the
 Coupled AQM would be applicable and easy to deploy in all types of
 buffers; buffers in cost-reduced mass-market residential equipment;
 buffers in end-system stacks; buffers in carrier-scale equipment
 including remote access servers, routers, firewalls and Ethernet

https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298

De Schepper, et al. Expires January 28, 2021 [Page 6]

Internet-Draft DualQ Coupled AQMs July 2020

 switches; buffers in network interface cards, buffers in virtualized
 network appliances, hypervisors, and so on.

 For the public Internet, nearly all the benefit will typically be
 achieved by deploying the Coupled AQM into either end of the access
 link between a 'site' and the Internet, which is invariably the
 bottleneck. Here, the term 'site' is used loosely to mean a home, an
 office, a campus or mobile user equipment.

 Latency is not the only concern of L4S:

 o The 'Low Loss" part of the name denotes that L4S generally
 achieves zero congestion loss (which would otherwise cause
 retransmission delays), due to its use of ECN.

 o The "Scalable throughput" part of the name denotes that the per-
 flow throughput of Scalable congestion controls should scale
 indefinitely, avoiding the imminent scaling problems with 'TCP-
 Friendly' congestion control algorithms [RFC3649].

 The former is clearly in scope of this AQM document. However, the
 latter is an outcome of the end-system behaviour, and therefore
 outside the scope of this AQM document, even though the AQM is an
 enabler.

 The overall L4S architecture [I-D.ietf-tsvwg-l4s-arch] gives more
 detail, including on wider deployment aspects such as backwards
 compatibility of Scalable congestion controls in bottlenecks where a
 DualQ Coupled AQM has not been deployed. The supporting papers [PI2]
 and [DCttH15] give the full rationale for the AQM's design, both
 discursively and in more precise mathematical form.

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] when, and
 only when, they appear in all capitals, as shown here.

 The DualQ Coupled AQM uses two queues for two services. Each of the
 following terms identifies both the service and the queue that
 provides the service:

 Classic service/queue: The Classic service is intended for all the
 congestion control behaviours that co-exist with Reno [RFC5681]
 (e.g. Reno itself, Cubic [RFC8312], TFRC [RFC5348]).

https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc5348

De Schepper, et al. Expires January 28, 2021 [Page 7]

Internet-Draft DualQ Coupled AQMs July 2020

 Low-Latency, Low-Loss Scalable throughput (L4S) service/queue: The
 'L4S' service is intended for traffic from scalable congestion
 control algorithms, such as Data Center TCP [RFC8257]. The L4S
 service is for more general traffic than just DCTCP--it allows the
 set of congestion controls with similar scaling properties to
 DCTCP to evolve (e.g. Relentless TCP [Mathis09], TCP Prague
 [PragueLinux] and the L4S variant of SCREAM for real-time media
 [RFC8298]).

 Classic Congestion Control: A congestion control behaviour that can
 co-exist with standard TCP Reno [RFC5681] without causing
 significantly negative impact on its flow rate [RFC5033]. With
 Classic congestion controls, as flow rate scales, the number of
 round trips between congestion signals (losses or ECN marks) rises
 with the flow rate. So it takes longer and longer to recover
 after each congestion event. Therefore control of queuing and
 utilization becomes very slack, and the slightest disturbance
 prevents a high rate from being attained [RFC3649].

 Scalable Congestion Control: A congestion control where the average
 time from one congestion signal to the next (the recovery time)
 remains invariant as the flow rate scales, all other factors being
 equal. This maintains the same degree of control over queueing
 and utilization whatever the flow rate, as well as ensuring that
 high throughput is robust to disturbances. For instance, DCTCP
 averages 2 congestion signals per round-trip whatever the flow
 rate. For the public Internet a Scalable transport has to comply
 with the requirements in Section 4 of [I-D.ietf-tsvwg-ecn-l4s-id]
 (aka. the 'Prague L4S requirements').

 C: Abbreviation for Classic, e.g. when used as a subscript.

 L: Abbreviation for L4S, e.g. when used as a subscript.

 The terms Classic or L4S can also qualify other nouns, such as
 'codepoint', 'identifier', 'classification', 'packet', 'flow'.
 For example: an L4S packet means a packet with an L4S identifier
 sent from an L4S congestion control.

 Both Classic and L4S queues can cope with a proportion of
 unresponsive or less-responsive traffic as well (e.g. DNS, VoIP,
 game sync datagrams), just as a single queue AQM can if this
 traffic makes minimal contribution to queuing. The DualQ Coupled
 AQM behaviour is defined to be similar to a single FIFO queue with
 respect to unresponsive and overload traffic.

 Reno-friendly: The subset of Classic traffic that excludes
 unresponsive traffic and excludes experimental congestion controls

https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3649

De Schepper, et al. Expires January 28, 2021 [Page 8]

Internet-Draft DualQ Coupled AQMs July 2020

 intended to coexist with Reno but without always being strictly
 friendly to it (as allowed by [RFC5033]). Reno-friendly is used
 in place of 'TCP-friendly', given that the TCP protocol is used
 with many different congestion control behaviours.

 Classic ECN: The original Explicit Congestion Notification (ECN)
 protocol [RFC3168], which requires ECN signals to be treated the
 same as drops, both when generated in the network and when
 responded to by the sender.

 The names used for the four codepoints of the 2-bit IP-ECN field
 are as defined in [RFC3168]: Not ECT, ECT(0), ECT(1) and CE, where
 ECT stands for ECN-Capable Transport and CE stands for Congestion
 Experienced.

1.4. Features

 The AQM couples marking and/or dropping from the Classic queue to the
 L4S queue in such a way that a flow will get roughly the same
 throughput whichever it uses. Therefore both queues can feed into
 the full capacity of a link and no rates need to be configured for
 the queues. The L4S queue enables Scalable congestion controls like
 DCTCP or TCP Prague to give ultra-low and predictably low latency,
 without compromising the performance of competing 'Classic' Internet
 traffic.

 Thousands of tests have been conducted in a typical fixed residential
 broadband setting. Experiments used a range of base round trip
 delays up to 100ms and link rates up to 200 Mb/s between the data
 centre and home network, with varying amounts of background traffic
 in both queues. For every L4S packet, the AQM kept the average
 queuing delay below 1ms (or 2 packets where serialization delay
 exceeded 1ms on slower links), with 99th percentile no worse than
 2ms. No losses at all were introduced by the L4S AQM. Details of
 the extensive experiments are available [PI2] [DCttH15].

 Subjective testing was also conducted by multiple people all
 simultaneously using very demanding high bandwidth low latency
 applications over a single shared access link [L4Sdemo16]. In one
 application, each user could use finger gestures to pan or zoom their
 own high definition (HD) sub-window of a larger video scene generated
 on the fly in 'the cloud' from a football match. Another user
 wearing VR goggles was remotely receiving a feed from a 360-degree
 camera in a racing car, again with the sub-window in their field of
 vision generated on the fly in 'the cloud' dependent on their head
 movements. Even though other users were also downloading large
 amounts of L4S and Classic data, playing a gaming benchmark and
 watchings videos over the same 40Mb/s downstream broadband link,

https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

De Schepper, et al. Expires January 28, 2021 [Page 9]

Internet-Draft DualQ Coupled AQMs July 2020

 latency was so low that the football picture appeared to stick to the
 user's finger on the touchpad and the experience fed from the remote
 camera did not noticeably lag head movements. All the L4S data (even
 including the downloads) achieved the same ultra-low latency. With
 an alternative AQM, the video noticeably lagged behind the finger
 gestures and head movements.

 Unlike Diffserv Expedited Forwarding, the L4S queue does not have to
 be limited to a small proportion of the link capacity in order to
 achieve low delay. The L4S queue can be filled with a heavy load of
 capacity-seeking flows (TCP Prague etc.) and still achieve low delay.
 The L4S queue does not rely on the presence of other traffic in the
 Classic queue that can be 'overtaken'. It gives low latency to L4S
 traffic whether or not there is Classic traffic, and the latency of
 Classic traffic does not suffer when a proportion of the traffic is
 L4S.

 The two queues are only necessary because:

 o the large variations (sawteeth) of Classic flows need roughly a
 base RTT of queuing delay to ensure full utilization

 o Scalable flows do not need a queue to keep utilization high, but
 they cannot keep latency predictably low if they are mixed with
 Classic traffic,

 The L4S queue has latency priority, but the coupling from the Classic
 to the L4S AQM (explained below) ensures that it does not have
 bandwidth priority over the Classic queue.

2. DualQ Coupled AQM

 There are two main aspects to the approach:

 o the Coupled AQM that addresses throughput equivalence between
 Classic (e.g. Reno, Cubic) flows and L4S flows (that satisfy the
 Prague L4S requirements).

 o the Dual Queue structure that provides latency separation for L4S
 flows to isolate them from the typically large Classic queue.

2.1. Coupled AQM

 In the 1990s, the `TCP formula' was derived for the relationship
 between the steady-state congestion window, cwnd, and the drop
 probability, p of standard Reno congestion control [RFC5681] . To a
 first order approximation, the steady-state cwnd of Reno is inversely
 proportional to the square root of p.

https://datatracker.ietf.org/doc/html/rfc5681

De Schepper, et al. Expires January 28, 2021 [Page 10]

Internet-Draft DualQ Coupled AQMs July 2020

 The design focuses on Reno as the worst case, because if it does no
 harm to Reno, it will not harm Cubic or any traffic designed to be
 friendly to Reno. TCP Cubic implements a Reno-compatibility mode,
 which is relevant for typical RTTs under 20ms as long as the
 throughput of a single flow is less than about 700Mb/s. In such
 cases it can be assumed that Cubic traffic behaves similarly to Reno
 (but with a slightly different constant of proportionality). The
 term 'Classic' will be used for the collection of Reno-friendly
 traffic including Cubic and potentially other experimental congestion
 controls intended not to significantly impact the flow rate of Reno.

 A supporting paper [PI2] includes the derivation of the equivalent
 rate equation for DCTCP, for which cwnd is inversely proportional to
 p (not the square root), where in this case p is the ECN marking
 probability. DCTCP is not the only congestion control that behaves
 like this, so the term 'Scalable' will be used for all similar
 congestion control behaviours (see examples in Section 1.2). The
 term 'L4S' is also used for traffic driven by a Scalable congestion
 control that also complies with the additional 'Prague L4S'
 requirements [I-D.ietf-tsvwg-ecn-l4s-id].

 For safe co-existence, under stationary conditions, a Scalable flow
 has to run at roughly the same rate as a Reno TCP flow (all other
 factors being equal). So the drop or marking probability for Classic
 traffic, p_C has to be distinct from the marking probability for L4S
 traffic, p_L. The original ECN specification [RFC3168] required
 these probabilities to be the same, but [RFC8311] updates RFC 3168 to
 enable experiments in which these probabilities are different.

 Also, to remain stable, Classic sources need the network to smooth
 p_C so it changes relatively slowly. It is hard for a network node
 to know the RTTs of all the flows, so a Classic AQM adds a _worst-
 case_ RTT of smoothing delay (about 100-200 ms). In contrast, L4S
 shifts responsibility for smoothing ECN feedback to the sender, which
 only delays its response by its _own_ RTT, as well as allowing a more
 immediate response if necessary.

 The Coupled AQM achieves safe coexistence by making the Classic drop
 probability p_C proportional to the square of the coupled L4S
 probability p_CL. p_CL is an input to the instantaneous L4S marking
 probability p_L but it changes as slowly as p_C. This makes the Reno
 flow rate roughly equal the DCTCP flow rate, because the squaring of
 p_CL counterbalances the square root of p_C in the 'TCP formula' of
 Classic Reno congestion control.

 Stating this as a formula, the relation between Classic drop
 probability, p_C, and the coupled L4S probability p_CL needs to take
 the form:

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168

De Schepper, et al. Expires January 28, 2021 [Page 11]

Internet-Draft DualQ Coupled AQMs July 2020

 p_C = (p_CL / k)^2 (1)

 where k is the constant of proportionality, which is termed the
 coupling factor.

2.2. Dual Queue

 Classic traffic needs to build a large queue to prevent under-
 utilization. Therefore a separate queue is provided for L4S traffic,
 and it is scheduled with priority over the Classic queue. Priority
 is conditional to prevent starvation of Classic traffic.

 Nonetheless, coupled marking ensures that giving priority to L4S
 traffic still leaves the right amount of spare scheduling time for
 Classic flows to each get equivalent throughput to DCTCP flows (all
 other factors such as RTT being equal).

2.3. Traffic Classification

 Both the Coupled AQM and DualQ mechanisms need an identifier to
 distinguish L4S (L) and Classic (C) packets. Then the coupling
 algorithm can achieve coexistence without having to inspect flow
 identifiers, because it can apply the appropriate marking or dropping
 probability to all flows of each type. A separate
 specification [I-D.ietf-tsvwg-ecn-l4s-id] requires the network to
 treat the ECT(1) and CE codepoints of the ECN field as this
 identifier, having assessed various alternatives. An additional
 process document has proved necessary to make the ECT(1) codepoint
 available for experimentation [RFC8311].

