
Workgroup: TSVWG

Internet-Draft:

draft-ietf-tsvwg-dtls-over-sctp-bis-03

Obsoletes: 6083 (if approved)

Published: 7 March 2022

Intended Status: Standards Track

Expires: 8 September 2022

Authors: M. Westerlund

Ericsson

J. Preuß Mattsson

Ericsson

C. Porfiri

Ericsson

Datagram Transport Layer Security (DTLS) over Stream Control

Transmission Protocol (SCTP)

Abstract

This document describes the usage of the Datagram Transport Layer

Security (DTLS) protocol to protect user messages sent over the

Stream Control Transmission Protocol (SCTP). It is an improved

update of the existing rfc6083.

DTLS over SCTP provides mutual authentication, confidentiality,

integrity protection, and replay protection for applications that

use SCTP as their transport protocol and allows client/server

applications to communicate in a way that is designed to give

communications privacy and to prevent eavesdropping and detect

tampering or message forgery.

Applications using DTLS over SCTP can use almost all transport

features provided by SCTP and its extensions. This document intends

to obsolete RFC 6083 and removes the 16 kB limitation due to DTLS on

user message size by defining a secure user message fragmentation so

that multiple DTLS records can be used to protect a single user

message. It further updates the DTLS versions to use, as well as the

HMAC algorithms for SCTP-AUTH, and simplifies secure implementation

by some stricter requirements on the establishment procedures.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/gloinul/draft-westerlund-tsvwg-dtls-over-sctp-bis.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc6083
https://github.com/gloinul/draft-westerlund-tsvwg-dtls-over-sctp-bis
https://github.com/gloinul/draft-westerlund-tsvwg-dtls-over-sctp-bis

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Overview

1.1.1. Comparison with TLS for SCTP

1.1.2. Changes from RFC 6083

1.2. DTLS Version

1.3. Terminology

1.4. Abbreviations

2. Conventions

3. DTLS Considerations

3.1. Version of DTLS

3.2. Cipher Suites and Cryptographic Parameters

3.3. Message Sizes

3.4. Replay Protection

3.5. Path MTU Discovery

3.6. Retransmission of Messages

4. SCTP Considerations

4.1. Mapping of DTLS Records

4.2. DTLS Connection Handling

4.3. Payload Protocol Identifier Usage

4.4. Stream Usage

4.5. Chunk Handling

4.6. SCTP-AUTH Hash Function

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4.7. Parallel DTLS connections

4.8. Renegotiation and KeyUpdate

4.8.1. DTLS 1.2 Considerations

4.8.2. DTLS 1.3 Considerations

4.9. DTLS Epochs

4.9.1. DTLS 1.2 Considerations

4.9.2. DTLS 1.3 Considerations

4.10. Handling of Endpoint-Pair Shared Secrets

4.10.1. DTLS 1.2 Considerations

4.10.2. DTLS 1.3 Considerations

4.11. Shutdown

5. DTLS over SCTP Service

5.1. Adaptation Layer Indication in INIT/INIT-ACK

5.2. DTLS over SCTP Initialization

5.3. Client Use Case

5.4. Server Use Case

5.5. RFC 6083 Fallback

5.5.1. Client Fallback

5.5.2. Server Fallback

6. SCTP API Consideration

7. Socket API Considerations

7.1. Socket Option to Get the HMAC Identifier being Sent

(SCTP_SEND_HMAC_IDENT)

7.2. Exposing the HMAC Identifiers being Received

7.3. Socket Option to Expose HMAC Identifier Usage

(SCTP_EXPOSE_HMAC_IDENT_CHANGES)

8. IANA Considerations

8.1. TLS Exporter Label

8.2. SCTP Adaptation Layer Indication Code Point

9. Security Considerations

9.1. Cryptographic Considerations

9.2. Downgrade Attacks

9.3. Targeting DTLS Messages

9.4. Authentication and Policy Decisions

9.5. Resumption and Tickets

9.6. Privacy Considerations

9.7. Pervasive Monitoring

10. Contributors

11. Acknowledgments

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Motivation for Changes

Authors' Addresses

1. Introduction

1.1. Overview

This document describes the usage of the Datagram Transport Layer

Security (DTLS) protocol, as defined in DTLS 1.2 [RFC6347], and DTLS

1.3 [I-D.ietf-tls-dtls13], over the Stream Control Transmission

Protocol (SCTP), as defined in [RFC4960] with Authenticated Chunks

for SCTP (SCTP-AUTH) [RFC4895].

This specification provides mutual authentication of endpoints,

confidentiality, integrity protection, and replay protection of user

messages for applications that use SCTP as their transport protocol.

Thus, it allows client/server applications to communicate in a way

that is designed to give communications privacy and to prevent

eavesdropping and detect tampering or message forgery. DTLS/SCTP

uses DTLS for mutual authentication, key exchange with forward

secrecy for SCTP-AUTH, and confidentiality of user messages. DTLS/

SCTP use SCTP and SCTP-AUTH for integrity protection and replay

protection of user messages.

Applications using DTLS over SCTP can use almost all transport

features provided by SCTP and its extensions. DTLS/SCTP supports:

preservation of message boundaries.

a large number of unidirectional and bidirectional streams.

ordered and unordered delivery of SCTP user messages.

the partial reliability extension as defined in [RFC3758].

the dynamic address reconfiguration extension as defined in

[RFC5061].

User messages of any size.

The method described in this document requires that the SCTP

implementation supports the optional feature of fragmentation of

SCTP user messages as defined in [RFC4960]. The implementation is

required to have an SCTP API (for example the one described in

[RFC6458]) that supports partial user message delivery and also

recommended that I-DATA chunks as defined in [RFC8260] is used to

efficiently implement and support larger user messages.

