
Workgroup: Internet Engineering Task Force

Internet-Draft:

draft-ietf-tsvwg-datagram-plpmtud-21

Updates: 4821, 4960, 6951, 8085, 8261

(if approved)

Published: 12 May 2020

Intended Status: Standards Track

Expires: 13 November 2020

Authors: G. Fairhurst

University of Aberdeen

T. Jones

University of Aberdeen

M. Tuexen

Muenster University of Applied Sciences

I. Ruengeler

Muenster University of Applied Sciences

T. Voelker

Muenster University of Applied Sciences

Packetization Layer Path MTU Discovery for Datagram Transports

Abstract

This document describes a robust method for Path MTU Discovery

(PMTUD) for datagram Packetization Layers (PLs). It describes an

extension to RFC 1191 and RFC 8201, which specifies ICMP-based Path

MTU Discovery for IPv4 and IPv6. The method allows a PL, or a

datagram application that uses a PL, to discover whether a network

path can support the current size of datagram. This can be used to

detect and reduce the message size when a sender encounters a packet

black hole (where packets are discarded). The method can probe a

network path with progressively larger packets to discover whether

the maximum packet size can be increased. This allows a sender to

determine an appropriate packet size, providing functionality for

datagram transports that is equivalent to the Packetization Layer

PMTUD specification for TCP, specified in RFC 4821.

This document updates RFC 4821 to specify the PLPMTUD method for

datagram PLs. It also updates RFC 8085 to refer to the method

specified in this document instead of the method in RFC 4821 for use

with UDP datagrams. Section 7.3 of RFC 4960 recommends an endpoint

apply the techniques in RFC 4821 on a per-destination-address basis.

RFC 4960, RFC 6951, and RFC 8261 are updated to recommend that SCTP,

SCTP encapsulated in UDP and SCTP encapsulated in DTLS use the

method specified in this document instead of the method in RFC 4821.

The document also provides implementation notes for incorporating

Datagram PMTUD into IETF datagram transports or applications that

use datagram transports.

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc4821
https://www.rfc-editor.org/rfc/rfc4960
https://www.rfc-editor.org/rfc/rfc6951
https://www.rfc-editor.org/rfc/rfc8085
https://www.rfc-editor.org/rfc/rfc8261

When published, this specification updates RFC 4960, RFC 4821, RFC

8085 and RFC 8261.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 November 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Classical Path MTU Discovery

1.2. Packetization Layer Path MTU Discovery

1.3. Path MTU Discovery for Datagram Services

2. Terminology

3. Features Required to Provide Datagram PLPMTUD

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4. DPLPMTUD Mechanisms

4.1. PLPMTU Probe Packets

4.2. Confirmation of Probed Packet Size

4.3. Black Hole Detection and Reducing the PLPMTU

4.4. The Maximum Packet Size (MPS)

4.5. Disabling the Effect of PMTUD

4.6. Response to PTB Messages

4.6.1. Validation of PTB Messages

4.6.2. Use of PTB Messages

5. Datagram Packetization Layer PMTUD

5.1. DPLPMTUD Components

5.1.1. Timers

5.1.2. Constants

5.1.3. Variables

5.1.4. Overview of DPLPMTUD Phases

5.2. State Machine

5.3. Search to Increase the PLPMTU

5.3.1. Probing for a larger PLPMTU

5.3.2. Selection of Probe Sizes

5.3.3. Resilience to Inconsistent Path Information

5.4. Robustness to Inconsistent Paths

6. Specification of Protocol-Specific Methods

6.1. Application support for DPLPMTUD with UDP or UDP-Lite

6.1.1. Application Request

6.1.2. Application Response

6.1.3. Sending Application Probe Packets

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.1.4. Initial Connectivity

6.1.5. Validating the Path

6.1.6. Handling of PTB Messages

6.2. DPLPMTUD for SCTP

6.2.1. SCTP/IPv4 and SCTP/IPv6

6.2.1.1. Initial Connectivity

6.2.1.2. Sending SCTP Probe Packets

6.2.1.3. Validating the Path with SCTP

6.2.1.4. PTB Message Handling by SCTP

6.2.2. DPLPMTUD for SCTP/UDP

6.2.2.1. Initial Connectivity

6.2.2.2. Sending SCTP/UDP Probe Packets

6.2.2.3. Validating the Path with SCTP/UDP

6.2.2.4. Handling of PTB Messages by SCTP/UDP

6.2.3. DPLPMTUD for SCTP/DTLS

6.2.3.1. Initial Connectivity

6.2.3.2. Sending SCTP/DTLS Probe Packets

6.2.3.3. Validating the Path with SCTP/DTLS

6.2.3.4. Handling of PTB Messages by SCTP/DTLS

6.3. DPLPMTUD for QUIC

6.3.1. Initial Connectivity

6.3.2. Sending QUIC Probe Packets

6.3.3. Validating the Path with QUIC

6.3.4. Handling of PTB Messages by QUIC

7. Acknowledgments

8. IANA Considerations

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Revision Notes

Authors' Addresses

1. Introduction

The IETF has specified datagram transport using UDP, SCTP, and DCCP,

as well as protocols layered on top of these transports (e.g., SCTP/

UDP, DCCP/UDP, QUIC/UDP), and direct datagram transport over the IP

network layer. This document describes a robust method for Path MTU

Discovery (PMTUD) that can be used with these transport protocols

(or the applications that use their transport service) to discover

an appropriate size of packet to use across an Internet path.

1.1. Classical Path MTU Discovery

Classical Path Maximum Transmission Unit Discovery (PMTUD) can be

used with any transport that is able to process ICMP Packet Too Big

(PTB) messages (e.g., [RFC1191] and [RFC8201]). In this document,

the term PTB message is applied to both IPv4 ICMP Unreachable

messages (type 3) that carry the error Fragmentation Needed (Type 3,

Code 4) [RFC0792] and ICMPv6 Packet Too Big messages (Type 2)

[RFC4443]. When a sender receives a PTB message, it reduces the

effective MTU to the value reported as the Link MTU in the PTB

message. A method from time-to-time increases the packet size in

attempt to discover an increase in the supported PMTU. The packets

sent with a size larger than the current effective PMTU are known as

probe packets.

Packets not intended as probe packets are either fragmented to the

current effective PMTU, or the attempt to send fails with an error

code. Applications can be provided with a primitive to let them read

the Maximum Packet Size (MPS), derived from the current effective

PMTU.

Classical PMTUD is subject to protocol failures. One failure arises

when traffic using a packet size larger than the actual PMTU is

black-holed (all datagrams larger than the actual PMTU, are

discarded). This could arise when the PTB messages are not delivered

back to the sender for some reason (see for example [RFC2923]).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Examples where PTB messages are not delivered include:

The generation of ICMP messages is usually rate limited. This

could result in no PTB messages being generated to the sender

(see section 2.4 of [RFC4443])

ICMP messages can be filtered by middleboxes (including

firewalls) [RFC4890]. A firewall could be configured with a

policy to block incoming ICMP messages, which would prevent

reception of PTB messages to a sending endpoint behind this

firewall.

When the router issuing the ICMP message drops a tunneled packet,

the resulting ICMP message will be directed to the tunnel

ingress. This tunnel endpoint is responsible for forwarding the

ICMP message and also processing the quoted packet within the

payload field to remove the effect of the tunnel, and return a

correctly formatted ICMP message to the sender [I-D.ietf-intarea-

tunnels]. Failure to do this prevents the PTB message reaching

the original sender.

Asymmetry in forwarding can result in there being no return route

to the original sender, which would prevent an ICMP message being

delivered to the sender. This issue can also arise when policy-

based routing is used, Equal Cost Multipath (ECMP) routing is

used, or a middlebox acts as an application load balancer. An

example is where the path towards the server is chosen by ECMP

routing depending on bytes in the IP payload. In this case, when

a packet sent by the server encounters a problem after the ECMP

router, then any resulting ICMP message also needs to be directed

by the ECMP router towards the original sender.

There are additional cases where the next hop destination fails

to receive a packet because of its size. This could be due to

misconfiguration of the layer 2 path between nodes, for instance

the MTU configured in a layer 2 switch, or misconfiguration of

the Maximum Receive Unit (MRU). If a packet is dropped by the

link, this will not cause a PTB message to be sent to the

original sender.

Another failure could result if a node that is not on the network

path sends a PTB message that attempts to force a sender to change

the effective PMTU [RFC8201]. A sender can protect itself from

reacting to such messages by utilizing the quoted packet within a

PTB message payload to validate that the received PTB message was

generated in response to a packet that had actually originated from

the sender. However, there are situations where a sender would be

¶

*

¶

*

¶

*

¶

*

¶

*

¶

unable to provide this validation. Examples where validation of the

PTB message is not possible include:

When a router issuing the ICMP message implements RFC792

[RFC0792], it is only required to include the first 64 bits of

the IP payload of the packet within the quoted payload. There

could be insufficient bytes remaining for the sender to interpret

the quoted transport information.

Note: The recommendation in RFC1812 [RFC1812] is that IPv4

routers return a quoted packet with as much of the original

datagram as possible without the length of the ICMP datagram

exceeding 576 bytes. IPv6 routers include as much of the invoking

packet as possible without the ICMPv6 packet exceeding 1280 bytes

[RFC4443].

The use of tunnels/encryption can reduce the size of the quoted

packet returned to the original source address, increasing the

risk that there could be insufficient bytes remaining for the

sender to interpret the quoted transport information.

Even when the PTB message includes sufficient bytes of the quoted

packet, the network layer could lack sufficient context to

validate the message, because validation depends on information

about the active transport flows at an endpoint node (e.g., the

socket/address pairs being used, and other protocol header

information).

When a packet is encapsulated/tunneled over an encrypted

transport, the tunnel/encapsulation ingress might have

insufficient context, or computational power, to reconstruct the

transport header that would be needed to perform validation.

When an ICMP message is generated by a router in a network

segment that has inserted a header into a packet, the quoted

packet could contain additional protocol header information that

was not included in the original sent packet, and which the PL

sender does not process or may not know how to process. This

could disrupt the ability of the sender to validate this PTB

message.

A Network Address Translation (NAT) device that translates a

packet header, ought to also translate ICMP messages and update

the ICMP quoted packet [RFC5508] in that message. If this is not

correctly translated then the sender would not be able to

associate the message with the PL that originated the packet, and

hence this ICMP message cannot be validated.

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

1.2. Packetization Layer Path MTU Discovery

The term Packetization Layer (PL) has been introduced to describe

the layer that is responsible for placing data blocks into the

payload of IP packets and selecting an appropriate MPS. This

function is often performed by a transport protocol (e.g., DCCP,

RTP, SCTP, QUIC), but can also be performed by other encapsulation

methods working above the transport layer.

In contrast to PMTUD, Packetization Layer Path MTU Discovery

(PLPMTUD) [RFC4821] introduced a method that does not rely upon

reception and validation of PTB messages. It is therefore more

robust than Classical PMTUD. This has become the recommended

approach for implementing discovery of the PMTU [BCP145].