 For policy reasons, an operator might choose to steer certain packets
 (e.g. from certain flows or with certain addresses) out of the L
 queue, even though they identify themselves as L4S by their ECN
 codepoints. In such cases, [I-D.ietf-tsvwg-ecn-l4s-id] says that the
 device "MUST NOT alter the end-to-end L4S ECN identifier", so that it
 is preserved end-to-end. The aim is that each operator can choose
 how it treats L4S traffic locally, but an individual operator does
 not alter the identification of L4S packets, which would prevent
 other operators downstream from making their own choices on how to
 treat L4S traffic.

 In addition, an operator could use other identifiers to classify
 certain additional packet types into the L queue that it deems will
 not risk harm to the L4S service. For instance addresses of specific
 applications or hosts (see [I-D.ietf-tsvwg-ecn-l4s-id]), specific
 Diffserv codepoints such as EF (Expedited Forwarding) and Voice-Admit
 service classes (see [I-D.briscoe-tsvwg-l4s-diffserv]), the Non-
 Queue-Building (NQB) per-hop behaviour [I-D.ietf-tsvwg-nqb] or

https://datatracker.ietf.org/doc/html/rfc8311

De Schepper, et al. Expires January 28, 2021 [Page 12]

Internet-Draft DualQ Coupled AQMs July 2020

 certain protocols (e.g. ARP, DNS). Note that the mechanism only
 reads these identifiers. [I-D.ietf-tsvwg-ecn-l4s-id] says it "MUST
 NOT alter these non-ECN identifiers". Thus, the L queue is not soley
 an L4S queue, it can be consider more generally as a low latency
 queue.

2.4. Overall DualQ Coupled AQM Structure

 Figure 1 shows the overall structure that any DualQ Coupled AQM is
 likely to have. This schematic is intended to aid understanding of
 the current designs of DualQ Coupled AQMs. However, it is not
 intended to preclude other innovative ways of satisfying the
 normative requirements in Section 2.5 that minimally define a DualQ
 Coupled AQM.

 The classifier on the left separates incoming traffic between the two
 queues (L and C). Each queue has its own AQM that determines the
 likelihood of marking or dropping (p_L and p_C). It has been
 proved [PI2] that it is preferable to control load with a linear
 controller, then square the output before applying it as a drop
 probability to Reno-friendly traffic (because Reno congestion control
 decreases its load proportional to the square-root of the increase in
 drop). So, the AQM for Classic traffic needs to be implemented in
 two stages: i) a base stage that outputs an internal probability p'
 (pronounced p-prime); and ii) a squaring stage that outputs p_C,
 where

 p_C = (p')^2. (2)

 Substituting for p_C in Eqn (1) gives:

 p' = p_CL / k

 So the slow-moving input to ECN marking in the L queue (the coupled
 L4S probability) is:

 p_CL = k*p'. (3)

 The actual ECN marking probability p_L that is applied to the L queue
 needs to track the immediate L queue delay under L-only congestion
 conditions, as well as track p_CL under coupled congestion
 conditions. So the L queue uses a native AQM that calculates a
 probability p'_L as a function of the instantaneous L queue delay.
 And, given the L queue has conditional priority over the C queue,
 whenever the L queue grows, the AQM ought to apply marking
 probability p'_L, but p_L ought not to fall below p_CL. This
 suggests:

De Schepper, et al. Expires January 28, 2021 [Page 13]

Internet-Draft DualQ Coupled AQMs July 2020

 p_L = max(p'_L, p_CL), (4)

 which has also been found to work very well in practice.

 The two transformations of p' in equations (2) and (3) implement the
 required coupling given in equation (1) earlier.

 The constant of proportionality or coupling factor, k, in equation
 (1) determines the ratio between the congestion probabilities (loss
 or marking) experienced by L4S and Classic traffic. Thus k
 indirectly determines the ratio between L4S and Classic flow rates,
 because flows (assuming they are responsive) adjust their rate in
 response to congestion probability. Appendix C.2 gives guidance on
 the choice of k and its effect on relative flow rates.

 | | ,------.
 L4S queue | |===>| ECN |
 ,'| _______|_| |marker|\
 <' | | `------'\\
 //`' v ^ p_L \\
 // ,-------. | \\
 // |Native |p'_L | \\,.
 // | L4S |--->(MAX) < | ___
 ,----------.// | AQM | ^ p_CL `\|.'Cond-`.
 | IP-ECN |/ `-------' | / itional \
 ==>|Classifier| ,-------. (k*p') [priority]==>
 | |\ | Base | | \scheduler/
 `----------'\\ | AQM |---->: ,'|`-.___.-'
 \\ | |p' | <' |
 \\ `-------' (p'^2) //`'
 \\ ^ | //
 \\,. | v p_C //
 < | _________ .------.//
 `\| | | | Drop |/
 Classic |queue |===>|/mark |
 __|______| `------'

 Legend: ===> traffic flow; ---> control dependency.

 Figure 1: DualQ Coupled AQM Schematic

 After the AQMs have applied their dropping or marking, the scheduler
 forwards their packets to the link. Even though the scheduler gives
 priority to the L queue, it is not as strong as the coupling from the
 C queue. This is because, as the C queue grows, the base AQM applies
 more congestion signals to L traffic (as well as C). As L flows

De Schepper, et al. Expires January 28, 2021 [Page 14]

Internet-Draft DualQ Coupled AQMs July 2020

 reduce their rate in response, they use less than the scheduling
 share for L traffic. So, because the scheduler is work preserving,
 it schedules any C traffic in the gaps.

 Giving priority to the L queue has the benefit of very low L queue
 delay, because the L queue is kept empty whenever L traffic is
 controlled by the coupling. Also there only has to be a coupling in
 one direction - from Classic to L4S. Priority has to be conditional
 in some way to prevent the C queue starving under overload conditions
 (see Section 4.1). With normal responsive traffic simple strict
 priority would work, but it would make new Classic traffic wait until
 its queue activated the coupling and L4S flows had in turn reduced
 their rate enough to drain the L queue so that Classic traffic could
 be scheduled. Giving a small weight or limited waiting time for C
 traffic improves response times for short Classic messages, such as
 DNS requests and improves Classic flow startup because immediate
 capacity is available.

 Example DualQ Coupled AQM algorithms called DualPI2 and Curvy RED are
 given in Appendix A and Appendix B. Either example AQM can be used
 to couple packet marking and dropping across a dual Q.

 DualPI2 uses a Proportional-Integral (PI) controller as the Base AQM.
 Indeed, this Base AQM with just the squared output and no L4S queue
 can be used as a drop-in replacement for PIE [RFC8033], in which case
 it is just called PI2 [PI2]. PI2 is a principled simplification of
 PIE that is both more responsive and more stable in the face of
 dynamically varying load.

 Curvy RED is derived from RED [RFC2309], but its configuration
 parameters are insensitive to link rate and it requires less
 operations per packet. However, DualPI2 is more responsive and
 stable over a wider range of RTTs than Curvy RED. As a consequence,
 DualPI2 has attracted more development and evaluation attention than
 Curvy RED, leaving the Curvy RED design incomplete and not so fully
 evaluated.

 Both AQMs regulate their queue in units of time rather than bytes.
 As already explained, this ensures configuration can be invariant for
 different drain rates. With AQMs in a dualQ structure this is
 particularly important because the drain rate of each queue can vary
 rapidly as flows for the two queues arrive and depart, even if the
 combined link rate is constant.

 It would be possible to control the queues with other alternative
 AQMs, as long as the normative requirements (those expressed in
 capitals) in Section 2.5 are observed.

https://datatracker.ietf.org/doc/html/rfc8033
https://datatracker.ietf.org/doc/html/rfc2309

De Schepper, et al. Expires January 28, 2021 [Page 15]

Internet-Draft DualQ Coupled AQMs July 2020

2.5. Normative Requirements for a DualQ Coupled AQM

 The following requirements are intended to capture only the essential
 aspects of a DualQ Coupled AQM. They are intended to be independent
 of the particular AQMs used for each queue.

2.5.1. Functional Requirements

 A Dual Queue Coupled AQM implementation MUST utilize two queues, each
 with an AQM algorithm. The two queues can be part of a larger
 queuing hierarchy [I-D.briscoe-tsvwg-l4s-diffserv].

 The AQM algorithm for the low latency (L) queue MUST be able to apply
 ECN marking to ECN-capable packets.

 The scheduler draining the two queues MUST give L4S packets priority
 over Classic, although priority MUST be bounded in order not to
 starve Classic traffic. The scheduler SHOULD be work-conserving.

 [I-D.ietf-tsvwg-ecn-l4s-id] defines the meaning of an ECN marking on
 L4S traffic, relative to drop of Classic traffic. In order to ensure
 coexistence of Classic and Scalable L4S traffic, it says, "The
 likelihood that an AQM drops a Not-ECT Classic packet (p_C) MUST be
 roughly proportional to the square of the likelihood that it would
 have marked it if it had been an L4S packet (p_L)." The term
 'likelihood' is used to allow for marking and dropping to be either
 probabilistic or deterministic.

 For the current specification, this translates into the following
 requirement. A DualQ Coupled AQM MUST apply ECN marking to traffic
 in the L queue that is no lower than that derived from the likelihood
 of drop (or ECN marking) in the Classic queue using Eqn. (1).

 The constant of proportionality, k, in Eqn (1) determines the
 relative flow rates of Classic and L4S flows when the AQM concerned
 is the bottleneck (all other factors being equal).
 [I-D.ietf-tsvwg-ecn-l4s-id] says, "The constant of proportionality
 (k) does not have to be standardised for interoperability, but a
 value of 2 is RECOMMENDED."

 Assuming Scalable congestion controls for the Internet will be as
 aggressive as DCTCP, this will ensure their congestion window will be
 roughly the same as that of a standards track TCP Reno congestion
 control (Reno) [RFC5681] and other Reno-friendly controls, such as
 TCP Cubic in its Reno-compatibility mode.

https://datatracker.ietf.org/doc/html/rfc5681

De Schepper, et al. Expires January 28, 2021 [Page 16]

Internet-Draft DualQ Coupled AQMs July 2020

 The choice of k is a matter of operator policy, and operators MAY
 choose a different value using Table 1 and the guidelines in

Appendix C.2.

 If multiple customers or users share capacity at a bottleneck (e.g.
 in the Internet access link of a campus network), the operator's
 choice of k will determine capacity sharing between the flows of
 different customers. However, on the public Internet, access network
 operators typically isolate customers from each other with some form
 of layer-2 multiplexing (OFDM(A) in DOCSIS3.1, CDMA in 3G, SC-FDMA in
 LTE) or L3 scheduling (WRR in DSL), rather than relying on host
 congestion controls to share capacity between customers [RFC0970].
 In such cases, the choice of k will solely affect relative flow rates
 within each customer's access capacity, not between customers. Also,
 k will not affect relative flow rates at any times when all flows are
 Classic or all flows are L4S, and it will not affect the relative
 throughput of small flows.

2.5.1.1. Requirements in Unexpected Cases

 The flexibility to allow operator-specific classifiers (Section 2.3)
 leads to the need to specify what the AQM in each queue ought to do
 with packets that do not carry the ECN field expected for that queue.
 It is expected that the AQM in each queue will inspect the ECN field
 to determine what sort of congestion notification to signal, then it
 will decide whether to apply congestion notification to this
 particular packet, as follows:

 o If a packet that does not carry an ECT(1) or CE codepoint is
 classified into the L queue:

 * if the packet is ECT(0), the L AQM SHOULD apply CE-marking
 using a probability appropriate to Classic congestion control
 and appropriate to the target delay in the L queue

 * if the packet is Not-ECT, the appropriate action depends on
 whether some other function is protecting the L queue from
 misbehaving flows (e.g. per-flow queue protection
 [I-D.briscoe-docsis-q-protection] or latency policing):

 + If separate queue protection is provided, the L AQM SHOULD
 ignore the packet and forward it unchanged, meaning it
 should not calculate whether to apply congestion
 notification and it should neither drop nor CE-mark the
 packet (for instance, the operator might classify EF traffic
 that is unresponsive to drop into the L queue, alongside
 responsive L4S-ECN traffic)

https://datatracker.ietf.org/doc/html/rfc0970

De Schepper, et al. Expires January 28, 2021 [Page 17]

Internet-Draft DualQ Coupled AQMs July 2020

 + if separate queue protection is not provided, the L AQM
 SHOULD apply drop using a drop probability appropriate to
 Classic congestion control and appropriate to the target
 delay in the L queue

 o If a packet that carries an ECT(1) codepoint is classified into
 the C queue:

 * the C AQM SHOULD apply CE-marking using the coupled AQM
 probability p_CL (= k*p').

 The above requirements are worded as "SHOULDs", because operator-
 specific classifiers are for flexibility, by definition. Therefore,
 alternative actions might be appropriate in the operator's specific
 circumstances. An example would be where the operator knows that
 certain legacy traffic marked with one codepoint actually has a
 congestion response associated with another codepoint.

 If the DualQ Coupled AQM has detected overload, it SHOULD signal
 congestion solely using drop, irrespective of the ECN field.
 Switching to drop if ECN marking is persistently high is required by

Section 7 of [RFC3168] and Section 4.2.1 of [RFC7567].