To simplify implementation and reduce the risk for security holes,

limitations have been defined such that STARTTLS as specified in

[RFC3788] is no longer supported.

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

¶

¶

1.1.1. Comparison with TLS for SCTP

TLS, from which DTLS was derived, is designed to run on top of a

byte-stream-oriented transport protocol providing a reliable, in-

sequence delivery. TLS over SCTP as described in [RFC3436] has some

serious limitations:

It does not support the unordered delivery of SCTP user messages.

It does not support partial reliability as defined in [RFC3758].

It only supports the usage of the same number of streams in both

directions.

It uses a TLS connection for every bidirectional stream, which

requires a substantial amount of resources and message exchanges

if a large number of streams is used.

1.1.2. Changes from RFC 6083

The DTLS over SCTP solution defined in RFC 6083 had the following

limitations:

The maximum user message size is 2^14 (16384) bytes, which is a

single DTLS record limit.

DTLS 1.0 has been deprecated for RFC 6083 requiring at least DTLS

1.2 [RFC8996]. This creates additional limitation as discussed

in Section 1.2.

DTLS messages that don't contain protected user message data

where limited to only be sent on Stream 0 and requiring that

stream to be in-order delivery which could potentially impact

applicaitons.

This specification defines the following changes compared with RFC

6083:

Removes the limitations on user messages sizes by defining a

secure fragmentation mechanism. It is optional to support message

sizes over 2^64-1 bytes.

Enable DTLS key-change without requiring draining all inflight

user message from SCTP.

Mandates that more modern DTLS version are used (DTLS 1.2 or 1.3)

Mandates support of modern HMAC algorithm (SHA-256) in the SCTP

authentication extension [RFC4895].

¶

* ¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

*

¶

Recommends support of [RFC8260] to enable interleaving of large

SCTP user messages to avoid scheduling issues.

Applies stricter requirements on always using DTLS for all user

messages in the SCTP association.

Requires that SCTP-AUTH is applied to all SCTP Chunks that can be

authenticated.

Requires support of partial delivery of user messages.

1.2. DTLS Version

Using DTLS 1.2 instead of using DTLS 1.0 limits the lifetime of a

DTLS connection and the data volume which can be transferred over a

DTLS connection. This is caused by:

The number of renegotiations in DTLS 1.2 is limited to 65534

compared to unlimited in DTLS 1.0.

While the AEAD limits in DTLS 1.3 does not formally apply to DTLS

1.2 the mathematical limits apply equally well to DTLS 1.2.

DTLS 1.3 comes with a large number of significant changes.

Renegotiations are not supported and instead partly replaced by

KeyUpdates. The number of KeyUpdates is limited to 2^64.

Strict AEAD significantly limits on how much many packets can be

sent before rekeying.

Many applications using DTLS/SCTP are of semi-permanent nature and

use SCTP associations with expected lifetimes of months or even

years, and where there is a significant cost of bringing down the

SCTP association in order to restart it. Such DTLS/SCTP usages that

need:

Periodic re-authentication and transfer of revocation information

of both endpoints (not only the DTLS client).

Periodic rerunning of Diffie-Hellman key-exchange to provide

forward secrecy and mitigate static key exfiltration attacks.

Perform SCTP-AUTH rekeying.

At the time of publication DTLS 1.3 does not support any of these,

where DTLS 1.2 renegotiation functionality can provide this

functionality in the context of DTLS/SCTP. To address these

requirements from semi-permanent applications, this document use

several overlapping DTLS connections with either DTLS 1.2 or 1.3.

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

Having uniform procedures reduces the impact when upgrading from 1.2

to 1.3 and avoids using the renegotiation mechanism which is

disabled by default in many DTLS implementations.

To address known vulnerabilities in DTLS 1.2 this document describes

and mandates implementation constraints on ciphers and protocol

options. The DTLS 1.2 renegotiation mechanism is forbidden to be

used as it creates need for additional mechanism to handle race

conditions and interactions between using DTLS connections in

parallel.

In the rest of the document, unless the version of DTLS is

specifically called out the text applies to both versions of DTLS.

1.3. Terminology

This document uses the following terms:

Association: An SCTP association.

Connection: An DTLS connection. It is uniquely identified by a

connection identifier.

Stream: A unidirectional stream of an SCTP association. It is

uniquely identified by a stream identifier.

1.4. Abbreviations

AEAD: Authenticated Encryption with Associated Data

DTLS: Datagram Transport Layer Security

HMAC: Keyed-Hash Message Authentication Code

MTU: Maximum Transmission Unit

PPID: Payload Protocol Identifier

SCTP: Stream Control Transmission Protocol

SCTP-AUTH: Authenticated Chunks for SCTP

TCP: Transmission Control Protocol

TLS: Transport Layer Security

ULP: Upper Layer Protocol

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. DTLS Considerations

3.1. Version of DTLS

This document defines the usage of either DTLS 1.3 [I-D.ietf-tls-

dtls13], or DTLS 1.2 [RFC6347]. Earlier versions of DTLS MUST NOT be

used (see [RFC8996]). DTLS 1.3 is RECOMMENDED for security and

performance reasons. It is expected that DTLS/SCTP as described in

this document will work with future versions of DTLS.

3.2. Cipher Suites and Cryptographic Parameters

For DTLS 1.2, the cipher suites forbidden by [RFC7540] MUST NOT be

used. For all versions of DTLS, cryptographic parameters giving

confidentiality and forward secrecy MUST be used.

3.3. Message Sizes

DTLS/SCTP, automatically fragments and reassembles user messages.