It uses a general strategy where the PL sends probe packets to

search for the largest size of unfragmented datagram that can be

sent over a network path. Probe packets are sent to explore using a

larger packet size. If a probe packet is successfully delivered (as

determined by the PL), then the PLPMTU is raised to the size of the

successful probe. If a black hole is detected (e.g., where packets

of size PLPMTU are consistently not received), the method reduces

the PLPMTU.

Datagram PLPMTUD introduces flexibility in implementation. At one

extreme, it can be configured to only perform Black Hole Detection

and recovery with increased robustness compared to Classical PMTUD.

At the other extreme, all PTB processing can be disabled, and

PLPMTUD replaces Classical PMTUD.

PLPMTUD can also include additional consistency checks without

increasing the risk that data is lost when probing to discover the

Path MTU. For example, information available at the PL, or higher

layers, enables received PTB messages to be validated before being

utilized.

1.3. Path MTU Discovery for Datagram Services

Section 5 of this document presents a set of algorithms for datagram

protocols to discover the largest size of unfragmented datagram that

can be sent over a network path. The method relies upon features of

the PL described in Section 3 and applies to transport protocols

operating over IPv4 and IPv6. It does not require cooperation from

the lower layers, although it can utilize PTB messages when these

received messages are made available to the PL.

The message size guidelines in section 3.2 of the UDP Usage

Guidelines [BCP145] state "an application SHOULD either use the Path

MTU information provided by the IP layer or implement Path MTU

Discovery (PMTUD)", but does not provide a mechanism for discovering

¶

¶

¶

¶

¶

¶

Acknowledged PL:

the largest size of unfragmented datagram that can be used on a

network path. The present document updates RFC 8085 to specify this

method in place of PLPMTUD [RFC4821] and provides a mechanism for

sharing the discovered largest size as the MPS (see Section 4.4).

Section 10.2 of [RFC4821] recommended a PLPMTUD probing method for

the Stream Control Transport Protocol (SCTP). SCTP utilizes probe

packets consisting of a minimal sized HEARTBEAT chunk bundled with a

PAD chunk as defined in [RFC4820]. However, RFC 4821 did not provide

a complete specification. The present document replaces that

description by providing a complete specification.

The Datagram Congestion Control Protocol (DCCP) [RFC4340] requires

implementations to support Classical PMTUD and states that a DCCP

sender "MUST maintain the MPS allowed for each active DCCP session".

It also defines the current congestion control MPS (CCMPS) supported

by a network path. This recommends use of PMTUD, and suggests use of

control packets (DCCP-Sync) as path probe packets, because they do

not risk application data loss. The method defined in this

specification can be used with DCCP.

Section 4 and Section 5 define the protocol mechanisms and

specification for Datagram Packetization Layer Path MTU Discovery

(DPLPMTUD).

Section 6 specifies the method for datagram transports and provides

information to enable the implementation of PLPMTUD with other

datagram transports and applications that use datagram transports.

Section 6 also provides updated recommendations for [RFC6951] and

[RFC8261].

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terminology is defined. Relevant terms are directly

copied from [RFC4821], and the definitions in [RFC1122].

A PL that includes a mechanism that can confirm

successful delivery of datagrams to the remote PL endpoint (e.g.,

SCTP). Typically, the PL receiver returns acknowledgments

¶

¶

¶

¶

¶

¶

¶

¶

Actual PMTU:

Black Hole:

Classical Path MTU Discovery:

Datagram:

Effective PMTU:

EMTU_S:

EMTU_R:

Link:

Link MTU:

corresponding to the received datagrams, which can be utilised to

detect black-holing of packets (c.f., Unacknowledged PL).

The Actual PMTU is the PMTU of a network path between

a sender PL and a destination PL, which the DPLPMTUD algorithm

seeks to determine.

A Black Hole is encountered when a sender is unaware

that packets are not being delivered to the destination end

point. Two types of Black Hole are relevant to DPLPMTUD:

Packets encounter a packet Black Hole when packets are not

delivered to the destination endpoint (e.g., when the

sender transmits packets of a particular size with a

previously known effective PMTU and they are discarded by

the network).

An ICMP Black Hole is encountered when the sender is

unaware that packets are not delivered to the destination

endpoint because PTB messages are not received by the

originating PL sender.

Classical PMTUD is a process

described in [RFC1191] and [RFC8201], in which nodes rely on PTB

messages to learn the largest size of unfragmented packet that

can be used across a network path.

A datagram is a transport-layer protocol data unit,

transmitted in the payload of an IP packet.

The Effective PMTU is the current estimated value

for PMTU that is used by a PMTUD. This is equivalent to the

PLPMTU derived by PLPMTUD plus the size of any headers added

below the PL, including the IP layer headers.

The Effective MTU for sending (EMTU_S) is defined in

[RFC1122] as "the maximum IP datagram size that may be sent, for

a particular combination of IP source and destination

addresses...".

The Effective MTU for receiving (EMTU_R) is designated in

[RFC1122] as "the largest datagram size that can be reassembled".

A Link is a communication facility or medium over which nodes

can communicate at the link layer, i.e., a layer below the IP

layer. Examples are Ethernet LANs and Internet (or higher) layer

tunnels.

The Link Maximum Transmission Unit (MTU) is the size in

bytes of the largest IP packet, including the IP header and

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

MAX_PLPMTU:

MIN_PLPMTU:

MPS:

MSL:

Packet:

Packetization Layer (PL):

Path:

Path MTU (PMTU):

PTB:

payload, that can be transmitted over a link. Note that this

could more properly be called the IP MTU, to be consistent with

how other standards organizations use the acronym. This includes

the IP header, but excludes link layer headers and other framing

that is not part of IP or the IP payload. Other standards

organizations generally define the link MTU to include the link

layer headers. This specification continues the requirement in

[RFC4821], that states "All links MUST enforce their MTU: links

that might non- deterministically deliver packets that are larger

than their rated MTU MUST consistently discard such packets."

The MAX_PLPMTU is the largest size of PLPMTU that

DPLPMTUD will attempt to use (see the constants defined in

Section 5.1.2).

The MIN_PLPMTU is the smallest size of PLPMTU that

DPLPMTUD will attempt to use (see the constants defined in

Section 5.1.2).

The Maximum Packet Size (MPS) is the largest size of

application data block that can be sent across a network path by

a PL using a single Datagram.

Maximum Segment Lifetime (MSL) The maximum delay a packet is

expected to experience across a path, taken as 2 minutes

[BCP145].

A Packet is the IP header(s) and any extension headers/

options plus the IP payload.

The PL is a layer of the network stack

that places data into packets and performs transport protocol

functions. Examples of a PL include: TCP, SCTP, SCTP over UDP,

SCTP over DTLS, or QUIC.

The Path is the set of links and routers traversed by a

packet between a source node and a destination node by a

particular flow.

The Path MTU (PMTU) is the minimum of the Link MTU

of all the links forming a network path between a source node and

a destination node, as used by PMTUD.

In this document, the term PTB message is applied to both IPv4

ICMP Unreachable messages (type 3) that carry the error

¶

¶

¶

¶

¶

¶

¶

¶

¶

PTB_SIZE:

PL_PTB_SIZE:

PLPMTU:

PLPMTUD:

Probe packet:

Unacknowledged PL:

Fragmentation Needed (Type 3, Code 4) [RFC0792] and ICMPv6 Packet

Too Big messages (Type 2) [RFC4443].

The PTB_SIZE is a value reported in a validated PTB

message that indicates next hop link MTU of a router along the

path.

The size reported in a validated PTB message, reduced

by the size of all headers added by layers below the PL.

The Packetization Layer PMTU is an estimate of the largest

size of PL datagram that can be sent by a path, controled by

PLPMTUD.

Packetization Layer Path MTU Discovery (PLPMTUD), the

method described in this document for datagram PLs, which is an

extension to Classical PMTU Discovery.

A probe packet is a datagram sent with a purposely

chosen size (typically the current PLPMTU or larger) to detect if

packets of this size can be successfully sent end-to-end across

the network path.

A PL that does not itself provide a mechanism to

confirm delivery of datagrams to the remote PL endpoint (e.g.,

UDP), and therefore requires DPLPMTUD to provide a mechanism to

detect black-holing of packets (c.f., Acknowledged PL).

3. Features Required to Provide Datagram PLPMTUD

The principles expressed in [RFC4821] apply to the use of the

technique with any PL. TCP PLPMTUD has been defined using standard

TCP protocol mechanisms. Unlike TCP, a datagram PL requires

additional mechanisms and considerations to implement PLPMTUD.

The requirements for datagram PLPMTUD are:

Managing the PLPMTU: For datagram PLs, the PLPMTU is managed by

DPLPMTUD. A PL MUST NOT send a datagram (other than a probe

packet) with a size at the PL that is larger than the current

PLPMTU.

Probe packets: The network interface below PL is REQUIRED to

provide a way to transmit a probe packet that is larger than

the PLPMTU. In IPv4, a probe packet MUST be sent with the Don't

Fragment (DF) bit set in the IP header, and without network

layer endpoint fragmentation. In IPv6, a probe packet is always

sent without source fragmentation (as specified in section 5.4

of [RFC8201]).

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

Reception feedback: The destination PL endpoint is REQUIRED to

provide a feedback method that indicates to the DPLPMTUD sender

when a probe packet has been received by the destination PL

endpoint. Section 6 provides examples of how a PL can provide

this acknowledgment of received probe packets.

Probe loss recovery: It is RECOMMENDED to use probe packets

that do not carry any user data that would require

retransmission if lost. Most datagram transports permit this.

If a probe packet contains user data requiring retransmission

in case of loss, the PL (or layers above) are REQUIRED to

arrange any retransmission/repair of any resulting loss. The PL

is REQUIRED to be robust in the case where probe packets are

lost due to other reasons (including link transmission error,

congestion).

PMTU parameters: A DPLPMTUD sender is RECOMMENDED to utilize

information about the maximum size of packet that can be

transmitted by the sender on the local link (e.g., the local

Link MTU). A PL sender MAY utilize similar information about

the maximum size of network layer packet that a receiver can

accept when this is supplied (note this could be less than

EMTU_R). This avoids implementations trying to send probe

packets that can not be transferred by the local link. Too high

of a value could reduce the efficiency of the search algorithm.

Some applications also have a maximum transport protocol data

unit (PDU) size, in which case there is no benefit from probing

for a size larger than this (unless a transport allows

multiplexing multiple applications PDUs into the same

datagram).