2.5.2. Management Requirements

2.5.2.1. Configuration

 By default, a DualQ Coupled AQM SHOULD NOT need any configuration for
 use at a bottleneck on the public Internet [RFC7567]. The following
 parameters MAY be operator-configurable, e.g. to tune for non-
 Internet settings:

 o Optional packet classifier(s) to use in addition to the ECN field
 (see Section 2.3);

 o Expected typical RTT, which can be used to determine the queuing
 delay of the Classic AQM at its operating point, in order to
 prevent typical lone flows from under-utilizing capacity. For
 example:

 * for the PI2 algorithm (Appendix A) the queuing delay target is
 set to the typical RTT;

 * for the Curvy RED algorithm (Appendix B) the queuing delay at
 the desired operating point of the curvy ramp is configured to
 encompass a typical RTT;

https://datatracker.ietf.org/doc/html/rfc3168#section-7
https://datatracker.ietf.org/doc/html/rfc7567#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc7567

De Schepper, et al. Expires January 28, 2021 [Page 18]

Internet-Draft DualQ Coupled AQMs July 2020

 * if another Classic AQM was used, it would be likely to need an
 operating point for the queue based on the typical RTT, and if
 so it SHOULD be expressed in units of time.

 An operating point that is manually calculated might be directly
 configurable instead, e.g. for links with large numbers of flows
 where under-utilization by a single flow would be unlikely.

 o Expected maximum RTT, which can be used to set the stability
 parameter(s) of the Classic AQM. For example:

 * for the PI2 algorithm (Appendix A), the gain parameters of the
 PI algorithm depend on the maximum RTT.

 * for the Curvy RED algorithm (Appendix B) the smoothing
 parameter is chosen to filter out transients in the queue
 within a maximum RTT.

 Stability parameter(s) that are manually calculated assuming a
 maximum RTT might be directly configurable instead.

 o Coupling factor, k (see Appendix C.2);

 o A limit to the conditional priority of L4S. This is scheduler-
 dependent, but it SHOULD be expressed as a relation between the
 max delay of a C packet and an L packet. For example:

 * for a WRR scheduler a weight ratio between L and C of w:1 means
 that the maximum delay to a C packet is w times that of an L
 packet.

 * for a time-shifted FIFO (TS-FIFO) scheduler (see Section 4.1.1)
 a time-shift of tshift means that the maximum delay to a C
 packet is tshift greater than that of an L packet. tshift could
 be expressed as a multiple of the typical RTT rather than as an
 absolute delay.

 o The maximum Classic ECN marking probability, p_Cmax, before
 switching over to drop.

2.5.2.2. Monitoring

 An experimental DualQ Coupled AQM SHOULD allow the operator to
 monitor each of the following operational statistics on demand, per
 queue and per configurable sample interval, for performance
 monitoring and perhaps also for accounting in some cases:

 o Bits forwarded, from which utilization can be calculated;

De Schepper, et al. Expires January 28, 2021 [Page 19]

Internet-Draft DualQ Coupled AQMs July 2020

 o Total packets in the three categories: arrived, presented to the
 AQM, and forwarded. The difference between the first two will
 measure any non-AQM tail discard. The difference between the last
 two will measure proactive AQM discard;

 o ECN packets marked, non-ECN packets dropped, ECN packets dropped,
 which can be combined with the three total packet counts above to
 calculate marking and dropping probabilities;

 o Queue delay (not including serialization delay of the head packet
 or medium acquisition delay) - see further notes below.

 Unlike the other statistics, queue delay cannot be captured in a
 simple accumulating counter. Therefore the type of queue delay
 statistics produced (mean, percentiles, etc.) will depend on
 implementation constraints. To facilitate comparative evaluation
 of different implementations and approaches, an implementation
 SHOULD allow mean and 99th percentile queue delay to be derived
 (per queue per sample interval). A relatively simple way to do
 this would be to store a coarse-grained histogram of queue delay.
 This could be done with a small number of bins with configurable
 edges that represent contiguous ranges of queue delay. Then, over
 a sample interval, each bin would accumulate a count of the number
 of packets that had fallen within each range. The maximum queue
 delay per queue per interval MAY also be recorded.

2.5.2.3. Anomaly Detection

 An experimental DualQ Coupled AQM SHOULD asynchronously report the
 following data about anomalous conditions:

 o Start-time and duration of overload state.

 A hysteresis mechanism SHOULD be used to prevent flapping in and
 out of overload causing an event storm. For instance, exit from
 overload state could trigger one report, but also latch a timer.
 Then, during that time, if the AQM enters and exits overload state
 any number of times, the duration in overload state is accumulated
 but no new report is generated until the first time the AQM is out
 of overload once the timer has expired.

2.5.2.4. Deployment, Coexistence and Scaling

 [RFC5706] suggests that deployment, coexistence and scaling should
 also be covered as management requirements. The raison d'etre of the
 DualQ Coupled AQM is to enable deployment and coexistence of Scalable
 congestion controls - as incremental replacements for today's Reno-
 friendly controls that do not scale with bandwidth-delay product.

De Schepper, et al. Expires January 28, 2021 [Page 20]

Internet-Draft DualQ Coupled AQMs July 2020

 Therefore there is no need to repeat these motivating issues here
 given they are already explained in the Introduction and detailed in
 the L4S architecture [I-D.ietf-tsvwg-l4s-arch].

 The descriptions of specific DualQ Coupled AQM algorithms in the
 appendices cover scaling of their configuration parameters, e.g. with
 respect to RTT and sampling frequency.

3. IANA Considerations

 This specification contains no IANA considerations.

4. Security Considerations

4.1. Overload Handling

 Where the interests of users or flows might conflict, it could be
 necessary to police traffic to isolate any harm to the performance of
 individual flows. However it is hard to avoid unintended side-
 effects with policing, and in a trusted environment policing is not
 necessary. Therefore per-flow policing (e.g.
 [I-D.briscoe-docsis-q-protection]) needs to be separable from a basic
 AQM, as an option under policy control.

 However, a basic DualQ AQM does at least need to handle overload. A
 useful objective would be for the overload behaviour of the DualQ AQM
 to be at least no worse than a single queue AQM. However, a trade-
 off needs to be made between complexity and the risk of either
 traffic class harming the other. In each of the following three
 subsections, an overload issue specific to the DualQ is described,
 followed by proposed solution(s).

 Under overload the higher priority L4S service will have to sacrifice
 some aspect of its performance. Alternative solutions are provided
 below that each relax a different factor: e.g. throughput, delay,
 drop. These choices need to be made either by the developer or by
 operator policy, rather than by the IETF.

4.1.1. Avoiding Classic Starvation: Sacrifice L4S Throughput or Delay?

 Priority of L4S is required to be conditional to avoid total
 starvation of Classic by heavy L4S traffic. This raises the question
 of whether to sacrifice L4S throughput or L4S delay (or some other
 policy) to mitigate starvation of Classic:

 Sacrifice L4S throughput: By using weighted round robin as the
 conditional priority scheduler, the L4S service can sacrifice some
 throughput during overload. This can either be thought of as

De Schepper, et al. Expires January 28, 2021 [Page 21]

Internet-Draft DualQ Coupled AQMs July 2020

 guaranteeing a minimum throughput service for Classic traffic, or
 as guaranteeing a maximum delay for a packet at the head of the
 Classic queue.

 The scheduling weight of the Classic queue should be small (e.g.
 1/16). Then, in most traffic scenarios the scheduler will not
 interfere and it will not need to - the coupling mechanism and the
 end-systems will share out the capacity across both queues as if
 it were a single pool. However, because the congestion coupling
 only applies in one direction (from C to L), if L4S traffic is
 over-aggressive or unresponsive, the scheduler weight for Classic
 traffic will at least be large enough to ensure it does not
 starve.

 In cases where the ratio of L4S to Classic flows (e.g. 19:1) is
 greater than the ratio of their scheduler weights (e.g. 15:1), the
 L4S flows will get less than an equal share of the capacity, but
 only slightly. For instance, with the example numbers given, each
 L4S flow will get (15/16)/19 = 4.9% when ideally each would get
 1/20=5%. In the rather specific case of an unresponsive flow
 taking up just less than the capacity set aside for L4S (e.g.
 14/16 in the above example), using WRR could significantly reduce
 the capacity left for any responsive L4S flows.

 The scheduling weight of the Classic queue should not be too
 small, otherwise a C packet at the head of the queue could be
 excessively delayed by a continually busy L queue. For instance
 if the Classic weight is 1/16, the maximum that a Classic packet
 at the head of the queue can be delayed by L traffic is the
 serialization delay of 15 MTU-sized packets.

 Sacrifice L4S Delay: To control milder overload of responsive
 traffic, particularly when close to the maximum congestion signal,
 the operator could choose to control overload of the Classic queue
 by allowing some delay to 'leak' across to the L4S queue. The
 scheduler can be made to behave like a single First-In First-Out
 (FIFO) queue with different service times by implementing a very
 simple conditional priority scheduler that could be called a
 "time-shifted FIFO" (see the Modifier Earliest Deadline First
 (MEDF) scheduler of [MEDF]). This scheduler adds tshift to the
 queue delay of the next L4S packet, before comparing it with the
 queue delay of the next Classic packet, then it selects the packet
 with the greater adjusted queue delay. Under regular conditions,
 this time-shifted FIFO scheduler behaves just like a strict
 priority scheduler. But under moderate or high overload it
 prevents starvation of the Classic queue, because the time-shift
 (tshift) defines the maximum extra queuing delay of Classic
 packets relative to L4S.

De Schepper, et al. Expires January 28, 2021 [Page 22]

Internet-Draft DualQ Coupled AQMs July 2020

 The example implementations in Appendix A and Appendix B could both
 be implemented with either policy.

4.1.2. Congestion Signal Saturation: Introduce L4S Drop or Delay?

 To keep the throughput of both L4S and Classic flows roughly equal
 over the full load range, a different control strategy needs to be
 defined above the point where one AQM first saturates to a
 probability of 100% leaving no room to push back the load any harder.
 If k>1, L4S will saturate first, even though saturation could be
 caused by unresponsive traffic in either queue.

 The term 'unresponsive' includes cases where a flow becomes
 temporarily unresponsive, for instance, a real-time flow that takes a
 while to adapt its rate in response to congestion, or a standard Reno
 flow that is normally responsive, but above a certain congestion
 level it will not be able to reduce its congestion window below the
 allowed minimum of 2 segments [RFC5681], effectively becoming
 unresponsive. (Note that L4S traffic ought to remain responsive
 below a window of 2 segments (see [I-D.ietf-tsvwg-ecn-l4s-id]).

 Saturation raises the question of whether to relieve congestion by
 introducing some drop into the L4S queue or by allowing delay to grow
 in both queues (which could eventually lead to tail drop too):

 Drop on Saturation: Saturation can be avoided by setting a maximum
 threshold for L4S ECN marking (assuming k>1) before saturation
 starts to make the flow rates of the different traffic types
 diverge. Above that the drop probability of Classic traffic is
 applied to all packets of all traffic types. Then experiments
 have shown that queueing delay can be kept at the target in any
 overload situation, including with unresponsive traffic, and no
 further measures are required [DualQ-Test].

 Delay on Saturation: When L4S marking saturates, instead of
 switching to drop, the drop and marking probabilities could be
 capped. Beyond that, delay will grow either solely in the queue
 with unresponsive traffic (if WRR is used), or in both queues (if
 time-shifted FIFO is used). In either case, the higher delay
 ought to control temporary high congestion. If the overload is
 more persistent, eventually the combined DualQ will overflow and
 tail drop will control congestion.

 The example implementation in Appendix A solely applies the "drop on
 saturation" policy. The DOCSIS specification of a DualQ Coupled AQM
 [DOCSIS3.1] also implements the 'drop on saturation' policy with a
 very shallow L buffer. However, the addition of DOCSIS per-flow
 Queue Protection [I-D.briscoe-docsis-q-protection] turns this into

https://datatracker.ietf.org/doc/html/rfc5681

De Schepper, et al. Expires January 28, 2021 [Page 23]

Internet-Draft DualQ Coupled AQMs July 2020

 'delay on saturation' by redirecting some packets of the flow(s) most
 responsible for L queue overload into the C queue, which has a higher
 delay target. If overload continues, this again becomes 'drop on
 saturation' as the level of drop in the C queue rises to maintain the
 target delay of the C queue.

4.1.3. Protecting against Unresponsive ECN-Capable Traffic

 Unresponsive traffic has a greater advantage if it is also ECN-
 capable. The advantage is undetectable at normal low levels of drop/
 marking, but it becomes significant with the higher levels of drop/
 marking typical during overload. This is an issue whether the ECN-
 capable traffic is L4S or Classic.

 This raises the question of whether and when to switch off ECN
 marking and use solely drop instead, as required by both Section 7 of
 [RFC3168] and Section 4.2.1 of [RFC7567].

 Experiments with the DualPI2 AQM (Appendix A) have shown that
 introducing 'drop on saturation' at 100% L4S marking addresses this
 problem with unresponsive ECN as well as addressing the saturation
 problem. It leaves only a small range of congestion levels where
 unresponsive traffic gains any advantage from using the ECN
 capability, and the advantage is hardly detectable [DualQ-Test].