This specification defines how to fragment the user messages into

DTLS records, where each DTLS record allows a maximum of 2^14

protected bytes. Each DTLS record adds some overhead, thus using

records of maximum possible size are recommended to minimize the

transmitted overhead. DTLS 1.3 has much less overhead than DTLS 1.2

per record.

The sequence of DTLS records is then fragmented into DATA or I-DATA

Chunks to fit the path MTU by SCTP. These changes ensures that DTLS/

SCTP has the same capability as SCTP to support user messages of any

size. However, to simplify implementations it is OPTIONAL to support

user messages larger than 2^64-1 bytes. This is to allow

implementation to assume that 64-bit length fields and offset

pointers will be sufficient.

Another implementation dependent exception to the support of any

user message size is the SCTP-API defined in [RFC6458]. That API

does not allow changing the SCTP-AUTH key used to send a particular

user message. Thus, the user message size must be limited such that

completion of the user message can occur within a short time frame

from the establishment of the new DTLS connection (Section 4.7).

¶

¶

¶

¶

¶

¶

The security operations and reassembly process requires that the

protected user message, i.e., with DTLS record overhead, is buffered

in the receiver. This buffer space will thus put a limit on the

largest size of plain text user message that can be transferred

securely. However, by mandating the use of the partial delivery of

user messages from SCTP and assuming that no two messages received

on the same stream are interleaved (as it is the case when using the

API defined in [RFC6458]) the required buffering prior to DTLS

processing can be limited to a single DTLS record per used incoming

stream. This enables the DTLS/SCTP implementation to provide the

Upper Layer Protocol (ULP) with each DTLS record's content when it

has been decrypted and its integrity been verified enabling partial

user message delivery to the ULP. Implementations can trade-off

buffer memory requirements in the DTLS layer with transport overhead

by using smaller DTLS records.

The DTLS/SCTP implementation is expected to behave very similar to

just SCTP when it comes to handling of user messages and dealing

with large user messages and their reassembly and processing. Making

it the ULP responsible for handling any resource contention related

to large user messages.

3.4. Replay Protection

SCTP-AUTH [RFC4895] does not have explicit replay protection.

However, the combination of SCTP-AUTH's protection of DATA or I-DATA

chunks and SCTP user message handling will prevent third party

attempts to inject or replay SCTP packets resulting in impact on the

received protected user message. In fact, this document's solution

is dependent on SCTP-AUTH and SCTP to prevent reordering,

duplication, and removal of the DTLS records within each protected

user message. This includes detection of changes to what DTLS

records start and end the SCTP user message, and removal of DTLS

records before an increment to the epoch. Without SCTP-AUTH, these

would all have required explicit handling.

DTLS optionally supports record replay detection. Such replay

detection could result in the DTLS layer dropping valid messages

received outside of the DTLS replay window. As DTLS/SCTP provides

replay protection even without DTLS replay protection, the replay

detection of DTLS MUST NOT be used.

3.5. Path MTU Discovery

DTLS Path MTU Discovery MUST NOT be used. Since SCTP provides Path

MTU discovery and fragmentation/reassembly for user messages, and

specified in Section 3.3, DTLS can send maximum sized DTLS Records.

¶

¶

¶

¶

¶

3.6. Retransmission of Messages

SCTP provides a reliable and in-sequence transport service for DTLS

messages that require it. See Section 4.4. Therefore, DTLS

procedures for retransmissions MUST NOT be used.

4. SCTP Considerations

4.1. Mapping of DTLS Records

The SCTP implementation MUST support fragmentation of user messages

using DATA [RFC4960], and optionally I-DATA [RFC8260] chunks.

DTLS/SCTP works as a shim layer between the user message API and

SCTP. On the sender side a user message is split into fragments m0,

m1, m2, each no larger than 2^14 = 16384 bytes.

The resulting fragments are protected with DTLS and the records are

concatenated

The new user_message', i.e., the protected user message, is the

input to SCTP.

On the receiving side, the length field in each DTLS record can be

used to determine the boundaries between DTLS records. DTLS can

decrypt individual records or a concatenated sequence of records.

The last DTLS record can be found by subtracting the length of

individual records from the length of user_message'. Whether to

decrypt individual records, sequences of records, or the whole

user_message' is left to the implementation. The output from the

DTLS decryption(s) is the fragments m0, m1, m2 ... The user_message

is reassembled from decrypted DTLS records as user_message = m0 | m1

| m2 ... There are three failure cases an implementation needs to

detect and then act on:

Failure in decryption and integrity verification process of any

DTLS record. Due to SCTP-AUTH preventing delivery of injected

or corrupt fragments of the protected user message this should

only occur in case of implementation errors or internal

hardware failures or the necessary security context has been

prematurely discarded.

In case the SCTP layer indicates an end to a user message,

e.g., when receiving a MSG_EOR in a recvmsg() call when using

the API described in [RFC6458], and the last buffered DTLS

¶

¶

¶

 m0 | m1 | m2 | ... = user_message¶

¶

 user_message' = DTLS(m0) | DTLS(m1) | DTLS(m2) ...¶

¶

¶

1.

¶

2.

record length field does not match, i.e., the DTLS record is

incomplete.

Unable to perform the decryption processes due to lack of

resources, such as memory, and have to abandon the user message

fragment. This specification is defined such that the needed

resources for the DTLS/SCTP operations are bounded for a given

number of concurrent transmitted SCTP streams or unordered user

messages.