Processing PTB messages: A DPLPMTUD sender MAY optionally

utilize PTB messages received from the network layer to help

identify when a network path does not support the current size

of probe packet. Any received PTB message MUST be validated

before it is used to update the PLPMTU discovery information

[RFC8201]. This validation confirms that the PTB message was

sent in response to a packet originating by the sender, and

needs to be performed before the PLPMTU discovery method reacts

to the PTB message. A PTB message MUST NOT be used to increase

the PLPMTU [RFC8201], but could trigger a probe to test for a

larger PLPMTU. A valid PTB_SIZE is converted to a PL_PTB_SIZE

before it is to be used in the DPLPMTUD state machine. A

PL_PTB_SIZE that is greater than that currently probed SHOULD

be ignored. (This PTB message ought to be discarded without

further processing, but could be utilized as an input that

enables a resilience mode).

3.

¶

4.

¶

5.

¶

6.

¶

Probing and congestion control: A PL MAY use a congestion

controller to decide when to send a probe packet. If

transmission of probe packets is limited by the congestion

controller, this could result in transmission of probe packets

being delayed or suspended during congestion. When the

transmission of probe packets is not controlled by the

congestion controller, the interval between probe packets MUST

be at least one RTT. Loss of a probe packet SHOULD NOT be

treated as an indication of congestion and SHOULD NOT trigger a

congestion control reaction [RFC4821], because this could

result in unnecessary reduction of the sending rate. An update

to the PLPMTU (or MPS) MUST NOT increase the congestion window

measured in bytes [RFC4821]. Therefore, an increase in the

packet size does not cause an increase in the data rate in

bytes per second. A PL that maintains the congestion window in

terms of a limit to the number of outstanding fixed size

packets SHOULD adapt this limit to compensate for the size of

the actual packets. The transmission of probe packets can

interact with the operation of a PL that performs burst

mitigation or pacing and could need transmission of probe

packets to be regulated by these methods.

Probing and flow control: Flow control at the PL concerns the

end-to-end flow of data using the PL service. Flow control

SHOULD NOT apply to DPLPMTU when probe packets use a design

that does not carry user data to the remote application.

Shared PLPMTU state: The PMTU value calculated from the PLPMTU

MAY also be stored with the corresponding entry associated with

the destination in the IP layer cache, and used by other PL

instances. The specification of PLPMTUD [RFC4821] states: "If

PLPMTUD updates the MTU for a particular path, all

Packetization Layer sessions that share the path representation

(as described in Section 5.2 of [RFC4821]) SHOULD be notified

to make use of the new MTU". Such methods MUST be robust to the

wide variety of underlying network forwarding behaviors.

Section 5.2 of [RFC8201] provides guidance on the caching of

PMTU information and also the relation to IPv6 flow labels.

In addition, the following principles are stated for design of a

DPLPMTUD method:

A PL MAY be designed to segment data blocks larger than the MPS

into multiple datagrams. However, not all datagram PLs support

segmentation of data blocks. It is RECOMMENDED that methods avoid

forcing an application to use an arbitrary small MPS for

transmission while the method is searching for the currently

supported PLPMTU. A reduced MPS can adversely impact the

performance of an application.

7.

¶

8.

¶

9.

¶

¶

*

¶

To assist applications in choosing a suitable data block size,

the PL is RECOMMENDED to provide a primitive that returns the MPS

derived from the PLPMTU to the higher layer using the PL. The

value of the MPS can change following a change in the path, or

loss of probe packets.

Path validation: It is RECOMMENDED that methods are robust to

path changes that could have occurred since the path

characteristics were last confirmed, and to the possibility of

inconsistent path information being received.

Datagram reordering: A method is REQUIRED to be robust to the

possibility that a flow encounters reordering, or the traffic

(including probe packets) is divided over more than one network

path.

Datagram delay and duplication: The feedback mechanism is

REQUIRED to be robust to the possibility that packets could be

significantly delayed or duplicated along a network path.

When to probe: It is RECOMMENDED that methods determine whether

the path has changed since it last measured the path. This can

help determine when to probe the path again.

4. DPLPMTUD Mechanisms

This section lists the protocol mechanisms used in this

specification.

4.1. PLPMTU Probe Packets

The DPLPMTUD method relies upon the PL sender being able to generate

probe packets with a specific size. TCP is able to generate these

probe packets by choosing to appropriately segment data being sent

[RFC4821]. In contrast, a datagram PL that constructs a probe packet

has to either request an application to send a data block that is

larger than that generated by an application, or to utilize padding

functions to extend a datagram beyond the size of the application

data block. Protocols that permit exchange of control messages

(without an application data block) can generate a probe packet by

extending a control message with padding data. The total size of a

probe packet includes all headers and padding added to the payload

data being sent (e.g., including protocol option fields, security-

related fields such as an Authenticated Encryption with Associated

Data (AEAD) tag and TLS record layer padding).

A receiver is REQUIRED to be able to distinguish an in-band data

block from any added padding. This is needed to ensure that any

added padding is not passed on to an application at the receiver.

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

Probing using padding data:

Probing using application data and padding data:

Probing using application data:

This results in three possible ways that a sender can create a probe

packet:

A probe packet that contains only

control information together with any padding, which is needed to

be inflated to the size of the probe packet. Since these probe

packets do not carry an application-supplied data block, they do

not typically require retransmission, although they do still

consume network capacity and incur endpoint processing.

A probe packet

that contains a data block supplied by an application that is

combined with padding to inflate the length of the datagram to

the size of the probe packet.

A probe packet that contains a data

block supplied by an application that matches the size of the

probe packet. This method requests the application to issue a

data block of the desired probe size.

A PL that uses a probe packet carrying application data and needs

protection from the loss of this probe packet could perform

transport-layer retransmission/repair of the data block (e.g., by

retransmission after loss is detected or by duplicating the data

block in a datagram without the padding data). This retransmitted

data block might possibly need to be sent using a smaller PLPMTU,

which could force the PL to to use a smaller packet size to traverse

the end-to-end path. (This could utilize endpoint network-layer

fragmentation or a PL that can re-segment the data block into

multiple datagrams).

DPLPMTUD MAY choose to use only one of these methods to simplify the

implementation.

Probe messages sent by a PL MUST contain enough information to

uniquely identify the probe within Maximum Segment Lifetime (e.g.,

including a unique identifier from the PL or the DPLPMTUD

implementation), while being robust to reordering and replay of

probe response and PTB messages.

4.2. Confirmation of Probed Packet Size

The PL needs a method to determine (confirm) when probe packets have

been successfully received end-to-end across a network path.

Transport protocols can include end-to-end methods that detect and

report reception of specific datagrams that they send (e.g., DCCP,

SCTP, and QUIC provide keep-alive/heartbeat features). When

supported, this mechanism MAY also be used by DPLPMTUD to

acknowledge reception of a probe packet.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A PL that does not acknowledge data reception (e.g., UDP and UDP-

Lite) is unable itself to detect when the packets that it sends are

discarded because their size is greater than the actual PMTU. These

PLs need to rely on an application protocol to detect this loss.

Section 6 specifies this function for a set of IETF-specified

protocols.

4.3. Black Hole Detection and Reducing the PLPMTU

The description that follows uses the set of constants defined in

Section 5.1.2 and variables defined in Section 5.1.3.

Black Hole Detection is triggered by an indication that the network

path could be unable to support the current PLPMTU size.

There are three indicators that can detect black holes:

A validated PTB message can be received that indicates a

PL_PTB_SIZE less than the current PLPMTU. A DPLPMTUD method MUST

NOT rely solely on this method.

A PL can use the DPLPMTUD probing mechanism to periodically

generate probe packets of the size of the current PLPMTU (e.g.,

using the confirmation timer Section 5.1.1). A timer tracks

whether acknowledgments are received. Successive loss of probes

is an indication that the current path no longer supports the

PLPMTU (e.g., when the number of probe packets sent without

receiving an acknowledgment, PROBE_COUNT, becomes greater than

MAX_PROBES).

A PL can utilize an event that indicates the network path no

longer sustains the sender's PLPMTU size. This could use a

mechanism implemented within the PL to detect excessive loss of

data sent with a specific packet size and then conclude that this

excessive loss could be a result of an invalid PLPMTU (as in

PLPMTUD for TCP [RFC4821]).

The three methods can result in different transmission patterns for

packet probes and are expected to result in different responsiveness

following a change in the actual PMTU.

A PL MAY inhibit sending probe packets when no application data has

been sent since the previous probe packet. A PL that resumes sending

user data MAY continue PLPMTU discovery for each path. This allows

it to use an up-to-date PLPMTU. However, this could result in

additional packets being sent.

When the method detects the current PLPMTU is not supported,

DPLPMTUD sets a lower PLPMTU, and sets a lower MPS. The PL then

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

confirms that the new PLPMTU can be successfully used across the

path. A probe packet could need to have a size less than the size of

the data block generated by the application.

4.4. The Maximum Packet Size (MPS)

The result of probing determines a usable PLPMTU, which is used to

set the MPS used by the application. The MPS is smaller than the

PLPMTU because it is reduced by the size of PL headers (including

the overhead of security-related fields such as an AEAD tag and TLS

record layer padding). The relationship between the MPS and the

PLPMTUD is illustrated in Figure 1.

a e

| da a

d i

T

| p o o t

L

a
S

M

a
M

nal
d

P U

n t
rs P

P | L

d o

TU

c

M

r ol

y
h

P t

e

I

P

i

P

Figure 1: Relationship between MPS and PLPMTU

A PL is unable to send a packet (other than a probe packet) with a

size larger than the current PLPMTU at the network layer. To avoid

this, a PL MAY be designed to segment data blocks larger than the

MPS into multiple datagrams.

DPLPMTUD seeks to avoid IP fragmentation. An attempt to send a data

block larger than the MPS will therefore fail if a PL is unable to

segment data. To determine the largest data block that can be sent,

a PL SHOULD provide applications with a primitive that returns the

MPS, derived from the current PLPMTU.

If DPLPMTUD results in a change to the MPS, the application needs to

adapt to the new MPS. A particular case can arise when packets have

been sent with a size less than the MPS and the PLPMTU was

subsequently reduced. If these packets are lost, the PL MAY segment

the data using the new MPS. If a PL is unable to re-segment a

previously sent datagram (e.g., [RFC4960]), then the sender either

discards the datagram or could perform retransmission using network-

layer fragmentation to form multiple IP packets not larger than the

PLPMTU. For IPv4, the use of endpoint fragmentation by the sender is

preferred over clearing the DF bit in the IPv4 header. Operational

experience reveals that IP fragmentation can reduce the reliability

¶

¶

¶

¶

¶

of Internet communication [I-D.ietf-intarea-frag-fragile], which may

reduce the probability of successful retransmission.

4.5. Disabling the Effect of PMTUD

A PL implementing this specification MUST suspend network layer

processing of outgoing packets that enforces a PMTU [RFC1191]

[RFC8201] for each flow utilizing DPLPMTUD, and instead use DPLPMTUD

to control the size of packets that are sent by a flow. This removes

the need for the network layer to drop or fragment sent packets that

have a size greater than the PMTU.

4.6. Response to PTB Messages

This method requires the DPLPMTUD sender to validate any received

PTB message before using the PTB information. The response to a PTB

message depends on the PL_PTB_SIZE calculated from the PTB_SIZE in

the PTB message, the state of the PLPMTUD state machine, and the IP

protocol being used.