5. Acknowledgements

 Thanks to Anil Agarwal, Sowmini Varadhan's, Gabi Bracha, Nicolas
 Kuhn, Greg Skinner, Tom Henderson and David Pullen for detailed
 review comments particularly of the appendices and suggestions on how
 to make the explanations clearer. Thanks also to Tom Henderson for
 insights on the choice of schedulers and queue delay measurement
 techniques.

 The early contributions of Koen De Schepper, Bob Briscoe, Olga
 Bondarenko and Inton Tsang were part-funded by the European Community
 under its Seventh Framework Programme through the Reducing Internet
 Transport Latency (RITE) project (ICT-317700). Bob Briscoe's
 contribution was also part-funded by the Comcast Innovation Fund and
 the Research Council of Norway through the TimeIn project. The views
 expressed here are solely those of the authors.

6. Contributors

 The following contributed implementations and evaluations that
 validated and helped to improve this specification:

https://datatracker.ietf.org/doc/html/rfc3168#section-7
https://datatracker.ietf.org/doc/html/rfc3168#section-7
https://datatracker.ietf.org/doc/html/rfc7567#section-4.2.1

De Schepper, et al. Expires January 28, 2021 [Page 24]

Internet-Draft DualQ Coupled AQMs July 2020

 Olga Albisser <olga@albisser.org> of Simula Research Lab, Norway
 (Olga Bondarenko during early drafts) implemented the prototype
 DualPI2 AQM for Linux with Koen De Schepper and conducted
 extensive evaluations as well as implementing the live performance
 visualization GUI [L4Sdemo16].

 Olivier Tilmans <olivier.tilmans@nokia-bell-labs.com> of Nokia
 Bell Labs, Belgium prepared and maintains the Linux implementation
 of DualPI2 for upstreaming.

 Tom Henderson <tomh@tomh.org> of CableLabs, US implemented various
 DualQ Coupled AQMs for ns3, including DualPI2 and DualPIE over
 point to point and DOCSIS 3.1 link models and conducted extensive
 evaluations.

 Ing Jyh (Inton) Tsang of Nokia, Belgium built the End-to-End Data
 Centre to the Home broadband testbed on which DualQ Coupled AQM
 implementations were tested.

7. References

7.1. Normative References

 [I-D.ietf-tsvwg-ecn-l4s-id]
 Schepper, K. and B. Briscoe, "Identifying Modified
 Explicit Congestion Notification (ECN) Semantics for
 Ultra-Low Queuing Delay (L4S)", draft-ietf-tsvwg-ecn-l4s-

id-10 (work in progress), March 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-10
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311

De Schepper, et al. Expires January 28, 2021 [Page 25]

Internet-Draft DualQ Coupled AQMs July 2020

7.2. Informative References

 [Alizadeh-stability]
 Alizadeh, M., Javanmard, A., and B. Prabhakar, "Analysis
 of DCTCP: Stability, Convergence, and Fairness", ACM
 SIGMETRICS 2011 , June 2011,
 <https://dl.acm.org/citation.cfm?id=1993753>.

 [AQMmetrics]
 Kwon, M. and S. Fahmy, "A Comparison of Load-based and
 Queue- based Active Queue Management Algorithms", Proc.
 Int'l Soc. for Optical Engineering (SPIE) 4866:35--46 DOI:
 10.1117/12.473021, 2002,
 <https://www.cs.purdue.edu/homes/fahmy/papers/ldc.pdf>.

 [ARED01] Floyd, S., Gummadi, R., and S. Shenker, "Adaptive RED: An
 Algorithm for Increasing the Robustness of RED's Active
 Queue Management", ACIRI Technical Report , August 2001,
 <http://www.icir.org/floyd/red.html>.

 [BBRv1] Cardwell, N., Cheng, Y., Hassas Yeganeh, S., and V.
 Jacobson, "BBR Congestion Control", Internet Draft draft-

cardwell-iccrg-bbr-congestion-control-00, July 2017,
 <https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-

congestion-control-00>.

 [CoDel] Nichols, K. and V. Jacobson, "Controlling Queue Delay",
 ACM Queue 10(5), May 2012,
 <http://queue.acm.org/issuedetail.cfm?issue=2208917>.

 [CRED_Insights]
 Briscoe, B., "Insights from Curvy RED (Random Early
 Detection)", BT Technical Report TR-TUB8-2015-003
 arXiv:1904.07339 [cs.NI], July 2015,
 <https://arxiv.org/abs/1904.07339>.

 [DCttH15] De Schepper, K., Bondarenko, O., Briscoe, B., and I.
 Tsang, "`Data Centre to the Home': Ultra-Low Latency for
 All", RITE project Technical Report , 2015,
 <http://riteproject.eu/publications/>.

 [DOCSIS3.1]
 CableLabs, "MAC and Upper Layer Protocols Interface
 (MULPI) Specification, CM-SP-MULPIv3.1", Data-Over-Cable
 Service Interface Specifications DOCSIS(R) 3.1 Version i17
 or later, January 2019, <https://specification-

search.cablelabs.com/CM-SP-MULPIv3.1>.

https://dl.acm.org/citation.cfm?id=1993753
https://www.cs.purdue.edu/homes/fahmy/papers/ldc.pdf
http://www.icir.org/floyd/red.html
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
http://queue.acm.org/issuedetail.cfm?issue=2208917
https://arxiv.org/abs/1904.07339
http://riteproject.eu/publications/
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1

De Schepper, et al. Expires January 28, 2021 [Page 26]

Internet-Draft DualQ Coupled AQMs July 2020

 [DualPI2Linux]
 Albisser, O., De Schepper, K., Briscoe, B., Tilmans, O.,
 and H. Steen, "DUALPI2 - Low Latency, Low Loss and
 Scalable (L4S) AQM", Proc. Linux Netdev 0x13 , March 2019,
 <https://www.netdevconf.org/0x13/session.html?talk-

DUALPI2-AQM>.

 [DualQ-Test]
 Steen, H., "Destruction Testing: Ultra-Low Delay using
 Dual Queue Coupled Active Queue Management", Masters
 Thesis, Dept of Informatics, Uni Oslo , May 2017.

 [I-D.briscoe-docsis-q-protection]
 Briscoe, B. and G. White, "Queue Protection to Preserve
 Low Latency", draft-briscoe-docsis-q-protection-00 (work
 in progress), July 2019.

 [I-D.briscoe-tsvwg-l4s-diffserv]
 Briscoe, B., "Interactions between Low Latency, Low Loss,
 Scalable Throughput (L4S) and Differentiated Services",

draft-briscoe-tsvwg-l4s-diffserv-02 (work in progress),
 November 2018.

 [I-D.ietf-tsvwg-l4s-arch]
 Briscoe, B., Schepper, K., Bagnulo, M., and G. White, "Low
 Latency, Low Loss, Scalable Throughput (L4S) Internet
 Service: Architecture", draft-ietf-tsvwg-l4s-arch-06 (work
 in progress), March 2020.

 [I-D.ietf-tsvwg-nqb]
 White, G. and T. Fossati, "A Non-Queue-Building Per-Hop
 Behavior (NQB PHB) for Differentiated Services", draft-

ietf-tsvwg-nqb-01 (work in progress), March 2020.

 [L4Sdemo16]
 Bondarenko, O., De Schepper, K., Tsang, I., and B.
 Briscoe, "Ultra-Low Delay for All: Live Experience, Live
 Analysis", Proc. MMSYS'16 pp33:1--33:4, May 2016,
 <http://dl.acm.org/citation.cfm?doid=2910017.2910633
 (videos of demos:

https://riteproject.eu/dctth/#1511dispatchwg)>.

 [LLD] White, G., Sundaresan, K., and B. Briscoe, "Low Latency
 DOCSIS: Technology Overview", CableLabs White Paper ,
 February 2019, <https://cablela.bs/low-latency-docsis-

technology-overview-february-2019>.

https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-00
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch-06
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-01
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-01
http://dl.acm.org/citation.cfm?doid=2910017.2910633
https://riteproject.eu/dctth/#1511dispatchwg
https://cablela.bs/low-latency-docsis-technology-overview-february-2019
https://cablela.bs/low-latency-docsis-technology-overview-february-2019

De Schepper, et al. Expires January 28, 2021 [Page 27]

Internet-Draft DualQ Coupled AQMs July 2020

 [Mathis09]
 Mathis, M., "Relentless Congestion Control", PFLDNeT'09 ,
 May 2009, <http://www.hpcc.jp/pfldnet2009/

Program_files/1569198525.pdf>.

 [MEDF] Menth, M., Schmid, M., Heiss, H., and T. Reim, "MEDF - a
 simple scheduling algorithm for two real-time transport
 service classes with application in the UTRAN", Proc. IEEE
 Conference on Computer Communications (INFOCOM'03) Vol.2
 pp.1116-1122, March 2003.

 [PI2] De Schepper, K., Bondarenko, O., Briscoe, B., and I.
 Tsang, "PI2: A Linearized AQM for both Classic and
 Scalable TCP", ACM CoNEXT'16 , December 2016,
 <https://riteproject.files.wordpress.com/2015/10/

pi2_conext.pdf>.

 [PragueLinux]
 Briscoe, B., De Schepper, K., Albisser, O., Misund, J.,
 Tilmans, O., Kuehlewind, M., and A. Ahmed, "Implementing
 the `TCP Prague' Requirements for Low Latency Low Loss
 Scalable Throughput (L4S)", Proc. Linux Netdev 0x13 ,
 March 2019, <https://www.netdevconf.org/0x13/

session.html?talk-tcp-prague-l4s>.

 [RFC0970] Nagle, J., "On Packet Switches With Infinite Storage",
RFC 970, DOI 10.17487/RFC0970, December 1985,

 <https://www.rfc-editor.org/info/rfc970>.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J., and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, DOI 10.17487/RFC2309, April 1998,
 <https://www.rfc-editor.org/info/rfc2309>.

 [RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
 J., Courtney, W., Davari, S., Firoiu, V., and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
 <https://www.rfc-editor.org/info/rfc3246>.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
RFC 3649, DOI 10.17487/RFC3649, December 2003,

 <https://www.rfc-editor.org/info/rfc3649>.

http://www.hpcc.jp/pfldnet2009/Program_files/1569198525.pdf
http://www.hpcc.jp/pfldnet2009/Program_files/1569198525.pdf
https://riteproject.files.wordpress.com/2015/10/pi2_conext.pdf
https://riteproject.files.wordpress.com/2015/10/pi2_conext.pdf
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://datatracker.ietf.org/doc/html/rfc970
https://www.rfc-editor.org/info/rfc970
https://datatracker.ietf.org/doc/html/rfc2309
https://www.rfc-editor.org/info/rfc2309
https://datatracker.ietf.org/doc/html/rfc3246
https://www.rfc-editor.org/info/rfc3246
https://datatracker.ietf.org/doc/html/rfc3649
https://www.rfc-editor.org/info/rfc3649

De Schepper, et al. Expires January 28, 2021 [Page 28]

Internet-Draft DualQ Coupled AQMs July 2020

 [RFC5033] Floyd, S. and M. Allman, "Specifying New Congestion
 Control Algorithms", BCP 133, RFC 5033,
 DOI 10.17487/RFC5033, August 2007,
 <https://www.rfc-editor.org/info/rfc5033>.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",

RFC 5348, DOI 10.17487/RFC5348, September 2008,
 <https://www.rfc-editor.org/info/rfc5348>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5706] Harrington, D., "Guidelines for Considering Operations and
 Management of New Protocols and Protocol Extensions",

RFC 5706, DOI 10.17487/RFC5706, November 2009,
 <https://www.rfc-editor.org/info/rfc5706>.

 [RFC7567] Baker, F., Ed. and G. Fairhurst, Ed., "IETF
 Recommendations Regarding Active Queue Management",

BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
 <https://www.rfc-editor.org/info/rfc7567>.

 [RFC8033] Pan, R., Natarajan, P., Baker, F., and G. White,
 "Proportional Integral Controller Enhanced (PIE): A
 Lightweight Control Scheme to Address the Bufferbloat
 Problem", RFC 8033, DOI 10.17487/RFC8033, February 2017,
 <https://www.rfc-editor.org/info/rfc8033>.