The above failure cases all result in the receiver failing to

recreate the full user message. This is a failure of the transport

service that is not possible to recover from in the DTLS/SCTP layer

and the sender could believe the complete message have been

delivered. This error MUST NOT be ignored, as SCTP lacks any

facility to declare a failure on a specific stream or user message,

the DTLS connection and the SCTP association SHOULD be terminated. A

valid exception to the termination of the SCTP association is if the

receiver is capable of notifying the ULP about the failure in

delivery and the ULP is capable of recovering from this failure.

Note that if the SCTP extension for Partial Reliability (PR-SCTP)

[RFC3758] is used for a user message, user message may be partially

delivered or abandoned. These failures are not a reason for

terminating the DTLS connection and SCTP association.

The DTLS Connection ID MUST be negotiated ([I-D.ietf-tls-dtls-

connection-id] or Section 9 of [I-D.ietf-tls-dtls13]). If DTLS 1.3

is used, the length field in the record layer MUST be included in

all records. A 16-bit sequence number SHOULD be used rather than 8-

bit to minimize issues with DTLS record sequence number wrapping.

The ULP may use multiple messages simultanous, and the progress and

delivery of these messages are progressing indepentely, thus the

recieving DTLS/SCTP implementation may not receive records in order

in case of packet loss. Assuming that the sender will send the DTLS

records in order the DTLS records where created (which may not be

certain in some implementations), then there is a risk that DTLS

sequence number have wrapped if the amount of data in flight is more

than the sequence number covers. Thus, for 8-bit sequence number

space with 16384 bytes records the receiver window only needs to be

256*16384 = 4,194,304 bytes for this risk to defintely exist. While

a 16-bit sequence number should not have any sequence number wraps

for receiver windows up to 1 Gbyte. The DTLS/SCTP may not be tightly

integrated and the DTLS records may not be requested to be sent in

strict sequence order, in these case additional guard ranges are

needed.

¶

3.

¶

¶

¶

¶

¶

Also, if smaller DTLS records are used, this limit will be

correspondingly reduced. The DTLS/SCTP Sender needs to choose

sequence number length and DTLS Record size so that the product is

larger than the used receiver window, preferably twice as large.

Receiver implementations that are offering receiver windows larger

than the product 65536*16384 bytes MUST be capable of handling

sequence number wraps through trial decoding with a lower values in

the higher bits of the extended sequence number.

Section 4 of [I-D.ietf-tls-dtls-connection-id] states "If, however,

an implementation chooses to receive different lengths of CID, the

assigned CID values must be self-delineating since there is no other

mechanism available to determine what connection (and thus, what CID

length) is in use.". As this solution requires multiple connection

IDs, using a zero-length CID will be highly problematic as it could

result in that any DTLS records with a zero length CID ends up in

another DTLS connection context, and there fail the decryption and

integrity verification. And in that case to avoid losing the DTLS

record, it would have to be forwarded to the zero-length CID using

DTLS Connection and decryption and validation must be tried.

Resulting in higher resource utilization. Thus, it is RECOMMENDED to

not use the zero length CID values and instead use a single common

length for the CID values. A single byte should be sufficient, as

reuse of old CIDs is possible as long as the implementation ensure

they are not used in near time to the previous usage.

4.2. DTLS Connection Handling

DTLS/SCTP is negotiated on SCTP level as an adaptation layer Section

5. After a succesful negotiation of the DTLS/SCTP during SCTP

association establishment, a DTLS connection MUST be established

prior to transmission of any ULP user messages. All DTLS connections

are terminated when the SCTP association is terminated. A DTLS

connection MUST NOT span multiple SCTP associations.

As it is required to establish the DTLS connection at the beginning

of the SCTP association, either of the peers should never send any

SCTP user messages that are not protected by DTLS. So, the case that

an endpoint receives data that is not either DTLS messages or

protected user messages in the form of a sequence of DTLS Records on

any stream is a protocol violation. The receiver MAY terminate the

SCTP association due to this protocol violation. Implementations

that does not have a DTLS endpoint immediately ready on SCTP

handshake completion will have to ensure correct caching of the

messages until the DTLS endpoint is ready.

Whenever a mutual authentication, updated security parameters, rerun

of Diffie-Hellman key-exchange , or SCTP-AUTH rekeying is needed, a

new DTLS connection is instead setup in parallel with the old

¶

¶

¶

¶

connection (i.e., there may be up to two simultaneous DTLS

connections within one association).

4.3. Payload Protocol Identifier Usage

SCTP Payload Protocol Identifiers are assigned by IANA. Application

protocols using DTLS over SCTP SHOULD register and use a separate

Payload Protocol Identifier (PPID) and SHOULD NOT reuse the PPID

that they registered for running directly over SCTP.

Using the same PPID does no harm as DTLS/SCTP requires all user

mesages being DTLS protected and knows that DTLS is used. However,

for protocol analyzers, for example, it is much easier if a separate

PPID is used and avoids different behavior from [RFC6083]. This

means, in particular, that there is no specific PPID for DTLS.

Messages that are exchanged between DTLS/SCTP peers not containing

ULP user messages shall use PPID=0 according to section 3.3.1 of

[RFC4960] as no application identifier can be specified by the upper

layer for this payload data.

4.4. Stream Usage

DTLS 1.3 protects the actual content type of the DTLS record and

have therefore omitted the non-protected content type field. Thus,

it is not possible to determine which content type the DTLS record

has on SCTP level. For DTLS 1.2 ULP user messages will be carried in

DTLS records with content type "application_data".

DTLS Records carrying protected user message fragments MUST be sent

in the by ULP indicated SCTP stream and user message. The ULP has no

limitations in using SCTP facilities for stream and user messages.