Section 4.6.1 first describes validation for both IPv4 ICMP

Unreachable messages (type 3) and ICMPv6 Packet Too Big messages,

both of which are referred to as PTB messages in this document.

4.6.1. Validation of PTB Messages

This section specifies utilization and validation of PTB messages.

A simple implementation MAY ignore received PTB messages and in

this case the PLPMTU is not updated when a PTB message is

received.

A PL that supports PTB messages MUST validate these messages

before they are further processed.

A PL that receives a PTB message from a router or middlebox performs

ICMP validation (see Section 4 of [RFC8201] and Section 5.2 of

[BCP145]). Because DPLPMTUD operates at the PL, the PL needs to

check that each received PTB message is received in response to a

packet transmitted by the endpoint PL performing DPLPMTUD.

The PL MUST check the protocol information in the quoted packet

carried in an ICMP PTB message payload to validate the message

originated from the sending node. This validation includes

determining that the combination of the IP addresses, the protocol,

the source port and destination port match those returned in the

quoted packet - this is also necessary for the PTB message to be

passed to the corresponding PL.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

PL_PTB_SIZE < MIN_PLPMTU

The validation SHOULD utilize information that it is not simple for

an off-path attacker to determine [BCP145]. For example, it could

check the value of a protocol header field known only to the two PL

endpoints. A datagram application that uses well-known source and

destination ports ought to also rely on other information to

complete this validation.

These checks are intended to provide protection from packets that

originate from a node that is not on the network path. A PTB message

that does not complete the validation MUST NOT be further utilized

by the DPLPMTUD method, as discussed in the Security Considerations

section.

Section 4.6.2 describes this processing of PTB messages.

4.6.2. Use of PTB Messages

PTB messages that have been validated MAY be utilized by the

DPLPMTUD algorithm, but MUST NOT be used directly to set the PLPMTU.

Before using the size reported in the PTB message it must first be

converted to a PL_PTB_SIZE. The PL_PTB_SIZE is smaller than the

PTB_SIZE because it is reduced by headers below the PL including any

IP options or extensions added to the PL packet.

A method that utilizes these PTB messages can improve the speed at

which the algorithm detects an appropriate PLPMTU by triggering an

immediate probe for the PL_PTB_SIZE (resulting in a network-layer

packet of size PTB_SIZE), compared to one that relies solely on

probing using a timer-based search algorithm.

A set of checks are intended to provide protection from a router

that reports an unexpected PTB_SIZE. The PL also needs to check that

the indicated PL_PTB_SIZE is less than the size used by probe

packets and at least the minimum size accepted.

This section provides a summary of how PTB messages can be utilized.

(This uses the set of constants defined in Section 5.1.2). This

processing depends on the PL_PTB_SIZE and the current value of a set

of variables:

Invalid PL_PTB_SIZE see Section 4.6.1.

PTB message ought to be discarded without further

processing (i.e., PLPMTU is not modified).

The information could be utilized as an input that triggers

enabling a resilience mode (see Section 5.3.3).

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

MIN_PLPMTU < PL_PTB_SIZE < BASE_PLPMTU

BASE_PLPMTU <= PL_PTB_SIZE < PLPMTU

PLPMTU < PL_PTB_SIZE < PROBED_SIZE

PL_PTB_SIZE >= PROBED_SIZE

A robust PL MAY enter an error state (see Section 5.2) for

an IPv4 path when the PL_PTB_SIZE reported in the PTB

message is larger than or equal to 68 bytes [RFC0791] and

when this is less than the BASE_PLPMTU.

A robust PL MAY enter an error state (see Section 5.2) for

an IPv6 path when the PL_PTB_SIZE reported in the PTB

message is larger than or equal to 1280 bytes [RFC8200] and

when this is less than the BASE_PLPMTU.

This could be an indication of a black hole. The PLPMTU

SHOULD be set to BASE_PLPMTU (the PLPMTU is reduced to the

BASE_PLPMTU to avoid unnecessary packet loss when a black

hole is encountered).

The PL ought to start a search to quickly discover the new

PLPMTU. The PL_PTB_SIZE reported in the PTB message can be

used to initialize a search algorithm.

The PLPMTU continues to be valid, but the size of a packet

used to search (PROBED_SIZE) was larger than the actual

PMTU.

The PLPMTU is not updated.

The PL can use the reported PL_PTB_SIZE from the PTB

message as the next search point when it resumes the search

algorithm.

Inconsistent network signal.

PTB message ought to be discarded without further

processing (i.e., PLPMTU is not modified).

The information could be utilized as an input to trigger

enabling a resilience mode.

5. Datagram Packetization Layer PMTUD

This section specifies Datagram PLPMTUD (DPLPMTUD). The method can

be introduced at various points (as indicated with * in the figure

below) in the IP protocol stack to discover the PLPMTU so that an

application can utilize an appropriate MPS for the current network

path.

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

¶

PROBE_TIMER:

DPLPMTUD SHOULD only be performed at one layer between a pair of

endpoints. Therefore, an upper PL or application should avoid using

DPLPMTUD when this is already enabled in a lower layer. A PL MUST

adjust the MPS indicated by DPLPMTUD to account for any additional

overhead introduced by the PL.

D

a

n*

U

r I e c

p o

P

e

I *

t

Q *

e o

l atA

w n

P

t

p c

U

T

k

i

C C

rf

i

S

N

Figure 2: Examples where DPLPMTUD can be implemented

The central idea of DPLPMTUD is probing by a sender. Probe packets

are sent to find the maximum size of user message that can be

completely transferred across the network path from the sender to

the destination.

The following sections identify the components needed for

implementation, provides an overview of the phases of operation, and

specifies the state machine and search algorithm.

5.1. DPLPMTUD Components

This section describes the timers, constants, and variables of

DPLPMTUD.

5.1.1. Timers

The method utilizes up to three timers:

The PROBE_TIMER is configured to expire after a period

longer than the maximum time to receive an acknowledgment to a

probe packet. This value MUST NOT be smaller than 1 second, and

SHOULD be larger than 15 seconds. Guidance on selection of the

timer value are provided in Section 3.1.1 of the UDP Usage

Guidelines [BCP145].

¶

¶

¶

¶

¶

¶

¶

PMTU_RAISE_TIMER:

CONFIRMATION_TIMER:

MAX_PROBES:

MIN_PLPMTU:

The PMTU_RAISE_TIMER is configured to the period

a sender will continue to use the current PLPMTU, after which it

re-enters the Search phase. This timer has a period of 600

seconds, as recommended by PLPMTUD [RFC4821].

DPLPMTUD MAY inhibit sending probe packets when no application

data has been sent since the previous probe packet. A PL

preferring to use an up-to-date PMTU once user data is sent

again, can choose to continue PMTU discovery for each path.

However, this will result in sending additional packets.

When an acknowledged PL is used, this timer

MUST NOT be used. For other PLs, the CONFIRMATION_TIMER is

configured to the period a PL sender waits before confirming the

current PLPMTU is still supported. This is less than the

PMTU_RAISE_TIMER and used to decrease the PLPMTU (e.g., when a

black hole is encountered). Confirmation needs to be frequent

enough when data is flowing that the sending PL does not black

hole extensive amounts of traffic. Guidance on selection of the

timer value are provided in Section 3.1.1 of the UDP Usage

Guidelines [BCP145].

DPLPMTUD MAY inhibit sending probe packets when no application

data has been sent since the previous probe packet. A PL

preferring to use an up-to-date PMTU once user data is sent

again, can choose to continue PMTU discovery for each path.

However, this could result in sending additional packets.

DPLPMTD specifies various timers, however an implementation could

choose to realise these timer functions using a single timer.

5.1.2. Constants

The following constants are defined:

The MAX_PROBES is the maximum value of the PROBE_COUNT

counter (see Section 5.1.3). MAX_PROBES represents the limit for

the number of consecutive probe attempts of any size. Search

algorithms benefit from a MAX_PROBES value greater than 1 because

this can provide robustness to isolated packet loss. The default

value of MAX_PROBES is 3.

The MIN_PLPMTU is the smallest size of PLPMTU that

DPLPMTUD will attempt to use. For IPv6, this size is greater than

or equal to the size at the PL that results in an 1280 byte IPv6

packet, as specified in [RFC8200]. For IPv4, this size is greater

than or equal to the size at the PL that results in an 68 byte

IPv4 packet. Note: An IPv4 router is required to be able to

forward a datagram of 68 bytes without further fragmentation.

¶

¶

¶

¶

¶

¶

¶

MAX_PLPMTU:

BASE_PLPMTU:

PROBED_SIZE:

PROBE_COUNT:

This is the combined size of an IPv4 header and the minimum

fragment size of 8 bytes. In addition, receivers are required to

be able to reassemble fragmented datagrams at least up to 576

bytes, as stated in section 3.3.3 of [RFC1122].

The MAX_PLPMTU is the largest size of PLPMTU. This has

to be less than or equal to the maximum size of the PL packet

that can be sent on the outgoing interface (constrained by the

local interface MTU). When known, this also ought to be less than

the maximum size of PL packet that can be received by the remote

endpoint (constrained by EMTU_R). It can be limited by the design

or configuration of the PL being used. An application, or PL, MAY

choose a smaller MAX_PLPMTU when there is no need to send packets

larger than a specific size.

The BASE_PLPMTU is a configured size expected to work

for most paths. The size is equal to or larger than the

MIN_PLPMTU and smaller than the MAX_PLPMTU. For most PLs a

suitable BASE_PLPMTU will be larger than 1200 bytes. When using

IPv4, there is no currently equivalent size specified and a

default BASE_PLPMTU of 1200 bytes is RECOMMENDED.

5.1.3. Variables

This method utilizes a set of variables:

The PROBED_SIZE is the size of the current probe

packet as determined at the PL. This is a tentative value for the

PLPMTU, which is awaiting confirmation by an acknowledgment.

The PROBE_COUNT is a count of the number of successive

unsuccessful probe packets that have been sent. Each time a probe

packet is acknowledged, the value is set to zero. (Some probe

loss is expected while searching, therefore loss of a single

probe is not an indication of a PMTU problem.)

The figure below illustrates the relationship between the packet

size constants and variables at a point of time when the DPLPMTUD

algorithm performs path probing to increase the size of the PLPMTU.

A probe packet has been sent of size PROBED_SIZE. Once this is

acknowledged, the PLPMTU will raise to PROBED_SIZE allowing the

DPLPMTUD algorithm to further increase PROBED_SIZE toward sending a

probe with the size of the actual PMTU.

¶

¶

¶

¶

¶

¶

¶

Base:

_ L

M
O E

P U

N L

_ IZ

PM X P U

E
E

_ A

B
D

L T

P T M

S P T
B

P

MI

_
S

U T

A U
R

M

M P

PL
P

Figure 3: Relationships between packet size constants and variables

5.1.4. Overview of DPLPMTUD Phases

This section provides a high-level informative view of the DPLPMTUD

method, by describing the movement of the method through several

phases of operation. More detail is available in the state machine

Section 5.2.