 [RFC8034] White, G. and R. Pan, "Active Queue Management (AQM) Based
 on Proportional Integral Controller Enhanced PIE) for
 Data-Over-Cable Service Interface Specifications (DOCSIS)
 Cable Modems", RFC 8034, DOI 10.17487/RFC8034, February
 2017, <https://www.rfc-editor.org/info/rfc8034>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [RFC8290] Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
 J., and E. Dumazet, "The Flow Queue CoDel Packet Scheduler
 and Active Queue Management Algorithm", RFC 8290,
 DOI 10.17487/RFC8290, January 2018,
 <https://www.rfc-editor.org/info/rfc8290>.

https://datatracker.ietf.org/doc/html/bcp133
https://datatracker.ietf.org/doc/html/rfc5033
https://www.rfc-editor.org/info/rfc5033
https://datatracker.ietf.org/doc/html/rfc5348
https://www.rfc-editor.org/info/rfc5348
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5706
https://www.rfc-editor.org/info/rfc5706
https://datatracker.ietf.org/doc/html/bcp197
https://datatracker.ietf.org/doc/html/rfc7567
https://www.rfc-editor.org/info/rfc7567
https://datatracker.ietf.org/doc/html/rfc8033
https://www.rfc-editor.org/info/rfc8033
https://datatracker.ietf.org/doc/html/rfc8034
https://www.rfc-editor.org/info/rfc8034
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://datatracker.ietf.org/doc/html/rfc8290
https://www.rfc-editor.org/info/rfc8290

De Schepper, et al. Expires January 28, 2021 [Page 29]

Internet-Draft DualQ Coupled AQMs July 2020

 [RFC8298] Johansson, I. and Z. Sarker, "Self-Clocked Rate Adaptation
 for Multimedia", RFC 8298, DOI 10.17487/RFC8298, December
 2017, <https://www.rfc-editor.org/info/rfc8298>.

 [RFC8312] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

 [SigQ-Dyn]
 Briscoe, B., "Rapid Signalling of Queue Dynamics",
 Technical Report TR-BB-2017-001 arXiv:1904.07044 [cs.NI],
 September 2017, <https://arxiv.org/abs/1904.07044>.

Appendix A. Example DualQ Coupled PI2 Algorithm

 As a first concrete example, the pseudocode below gives the DualPI2
 algorithm. DualPI2 follows the structure of the DualQ Coupled AQM
 framework in Figure 1. A simple ramp function (configured in units
 of queuing time) with unsmoothed ECN marking is used for the Native
 L4S AQM. The ramp can also be configured as a step function. The
 PI2 algorithm [PI2] is used for the Classic AQM. PI2 is an improved
 variant of the PIE AQM [RFC8033].

 The pseudocode will be introduced in two passes. The first pass
 explains the core concepts, deferring handling of overload to the
 second pass. To aid comparison, line numbers are kept in step
 between the two passes by using letter suffixes where the longer code
 needs extra lines.

 All variables are assumed to be floating point in their basic units
 (size in bytes, time in seconds, rates in bytes/second, alpha and
 beta in Hz, and probabilities from 0 to 1. Constants expressed in k
 (kilo), M (mega), G (giga), u (micro), m (milli) , %, ... are assumed
 to be converted to their appropriate multiple or fraction to
 represent the basic units. A real implementation that wants to use
 integer values needs to handle appropriate scaling factors and allow
 accordingly appropriate resolution of its integer types (including
 temporary internal values during calculations).

 A full open source implementation for Linux is available at:
https://github.com/L4STeam/sch_dualpi2_upstream and explained in

 [DualPI2Linux]. The specification of the DualQ Coupled AQM for
 DOCSIS cable modems and CMTSs is available in [DOCSIS3.1] and
 explained in [LLD].

https://datatracker.ietf.org/doc/html/rfc8298
https://www.rfc-editor.org/info/rfc8298
https://datatracker.ietf.org/doc/html/rfc8312
https://www.rfc-editor.org/info/rfc8312
https://arxiv.org/abs/1904.07044
https://datatracker.ietf.org/doc/html/rfc8033
https://github.com/L4STeam/sch_dualpi2_upstream

De Schepper, et al. Expires January 28, 2021 [Page 30]

Internet-Draft DualQ Coupled AQMs July 2020

A.1. Pass #1: Core Concepts

 The pseudocode manipulates three main structures of variables: the
 packet (pkt), the L4S queue (lq) and the Classic queue (cq). The
 pseudocode consists of the following six functions:

 o the initialization function dualpi2_params_init(...) (Figure 2)
 that sets parameter defaults (the API for setting non-default
 values is omitted for brevity)

 o the enqueue function dualpi2_enqueue(lq, cq, pkt) (Figure 3)

 o the dequeue function dualpi2_dequeue(lq, cq, pkt) (Figure 4)

 o recur(q, likelihood) for de-randomized ECN marking (shown at the
 end of Figure 4).

 o the L4S AQM function laqm(qdelay) (Figure 5) used to calculate the
 ECN-marking probability for the L4S queue

 o the base AQM function that implements the PI algorithm
 dualpi2_update(lq, cq) (Figure 6) used to regularly update the
 base probability (p'), which is squared for the Classic AQM as
 well as being coupled across to the L4S queue.

 It also uses the following functions that are not shown in full here:

 o scheduler(), which selects between the head packets of the two
 queues; the choice of scheduler technology is discussed later;

 o cq.len() or lq.len() returns the current length (aka. backlog) of
 the relevant queue in bytes;

 o cq.time() or lq.time() returns the current queuing delay (aka.
 sojourn time or service time) of the relevant queue in units of
 time (see Note a);

 o mark(pkt) and drop(pkt) for ECN-marking and dropping a packet;

 In experiments so far (building on experiments with PIE) on broadband
 access links ranging from 4 Mb/s to 200 Mb/s with base RTTs from 5 ms
 to 100 ms, DualPI2 achieves good results with the default parameters
 in Figure 2. The parameters are categorised by whether they relate
 to the Base PI2 AQM, the L4S AQM or the framework coupling them
 together. Constants and variables derived from these parameters are
 also included at the end of each category. Each parameter is
 explained as it is encountered in the walk-through of the pseudocode
 below.

De Schepper, et al. Expires January 28, 2021 [Page 31]

Internet-Draft DualQ Coupled AQMs July 2020

 1: dualpi2_params_init(...) { % Set input parameter defaults
 2: % DualQ Coupled framework parameters
 5: limit = MAX_LINK_RATE * 250 ms % Dual buffer size
 3: k = 2 % Coupling factor
 4: % NOT SHOWN % scheduler-dependent weight or equival't parameter
 6:
 7: % PI2 AQM parameters
 8: RTT_max = 100 ms % Worst case RTT expected
 9: RTT_typ = 15 ms % Typical RTT
 11: % PI2 constants derived from above PI2 parameters
 10: p_Cmax = min(1/k^2, 1) % Max Classic drop/mark prob
 12: target = RTT_typ % PI AQM Classic queue delay target
 13: Tupdate = min(RTT_typ, RTT_max/3) % PI sampling interval
 14: alpha = 0.1 * Tupdate / RTT_max^2 % PI integral gain in Hz
 15: beta = 0.3 / RTT_max % PI proportional gain in Hz
 16:
 17: % L4S ramp AQM parameters
 18: minTh = 800 us % L4S min marking threshold in time units
 19: range = 400 us % Range of L4S ramp in time units
 20: Th_len = 2 * MTU % Min L4S marking threshold in bytes
 21: % L4S constants incl. those derived from other parameters
 22: p_Lmax = 1 % Max L4S marking prob
 23: floor = Th_len / MIN_LINK_RATE
 24: if (minTh < floor) {
 25: % Shift ramp so minTh >= serialization time of 2 MTU
 26: minTh = floor
 27: }
 28: maxTh = minTh+range % L4S max marking threshold in time units
 29: }

 Figure 2: Example Header Pseudocode for DualQ Coupled PI2 AQM

 The overall goal of the code is to maintain the base probability (p',
 p-prime as in Section 2.4), which is an internal variable from which
 the marking and dropping probabilities for L4S and Classic traffic
 (p_L and p_C) are derived, with p_L in turn being derived from p_CL.
 The probabilities p_CL and p_C are derived in lines 4 and 5 of the
 dualpi2_update() function (Figure 6) then used in the
 dualpi2_dequeue() function where p_L is also derived from p_CL at
 line 6 (Figure 4). The code walk-through below builds up to
 explaining that part of the code eventually, but it starts from
 packet arrival.

De Schepper, et al. Expires January 28, 2021 [Page 32]

Internet-Draft DualQ Coupled AQMs July 2020

 1: dualpi2_enqueue(lq, cq, pkt) { % Test limit and classify lq or cq
 2: if (lq.len() + cq.len() + MTU > limit)
 3: drop(pkt) % drop packet if buffer is full
 4: timestamp(pkt) % attach arrival time to packet
 5: % Packet classifier
 6: if (ecn(pkt) modulo 2 == 1) % ECN bits = ECT(1) or CE
 7: lq.enqueue(pkt)
 8: else % ECN bits = not-ECT or ECT(0)
 9: cq.enqueue(pkt)
 10: }

 Figure 3: Example Enqueue Pseudocode for DualQ Coupled PI2 AQM

 1: dualpi2_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
 2: while (lq.len() + cq.len() > 0) {
 3: if (scheduler() == lq) {
 4: lq.dequeue(pkt) % Scheduler chooses lq
 5: p'_L = laqm(lq.time()) % Native L4S AQM
 6: p_L = max(p'_L, p_CL) % Combining function
 7: if (recur(lq, p_L)) % Linear marking
 8: mark(pkt)
 9: } else {
 10: cq.dequeue(pkt) % Scheduler chooses cq
 11: if (recur(cq, p_C)) { % probability p_C = p'^2
 12: if (ecn(pkt) == 0) { % if ECN field = not-ECT
 13: drop(pkt) % squared drop
 14: continue % continue to the top of the while loop
 15: }
 16: mark(pkt) % squared mark
 17: }
 18: }
 19: return(pkt) % return the packet and stop
 20: }
 21: return(NULL) % no packet to dequeue
 22: }

 23: recur(q, likelihood) { % Returns TRUE with a certain likelihood
 24: q.count += likelihood
 25: if (q.count > 1) {
 26: q.count -= 1
 27: return TRUE
 28: }
 29: return FALSE
 30: }

 Figure 4: Example Dequeue Pseudocode for DualQ Coupled PI2 AQM

De Schepper, et al. Expires January 28, 2021 [Page 33]

Internet-Draft DualQ Coupled AQMs July 2020

 When packets arrive, first a common queue limit is checked as shown
 in line 2 of the enqueuing pseudocode in Figure 3. This assumes a
 shared buffer for the two queues (Note b discusses the merits of
 separate buffers). In order to avoid any bias against larger
 packets, 1 MTU of space is always allowed and the limit is
 deliberately tested before enqueue.

 If limit is not exceeded, the packet is timestamped in line 4. This
 assumes that queue delay is measured using the sojourn time technique
 (see Note a for alternatives).

 At lines 5-9, the packet is classified and enqueued to the Classic or
 L4S queue dependent on the least significant bit of the ECN field in
 the IP header (line 6). Packets with a codepoint having an LSB of 0
 (Not-ECT and ECT(0)) will be enqueued in the Classic queue.
 Otherwise, ECT(1) and CE packets will be enqueued in the L4S queue.
 Optional additional packet classification flexibility is omitted for
 brevity (see [I-D.ietf-tsvwg-ecn-l4s-id]).

 The dequeue pseudocode (Figure 4) is repeatedly called whenever the
 lower layer is ready to forward a packet. It schedules one packet
 for dequeuing (or zero if the queue is empty) then returns control to
 the caller, so that it does not block while that packet is being
 forwarded. While making this dequeue decision, it also makes the
 necessary AQM decisions on dropping or marking. The alternative of
 applying the AQMs at enqueue would shift some processing from the
 critical time when each packet is dequeued. However, it would also
 add a whole queue of delay to the control signals, making the control
 loop sloppier (for a typical RTT it would double the Classic queue's
 feedback delay).

 All the dequeue code is contained within a large while loop so that
 if it decides to drop a packet, it will continue until it selects a
 packet to schedule. Line 3 of the dequeue pseudocode is where the
 scheduler chooses between the L4S queue (lq) and the Classic queue
 (cq). Detailed implementation of the scheduler is not shown (see
 discussion later).

 o If an L4S packet is scheduled, in lines 7 and 8 the packet is ECN-
 marked with likelihood p_L. The recur() function at the end of
 Figure 4 is used, which is preferred over random marking because
 it avoids delay due to randomization when interpreting congestion
 signals, but it still desynchronizes the saw-teeth of the flows.
 Line 6 calculates p_L as the maximum of the coupled L4S
 probability p_CL and the probability from the native L4S AQM p'_L.
 This implements the max() function shown in Figure 1 to couple the
 outputs of the two AQMs together. Of the two probabilities input
 to p_L in line 6:

De Schepper, et al. Expires January 28, 2021 [Page 34]

Internet-Draft DualQ Coupled AQMs July 2020

 * p'_L is calculated per packet in line 5 by the laqm() function
 (see Figure 5),

 * whereas p_CL is maintained by the dualpi2_update() function
 which runs every Tupdate (Tupdate is set in line 13 of
 Figure 2. It defaults to 16 ms in the reference Linux
 implementation because it has to be rounded to a multiple of 4
 ms).

 o If a Classic packet is scheduled, lines 10 to 17 drop or mark the
 packet with probability p_C.

 The Native L4S AQM algorithm (Figure 5) is a ramp function, similar
 to the RED algorithm, but simplified as follows:

 o The extent of the ramp is defined in units of queuing delay, not
 bytes, so that configuration remains invariant as the queue
 departure rate varies.

 o It uses instantaneous queueing delay, which avoids the complexity
 of smoothing, but also avoids embedding a worst-case RTT of
 smoothing delay in the network (see Section 2.1).

 o The ramp rises linearly directly from 0 to 1, not to an
 intermediate value of p'_L as RED would, because there is no need
 to keep ECN marking probability low.

 o Marking does not have to be randomized. Determinism is used
 instead of randomness; to reduce the delay necessary to smooth out
 the noise of randomness from the signal.