DTLS records of other types MAY be sent on any stream. It MAY also

be sent in its own SCTP user message as well as interleaved with

other DTLS records carrying protected user messages. Thus, it is

allowed to insert between protected user message fragments DTLS

records of other types as the DTLS receiver will process these and

not result in any user message data being inserted into the ULP's

user message. However, DTLS messages of other types than protected

user message MUST be sent reliable, so the DTLS record can only be

interleaved in case the ULP user message is sent as reliable.

DTLS is capable of handling reordering of the DTLS records. However,

depending on stream properties and which user message DTLS records

of other types are sent in may impact in which order and how quickly

they are possible to process. Using a stream with in-order delivery

will ensure that the DTLS Records are delivered in the order they

are sent in user messages. Thus, ensuring that if there are DTLS

records that need to be delivered in particular order it can be

ensured. Alternatively, if it is desired that a DTLS record is

¶

¶

¶

¶

¶

¶

delvired as early as possible avoiding in-order streams with queued

messages and considering stream priorities can result in faster

delviery.

A simple solution avoiding any protocol issue are to send all DTLS

messages that are not protected user message fragments is to pick a

stream not used by the ULP, send the DTLS messages in their own user

messages with in order delivery. That mimics the RFC 6083 behavior

without impacting the ULP.

4.5. Chunk Handling

DATA chunks of SCTP MUST be sent in an authenticated way as

described in SCTP-AUTH [RFC4895]. All other chunks that can be

authenticated, i.e., all chunk types that can be listed in the Chunk

List Parameter [RFC4895], MUST also be sent in an authenticated way.

This makes sure that an attacker cannot modify the stream in which a

message is sent or affect the ordered/unordered delivery of the

message.

If PR-SCTP as defined in [RFC3758] is used, FORWARD-TSN chunks MUST

also be sent in an authenticated way as described in [RFC4895]. This

makes sure that it is not possible for an attacker to drop messages

and use forged FORWARD-TSN, SACK, and/or SHUTDOWN chunks to hide

this dropping.

I-DATA chunk type as defined in [RFC8260] is RECOMMENDED to be

supported to avoid some of the down sides that large user messages

have on blocking transmission of later arriving high priority user

messages. However, the support is not mandated and negotiated

independently from DTLS/SCTP. If I-DATA chunks are used, then they

MUST be sent in an authenticated way as described in [RFC4895].

4.6. SCTP-AUTH Hash Function

When using DTLS/SCTP, the SHA-256 Message Digest Algorithm MUST be

supported in the SCTP-AUTH [RFC4895] implementation. SHA-1 MUST NOT

be used when using DTLS/SCTP. [RFC4895] requires support and

inclusion of SHA-1 in the HMAC-ALGO parameter, thus, to meet both

requirements the HMAC-ALGO parameter will include both SHA-256 and

SHA-1 with SHA-256 listed prior to SHA-1 to indicate the preference.

4.7. Parallel DTLS connections

To enable SCTP-AUTH rekeying, periodic authentication of both

endpoints, and force attackers to dynamic key extraction [RFC7624],

DTLS/SCTP per this specification defines the usage of parallel DTLS

connections over the same SCTP association. This solution ensures

that there are no limitations to the lifetime of the SCTP

association due to DTLS, it also avoids dependency on version

¶

¶

¶

¶

¶

¶

specific DTLS mechanisms such as renegotiation in DTLS 1.2, which is

disabled by default in many DTLS implementations, or post-handshake

messages in DTLS 1.3, which does not allow periodic mutual endpoint

re-authentication or re-keying of SCTP-AUTH. Parallel DTLS

connections enable opening a new DTLS connection performing a

handshake, while the existing DTLS connection is kept in place. In

DTLS 1.3 the handshake MAY be a full handshake or a resumption

handshake and resumption can be done while the original connection

is still open. In DTLS 1.2 the handshake MUST be a full handshake.

On handshake completion switch to the security context of the new

DTLS connection and then ensure delivery of all the SCTP chunks

using the old DTLS connections security context. When that has been

achieved close the old DTLS connection and discard the related

security context.

As specified in Section 4.1 the usage of DTLS connection ID is

required to ensure that the receiver can correctly identify the DTLS

connection and its security context when performing its de-

protection operations. There is also only a single SCTP-AUTH key

exported per DTLS connection ensuring that there is clear mapping

between the DTLS connection ID and the SCTP-AUTH security context

for each key-id.

Application writers should be aware that establishing a new DTLS

connections may result in changes of security parameters. See

Section 9 for security considerations regarding rekeying.

A DTLS/SCTP Endpoint MUST NOT have more than two DTLS connections

open at the same time. Either of the endpoints MAY initiate a new

DTLS connection by performing a full DTLS handshake. As either

endpoint can initiate a DTLS handshake on either side at the same

time, either endpoint may receive a DTLS ClientHello when it has

sent its own ClientHello. In this case the ClientHello from the

endpoint that had the DTLS Client role in the establishment of the

existing DTLS connection shall be continued to be processed and the

other dropped.

When performing the DTLS handshake the endpoint MUST verify that the

peer identifies using the same identity as in the previous DTLS

connection.

When the DTLS handshake has been completed, a new SCTP-AUTH key will

be exported per Section 4.10 and the new DTLS connection MUST be

used for the DTLS protection operation of any future protected ULP

user message. The endpoint is RECOMMENDED to use the security

context of the new DTLS connection for any DTLS protection operation

occurring after the completed handshake. The new SCTP-AUTH key SHALL

be used for any SCTP user message being sent after the DTLS

handshake has completed. There is a possibility to use the new SCTP-

¶

¶

¶

¶

¶

AUTH key for any SCTP packets part of an SCTP user message that was

initiated but not yet fully transmitted prior to the completion of

the new DTLS handshake, however the API defined in [RFC6458] is not

supporting switching the SCTP-AUTH key on the sender side. Any SCTP-

AUTH receiver implementation is expected to be able to select key on

SCTP packet basis.