P

t
a

S

a

c

a

c

r

v

m

i
E
m

t

n

n

o

i

o

o

M

e

e

H T

C

n

n

e

U

E

y
P

i

U
v

d

h

C

i
o

e

l A _
a c

d
r r

n

y

n

i
e

c

S

e

e

B

a

d

o

P U
i

S

B

o

o

d

l

e
S
i

p

B
h

r

n

f

r

t

r

t

P
d

n
_

c
t

e
l

e

f

i

i

i

L

k L

t

e

r

M

e

c

t
a

d

E

e M

n

S

S

i

A

c e

a

i

C

i e
is

c

c
m
r

n

nf

a

c

B

h
t

i

te

_

P

r

R

f o

n

o
A T

i

d

l

l

T

L

E

c

a e t

m e

o t

m

x

d

t
o
e

s

m

t

g

o

d

m

P
a

r

c

l o

e

s

h

r

r

p

t

o

n

s

a

C n
v

te c

e

y
r

B

e

p

Figure 4: DPLPMTUD Phases

The Base Phase confirms connectivity to the remote peer using

packets of the BASE_PLPMTU. The confirmation of connectivity is

implicit for a connection-oriented PL (where it can be performed

in a PL connection handshake). A connectionless PL sends a probe

packet and uses acknowledgment of this probe packet to confirm

that the remote peer is reachable.

¶

¶

¶

¶

Search:

Search Complete:

Error:

The sender also confirms that BASE_PLPMTU is supported across the

network path. This may be achieved using a PL mechanism (e.g.,

using a handshake packet of size BASE_PLPMTU), or by sending a

probe packet of size BASE_PLPMTU and confirming that this is

received.

A probe packet of size BASE_PLPMTU can be sent immediately on the

initial entry to the Base Phase (following a connectivity check).

A PL that does not wish to support a path with a PLPMTU less than

BASE_PLPMTU can simplify the phase into a single step by

performing the connectivity checks with a probe of the

BASE_PLPMTU size.

Once confirmed, DPLPMTUD enters the Search Phase. If the Base

Phase fails to confirm the BASE_PLPMTU, DPLPMTUD enters the Error

Phase.

The Search Phase utilizes a search algorithm to send probe

packets to seek to increase the PLPMTU. The algorithm concludes

when it has found a suitable PLPMTU, by entering the Search

Complete Phase.

A PL could respond to PTB messages using the PTB to advance or

terminate the search, see Section 4.6.

The Search Complete Phase is entered when the

PLPMTU is supported across the network path. A PL can use a

CONFIRMATION_TIMER to periodically repeat a probe packet for the

current PLPMTU size. If the sender is unable to confirm

reachability (e.g., if the CONFIRMATION_TIMER expires) or the PL

signals a lack of reachability, a black hole has been detected

and DPLPMTUD enters the Base phase.

The PMTU_RAISE_TIMER is used to periodically resume the search

phase to discover if the PLPMTU can be raised. Black Hole

Detection causes the sender to enter the Base Phase.

The Error Phase is entered when there is conflicting or

invalid PLPMTU information for the path (e.g., a failure to

support the BASE_PLPMTU) that cause DPLPMTUD to be unable to

progress and the PLPMTU is lowered.

DPLPMTUD remains in the Error Phase until a consistent view of

the path can be discovered and it has also been confirmed that

the path supports the BASE_PLPMTU (or DPLPMTUD is suspended).

A method that only reduces the PLPMTU to a suitable size would be

sufficient to ensure reliable operation, but can be very inefficient

when the actual PMTU changes or when the method (for whatever

reason) makes a suboptimal choice for the PLPMTU.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A full implementation of DPLPMTUD provides an algorithm enabling the

DPLPMTUD sender to increase the PLPMTU following a change in the

characteristics of the path, such as when a link is reconfigured

with a larger MTU, or when there is a change in the set of links

traversed by an end-to-end flow (e.g., after a routing or path fail-

over decision).

5.2. State Machine

A state machine for DPLPMTUD is depicted in Figure 5. If multipath

or multihoming is supported, a state machine is needed for each

path.

Note: Not all changes are shown to simplify the diagram.

¶

¶

¶

DISABLED:

o E

R

R

e

E

C

C

T x _

i
P

e

=

P

X

E

k

R

r

M

N
P

e

R

B

d

R

E

C

U

T

I
P

O I
o

A

L o

E

I

e

d

B
NT

C G

P

i
P

B t

E
o

I

T

r
U

k

B

E

_
R

t

P

_

o

o

E

i B

E

M

=

S

o

p

< _

a

P P

B
L

e

l

E

i

O
p

v

L

R

B
M

O

A

R

C

H O E

P M
k

R

R

P
E

_

y

i
i

L R

B

S

a

I

B

T :

c

S

Z

e

E

E
a T

v

R O

I
E

n

y

Z

x
P

B

p

X

S
I

O

E

x

S
k

O

P

I

T

e
M

i

A

c

y

r
a

P

M

_

C
P

A

p MA

i

O X

E

M P

B
e

T

S

x

U

P

C

P

y

A
d

t

B
I

d

c

R
X

i

c d

I

N

e

s

e

T

S

L

U

O

<

P

PT _
O

M

E

_

M
B

B

O
r

R

o

T

M x
T

O

A
T

n

T

:
U

S

t

E

M

_

e

e

s

_

y

r t

O

P

D

_

tl

E

y
X

l

P

P

x
P

i

I

T

L

U

A

T

E

N

<

E

:
A

L

t
e

R

:

a
f

k

c

B C

S

t

M

P P

l

E

M

h

o
O

Z

ec T

e

t

B

e

N

r
O

o

A

b

c

R

M

i

e

_

o

T

t

E

I
B

:

e

p

E

P

b

R

P
_

R

T

D R

L

_

U OB

t

d

E

C
M

c

I

B

_

d h

E R

b

o

M

a

S

E

:

:

N

p
<

P
P

B

c

d
y

d
T <

D

S

e

R

R

L

R

O

AS

M i R y

S

PR
T

e

O

R

_

c

P

r

T e

k
M

_

P

P

r

P

P

i

U E

_

_

S

r

=
_

P

s

M

P
F

n

P

B

L

B

r

a
B

U
a

E

B
c

O

SL Z

N

t i

S

_

l

A r

B

n

O
U

d

S

_

P T

P
r

a

_

B o

<

r

L

o

A R

r

L
T

e

_
T

O
_

c

I

e
_

X
r

n

s
_

U

o

_

o

P E

M

r

U
B

e

H

P

O

I

T
N

E

E

:

E

O

P

r

A
c

e

e
O

R

E

n

c b

Figure 5: State machine for Datagram PLPMTUD

The following states are defined:

The DISABLED state is the initial state before probing

has started. It is also entered from any other state, when the PL

indicates loss of connectivity. This state is left once the PL

indicates connectivity to the remote PL. When transitioning to

¶

¶

¶

BASE:

SEARCHING:

SEARCH_COMPLETE:

the BASE state, a probe packet of size BASE_PLPMTU can be sent

immediately.

The BASE state is used to confirm that the BASE_PLPMTU size

is supported by the network path and is designed to allow an

application to continue working when there are transient

reductions in the actual PMTU. It also seeks to avoid long

periods when a sender searching for a larger PLPMTU is unaware

that packets are not being delivered due to a packet or ICMP

Black Hole.

On entry, the PROBED_SIZE is set to the BASE_PLPMTU size and the

PROBE_COUNT is set to zero.

Each time a probe packet is sent, the PROBE_TIMER is started. The

state is exited when the probe packet is acknowledged, and the PL

sender enters the SEARCHING state.

The state is also left when the PROBE_COUNT reaches MAX_PROBES or

a received PTB message is validated. This causes the PL sender to

enter the ERROR state.

The SEARCHING state is the main probing state. This

state is entered when probing for the BASE_PLPMTU completes.

Each time a probe packet is acknowledged, the PROBE_COUNT is set

to zero, the PLPMTU is set to the PROBED_SIZE and then the

PROBED_SIZE is increased using the search algorithm (as described

in Section 5.3.

When a probe packet is sent and not acknowledged within the

period of the PROBE_TIMER, the PROBE_COUNT is incremented and a

new probe packet is transmitted.

The state is exited to enter SEARCH_COMPLETE when the PROBE_COUNT

reaches MAX_PROBES, a validated PTB is received that corresponds

to the last successfully probed size (PL_PTB_SIZE = PLPMTU), or a

probe of size MAX_PLPMTU is acknowledged (PLPMTU = MAX_PLPMTU).

When a black hole is detected in the SEARCHING state, this causes

the PL sender to enter the BASE state.

The SEARCH_COMPLETE state indicates that a search

has completed. This is the normal maintenance state, where the PL

is not probing to update the PLPMTU. DPLPMTUD remains in this

state until either the PMTU_RAISE_TIMER expires or a black hole

is detected.

When DPLPMTUD uses an unacknowledged PL and is in the

SEARCH_COMPLETE state, a CONFIRMATION_TIMER periodically resets

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ERROR:

the PROBE_COUNT and schedules a probe packet with the size of the

PLPMTU. If MAX_PROBES successive PLPMTUD sized probes fail to be

acknowledged the method enters the BASE state. When used with an

acknowledged PL (e.g., SCTP), DPLPMTUD SHOULD NOT continue to

generate PLPMTU probes in this state.

The ERROR state represents the case where either the network

path is not known to support a PLPMTU of at least the BASE_PLPMTU

size or when there is contradictory information about the network

path that would otherwise result in excessive variation in the

MPS signaled to the higher layer. The state implements a method

to mitigate oscillation in the state-event engine. It signals a

conservative value of the MPS to the higher layer by the PL. The

state is exited when packet probes no longer detect the error.

The PL sender then enters the SEARCHING state.

Implementations are permitted to enable endpoint fragmentation if

the DPLPMTUD is unable to validate MIN_PLPMTU within PROBE_COUNT

probes. If DPLPMTUD is unable to validate MIN_PLPMTU the

implementation will transition to the DISABLED state.

Note: MIN_PLPMTU could be identical to BASE_PLPMTU, simplifying

the actions in this state.

5.3. Search to Increase the PLPMTU

This section describes the algorithms used by DPLPMTUD to search for

a larger PLPMTU.

5.3.1. Probing for a larger PLPMTU

Implementations use a search algorithm across the search range to

determine whether a larger PLPMTU can be supported across a network

path.

The method discovers the search range by confirming the minimum

PLPMTU and then using the probe method to select a PROBED_SIZE less

than or equal to MAX_PLPMTU. MAX_PLPMTU is the minimum of the local

MTU and EMTU_R (when this is learned from the remote endpoint). The

MAX_PLPMTU MAY be reduced by an application that sets a maximum to

the size of datagrams it will send.