 The ramp function requires two configuration parameters, the minimum
 threshold (minTh) and the width of the ramp (range), both in units of
 queuing time), as shown in lines 18 & 19 of the initialization
 function in Figure 2. The ramp function can be configured as a step
 (see Note c).

 Although the DCTCP paper [Alizadeh-stability] recommends an ECN
 marking threshold of 0.17*RTT_typ, it also shows that the threshold
 can be much shallower with hardly any worse under-utilization of the
 link (because the amplitude of DCTCP's sawteeth is so small). Based
 on extensive experiments, for the public Internet the default minimum
 ECN marking threshold in Figure 2 is considered a good compromise,
 even though it is significantly smaller fraction of RTT_typ.

 A minimum marking threshold parameter (Th_len) in transmission units
 (default 2 MTU) is also necessary to ensure that the ramp does not
 trigger excessive marking on slow links. The code in lines 24-27 of

De Schepper, et al. Expires January 28, 2021 [Page 35]

Internet-Draft DualQ Coupled AQMs July 2020

 the initialization function (Figure 2) converts 2 MTU into time units
 and shifts the ramp so that the min threshold is no shallower than
 this floor.

 1: laqm(qdelay) { % Returns native L4S AQM probability
 2: if (qdelay >= maxTh)
 3: return 1
 4: else if (qdelay > minTh)
 5: return (qdelay - minTh)/range % Divide could use a bit-shift
 6: else
 7: return 0
 8: }

 Figure 5: Example Pseudocode for the Native L4S AQM

 1: dualpi2_update(lq, cq) { % Update p' every Tupdate
 2: curq = cq.time() % use queuing time of first-in Classic packet
 3: p' = p' + alpha * (curq - target) + beta * (curq - prevq)
 4: p_CL = k * p' % Coupled L4S prob = base prob * coupling factor
 5: p_C = p'^2 % Classic prob = (base prob)^2
 6: prevq = curq
 7: }

 (Clamping p' within the range [0,1] omitted for clarity - see text)

 Figure 6: Example PI-Update Pseudocode for DualQ Coupled PI2 AQM

 The coupled marking probability, p_CL depends on the base probability
 (p'), which is kept up to date by the core PI algorithm in Figure 6
 executed every Tupdate.

 Note that p' solely depends on the queuing time in the Classic queue.
 In line 2, the current queuing delay (curq) is evaluated from how
 long the head packet was in the Classic queue (cq). The function
 cq.time() (not shown) subtracts the time stamped at enqueue from the
 current time (see Note a) and implicitly takes the current queuing
 delay as 0 if the queue is empty.

 The algorithm centres on line 3, which is a classical Proportional-
 Integral (PI) controller that alters p' dependent on: a) the error
 between the current queuing delay (curq) and the target queuing delay
 ('target' - see [RFC8033]); and b) the change in queuing delay since
 the last sample. The name 'PI' represents the fact that the second
 factor (how fast the queue is growing) is _P_roportional to load
 while the first is the _I_ntegral of the load (so it removes any
 standing queue in excess of the target).

https://datatracker.ietf.org/doc/html/rfc8033

De Schepper, et al. Expires January 28, 2021 [Page 36]

Internet-Draft DualQ Coupled AQMs July 2020

 The two 'gain factors' in line 3, alpha and beta, respectively weight
 how strongly each of these elements ((a) and (b)) alters p'. They
 are in units of 'per second of delay' or Hz, because they transform
 differences in queueing delay into changes in probability (assuming
 probability has a value from 0 to 1).

 alpha and beta determine how much p' ought to change after each
 update interval (Tupdate). For smaller Tupdate, p' should change by
 the same amount per second, but in finer more frequent steps. So
 alpha depends on Tupdate (see line 14 of the initialization function
 in Figure 2). It is best to update p' as frequently as possible, but
 Tupdate will probably be constrained by hardware performance. As
 shown in line 13, the update interval should be at least as frequent
 as once per the RTT of a typical flow (RTT_typ) as long as it does
 not exceed roughly RTT_max/3. For link rates from 4 - 200 Mb/s, a
 target RTT of 15ms and a maximum RTT of 100ms, it has been verified
 through extensive testing that Tupdate=16ms (as recommended in
 [RFC8033]) is sufficient.

 The choice of alpha and beta also determines the AQM's stable
 operating range. The AQM ought to change p' as fast as possible in
 response to changes in load without over-compensating and therefore
 causing oscillations in the queue. Therefore, the values of alpha
 and beta also depend on the RTT of the expected worst-case flow
 (RTT_max).

 Recommended derivations of the gain constants alpha and beta can be
 approximated for Reno over a PI2 AQM as: alpha = 0.1 * Tupdate /
 RTT_max^2; beta = 0.3 / RTT_max, as shown in lines 14 & 15 of
 Figure 2. These are derived from the stability analysis in [PI2].
 For the default values of Tupdate=16 ms and RTT_max = 100 ms, they
 result in alpha = 0.16; beta = 3.2 (discrepancies are due to
 rounding). These defaults have been verified with a wide range of
 link rates, target delays and a range of traffic models with mixed
 and similar RTTs, short and long flows, etc.

 In corner cases, p' can overflow the range [0,1] so the resulting
 value of p' has to be bounded (omitted from the pseudocode). Then,
 as already explained, the coupled and Classic probabilities are
 derived from the new p' in lines 4 and 5 of Figure 6 as p_CL = k*p'
 and p_C = p'^2.

 Because the coupled L4S marking probability (p_CL) is factored up by
 k, the dynamic gain parameters alpha and beta are also inherently
 factored up by k for the L4S queue. So, the effective gain factor
 for the L4S queue is k*alpha (with defaults alpha = 0.16 Hz and k=2,
 effective L4S alpha = 0.32 Hz).

https://datatracker.ietf.org/doc/html/rfc8033

De Schepper, et al. Expires January 28, 2021 [Page 37]

Internet-Draft DualQ Coupled AQMs July 2020

 Unlike in PIE [RFC8033], alpha and beta do not need to be tuned every
 Tupdate dependent on p'. Instead, in PI2, alpha and beta are
 independent of p' because the squaring applied to Classic traffic
 tunes them inherently. This is explained in [PI2], which also
 explains why this more principled approach removes the need for most
 of the heuristics that had to be added to PIE.

 Nonetheless, an implementer might wish to add selected heuristics to
 either AQM. For instance the Linux reference DualPI2 implementation
 includes the following:

 o Prior to enqueuing an L4S packet, if the L queue contains <2
 packets, the packet is flagged to suppress any native L4S AQM
 marking at dequeue (which depends on sojourn time);

 o Classic and coupled marking or dropping (i.e. based on p_C and
 p_CL from the PI controller) is only applied to a packet if the
 respective queue length in bytes is > 2 MTU (prior to enqueueing
 the packet or after dequeuing it, depending on whether the AQM is
 configured to be applied at enqueue or dequeue);

 o In the WRR scheduler, the 'credit' indicating which queue should
 transmit is only changed if there are packets in both queues (i.e.
 if there is actual resource contention). This means that a
 properly paced L flow might never be delayed by the WRR. The WRR
 credit is reset in favour of the L queue when the link is idle.

 An implementer might also wish to add other heuristics, e.g. burst
 protection [RFC8033] or enhanced burst protection [RFC8034].

 Notes:

 a. The drain rate of the queue can vary if it is scheduled relative
 to other queues, or to cater for fluctuations in a wireless
 medium. To auto-adjust to changes in drain rate, the queue needs
 to be measured in time, not bytes or packets [AQMmetrics]
 [CoDel]. Queuing delay could be measured directly by storing a
 per-packet time-stamp as each packet is enqueued, and subtracting
 this from the system time when the packet is dequeued. If time-
 stamping is not easy to introduce with certain hardware, queuing
 delay could be predicted indirectly by dividing the size of the
 queue by the predicted departure rate, which might be known
 precisely for some link technologies (see for example [RFC8034]).

 b. Line 2 of the dualpi2_enqueue() function (Figure 3) assumes an
 implementation where lq and cq share common buffer memory. An
 alternative implementation could use separate buffers for each
 queue, in which case the arriving packet would have to be

https://datatracker.ietf.org/doc/html/rfc8033
https://datatracker.ietf.org/doc/html/rfc8033
https://datatracker.ietf.org/doc/html/rfc8034
https://datatracker.ietf.org/doc/html/rfc8034

De Schepper, et al. Expires January 28, 2021 [Page 38]

Internet-Draft DualQ Coupled AQMs July 2020

 classified first to determine which buffer to check for available
 space. The choice is a trade off; a shared buffer can use less
 memory whereas separate buffers isolate the L4S queue from tail-
 drop due to large bursts of Classic traffic (e.g. a Classic Reno
 TCP during slow-start over a long RTT).

 c. There has been some concern that using the step function of DCTCP
 for the Native L4S AQM requires end-systems to smooth the signal
 for an unnecessarily large number of round trips to ensure
 sufficient fidelity. A ramp is no worse than a step in initial
 experiments with existing DCTCP. Therefore, it is recommended
 that a ramp is configured in place of a step, which will allow
 congestion control algorithms to investigate faster smoothing
 algorithms.

 A ramp is more general that a step, because an operator can
 effectively turn the ramp into a step function, as used by DCTCP,
 by setting the range to zero. There will not be a divide by zero
 problem at line 5 of Figure 5 because, if minTh is equal to
 maxTh, the condition for this ramp calculation cannot arise.

A.2. Pass #2: Overload Details

 Figure 7 repeats the dequeue function of Figure 4, but with overload
 details added. Similarly Figure 8 repeats the core PI algorithm of
 Figure 6 with overload details added. The initialization, enqueue,
 L4S AQM and recur functions are unchanged.

 In line 10 of the initialization function (Figure 2), the maximum
 Classic drop probability p_Cmax = min(1/k^2, 1) or 1/4 for the
 default coupling factor k=2. p_Cmax is the point at which it is
 deemed that the Classic queue has become persistently overloaded, so
 it switches to using drop, even for ECN-capable packets. ECT packets
 that are not dropped can still be ECN-marked.

 In practice, 25% has been found to be a good threshold to preserve
 fairness between ECN capable and non ECN capable traffic. This
 protects the queues against both temporary overload from responsive
 flows and more persistent overload from any unresponsive traffic that
 falsely claims to be responsive to ECN.

 When the Classic ECN marking probability reaches the p_Cmax threshold
 (1/k^2), the marking probability coupled to the L4S queue, p_CL will
 always be 100% for any k (by equation (1) in Section 2). So, for
 readability, the constant p_Lmax is defined as 1 in line 22 of the
 initialization function (Figure 2). This is intended to ensure that
 the L4S queue starts to introduce dropping once ECN-marking saturates
 at 100% and can rise no further. The 'Prague L4S' requirements

De Schepper, et al. Expires January 28, 2021 [Page 39]

Internet-Draft DualQ Coupled AQMs July 2020

 [I-D.ietf-tsvwg-ecn-l4s-id] state that, when an L4S congestion
 control detects a drop, it falls back to a response that coexists
 with 'Classic' Reno congestion control. So it is correct that, when
 the L4S queue drops packets, it drops them proportional to p'^2, as
 if they are Classic packets.

 Both these switch-overs are triggered by the tests for overload
 introduced in lines 4b and 12b of the dequeue function (Figure 7).
 Lines 8c to 8g drop L4S packets with probability p'^2. Lines 8h to
 8i mark the remaining packets with probability p_CL. Given p_Lmax =
 1, all remaining packets will be marked because, to have reached the
 else block at line 8b, p_CL >= 1.

 Lines 2c to 2d in the core PI algorithm (Figure 8) deal with overload
 of the L4S queue when there is no Classic traffic. This is
 necessary, because the core PI algorithm maintains the appropriate
 drop probability to regulate overload, but it depends on the length
 of the Classic queue. If there is no Classic queue the naive PI
 update function in Figure 6 would drop nothing, even if the L4S queue
 were overloaded - so tail drop would have to take over (lines 2 and 3
 of Figure 3).

 Instead, the test at line 2a of the full PI update function in
 Figure 8 keeps delay on target using drop. If the test at line 2a of
 Figure 8 finds that the Classic queue is empty, line 2d measures the
 current queue delay using the L4S queue instead. While the L4S queue
 is not overloaded, its delay will always be tiny compared to the
 target Classic queue delay. So p_CL will be driven to zero, and the
 L4S queue will naturally be governed solely by p'_L from the native
 L4S AQM (lines 5 and 6 of the dequeue algorithm in Figure 7). But,
 if unresponsive L4S source(s) cause overload, the DualQ transitions
 smoothly to L4S marking based on the PI algorithm. If overload
 increases further, it naturally transitions from marking to dropping
 by the switch-over mechanism already described.