The DTLS/SCTP endpoint will indicate to its peer when the previous

DTLS connection and its context are no longer needed for receiving

any more data from this endpoint. This is done by having DTLS to

send a DTLS close_notify alert. The endpoint MUST NOT send the

close_notify until the following two conditions are fulfilled:

All SCTP packets containing part of any DTLS record or message

protected using the security context of this DTLS connection

have been acknowledged in a non-renegable way.

All SCTP packets using the SCTP-AUTH key associated with the

security context of this DTLS connection have been acknowledged

in a non-renegable way.

Note: For DTLS 1.2 receiving Close_notify will close the DTLS

connection for further writes and requires the immediate generation

of a Close_notify. Thus, this forces the DTLS/SCTP to protect any

buffered data on DTLS/SCTP layer not yet protected to use the new

DTLS connection. In addition the DTLS/SCTP layer will have to buffer

the close_notify generated by the shuting down DTLS connection and

also not discard the SCTP-AUTH key until it has fulfilled the

delivery of the data protected by the closing DTLS connection

security context.

SCTP implementations exposing APIs like [RFC6458] fulfilling these

conditions requires draining the SCTP association of all outstanding

data after having completed all the user messages using the previous

SCTP-AUTH key identifier. Relying on the SCTP_SENDER_DRY_EVENT to

know when delivery has been accomplished. A richer API could also be

used that allows user message level tracking of delivery, see

Section 6 for API considerations.

For SCTP implementations exposing APIs like [RFC6458] where it is

not possible to change the SCTP-AUTH key for a partial SCTP message

initiated before the change of security context will be forced to

track the SCTP messages and determine when all using the old

security context has been transmitted. This maybe be impossible to

do completely reliable without tighter integration between the DTLS/

SCTP layer and the SCTP implementation. This type of implementations

also has an implicit limitation in how large SCTP messages it can

support. Each SCTP message needs have completed delivery and

enabling closing of the previous DTLS connection prior to the need

¶

¶

1.

¶

2.

¶

¶

¶

to create yet another DTLS connection. Thus, SCTP messages can't be

larger than that the transmission completes in less than the

duration between the rekeying or re-authentications needed for this

SCTP association.

The consequences of sending a DTLS close_notify alert in the old

DTLS connection prior to the receiver having received the data can

result in failure case 1 described in Section 4.1, which likely

result in SCTP association termination.

4.8. Renegotiation and KeyUpdate

DTLS 1.2 renegotiation enables rekeying (with ephemeral Diffie-

Hellman) of DTLS as well as mutual reauthentication and transfer of

revocation information inside an DTLS 1.2 connection. Renegotiation

has been removed from DTLS 1.3 and partly replaced with post-

handshake messages such as KeyUpdate. The parallel DTLS connection

solution was specified due to lack of necessary features with DTLS

1.3 considered needed for long lived SCTP associations, such as

rekeying (with ephemeral Diffie-Hellman) as well as mutual

reauthentication.

This specification do not allow usage of DTLS 1.2 renegotiation to

avoid race conditions and corner cases in the interaction between

the parallel DTLS connection mechanism and the keying of SCTP-AUTH.

In addtion renegotiation is also disabled in implementation, as well

as dealing with the epoch change reliable have similar or worse

applicaiton impact.

This specification also recommends against using DTLS 1.3 KeyUpdate

and instead rely on parallel DTLS connections. For DTLS 1.3 there

isn't feature parity. It also have the issue that a DTLS

implementation following the RFC may assume a too limited window for

SCTP where the previous epoch's security context is maintained and

thus changes to epoch handling (Section 4.9) are necessary. Thus,

unless the below specified more application impacting draining is

used there exist risk of losing data that the sender will have

assumed has been reliably delivered.

4.8.1. DTLS 1.2 Considerations

The endpoint MUST NOT use DTLS 1.2 renegotiation.

4.8.2. DTLS 1.3 Considerations

Before sending a KeyUpdate message, the DTLS endpoint MUST ensure

that all DTLS messages have been acknowledged by the SCTP peer in a

non-revokable way. After sending the KeyUpdate message, it stops

sending DTLS messages until the corresponding Ack message has been

processed.

¶

¶

¶

¶

¶

¶

¶

Prior to processing a received KeyUpdate message, all other received

SCTP user messages that are buffered in the SCTP layer and can be

delivered to the DTLS layer MUST be read and processed by DTLS.

4.9. DTLS Epochs

In general, DTLS implementations SHOULD discard records from earlier

epochs. However, in the context of a reliable communication this is

not appropriate.

4.9.1. DTLS 1.2 Considerations

Epochs will not be used as renegotiation is disallowed.

4.9.2. DTLS 1.3 Considerations

The procedures of Section 4.2.1 of [I-D.ietf-tls-dtls13] are

irrelevant. When receiving DTLS packets using epoch n, no DTLS

packets from earlier epochs are received.

4.10. Handling of Endpoint-Pair Shared Secrets

SCTP-AUTH [RFC4895] is keyed using Endpoint-Pair Shared Secrets. In

SCTP associations where DTLS is used, DTLS is used to establish

these secrets. The endpoints MUST NOT use another mechanism for

establishing shared secrets for SCTP-AUTH. The endpoint-pair shared

secret for Shared Key Identifier 0 is empty and MUST be used when

establishing the first DTLS connection.