The PROBE_COUNT is initialized to zero when the first probe with a

size greater than or equal to PLPMTUD is sent. Each probe packet

successfully sent to the remote peer is confirmed by acknowledgment

at the PL, see Section 4.1.

Each time a probe packet is sent to the destination, the PROBE_TIMER

is started. The timer is canceled when the PL receives

acknowledgment that the probe packet has been successfully sent

¶

¶

¶

¶

¶

¶

¶

¶

across the path Section 4.1. This confirms that the PROBED_SIZE is

supported, and the PROBED_SIZE value is then assigned to the PLPMTU.

The search algorithm can continue to send subsequent probe packets

of an increasing size.

If the timer expires before a probe packet is acknowledged, the

probe has failed to confirm the PROBED_SIZE. Each time the

PROBE_TIMER expires, the PROBE_COUNT is incremented, the PROBE_TIMER

is reinitialized, and a new probe of the same size or any other size

(determined by the search algorithm) can be sent. The maximum number

of consecutive failed probes is configured (MAX_PROBES). If the

value of the PROBE_COUNT reaches MAX_PROBES, probing will stop, and

the PL sender enters the SEARCH_COMPLETE state.

5.3.2. Selection of Probe Sizes

The search algorithm determines a minimum useful gain in PLPMTU. It

would not be constructive for a PL sender to attempt to probe for

all sizes. This would incur unnecessary load on the path.

Implementations SHOULD select the set of probe packet sizes to

maximize the gain in PLPMTU from each search step.

Implementations could optimize the search procedure by selecting

step sizes from a table of common PMTU sizes. When selecting the

appropriate next size to search, an implementer ought to also

consider that there can be common sizes of MPS that applications

seek to use, and their could be common sizes of MTU used within the

network.

5.3.3. Resilience to Inconsistent Path Information

A decision to increase the PLPMTU needs to be resilient to the

possibility that information learned about the network path is

inconsistent. A path is inconsistent when, for example, probe

packets are lost due to other reasons (i.e., not packet size) or due

to frequent path changes. Frequent path changes could occur by

unexpected "flapping" - where some packets from a flow pass along

one path, but other packets follow a different path with different

properties.

A PL sender is able to detect inconsistency from the sequence of

PLPMTU probes that are acknowledged or the sequence of PTB messages

that it receives. When inconsistent path information is detected, a

PL sender could use an alternate search mode that clamps the offered

MPS to a smaller value for a period of time. This avoids unnecessary

loss of packets.

¶

¶

¶

¶

¶

¶

5.4. Robustness to Inconsistent Paths

Some paths could be unable to sustain packets of the BASE_PLPMTU

size. The Error State could be implemented to provide rubustness to

such paths. This allows fallback to a smaller than desired PLPMTU,

rather than suffer connectivity failure. This could utilize methods

such as endpoint IP fragmentation to enable the PL sender to

communicate using packets smaller than the BASE_PLPMTU.

6. Specification of Protocol-Specific Methods

DPLPMTUD requires protocol-specific details to be specified for each

PL that is used.

The first subsection provides guidance on how to implement the

DPLPMTUD method as a part of an application using UDP or UDP-Lite.

The guidance also applies to other datagram services that do not

include a specific transport protocol (such as a tunnel

encapsulation). The following subsections describe how DPLPMTUD can

be implemented as a part of the transport service, allowing

applications using the service to benefit from discovery of the

PLPMTU without themselves needing to implement this method when

using SCTP and QUIC.

6.1. Application support for DPLPMTUD with UDP or UDP-Lite

The current specifications of UDP [RFC0768] and UDP-Lite [RFC3828]

do not define a method in the RFC-series that supports PLPMTUD. In

particular, the UDP transport does not provide the transport

features needed to implement datagram PLPMTUD.

The DPLPMTUD method can be implemented as a part of an application

built directly or indirectly on UDP or UDP-Lite, but relies on

higher-layer protocol features to implement the method [BCP145].

Some primitives used by DPLPMTUD might not be available via the

Datagram API (e.g., the ability to access the PLPMTU from the IP

layer cache, or interpret received PTB messages).

In addition, it is recommended that PMTU discovery is not performed

by multiple protocol layers. An application SHOULD avoid using

DPLPMTUD when the underlying transport system provides this

capability. A common method for managing the PLPMTU has benefits,

both in the ability to share state between different processes and

opportunities to coordinate probing for different PL instances.

6.1.1. Application Request

An application needs an application-layer protocol mechanism (such

as a message acknowledgment method) that solicits a response from a

¶

¶

¶

¶

¶

¶

¶

destination endpoint. The method SHOULD allow the sender to check

the value returned in the response to provide additional protection

from off-path insertion of data [BCP145]. Suitable methods include a

parameter known only to the two endpoints, such as a session ID or

initialized sequence number.

6.1.2. Application Response

An application needs an application-layer protocol mechanism to

communicate the response from the destination endpoint. This

response could indicate successful reception of the probe across the

path, but could also indicate that some (or all packets) have failed

to reach the destination.

6.1.3. Sending Application Probe Packets

A probe packet can carry an application data block, but the

successful transmission of this data is at risk when used for

probing. Some applications might prefer to use a probe packet that

does not carry an application data block to avoid disruption to data

transfer.

6.1.4. Initial Connectivity

An application that does not have other higher-layer information

confirming connectivity with the remote peer SHOULD implement a

connectivity mechanism using acknowledged probe packets before

entering the BASE state.

6.1.5. Validating the Path

An application that does not have other higher-layer information

confirming correct delivery of datagrams SHOULD implement the

CONFIRMATION_TIMER to periodically send probe packets while in the

SEARCH_COMPLETE state.

6.1.6. Handling of PTB Messages

An application that is able and wishes to receive PTB messages MUST

perform ICMP validation as specified in Section 5.2 of [BCP145].

This requires that the application checks each received PTB message

to validate that it was is received in response to transmitted

traffic and that the reported PL_PTB_SIZE is less than the current

probed size (see Section 4.6.2). A validated PTB message MAY be used

as input to the DPLPMTUD algorithm, but MUST NOT be used directly to

set the PLPMTU.

¶

¶

¶

¶

¶

¶

6.2. DPLPMTUD for SCTP

Section 10.2 of [RFC4821] specified a recommended PLPMTUD probing

method for SCTP and Section 7.3 of [RFC4960] recommended an endpoint

apply the techniques in RFC4821 on a per-destination-address basis.

The specification for DPLPMTUD continues the practice of using the

PL to discover the PMTU, but updates, RFC4960 with a recommendation

to use the method specified in this document: The RECOMMENDED method

for generating probes is to add a chunk consisting only of padding

to an SCTP message. The PAD chunk defined in [RFC4820] SHOULD be

attached to a minimum length HEARTBEAT (HB) chunk to build a probe

packet. This enables probing without affecting the transfer of user

messages and without being limited by congestion control or flow

control. This is preferred to using DATA chunks (with padding as

required) as path probes.

Section 6.9 of [RFC4960] describes dividing the user messages into

data chunks sent by the PL when using SCTP. This notes that once an

SCTP message has been sent, it cannot be re-segmented. [RFC4960]

describes the method to retransmit data chunks when the MPS has

reduced, and the use of IP fragmentation for this case. This is

unchanged by this document.

6.2.1. SCTP/IPv4 and SCTP/IPv6

6.2.1.1. Initial Connectivity

The base protocol is specified in [RFC4960]. This provides an

acknowledged PL. A sender can therefore enter the BASE state as soon

as connectivity has been confirmed.

6.2.1.2. Sending SCTP Probe Packets

Probe packets consist of an SCTP common header followed by a

HEARTBEAT chunk and a PAD chunk. The PAD chunk is used to control

the length of the probe packet. The HEARTBEAT chunk is used to

trigger the sending of a HEARTBEAT ACK chunk. The reception of the

HEARTBEAT ACK chunk acknowledges reception of a successful probe. A

successful probe updates the association and path counters, but an

unsuccessful probe is discounted (assumed to be a result of choosing

too large a PLPMTU).

The SCTP sender needs to be able to determine the total size of a

probe packet. The HEARTBEAT chunk could carry a Heartbeat

Information parameter that includes, besides the information

suggested in [RFC4960], the probe size to help an implementation

associate a HEARTBEAT-ACK with the size of probe that was sent. The

sender could also use other methods, such as sending a nonce and

verifying the information returned also contains the corresponding

nonce. The length of the PAD chunk is computed by reducing the

¶

¶

¶

¶

probing size by the size of the SCTP common header and the HEARTBEAT

chunk. The payload of the PAD chunk contains arbitrary data. When

transmitted at the IP layer, the PMTU size also includes the IPv4 or

IPv6 header(s).

Probing can start directly after the PL handshake, this can be done

before data is sent. Assuming this behavior (i.e., the PMTU is

smaller than or equal to the interface MTU), this process will take

several round trip time periods, dependent on the number of DPLPMTUD

probes sent. The Heartbeat timer can be used to implement the

PROBE_TIMER.

6.2.1.3. Validating the Path with SCTP

Since SCTP provides an acknowledged PL, a sender MUST NOT implement

the CONFIRMATION_TIMER while in the SEARCH_COMPLETE state.

6.2.1.4. PTB Message Handling by SCTP

Normal ICMP validation MUST be performed as specified in Appendix C

of [RFC4960]. This requires that the first 8 bytes of the SCTP

common header are quoted in the payload of the PTB message, which

can be the case for ICMPv4 and is normally the case for ICMPv6.

When a PTB message has been validated, the PL_PTB_SIZE calculated

from the PTB_SIZE reported in the PTB message SHOULD be used with

the DPLPMTUD algorithm, providing that the reported PL_PTB_SIZE is

less than the current probe size (see Section 4.6).

6.2.2. DPLPMTUD for SCTP/UDP

The UDP encapsulation of SCTP is specified in [RFC6951].

This specification updates the reference to RFC 4821 in section 5.6

of RFC 6951 to refer to XXXTHISRFCXXX. RFC 6951 is updated by

addition of the following sentence at the end of section 5.6: "The

RECOMMENDED method for determining the MTU of the path is specified

in XXXTHISRFCXXX".

XXX RFC EDITOR - please replace XXXTHISRFCXXX when published XXX

6.2.2.1. Initial Connectivity

A sender can enter the BASE state as soon as SCTP connectivity has

been confirmed.

6.2.2.2. Sending SCTP/UDP Probe Packets

Packet probing can be performed as specified in Section 6.2.1.2. The

size of the probe packet includes the 8 bytes of UDP Header. This

¶

¶

¶

¶

¶

¶

¶

¶

¶

has to be considered when filling the probe packet with the PAD

chunk.

6.2.2.3. Validating the Path with SCTP/UDP

SCTP provides an acknowledged PL, therefore a sender does not

implement the CONFIRMATION_TIMER while in the SEARCH_COMPLETE state.

