
Internet Engineering Task Force Ethan Blanton
INTERNET DRAFT Purdue University
File: draft-ietf-tsvwg-dsack-use-02.txt Mark Allman
 ICIR
 October, 2003
 Expires: April, 2004

Using TCP DSACKs and SCTP Duplicate TSNs
to Detect Spurious Retransmissions

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 TCP and SCTP provide notification of duplicate segment receipt
 through DSACK and Duplicate TSN notification, respectively. This
 document presents conservative methods of using this information to
 identify unnecessary retransmissions for various applications.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1 Introduction

 TCP [RFC793] and SCTP [RFC2960] provide notification of duplicate
 segment receipt through duplicate selective acknowledgment (DSACK)
 [RFC2883] and Duplicate TSN notifications, respectively. Using this
 information, a TCP or SCTP sender can generally determine when a
 retransmission was sent in error. This document presents two
 methods for using duplicate notifications. The first method is

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2883

 simple and can be used for accounting applications. The second
 method is a conservative algorithm to disambiguate unnecessary
 retransmissions from loss events for the purpose of undoing

Expires: April 2004 [Page 1]

draft-ietf-tsvwg-dsack-use-02.txt October 2003

 unnecessary congestion control changes.

 This document is intended to outline reasonable and safe algorithms
 for detecting spurious retransmissions and discuss some of the
 considerations involved. It is not intended to describe the only
 possible method for achieving the goal, although the guidelines in
 this document should be taken into consideration when designing
 alternate algorithms. Additionally, this document does not outline
 what a TCP or SCTP sender may do after a spurious retransmission is
 detected. A number of proposals have been developed (e.g.,
 [RFC3522], [SK03], [BDA03]), but it is not yet clear which of these
 proposals are appropriate. In addition, they all rely on detecting
 spurious retransmits and so can share the algorithm specified in
 this document.

 Finally, we note that to simplify the text much of the following
 discussion is in terms of TCP DSACKs, while applying to both TCP and
 SCTP.

2 Counting Duplicate Notifications

 For certain applications a straight count of duplicate notifications
 will suffice. For instance, if a stack simply wants to know (for
 some reason) the number of spuriously retransmitted segments,
 counting all duplicate notifications for retransmitted segments
 should work well. Another application of this strategy is to
 monitor and adapt transport algorithms so that the transport is not
 sending large amounts of spurious data into the network. For
 instance, monitoring duplicate notifications could be used by the
 Early Retransmit [AAAB03] algorithm to determine whether fast
 retransmitting [RFC2581] segments with a lower than normal duplicate
 ACK threshold is working, or if segment reordering is causing
 spurious retransmits.

 More speculatively, duplicate notification has been proposed as an
 integral part of estimating TCP's total loss rate [AEO03] for the
 purposes of mitigating the impact of corruption-based losses on
 transport protocol performance. [EOA03] proposes altering the
 transport's congestion response to the fraction of losses that are
 actually due to congestion by requiring the network to provide the
 corruption-based loss rate and making the transport sender estimate
 the total loss rate. Duplicate notifications are a key part of
 estimating the total loss rate accurately [AEO03].

3 Congestion/Duplicate Disambiguation Algorithm

 When the purpose of detecting spurious retransmissions is to
 ``undo'' unnecessary changes made to the congestion control state,
 as suggested in [RFC2883], the data sender ideally needs to

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2883

 determine:

 (a) That spurious retransmissions in a particular window of data do
 not mask real segment loss (congestion).

Expires: April 2004 [Page 2]

draft-ietf-tsvwg-dsack-use-02.txt October 2003

 For example, assume segments N and N+1 are retransmitted even
 though only segment N was dropped by the network (thus, segment
 N+1 was needlessly retransmitted). When the sender receives the
 notification that segment N+1 arrived more than once it can
 conclude that segment N+1 was needlessly resent. However, it
 cannot conclude that it is appropriate to revert the congestion
 control state because the window of data contained at least one
 valid congestion indication (i.e., segment N was lost).

 (b) That network duplication is not the cause of the duplicate
 notification.

 Determining whether a duplicate notification is caused by
 network duplication of a packet or a spurious retransmit is a
 nearly impossible task in theory. Since [Pax97] shows that
 packet duplication by the network is rare, the algorithm in this
 section simply ceases to function when network duplication is
 detected (by receiving a duplication notification for a segment
 that was not retransmitted by the sender).

 The algorithm specified below gives reasonable, but not complete,
 protection against both of these cases.

 We assume the TCP sender has a data structure to hold selective
 acknowledgment information (e.g., as outlined in [RFC3517]). The
 following steps require an extension of such a 'scoreboard' to
 incorporate a slightly longer history of retransmissions than called
 for in [RFC3517]. The following steps MUST be taken upon the
 receipt of each DSACK or duplicate TSN notification:

 (A) Check the corresponding sequence range or TSN to determine
 whether the segment has been retransmitted.