The initial DTLS connection will be used to establish a new shared

secret as specified per DTLS version below, and which MUST use

shared key identifier 1. After sending the DTLS Finished message for

the initial DTLS connection, the active SCTP-AUTH key MUST be

switched from key identifier 0 to key identifier 1. Once the initial

Finished message from the peer has been processed by DTLS, the SCTP-

AUTH key with Shared Key Identifier 0 MUST be removed.

When a subsequent DTLS connection is setup, a new a 64-byte shared

secret is derived using the TLS-Exporter. The shared secret

identifiers form a sequence. If the previous shared secret used

Shared Key Identifier n, the new one MUST use Shared Key Identifier

n+1, unless n= 65535, in which case the new Shared Key Identifier is

1.

After sending the DTLS Finished message, the active SCTP-AUTH key

MUST be switched to the new one. When the endpoint has both sent and

received a closeNotify on the old DTLS connection then the endpoint

SHALL remove shared secret(s) related to old DTLS connection.

¶

¶

¶

¶

¶

¶

¶

¶

4.10.1. DTLS 1.2 Considerations

The 64-byte shared secret MUST be provided to the SCTP stack as soon

as the computation is possible. The exporter MUST use the label

given in Section 8 and no context.

4.10.2. DTLS 1.3 Considerations

When the exporter_secret can be computed, a 64-byte shared secret is

derived from it and provided as a new endpoint-pair shared secret by

using the TLS-Exporter described in [RFC8446].

The 64-byte shared secret MUST be provided to the SCTP stack as soon

as the computation is possible. The exporter MUST use the label

given in Section Section 8 and no context.

4.11. Shutdown

To prevent DTLS from discarding DTLS user messages while it is

shutting down, the below procedure has been defined. Its goal is to

avoid the need for APIs requiring per user message data level

acknowledgments and utilizes existing SCTP protocol behavior to

ensure delivery of the protected user messages data.

Note, this proceudre currenlty only works for DTLS 1.3. For DTLS 1.2

users the remote endpoint will be closed for sending more data with

the reception of the close_notify in step 5, and step 6 will not be

possible and that data will be lost.

The interaction between peers and protocol stacks shall be as

follows:

Local instance of ULP asks for terminating the DTLS/SCTP

Association.

Local DTLS/SCTP acknowledge the request, from this time on no

new data from local instance of ULP will be accepted. In case a

DTLS connection handshake is ongoing this needs to be aborted

conclusively at this step to ensure that the necessary DTLS

message exchange happens prior to draining any outstanding data

in the SCTP association from this endpoint.

Local DTLS/SCTP finishes any protection operation on buffered

user messages and ensures that all protected user message data

has been successfully transferred to the remote ULP.

Whenever a new DTLS connection is established, a 64-byte

endpoint-pair shared secret is derived using the TLS-Exporter

described in {{RFC5705}}.

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

Local DTLS/SCTP sends DTLS Close_notify to remote instance of

DTLS/SCTP on each and all DTLS connections, keys and session

state are kept for processing packets received later on.

When receiving Close_notify on the last open DTLS connection,

remote DTLS/SCTP instance informs its ULP that remote shutdown

has been initiated. When two parallel DTLS connections are in

place it is important to await Close_notify alert on both to

not misstake a rekeying. No more ULP user message data to be

sent to peer can be accepted by DTLS/SCTP. In case this

endpoint has initiated and DTLS connection handshake this MUST

be aborted as the peer is unable to respond.

Remote DTLS/SCTP finishes any protection operation on buffered

user messages and ensures that all protected user message data

has been successfully transferred to the remote ULP.

Remote DTLS/SCTP sends Close_notify to Local DTLS/SCTP entity

for each and all DTLS connections.

When receiving Close_notify on the last open DTLS connection,

local DTLS/SCTP instance initiates the SCTP shutdown procedure

(section 9.2 of [RFC4960]).

Remote DTLS/SCTP replied to the SCTP shutdown procedure

(section 9.2 of [RFC4960]).

Upon receiving the information that SCTP has closed the

Association, independently the local and remote DTLS/SCTP

entities destroy the DTLS connection.

The verification in step 3 and 6 that all user data message has been

successfully delivered to the remote ULP can be provided by the SCTP

stack that implements [RFC6458] by means of SCTP_SENDER_DRY event

(section 6.1.9 of [RFC6458]).

A successful SCTP shutdown will indicate successful delivery of all

data. However, in cases of communication failures and extensive

packet loss the SCTP shutdown procedure can time out and result in

SCTP association termination where its unknown if all data has been

delivered. The DTLS/SCTP should indicate to ULP successful

completion or failure to shutdown gracefully.

5. DTLS over SCTP Service

The adoption of DTLS over SCTP according to the current

specification is meant to add to SCTP the option for transferring

encrypted data. When DTLS over SCTP is used, all data being

transferred MUST be protected by chunk authentication and DTLS

encrypted. Chunks that need to be received in an authenticated way

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

9.

¶

10.

¶

¶

¶

will be specified in the CHUNK list parameter according to

[RFC4895]. Error handling for authenticated chunks is according to

[RFC4895].

5.1. Adaptation Layer Indication in INIT/INIT-ACK

At the initialization of the association, a sender of the INIT or

INIT ACK chunk that intends to use DTLS/SCTP as specified in this

specification MUST include an Adaptation Layer Indication Parameter

with the IANA assigned value TBD (Section 8.2) to inform its peer

that it is able to support DTLS over SCTP per this specification.