6.2.2.4. Handling of PTB Messages by SCTP/UDP

ICMP validation MUST be performed for PTB messages as specified in

Appendix C of [RFC4960]. This requires that the first 8 bytes of the

SCTP common header are contained in the PTB message, which can be

the case for ICMPv4 (but note the UDP header also consumes a part of

the quoted packet header) and is normally the case for ICMPv6. When

the validation is completed, the PL_PTB_SIZE calculated from the

PTB_SIZE in the PTB message SHOULD be used with the DPLPMTUD

providing that the reported PL_PTB_SIZE is less than the current

probe size.

6.2.3. DPLPMTUD for SCTP/DTLS

The Datagram Transport Layer Security (DTLS) encapsulation of SCTP

is specified in [RFC8261]. This is used for data channels in WebRTC

implementations. This specification updates the reference to RFC

4821 in section 5 of RFC 8261 to refer to XXXTHISRFCXXX.

XXX RFC EDITOR - please replace XXXTHISRFCXXX when published XXX

6.2.3.1. Initial Connectivity

A sender can enter the BASE state as soon as SCTP connectivity has

been confirmed.

6.2.3.2. Sending SCTP/DTLS Probe Packets

Packet probing can be done, as specified in Section 6.2.1.2. The

maximum payload is reduced by the size of the DTLS headers, which

has to be considered when filling the PAD chunk. The size of the

probe packet includes the DTLS PL headers. This has to be considered

when filling the probe packet with the PAD chunk.

6.2.3.3. Validating the Path with SCTP/DTLS

Since SCTP provides an acknowledged PL, a sender MUST NOT implement

the CONFIRMATION_TIMER while in the SEARCH_COMPLETE state.

¶

¶

¶

¶

¶

¶

¶

¶

6.2.3.4. Handling of PTB Messages by SCTP/DTLS

[RFC4960] does not specify a way to validate SCTP/DTLS ICMP message

payload and neither does this document. This can prevent processing

of PTB messages at the PL.

6.3. DPLPMTUD for QUIC

QUIC [I-D.ietf-quic-transport] is a UDP-based transport that

provides reception feedback. The UDP payload includes the QUIC

packet header, protected payload, and any authentication fields.

QUIC depends on a PMTU of at least 1280 bytes.

Section 14 of [I-D.ietf-quic-transport] describes the path

considerations when sending QUIC packets. It recommends the use of

PADDING frames to build the probe packet. Pure probe-only packets

are constructed with PADDING frames and PING frames to create a

padding only packet that will elicit an acknowledgment. Such padding

only packets enable probing without affecting the transfer of other

QUIC frames.

The recommendation for QUIC endpoints implementing DPLPMTUD is that

a MPS is maintained for each combination of local and remote IP

addresses [I-D.ietf-quic-transport]. If a QUIC endpoint determines

that the PMTU between any pair of local and remote IP addresses has

fallen below the size required for an acceptable MPS, it immediately

ceases to send QUIC packets on the affected path. This could result

in termination of the connection if an alternative path cannot be

found [I-D.ietf-quic-transport].

6.3.1. Initial Connectivity

The base protocol is specified in [I-D.ietf-quic-transport]. This

provides an acknowledged PL. A sender can therefore enter the BASE

state as soon as connectivity has been confirmed.

QUIC provides an acknowledged PL, a sender can therefore enter the

BASE state as soon as the connection handshake has been completed

and the endpoint has an 1-RTT key established.

6.3.2. Sending QUIC Probe Packets

Probe packets consist of a QUIC Header and a payload containing a

PING Frame and multiple PADDING Frames. A PADDING Frame is

represented by a single octet (0x00). Several PADDING Frames are

used together to control the length of the probe packet. The PING

Frame is used to trigger generation of an acknowledgement.

¶

¶

¶

¶

¶

¶

¶

The current specification of QUIC sets the following:

BASE_PLPMTU: A QUIC sender pads initial packets to confirm the

path can support packets of the required size, which sets the

BASE_PLPMTU and MIN_PLPMTU.

MIN_PLPMTU: A QUIC sender that determines the MIN_PLPMTU has

fallen MUST immediately stop sending on the affected path.

6.3.3. Validating the Path with QUIC

QUIC provides an acknowledged PL, therefore a sender does not

implement the CONFIRMATION_TIMER while in the SEARCH_COMPLETE state.

6.3.4. Handling of PTB Messages by QUIC

QUIC validates ICMP PTB messages. In addition to UDP Port

validation, QUIC can validate an ICMP message by using other PL

information (e.g., validation of connection identifiers (CIDs) in

the quoted packet of any received ICMP message).

7. Acknowledgments

This work was partially funded by the European Union's Horizon 2020

research and innovation programme under grant agreement No. 644334

(NEAT). The views expressed are solely those of the author(s).

Thanks to all that have commented or contributed, the TSVWG and QUIC

working groups, and Mathew Calder and Julius Flohr for providing

early implementations.

8. IANA Considerations

This memo includes no request to IANA.

If there are no requirements for IANA, the section will be removed

during conversion into an RFC by the RFC Editor.

9. Security Considerations

The security considerations for the use of UDP and SCTP are provided

in the referenced RFCs.

To avoid excessive load, the interval between individual probe

packets MUST be at least one RTT, and the interval between rounds of

probing is determined by the PMTU_RAISE_TIMER.

A PL sender needs to ensure that the method used to confirm

reception of probe packets protects from off-path attackers

injecting packets into the path. This protection is provided in

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

IETF-defined protocols (e.g., TCP, SCTP) using a randomly-

initialized sequence number. A description of one way to do this

when using UDP is provided in section 5.1 of [BCP145]).

There are cases where ICMP Packet Too Big (PTB) messages are not

delivered due to policy, configuration or equipment design (see

Section 1.1). This method therefore does not rely upon PTB messages

being received, but is able to utilize these when they are received

by the sender. PTB messages could potentially be used to cause a

node to inappropriately reduce the PLPMTU. A node supporting

DPLPMTUD MUST therefore appropriately validate the payload of PTB

messages to ensure these are received in response to transmitted

traffic (i.e., a reported error condition that corresponds to a

datagram actually sent by the path layer, see Section 4.6.1).

An on-path attacker able to create a PTB message could forge PTB

messages that include a valid quoted IP packet. Such an attack could

be used to drive down the PLPMTU. An on-path device could similarly

force a reduction of the PLPMTU by implementing a policy that drops

packets larger than a configured size. There are two ways this

method can be mitigated against such attacks: First, by ensuring

that a PL sender never reduces the PLPMTU below the base size,

solely in response to receiving a PTB message. This is achieved by

first entering the BASE state when such a message is received.

Second, the design does not require processing of PTB messages, a PL

sender could therefore suspend processing of PTB messages (e.g., in

a robustness mode after detecting that subsequent probes actually

confirm that a size larger than the PTB_SIZE is supported by a

path).

Parsing the quoted packet inside a PTB message can introduce

addional per-packet processing at the PL sender. This processing

SHOULD be limited to avoid a denial of service attack when arbitrary

headers are included. Rate-limiting the processing could result in

PTB messages not being received by a PL, however the DPLPMTUD method

is robust to such loss.

The successful processing of an ICMP message can trigger a probe

when the reported PTB size is valid, but this does not directly

update the PLPMTU for the path. This prevents a message attempting

to black hole data by indicating a size larger than supported by the

path.

It is possible that the information about a path is not stable. This

could be a result of forwarding across more than one path that has a

different actual PMTU or a single path presents a varying PMTU. The

design of a PLPMTUD implementation SHOULD consider how to mitigate

the effects of varying path information. One possible mitigation is

¶

¶

¶

¶

¶

[BCP145]

[I-D.ietf-quic-transport]

[RFC0768]

[RFC0791]

[RFC1191]

[RFC2119]

to provide robustness (see Section 5.4) in the method that avoids

oscillation in the MPS.

DPLPMTUD methods can introduce padding data to inflate the length of

the datagram to the total size required for a probe packet. The

total size of a probe packet includes all headers and padding added

to the payload data being sent (e.g., including security-related

fields such as an AEAD tag and TLS record layer padding). The value

of the padding data does not influence the DPLPMTUD search

algorithm, and therefore needs to be set consistent with the policy

of the PL.

If a PL can make use of cryptographic confidentiality or data-

integrity mechanisms, then the design ought to avoid adding anything

(e.g., padding) to DPLPMTUD probe packets that is not also protected

by those cryptographic mechanisms.

10. References

10.1. Normative References

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, March 2017.

<https://www.rfc-editor.org/info/bcp145>

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-27, 21 February

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-27.txt>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Mogul, J.C. and S.E. Deering, "Path MTU discovery", RFC

1191, DOI 10.17487/RFC1191, November 1990, <https://

www.rfc-editor.org/info/rfc1191>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

https://www.rfc-editor.org/info/bcp145
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1191

[RFC3828]

[RFC4820]

[RFC4960]

[RFC6951]

[RFC8174]

[RFC8200]

[RFC8201]

[RFC8261]

[I-D.ietf-intarea-frag-fragile]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E.,

Ed., and G. Fairhurst, Ed., "The Lightweight User

Datagram Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/

RFC3828, July 2004, <https://www.rfc-editor.org/info/

rfc3828>.

Tuexen, M., Stewart, R., and P. Lei, "Padding Chunk and

Parameter for the Stream Control Transmission Protocol

(SCTP)", RFC 4820, DOI 10.17487/RFC4820, March 2007,

<https://www.rfc-editor.org/info/rfc4820>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/info/rfc4960>.

Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream

Control Transmission Protocol (SCTP) Packets for End-Host

to End-Host Communication", RFC 6951, DOI 10.17487/

RFC6951, May 2013, <https://www.rfc-editor.org/info/

rfc6951>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,

"Path MTU Discovery for IP version 6", STD 87, RFC 8201,

DOI 10.17487/RFC8201, July 2017, <https://www.rfc-

editor.org/info/rfc8201>.

Tuexen, M., Stewart, R., Jesup, R., and S. Loreto,

"Datagram Transport Layer Security (DTLS) Encapsulation

of SCTP Packets", RFC 8261, DOI 10.17487/RFC8261,

November 2017, <https://www.rfc-editor.org/info/rfc8261>.

10.2. Informative References

Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,

and F. Gont, "IP Fragmentation Considered Fragile", Work

in Progress, Internet-Draft, draft-ietf-intarea-frag-

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3828
https://www.rfc-editor.org/info/rfc3828
https://www.rfc-editor.org/info/rfc4820
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8261

[I-D.ietf-intarea-tunnels]

[RFC0792]

[RFC1122]

[RFC1812]

[RFC2923]

[RFC4340]

[RFC4443]

[RFC4821]

[RFC4890]

[RFC5508]

fragile-17, 30 September 2019, <http://www.ietf.org/

internet-drafts/draft-ietf-intarea-frag-fragile-17.txt>.

Touch, J. and M. Townsley, "IP Tunnels in

the Internet Architecture", Work in Progress, Internet-

Draft, draft-ietf-intarea-tunnels-10, 12 September 2019,

<http://www.ietf.org/internet-drafts/draft-ietf-intarea-

tunnels-10.txt>.