 (A.1) If the SACK scoreboard is empty (i.e., the TCP sender has
 received no SACK information from the receiver) processing
 of this DSACK MUST be terminated and the congestion control
 state MUST NOT be reverted during the current window of
 data. This clause intends to cover the case when an entire
 window of acknowledgments have been dropped by the network.
 In such a case, the reverse path seems to be in a congested
 state and so reducing TCP's sending rate is the conservative
 approach.

 (A.2) If the segment was retransmitted exactly one time, mark it
 as a duplicate.

 (A.3) If the segment was retransmitted more than once processing
 of this DSACK MUST be terminated and the congestion control
 state MUST NOT be reverted to its previous state during the

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517

 current window of data.

 (A.4) If the segment was not retransmitted the incoming DSACK
 indicates that the network duplicated the segment in
 question. Processing of this DSACK MUST be terminated. In

Expires: April 2004 [Page 3]

draft-ietf-tsvwg-dsack-use-02.txt October 2003

 addition, the algorithm specified in this document MUST NOT
 be used for the remainder of the connection, as future DSACK
 reports may be indicating network duplication rather than
 unnecessary retransmission. Note that some techniques to
 further disambiguate network duplication from unnecessary
 retransmission (e.g., the TCP timestamp option [RFC1323])
 may be used to refine the algorithm in this document
 further. Using such a technique in conjunction with an
 algorithm similar to the one presented herein may allow for
 the continued use of the algorithm in the face of duplicated
 segments. We do not delve into such an algorithm in this
 document due the current rarity of network duplication.
 However, future work should include tackling this problem.

 (B) Assuming processing is allowed to continue (per the (A) rules),
 check all retransmitted segments in the previous window of data.

 (B.1) If all segments or chunks marked as retransmitted have
 also been marked as acknowledged and duplicated, we conclude
 that all retransmissions in the previous window of data were
 spurious and no loss occurred.

 (B.2) If any segment or chunk is still marked as retransmitted
 but not marked as duplicate, there are outstanding
 retransmissions that could indicate loss within this window
 of data. We can make no conclusions based on this
 particular DSACK/duplicate TSN notification.

 In addition to keeping the state mentioned in [RFC3517] (for TCP)
 and [RFC2960] (for SCTP), an implementation of this algorithm must
 track all sequence numbers or TSNs that have been acknowledged as
 duplicates.

4 Related Work

 In addition to the mechanism for detecting spurious retransmits
 outlined in this document, several other proposals for finding
 needless retransmits have been developed.

 [BA02] uses the algorithm outlined in this document as the basis for
 investigating several methods to make TCP more robust to reordered
 packets.

 The Eifel detection algorithm [RFC3522] uses the TCP timestamp
 option [RFC1323] to determine whether the ACK for a given retransmit
 is for the original transmission or a retransmission. More
 generally, [LK00] outlines the benefits of detecting spurious
 retransmits and reverting from needless congestion control changes
 using the timestamp-based scheme or a mechanism that uses a

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc1323

 "retransmit bit" to flag retransmits (and ACKs of retransmits). The
 Eifel detection algorithm can detect spurious retransmits more
 rapidly than a DSACK-based scheme. However, the tradeoff is that
 the overhead of the 12-byte timestamp option must be incurred in
 every packet transmitted for Eifel to function.

Expires: April 2004 [Page 4]

draft-ietf-tsvwg-dsack-use-02.txt October 2003

 The F-RTO scheme [SK03] slightly alters TCP's sending pattern
 immediately following a retransmission timeout and then observes the
 pattern of the returning ACKs. This pattern can indicate whether
 the retransmitted segment was needed. The advantage of F-RTO is
 that the algorithm only needs to be implemented on the sender side
 of the TCP connection and that nothing extra needs to cross the
 network (e.g., DSACKs, timestamps, special flags, etc.). The
 downside is that the algorithm is a heuristic that can be confused
 by network pathologies (e.g., duplication or reordering of key
 packets). Finally, note that F-RTO only works for spurious
 retransmits triggered by the transport's retransmission timer.

 Finally, [AP99] briefly investigates using the time between
 retransmitting a segment via the retransmission timeout and the
 arrival of the next ACK as an indicator of whether the retransmit
 was needed. The scheme compares this time delta with a fraction (f)
 of the minimum RTT observed thus far on the connection. If the time
 delta is less than f*minRTT then the retransmit is labeled
 spurious. When f=1/2 the algorithm identifies roughly 59% of the
 needless retransmission timeouts and identifies needed retransmits
 only 2.5% of the time. As with F-RTO, this scheme only detects
 spurious retransmits sent by the transport's retransmission timer.

5 Security Considerations

 It is possible for the receiver to falsely indicate spurious
 retransmissions in the case of actual loss, potentially causing a
 TCP or SCTP sender to inaccurately conclude that no loss took place
 (and possibly cause inappropriate changes to the senders congestion
 control state).