De Schepper, et al. Expires January 28, 2021 [Page 40]

Internet-Draft DualQ Coupled AQMs July 2020

 1: dualpi2_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
 2: while (lq.len() + cq.len() > 0) {
 3: if (scheduler() == lq) {
 4a: lq.dequeue(pkt) % L4S scheduled
 4b: if (p_CL < p_Lmax) { % Check for overload saturation
 5: p'_L = laqm(lq.time()) % Native L4S AQM
 6: p_L = max(p'_L, p_CL) % Combining function
 7: if (recur(lq, p_L)) % Linear marking
 8a: mark(pkt)
 8b: } else { % overload saturation
 8c: if (recur(lq, p_C)) { % probability p_C = p'^2
 8e: drop(pkt) % revert to Classic drop due to overload
 8f: continue % continue to the top of the while loop
 8g: }
 8h: if (recur(lq, p_CL)) % probability p_CL = k * p'
 8i: mark(pkt) % linear marking of remaining packets
 8j: }
 9: } else {
 10: cq.dequeue(pkt) % Classic scheduled
 11: if (recur(cq, p_C)) { % probability p_C = p'^2
 12a: if ((ecn(pkt) == 0) % ECN field = not-ECT
 12b: OR (p_C >= p_Cmax)) { % Overload disables ECN
 13: drop(pkt) % squared drop, redo loop
 14: continue % continue to the top of the while loop
 15: }
 16: mark(pkt) % squared mark
 17: }
 18: }
 19: return(pkt) % return the packet and stop
 20: }
 21: return(NULL) % no packet to dequeue
 22: }

 Figure 7: Example Dequeue Pseudocode for DualQ Coupled PI2 AQM
 (Including Overload Code)

De Schepper, et al. Expires January 28, 2021 [Page 41]

Internet-Draft DualQ Coupled AQMs July 2020

 1: dualpi2_update(lq, cq) { % Update p' every Tupdate
 2a: if (cq.len() > 0)
 2b: curq = cq.time() %use queuing time of first-in Classic packet
 2c: else % Classic queue empty
 2d: curq = lq.time() % use queuing time of first-in L4S packet
 3: p' = p' + alpha * (curq - target) + beta * (curq - prevq)
 4: p_CL = p' * k % Coupled L4S prob = base prob * coupling factor
 5: p_C = p'^2 % Classic prob = (base prob)^2
 6: prevq = curq
 7: }

 Figure 8: Example PI-Update Pseudocode for DualQ Coupled PI2 AQM
 (Including Overload Code)

 The choice of scheduler technology is critical to overload protection
 (see Section 4.1).

 o A well-understood weighted scheduler such as weighted round robin
 (WRR) is recommended. As long as the scheduler weight for Classic
 is small (e.g. 1/16), its exact value is unimportant because it
 does not normally determine capacity shares. The weight is only
 important to prevent unresponsive L4S traffic starving Classic
 traffic. This is because capacity sharing between the queues is
 normally determined by the coupled congestion signal, which
 overrides the scheduler, by making L4S sources leave roughly equal
 per-flow capacity available for Classic flows.

 o Alternatively, a time-shifted FIFO (TS-FIFO) could be used. It
 works by selecting the head packet that has waited the longest,
 biased against the Classic traffic by a time-shift of tshift. To
 implement time-shifted FIFO, the scheduler() function in line 3 of
 the dequeue code would simply be implemented as the scheduler()
 function at the bottom of Figure 10 in Appendix B. For the public
 Internet a good value for tshift is 50ms. For private networks
 with smaller diameter, about 4*target would be reasonable. TS-
 FIFO is a very simple scheduler, but complexity might need to be
 added to address some deficiencies (which is why it is not
 recommended over WRR):

 * TS-FIFO does not fully isolate latency in the L4S queue from
 uncontrolled bursts in the Classic queue;

 * TS-FIFO is only appropriate if time-stamping of packets is
 feasible;

 * Even if time-stamping is supported, the sojourn time of the
 head packet is always stale. For instance, if a burst arrives
 at an empty queue, the sojourn time will only measure the delay

De Schepper, et al. Expires January 28, 2021 [Page 42]

Internet-Draft DualQ Coupled AQMs July 2020

 of the burst once the burst is over, even though the queue knew
 about it from the start. At the cost of more operations and
 more storage, a 'scaled sojourn time' metric of queue delay can
 be used, which is the sojourn time of a packet scaled by the
 ratio of the queue sizes when the packet departed and arrived
 [SigQ-Dyn].

 o A strict priority scheduler would be inappropriate, because it
 would starve Classic if L4S was overloaded.

Appendix B. Example DualQ Coupled Curvy RED Algorithm

 As another example of a DualQ Coupled AQM algorithm, the pseudocode
 below gives the Curvy RED based algorithm. Although the AQM was
 designed to be efficient in integer arithmetic, to aid understanding
 it is first given using floating point arithmetic (Figure 10). Then,
 one possible optimization for integer arithmetic is given, also in
 pseudocode (Figure 11). To aid comparison, the line numbers are kept
 in step between the two by using letter suffixes where the longer
 code needs extra lines.

B.1. Curvy RED in Pseudocode

 The pseudocode manipulates three main structures of variables: the
 packet (pkt), the L4S queue (lq) and the Classic queue (cq) and
 consists of the following five functions:

 o the initialization function cred_params_init(...) (Figure 2) that
 sets parameter defaults (the API for setting non-default values is
 omitted for brevity);

 o the dequeue function cred_dequeue(lq, cq, pkt) (Figure 4);

 o the scheduling function scheduler(), which selects between the
 head packets of the two queues.

 It also uses the following functions that are either shown elsewhere,
 or not shown in full here:

 o the enqueue function, which is identical to that used for DualPI2,
 dualpi2_enqueue(lq, cq, pkt) in Figure 3;

 o mark(pkt) and drop(pkt) for ECN-marking and dropping a packet;

 o cq.len() or lq.len() returns the current length (aka. backlog) of
 the relevant queue in bytes;

De Schepper, et al. Expires January 28, 2021 [Page 43]

Internet-Draft DualQ Coupled AQMs July 2020

 o cq.time() or lq.time() returns the current queuing delay (aka.
 sojourn time or service time) of the relevant queue in units of
 time (see Note a in Appendix A.1).

 Because Curvy RED was evaluated before DualPI2, certain improvements
 introduced for DualPI2 were not evaluated for Curvy RED. In the
 pseudocode below, the straightforward improvements have been added on
 the assumption they will provide similar benefits, but that has not
 been proven experimentally. They are: i) a conditional priority
 scheduler instead of strict priority ii) a time-based threshold for
 the native L4S AQM; iii) ECN support for the Classic AQM. A recent
 evaluation has proved that a minimum ECN-marking threshold (minTh)
 greatly improves performance, so this is also included in the
 pseudocode.

 Overload protection has not been added to the Curvy RED pseudocode
 below so as not to detract from the main features. It would be added
 in exactly the same way as in Appendix A.2 for the DualPI2
 pseudocode. The native L4S AQM uses a step threshold, but a ramp
 like that described for DualPI2 could be used instead. The scheduler
 uses the simple TS-FIFO algorithm, but it could be replaced with WRR.

 The Curvy RED algorithm has not been maintained or evaluated to the
 same degree as the DualPI2 algorithm. In initial experiments on
 broadband access links ranging from 4 Mb/s to 200 Mb/s with base RTTs
 from 5 ms to 100 ms, Curvy RED achieved good results with the default
 parameters in Figure 9.

 The parameters are categorised by whether they relate to the Classic
 AQM, the L4S AQM or the framework coupling them together. Constants
 and variables derived from these parameters are also included at the
 end of each category. These are the raw input parameters for the
 algorithm. A configuration front-end could accept more meaningful
 parameters (e.g. RTT_max and RTT_typ) and convert them into these
 raw parameters, as has been done for DualPI2 in Appendix A. Where
 necessary, parameters are explained further in the walk-through of
 the pseudocode below.

De Schepper, et al. Expires January 28, 2021 [Page 44]

Internet-Draft DualQ Coupled AQMs July 2020

 1: cred_params_init(...) { % Set input parameter defaults
 2: % DualQ Coupled framework parameters
 3: limit = MAX_LINK_RATE * 250 ms % Dual buffer size
 4: k' = 1 % Coupling factor as a power of 2
 5: tshift = 50 ms % Time shift of TS-FIFO scheduler
 6: % Constants derived from Classic AQM parameters
 7: k = 2^k' % Coupling factor from Equation (1)
 6:
 7: % Classic AQM parameters
 8: g_C = 5 % EWMA smoothing parameter as a power of 1/2
 9: S_C = -1 % Classic ramp scaling factor as a power of 2
 10: minTh = 500 ms % No Classic drop/mark below this queue delay
 11: % Constants derived from Classic AQM parameters
 12: gamma = 2^(-g_C) % EWMA smoothing parameter
 13: range_C = 2^S_C % Range of Classic ramp
 14:
 15: % L4S AQM parameters
 16: T = 1 ms % Queue delay threshold for native L4S AQM
 17: % Constants derived from above parameters
 18: S_L = S_C - k' % L4S ramp scaling factor as a power of 2
 19: range_L = 2^S_L % Range of L4S ramp
 20: }

 Figure 9: Example Header Pseudocode for DualQ Coupled Curvy RED AQM

De Schepper, et al. Expires January 28, 2021 [Page 45]

Internet-Draft DualQ Coupled AQMs July 2020

 1: cred_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
 2: while (lq.len() + cq.len() > 0) {
 3: if (scheduler() == lq) {
 4: lq.dequeue(pkt) % L4S scheduled
 5a: p_CL = (Q_C - minTh) / range_L
 5b: if ((lq.time() > T)
 5c: OR (p_CL > maxrand(U)))
 6: mark(pkt)
 7: } else {
 8: cq.dequeue(pkt) % Classic scheduled
 9a: Q_C = gamma * cq.time() + (1-gamma) * Q_C % Classic Q EWMA
 10a: sqrt_p_C = (Q_C - minTh) / range_C
 10b: if (sqrt_p_C > maxrand(2*U)) {
 11: if ((ecn(pkt) == 0) { % ECN field = not-ECT
 12: drop(pkt) % Squared drop, redo loop
 13: continue % continue to the top of the while loop
 14: }
 15: mark(pkt)
 16: }
 17: }
 18: return(pkt) % return the packet and stop here
 19: }
 20: return(NULL) % no packet to dequeue
 21: }

 22: maxrand(u) { % return the max of u random numbers
 23: maxr=0
 24: while (u-- > 0)
 25: maxr = max(maxr, rand()) % 0 <= rand() < 1
 26: return(maxr)
 27: }

 28: scheduler() {
 29: if (lq.time() + tshift >= cq.time())
 30: return lq;
 31: else
 32: return cq;
 33: }

 Figure 10: Example Dequeue Pseudocode for DualQ Coupled Curvy RED AQM

 The dequeue pseudocode (Figure 10) is repeatedly called whenever the
 lower layer is ready to forward a packet. It schedules one packet
 for dequeuing (or zero if the queue is empty) then returns control to
 the caller, so that it does not block while that packet is being
 forwarded. While making this dequeue decision, it also makes the
 necessary AQM decisions on dropping or marking. The alternative of
 applying the AQMs at enqueue would shift some processing from the

De Schepper, et al. Expires January 28, 2021 [Page 46]

Internet-Draft DualQ Coupled AQMs July 2020

 critical time when each packet is dequeued. However, it would also
 add a whole queue of delay to the control signals, making the control
 loop very sloppy.

 The code is written assuming the AQMs are applied on dequeue (Note
 1). All the dequeue code is contained within a large while loop so
 that if it decides to drop a packet, it will continue until it
 selects a packet to schedule. If both queues are empty, the routine
 returns NULL at line 20. Line 3 of the dequeue pseudocode is where
 the conditional priority scheduler chooses between the L4S queue (lq)
 and the Classic queue (cq). The time-shifted FIFO scheduler is shown
 at lines 28-33, which would be suitable if simplicity is paramount
 (see Note 2).

 Within each queue, the decision whether to forward, drop or mark is
 taken as follows (to simplify the explanation, it is assumed that
 U=1):

 L4S: If the test at line 3 determines there is an L4S packet to
 dequeue, the tests at lines 5b and 5c determine whether to mark
 it. The first is a simple test of whether the L4S queue delay
 (lq.time()) is greater than a step threshold T (Note 3). The
 second test is similar to the random ECN marking in RED, but with
 the following differences: i) marking depends on queuing time, not
 bytes, in order to scale for any link rate without being
 reconfigured; ii) marking of the L4S queue depends on a logical OR
 of two tests; one against its own queuing time and one against the
 queuing time of the _other_ (Classic) queue; iii) the tests are
 against the instantaneous queuing time of the L4S queue, but a
 smoothed average of the other (Classic) queue; iv) the queue is
 compared with the maximum of U random numbers (but if U=1, this is
 the same as the single random number used in RED).

 Specifically, in line 5a the coupled marking probability p_CL is
 set to the amount by which the averaged Classic queueing delay Q_C
 exceeds the minimum queuing delay threshold (minTh) all divided by
 the L4S scaling parameter range_L. range_L represents the queuing
 delay (in seconds) added to minTh at which marking probability
 would hit 100%. Then in line 5c (if U=1) the result is compared
 with a uniformly distributed random number between 0 and 1, which
 ensures that, over range_L, marking probability will linearly
 increase with queueing time.