Postel, J., "Internet Control Message Protocol", STD 5,

RFC 792, DOI 10.17487/RFC0792, September 1981, <https://

www.rfc-editor.org/info/rfc792>.

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Baker, F., Ed., "Requirements for IP Version 4 Routers",

RFC 1812, DOI 10.17487/RFC1812, June 1995, <https://

www.rfc-editor.org/info/rfc1812>.

Lahey, K., "TCP Problems with Path MTU Discovery", RFC

2923, DOI 10.17487/RFC2923, September 2000, <https://

www.rfc-editor.org/info/rfc2923>.

Kohler, E., Handley, M., and S. Floyd, "Datagram

Congestion Control Protocol (DCCP)", RFC 4340, DOI

10.17487/RFC4340, March 2006, <https://www.rfc-

editor.org/info/rfc4340>.

Conta, A., Deering, S., and M. Gupta, Ed., "Internet

Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification", STD 89, RFC

4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-

editor.org/info/rfc4443>.

Mathis, M. and J. Heffner, "Packetization Layer Path MTU

Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,

<https://www.rfc-editor.org/info/rfc4821>.

Davies, E. and J. Mohacsi, "Recommendations for Filtering

ICMPv6 Messages in Firewalls", RFC 4890, DOI 10.17487/

RFC4890, May 2007, <https://www.rfc-editor.org/info/

rfc4890>.

Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT

Behavioral Requirements for ICMP", BCP 148, RFC 5508, DOI

10.17487/RFC5508, April 2009, <https://www.rfc-

editor.org/info/rfc5508>.

http://www.ietf.org/internet-drafts/draft-ietf-intarea-frag-fragile-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-intarea-frag-fragile-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-intarea-tunnels-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-intarea-tunnels-10.txt
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://www.rfc-editor.org/info/rfc2923
https://www.rfc-editor.org/info/rfc2923
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4821
https://www.rfc-editor.org/info/rfc4890
https://www.rfc-editor.org/info/rfc4890
https://www.rfc-editor.org/info/rfc5508
https://www.rfc-editor.org/info/rfc5508

Appendix A. Revision Notes

Note to RFC-Editor: please remove this entire section prior to

publication.

Individual draft -00:

Comments and corrections are welcome directly to the authors or

via the IETF TSVWG working group mailing list.

This update is proposed for WG comments.

Individual draft -01:

Contains the first representation of the algorithm, showing the

states and timers

This update is proposed for WG comments.

Individual draft -02:

Contains updated representation of the algorithm, and textual

corrections.

The text describing when to set the effective PMTU has not yet

been validated by the authors

To determine security to off-path-attacks: We need to decide

whether a received PTB message SHOULD/MUST be validated? The text

on how to handle a PTB message indicating a link MTU larger than

the probe has yet not been validated by the authors

No text currently describes how to handle inconsistent results

from arbitrary re-routing along different parallel paths

This update is proposed for WG comments.

Working Group draft -00:

This draft follows a successful adoption call for TSVWG

There is still work to complete, please comment on this draft.

Working Group draft -01:

This draft includes improved introduction.

The draft is updated to require ICMP validation prior to

accepting PTB messages - this to be confirmed by WG

¶

¶

*

¶

* ¶

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

* ¶

* ¶

¶

* ¶

*

¶

Section added to discuss Selection of Probe Size - methods to be

evaluated and recommendations to be considered

Section added to align with work proposed in the QUIC WG.

Working Group draft -02:

The draft was updated based on feedback from the WG, and a

detailed review by Magnus Westerlund.

The document updates RFC 4821.

Requirements list updated.

Added more explicit discussion of a simpler black-hole detection

mode.

This draft includes reorganisation of the section on IETF

protocols.

Added more discussion of implementation within an application.

Added text on flapping paths.

Replaced 'effective MTU' with new term PLPMTU.

Working Group draft -03:

Updated figures

Added more discussion on blackhole detection

Added figure describing just blackhole detection

Added figure relating MPS sizes

Working Group draft -04:

Described phases and named these consistently.

Corrected transition from confirmation directly to the search

phase (Base has been checked).

Redrawn state diagrams.

Renamed BASE_MTU to BASE_PMTU (because it is a base for the

PMTU).

Clarified Error state.

Clarified suspending DPLPMTUD.

*

¶

* ¶

¶

*

¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

Verified normative text in requirements section.

Removed duplicate text.

Changed all text to refer to /packet probe/probe packet/ /

validation/verification/ added term /Probe Confirmation/ and

clarified BlackHole detection.

Working Group draft -05:

Updated security considerations.

Feedback after speaking with Joe Touch helped improve UDP-Options

description.

Working Group draft -06:

Updated description of ICMP issues in section 1.1

Update to description of QUIC.

Working group draft -07:

Moved description of the PTB processing method from the PTB

requirements section.

Clarified what is performed in the PTB validation check.

Updated security consideration to explain PTB security without

needing to read the rest of the document.

Reformatted state machine diagram

Working group draft -08:

Moved to rfcxml v3+

Rendered diagrams to svg in html version.

Removed Appendix A. Event-driven state changes.

Removed section on DPLPMTUD with UDP Options.

Shortened the description of phases.

Working group draft -09:

Remove final mention of UDP Options

Add Initial Connectivity sections to each PL

* ¶

* ¶

*

¶

¶

* ¶

*

¶

¶

* ¶

* ¶

¶

*

¶

* ¶

*

¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

Add to disable outgoing pmtu enforcement of packets

Working group draft -10:

Address comments from Lars Eggert

Reinforce that PROBE_COUNT is successive attempts to probe for

any size

Redefine MAX_PROBES to 3

Address PTB_SIZE of 0 or less that MIN_PLPMTU

Working group draft -11:

Restore a sentence removed in previous rev

De-acronymise QUIC

Address some nits

Working group draft -12:

Add TSVWG, QUIC and implementers to acknowledgments

Shorten a diagram line.

Address nits from Julius and Wes.

Be clearer when talking about IP layer caches

Working group draft -13, -14:

Updated after WGLC.

Working group draft -15:

Updated after AD evaluation and prepared for IETF-LC.

Working group draft -16:

Updated text after SECDIR review.

Working group draft -17:

Updated text after GENART and IETF-LC.

Renamed BASE_MTU to BASE_PLPMTU, and MIN and MAX PMTU to PLPMTU

(because these are about a base for the PLPMTU), and ensured

consistent separation of PMTU and PLPMTU.

* ¶

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

*

¶

Adopted US-style English throughout.

Working group draft -18:

Updated text and address nits from OPSDIR, ART and IESG reviews.

Order PTB processing based on PL_PTB_SIZE

Working group draft -19:

Updated text and address nits based on comments from Tim Chown

and Murray S. Kucherawy.

Working group draft -20:

Address nits and comments from IESG

Refer to BCP 145 rather than RFC 8085 in most places.

Update probing method text for SCTP and QUIC.

Working group draft -21:

Update QUIC text for skipping into BASE state.

Authors' Addresses

Godred Fairhurst

University of Aberdeen

School of Engineering

Fraser Noble Building

Aberdeen

AB24 3UE

United Kingdom

Email: gorry@erg.abdn.ac.uk

Tom Jones

University of Aberdeen

School of Engineering

Fraser Noble Building

Aberdeen

AB24 3UE

United Kingdom

Email: tom@erg.abdn.ac.uk

Michael Tuexen

Muenster University of Applied Sciences

Stegerwaldstrasse 39

* ¶

¶

* ¶

* ¶

¶

*

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

mailto:gorry@erg.abdn.ac.uk
mailto:tom@erg.abdn.ac.uk

48565 Steinfurt

Germany

Email: tuexen@fh-muenster.de

Irene Ruengeler

Muenster University of Applied Sciences

Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: i.ruengeler@fh-muenster.de

Timo Voelker

Muenster University of Applied Sciences

Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: timo.voelker@fh-muenster.de

mailto:tuexen@fh-muenster.de
mailto:i.ruengeler@fh-muenster.de
mailto:timo.voelker@fh-muenster.de

	Packetization Layer Path MTU Discovery for Datagram Transports
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Classical Path MTU Discovery
	1.2. Packetization Layer Path MTU Discovery
	1.3. Path MTU Discovery for Datagram Services

	2. Terminology
	3. Features Required to Provide Datagram PLPMTUD
	4. DPLPMTUD Mechanisms
	4.1. PLPMTU Probe Packets
	4.2. Confirmation of Probed Packet Size
	4.3. Black Hole Detection and Reducing the PLPMTU
	4.4. The Maximum Packet Size (MPS)
	4.5. Disabling the Effect of PMTUD
	4.6. Response to PTB Messages
	4.6.1. Validation of PTB Messages
	4.6.2. Use of PTB Messages

	5. Datagram Packetization Layer PMTUD
	5.1. DPLPMTUD Components
	5.1.1. Timers
	5.1.2. Constants
	5.1.3. Variables
	5.1.4. Overview of DPLPMTUD Phases

	5.2. State Machine
	5.3. Search to Increase the PLPMTU
	5.3.1. Probing for a larger PLPMTU
	5.3.2. Selection of Probe Sizes
	5.3.3. Resilience to Inconsistent Path Information

	5.4. Robustness to Inconsistent Paths

	6. Specification of Protocol-Specific Methods
	6.1. Application support for DPLPMTUD with UDP or UDP-Lite
	6.1.1. Application Request
	6.1.2. Application Response
	6.1.3. Sending Application Probe Packets
	6.1.4. Initial Connectivity
	6.1.5. Validating the Path
	6.1.6. Handling of PTB Messages

	6.2. DPLPMTUD for SCTP
	6.2.1. SCTP/IPv4 and SCTP/IPv6
	6.2.1.1. Initial Connectivity
	6.2.1.2. Sending SCTP Probe Packets
	6.2.1.3. Validating the Path with SCTP
	6.2.1.4. PTB Message Handling by SCTP

	6.2.2. DPLPMTUD for SCTP/UDP
	6.2.2.1. Initial Connectivity
	6.2.2.2. Sending SCTP/UDP Probe Packets
	6.2.2.3. Validating the Path with SCTP/UDP
	6.2.2.4. Handling of PTB Messages by SCTP/UDP

	6.2.3. DPLPMTUD for SCTP/DTLS
	6.2.3.1. Initial Connectivity
	6.2.3.2. Sending SCTP/DTLS Probe Packets
	6.2.3.3. Validating the Path with SCTP/DTLS
	6.2.3.4. Handling of PTB Messages by SCTP/DTLS

	6.3. DPLPMTUD for QUIC
	6.3.1. Initial Connectivity
	6.3.2. Sending QUIC Probe Packets
	6.3.3. Validating the Path with QUIC
	6.3.4. Handling of PTB Messages by QUIC

	7. Acknowledgments
	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Revision Notes
	Authors' Addresses