 Consider the following scenario: A receiver watches every segment or
 chunk that arrives and acknowledges any segment that arrives out of
 order by more than some threshold amount as a duplicate, assuming
 that it is a retransmission. A sender using the above algorithm
 will assume that the retransmission was spurious.

 The ECN nonce sum proposal [RFC3540] could possibly help mitigate
 the ability of the receiver to hide real losses from the sender with
 modest extension. In the common case of receiving an original
 transmission and a spurious retransmit a receiver will have received
 the nonce from the original transmission and therefore can "prove"
 to the sender that the duplication notification is valid. In the
 case when the receiver did not receive the original and is trying to
 improperly induce the sender into transmitting at an inappropriately
 high rate, the receiver will not know the ECN nonce from the
 original segment and therefore will probabilistically not be able to
 fool the sender for long. [RFC3540] calls for disabling nonce sums

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540

 on duplicate ACKs, which means that the nonce sum is not directly
 suitable for use as a mitigation to the problem of receivers lying
 about DSACK information. However, future efforts may be able to use
 [RFC3540] as a starting point for building protection should it be
 needed.

Expires: April 2004 [Page 5]

https://datatracker.ietf.org/doc/html/rfc3540

draft-ietf-tsvwg-dsack-use-02.txt October 2003

Acknowledgments

 Sourabh Ladha and Reiner Ludwig made several useful comments on an
 earlier version of this document. The second author thanks BBN
 Technologies and NASA's Glenn Research Center for supporting this
 work.

Normative References

 [RFC793] Jon Postel. Transmission Control Protocol. Std 7, RFC
793. September 1981.

 [RFC2960] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
 Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V.
 Paxson. Stream Control Transmission Protocol. October 2000.

 [RFC2883] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky. An
 Extension to the Selective Acknowledgement (SACK) Option for
 TCP. RFC 2883, July 2000.

Non-Normative References

 [AAAB03] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton. Early
 Retransmit for TCP. Internet-Draft

draft-allman-tcp-early-rexmt-01.txt, June 2003. Work in
 progress.

 [AEO03] Mark Allman, Wesley Eddy, Shawn Ostermann. Estimating Loss
 Rates With TCP. August 2003. Under submission.

 [AP99] Allman, M. and V. Paxson, "On Estimating End-to-End Network
 Path Properties", SIGCOMM 99.

 [BA02] E. Blanton, M. Allman. On Making TCP More Robust to Packet
 Reordering. ACM Computer Communication Review, 32(1), January
 2002.

 [BDA03] Ethan Blanton, Robert Dimond, Mark Allman. Practices for TCP
 Senders in the Face of Segment Reordering, February
 2003. Internet-Draft draft-blanton-tcp-reordering-00.txt (work
 in progress).

 [EOA03] Wesley Eddy, Shawn Ostermann, Mark Allman. New Techniques
 for Making Transport Protocols Robust to Corruption-Based
 Loss. July 2003. Under submission.

 [LK00] R. Ludwig, R. H. Katz. The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions. ACM Computer
 Communication Review, 30(1), January 2000.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-01.txt
https://datatracker.ietf.org/doc/html/draft-blanton-tcp-reordering-00.txt

 [Pax97] V. Paxson. End-to-End Internet Packet Dynamics. In ACM
 SIGCOMM, September 1997.

Expires: April 2004 [Page 6]

draft-ietf-tsvwg-dsack-use-02.txt October 2003

 [RFC1323] Van Jacobson, Robert Braden, David Borman. TCP Extensions
 for High Performance. RFC 1323. May 1992.

 [RFC3517] Ethan Blanton, Mark Allman, Kevin Fall, Lili Wang. A
 Conservative Selective Acknowledgment (SACK)-based Loss Recovery
 Algorithm for TCP, April 2003. RFC 3517.

 [RFC3522] R. Ludwig, M. Meyer. The Eifel Detection Algorithm for
 TCP, April 2003. RFC 3522.

 [RFC3540] N. Spring, D. Wetherall, D. Ely. Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces, June 2003.

RFC 3540.

 [SK03] P. Sarolahti, M. Kojo. F-RTO: An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP and SCTP.
 Internet-Draft draft-sarolahti-tsvwg-tcp-frto-04.txt, June 2003.
 Work in progress.

Authors' Addresses:

 Ethan Blanton
 Purdue University Computer Sciences
 1398 Computer Science Building
 West Lafayette, IN 47907
 eblanton@cs.purdue.edu

 Mark Allman
 ICSI Center for Internet Research
 1947 Center Street, Suite 600
 Berkeley, CA 94704-1198
 Phone: 216-243-7361
 mallman@icir.org

http://www.icir.org/mallman/

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/draft-sarolahti-tsvwg-tcp-frto-04.txt
http://www.icir.org/mallman/

Expires: April 2004 [Page 7]