 Classic: If the scheduler at line 3 chooses to dequeue a Classic
 packet and jumps to line 7, the test at line 10b determines
 whether to drop or mark it. But before that, line 9a updates Q_C,
 which is an exponentially weighted moving average (Note 4) of the
 queuing time of the Classic queue, where cq.time() is the current

De Schepper, et al. Expires January 28, 2021 [Page 47]

Internet-Draft DualQ Coupled AQMs July 2020

 instantaneous queueing time of the packet at the head of the
 Classic queue (zero if empty) and gamma is the EWMA constant
 (default 1/32, see line 12 of the initialization function).

 Lines 10a and 10b implement the Classic AQM. In line 10a the
 averaged queuing time Q_C is divided by the Classic scaling
 parameter range_C, in the same way that queuing time was scaled
 for L4S marking. This scaled queuing time will be squared to
 compute Classic drop probability so, before it is squared, it is
 effectively the square root of the drop probability, hence it is
 given the variable name sqrt_p_C. The squaring is done by
 comparing it with the maximum out of two random numbers (assuming
 U=1). Comparing it with the maximum out of two is the same as the
 logical `AND' of two tests, which ensures drop probability rises
 with the square of queuing time.

 The AQM functions in each queue (lines 5c & 10b) are two cases of a
 new generalization of RED called Curvy RED, motivated as follows.
 When the performance of this AQM was compared with fq_CoDel and PIE,
 their goal of holding queuing delay to a fixed target seemed
 misguided [CRED_Insights]. As the number of flows increases, if the
 AQM does not allow host congestion controllers to increase queuing
 delay, it has to introduce abnormally high levels of loss. Then loss
 rather than queuing becomes the dominant cause of delay for short
 flows, due to timeouts and tail losses.

 Curvy RED constrains delay with a softened target that allows some
 increase in delay as load increases. This is achieved by increasing
 drop probability on a convex curve relative to queue growth (the
 square curve in the Classic queue, if U=1). Like RED, the curve hugs
 the zero axis while the queue is shallow. Then, as load increases,
 it introduces a growing barrier to higher delay. But, unlike RED, it
 requires only two parameters, not three. The disadvantage of Curvy
 RED (compared to a PI controller for example) is that it is not
 adapted to a wide range of RTTs. Curvy RED can be used as is when
 the RTT range to be supported is limited, otherwise an adaptation
 mechanism is required.

 From our limited experiments with Curvy RED so far, recommended
 values of these parameters are: S_C = -1; g_C = 5; T = 5 * MTU at the
 link rate (about 1ms at 60Mb/s) for the range of base RTTs typical on
 the public Internet. [CRED_Insights] explains why these parameters
 are applicable whatever rate link this AQM implementation is deployed
 on and how the parameters would need to be adjusted for a scenario
 with a different range of RTTs (e.g. a data centre). The setting of
 k depends on policy (see Section 2.5 and Appendix C.2 respectively
 for its recommended setting and guidance on alternatives).

De Schepper, et al. Expires January 28, 2021 [Page 48]

Internet-Draft DualQ Coupled AQMs July 2020

 There is also a cUrviness parameter, U, which is a small positive
 integer. It is likely to take the same hard-coded value for all
 implementations, once experiments have determined a good value. Only
 U=1 has been used in experiments so far, but results might be even
 better with U=2 or higher.

 Notes:

 1. The alternative of applying the AQMs at enqueue would shift some
 processing from the critical time when each packet is dequeued.
 However, it would also add a whole queue of delay to the control
 signals, making the control loop sloppier (for a typical RTT it
 would double the Classic queue's feedback delay). On a platform
 where packet timestamping is feasible, e.g. Linux, it is also
 easiest to apply the AQMs at dequeue because that is where
 queuing time is also measured.

 2. WRR better isolates the L4S queue from large delay bursts in the
 Classic queue, but it is slightly less simple than TS-FIFO. If
 WRR were used, a low default Classic weight (e.g. 1/16) would
 need to be configured in place of the time shift in line 5 of the
 initialization function (Figure 9).

 3. A step function is shown for simplicity. A ramp function (see
 Figure 5 and the discussion around it in Appendix A.1) is
 recommended, because it is more general than a step and has the
 potential to enable L4S congestion controls to converge more
 rapidly.

 4. An EWMA is only one possible way to filter bursts; other more
 adaptive smoothing methods could be valid and it might be
 appropriate to decrease the EWMA faster than it increases, e.g.
 by using the minimum of the smoothed and instantaneous queue
 delays, min(Q_C, qc.time()).

B.2. Efficient Implementation of Curvy RED

 Although code optimization depends on the platform, the following
 notes explain where the design of Curvy RED was particularly
 motivated by efficient implementation.

 The Classic AQM at line 10b calls maxrand(2*U), which gives twice as
 much curviness as the call to maxrand(U) in the marking function at
 line 5c. This is the trick that implements the square rule in
 equation (1) (Section 2.1). This is based on the fact that, given a
 number X from 1 to 6, the probability that two dice throws will both
 be less than X is the square of the probability that one throw will
 be less than X. So, when U=1, the L4S marking function is linear and

De Schepper, et al. Expires January 28, 2021 [Page 49]

Internet-Draft DualQ Coupled AQMs July 2020

 the Classic dropping function is squared. If U=2, L4S would be a
 square function and Classic would be quartic. And so on.

 The maxrand(u) function in lines 16-21 simply generates u random
 numbers and returns the maximum. Typically, maxrand(u) could be run
 in parallel out of band. For instance, if U=1, the Classic queue
 would require the maximum of two random numbers. So, instead of
 calling maxrand(2*U) in-band, the maximum of every pair of values
 from a pseudorandom number generator could be generated out-of-band,
 and held in a buffer ready for the Classic queue to consume.

 1: cred_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
 2: while (lq.len() + cq.len() > 0) {
 3: if (scheduler() == lq) {
 4: lq.dequeue(pkt) % L4S scheduled
 5: if ((lq.time() > T) OR (Q_C >> (S_L-2) > maxrand(U)))
 6: mark(pkt)
 7: } else {
 8: cq.dequeue(pkt) % Classic scheduled
 9: Q_C += (qc.ns() - Q_C) >> g_C % Classic Q EWMA
 10: if ((Q_C >> (S_C-2)) > maxrand(2*U)) {
 11: if ((ecn(pkt) == 0) { % ECN field = not-ECT
 12: drop(pkt) % Squared drop, redo loop
 13: continue % continue to the top of the while loop
 14: }
 15: mark(pkt)
 16: }
 17: }
 18: return(pkt) % return the packet and stop here
 19: }
 20: return(NULL) % no packet to dequeue
 21: }

 Figure 11: Optimised Example Dequeue Pseudocode for Coupled DualQ AQM
 using Integer Arithmetic

 The two ranges, range_L and range_C are expressed as powers of 2 so
 that division can be implemented as a right bit-shift (>>) in lines 5
 and 10 of the integer variant of the pseudocode (Figure 11).

 For the integer variant of the pseudocode, an integer version of the
 rand() function used at line 25 of the maxrand(function) in Figure 10
 would be arranged to return an integer in the range 0 <= maxrand() <
 2^32 (not shown). This would scale up all the floating point
 probabilities in the range [0,1] by 2^32.

 Queuing delays are also scaled up by 2^32, but in two stages: i) In
 line 9 queuing time qc.ns() is returned in integer nanoseconds,

De Schepper, et al. Expires January 28, 2021 [Page 50]

Internet-Draft DualQ Coupled AQMs July 2020

 making the value about 2^30 times larger than when the units were
 seconds, ii) then in lines 5 and 10 an adjustment of -2 to the right
 bit-shift multiplies the result by 2^2, to complete the scaling by
 2^32.

 In line 8 of the initialization function, the EWMA constant gamma is
 represented as an integer power of 2, g_C, so that in line 9 of the
 integer code the division needed to weight the moving average can be
 implemented by a right bit-shift (>> g_C).

Appendix C. Choice of Coupling Factor, k

C.1. RTT-Dependence

 Where Classic flows compete for the same capacity, their relative
 flow rates depend not only on the congestion probability, but also on
 their end-to-end RTT (= base RTT + queue delay). The rates of
 competing Reno [RFC5681] flows are roughly inversely proportional to
 their RTTs. Cubic exhibits similar RTT-dependence when in Reno-
 compatibility mode, but is less RTT-dependent otherwise.

 Until the early experiments with the DualQ Coupled AQM, the
 importance of the reasonably large Classic queue in mitigating RTT-
 dependence had not been appreciated. Appendix A.1.5 of
 [I-D.ietf-tsvwg-ecn-l4s-id] uses numerical examples to explain why
 bloated buffers had concealed the RTT-dependence of Classic
 congestion controls before that time. Then it explains why, the more
 that queuing delays have reduced, the more that RTT-dependence has
 surfaced as a potential starvation problem for long RTT flows.

 Given that congestion control on end-systems is voluntary, there is
 no reason why it has to be voluntarily RTT-dependent. Therefore
 [I-D.ietf-tsvwg-ecn-l4s-id] requires L4S congestion controls to be
 significantly less RTT-dependent than the standard Reno congestion
 control [RFC5681]. Following this approach means there is no need
 for network devices to address RTT-dependence, although there would
 be no harm if they did, which per-flow queuing inherently does.

 At the time of writing, the range of approaches to RTT-dependence in
 L4S congestion controls has not settled. Therefore, the guidance on
 the choice of the coupling factor in Appendix C.2 is given against
 DCTCP [RFC8257], which has well-understood RTT-dependence. The
 guidance is given for various RTT ratios, so that it can be adapted
 to future circumstances.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc8257

De Schepper, et al. Expires January 28, 2021 [Page 51]

Internet-Draft DualQ Coupled AQMs July 2020

C.2. Guidance on Controlling Throughput Equivalence

 +---------------+------+-------+
 | RTT_C / RTT_L | Reno | Cubic |
 +---------------+------+-------+
 | 1 | k'=1 | k'=0 |
 | 2 | k'=2 | k'=1 |
 | 3 | k'=2 | k'=2 |
 | 4 | k'=3 | k'=2 |
 | 5 | k'=3 | k'=3 |
 +---------------+------+-------+

 Table 1: Value of k' for which DCTCP throughput is roughly the same
 as Reno or Cubic, for some example RTT ratios

 In the above appendices that give example DualQ Coupled algorithms,
 to aid efficient implementation, a coupling factor that is an integer
 power of 2 is always used. k' is always used to denote the power. k'
 is related to the coupling factor k in Equation (1) (Section 2.1) by
 k=2^k'.

 To determine the appropriate coupling factor policy, the operator
 first has to judge whether it wants DCTCP flows to have roughly equal
 throughput with Reno or with Cubic (because, even in its Reno-
 compatibility mode, Cubic is about 1.4 times more aggressive than
 Reno). Then the operator needs to decide at what ratio of RTTs it
 wants DCTCP and Classic flows to have roughly equal throughput. For
 example choosing k'=0 (equivalent to k=1) will make DCTCP throughput
 roughly the same as Cubic, _if their RTTs are the same_.

 However, even if the base RTTs are the same, the actual RTTs are
 unlikely to be the same, because Classic (Cubic or Reno) traffic
 needs roughly a typical base round trip of queue to avoid under-
 utilization and excess drop. Whereas L4S (DCTCP) does not. The
 operator might still choose this policy if it judges that DCTCP
 throughput should be rewarded for keeping its own queue short.

 On the other hand, the operator will choose one of the higher values
 for k', if it wants to slow DCTCP down to roughly the same throughput
 as Classic flows, to compensate for Classic flows slowing themselves
 down by causing themselves extra queuing delay.

 The values for k' in the table are derived from the formulae below,
 which were developed in [DCttH15]:

 2^k' = 1.64 (RTT_reno / RTT_dc) (5)
 2^k' = 1.19 (RTT_cubic / RTT_dc) (6)

De Schepper, et al. Expires January 28, 2021 [Page 52]

Internet-Draft DualQ Coupled AQMs July 2020

 For localized traffic from a particular ISP's data centre, using the
 measured RTTs, it was calculated that a value of k'=3 (equivalant to
 k=8) would achieve throughput equivalence, and experiments verified
 the formula very closely.

 For a typical mix of RTTs from local data centres and across the
 general Internet, a value of k'=1 (equivalent to k=2) is recommended
 as a good workable compromise.

Authors' Addresses

 Koen De Schepper
 Nokia Bell Labs
 Antwerp
 Belgium

 Email: koen.de_schepper@nokia.com
 URI: https://www.bell-labs.com/usr/koen.de_schepper

 Bob Briscoe (editor)
 Independent
 UK

 Email: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

 Greg White
 CableLabs
 Louisville, CO
 US

 Email: G.White@CableLabs.com

https://www.bell-labs.com/usr/koen.de_schepper
http://bobbriscoe.net/

De Schepper, et al. Expires January 28, 2021 [Page 53]