5.2. DTLS over SCTP Initialization

Initialization of DTLS/SCTP requires all the following options to be

part of the INIT/INIT-ACK handshake:

RANDOM: defined in [RFC4895]

CHUNKS: list of permitted chunks, defined in [RFC4895]

HMAC-ALGO: defined in [RFC4895]

ADAPTATION-LAYER-INDICATION: defined in [RFC5061]

When all the above options are present and having acceptable

parameters, the Association will start with support of DTLS/SCTP.

The set of options indicated are the DTLS/SCTP Mandatory Options. No

data transfer is permitted before DTLS handshake is complete. Chunk

bundling is permitted according to [RFC4960]. The DTLS handshake

will enable authentication of both the peers.

The extension described in this document is given by the following

message exchange.

5.3. Client Use Case

When a client initiates an SCTP Association with DTLS protection,

i.e., the SCTP INIT containing DTSL/SCTP Mandatory Options, it can

receive an INIT-ACK also containing DTLS/SCTP Mandatory Options, in

that case the Association will proceed as specified in the previous

¶

¶

¶

¶

¶

¶

¶

¶

¶

 --- INIT[RANDOM; CHUNKS; HMAC-ALGO; ADAPTATION-LAYER-IND] --->

 <- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO; ADAPTATION-LAYER-IND] -

 ------------------------ COOKIE-ECHO ------------------------>

 <------------------------ COOKIE-ACK -------------------------

 ---------------- AUTH; DATA[DTLS Handshake] ----------------->

 ...

 ...

 <--------------- AUTH; DATA[DTLS Handshake] ------------------

¶

Section 5.2 section. If the peer replies with an INIT-ACK not

containing all DTLS/SCTP Mandatory Options, the client SHOULD reply

with an SCTP ABORT.

5.4. Server Use Case

If a SCTP Server supports DTLS/SCTP, i.e., per this specification,

when receiving an INIT chunk with all DTLS/SCTP Mandatory Options it

will reply with an INIT-ACK also containing all the DTLS/SCTP

Mandatory Options, following the sequence for DTLS initialization

Section 5.2 and the related traffic case. If a SCTP Server that

supports DTLS and configured to use it, receives an INIT chunk

without all DTLS/SCTP Mandatory Options, it SHOULD reply with an

SCTP ABORT.

5.5. RFC 6083 Fallback

This section discusses how an endpoint supporting this specification

can fallback to follow the DTLS/SCTP behavior in RFC6083. It is

recommended to define a setting that represents the policy to allow

fallback or not. However, the possibility to use fallback is based

on the ULP can operate using user messages that are no longer than

16384 bytes and where the security issues can be mitigated or

considered acceptable. Fallback is NOT RECOMMEND to be enabled as it

enables downgrade attacks to weaker algorithms and versions of DTLS.

An SCTP endpoint that receives an INIT chunk or an INIT-ACK chunk

that does not contain the SCTP-Adaptation-Indication parameter with

the DTLS/SCTP adaptation layer codepoint, see Section 8.2, may in

certain cases potentially perform a fallback to RFC 6083 behavior.

However, the fallback attempt should only be performed if policy

says that is acceptable.

If fallback is allowed, it is possible that the client will send

plain text user messages prior to DTLS handshake as it is allowed

per RFC 6083. So that needs to be part of the consideration for a

policy allowing fallback.

5.5.1. Client Fallback

A DTLS/SCTP client supporting this specficiation encountering an

server not compatible with this specficiation MAY attempt RFC 6083

fallback per this procedure.

Fallback procedure, if enabled, is initiated when receiving an

SCTP INIT-ACK that does not contain the DTLS/SCTP Adaptation

Layer indication. If fallback is not enabled the SCTP handshake

is aborted.

¶

¶

¶

¶

¶

¶

1.

¶

The client checks that the SCTP INIT-ACK contained the

necessary chunks and parameters to establish SCTP-AUTH per RFC

6083 with this endpoint. If not all necessary parameters or

support algorithms don't match the client MUST abort the

handshake. Otherwise it complets the SCTP handshake.

Client performs DTLS connection handshake per RFC 6083 over

established SCTP association. If succesfull authenticating the

targeted server the client has succesfull fallen back to use

RFC 6083. If not terminate the SCTP association.

5.5.2. Server Fallback

A DTLS/SCTP Server that supports both this specification and RFC

6083 and where fallback has been enabled for the ULP can follow this

procedure.

When receving an SCTP INIT message without the DTLS/SCTP

adapation layer indicataion fallback procedure is initiated.

Verify that the SCTP INIT contains SCTP-AUTH parameters

required by RFC 6083 and compatible with this server. If that

is not the case abort the SCTP handshake.

Send an SCTP INIT ACK with the required SCTP-AUTH chunks and

parameters to the client.

Complete the SCTP Handshake. Await DTLS handshake per RFC 6083.

Plain text SCTP messages MAY be received.

Upon succesful completion of DTLS handshake succesfull fallback

to RFC 6083 have been accomplished.

6. SCTP API Consideration

DTLS/SCTP needs certain functionality on the API that the SCTP

implementation provide to the ULP to function optimally. A DTLS/SCTP

implementation will need to provide its own API to the ULP, while

itself using the SCTP API. This discussion is focused on the needed

functionality on the SCTP API.

The following functionality is needed:

Controlling SCPT-AUTH negotiation so that SHA-256 algorithm is

inlcuded, and determine that SHA-1 is not selected when the

association is established.

Determine when all SCTP packets that uses an SCTP-auth key or

contains DTLS records associated to a particular DTLS connection

has been acknowledge in a non-renegable manor.

2.

¶

3.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

¶

*

¶

*

¶

assoc_id:

Determine when all SCTP packets have been acknowledge in a non-

renegable manor.

Negotiate the adaptation layer indication that indicates DTLS/

SCTP and determine if it was agreed or not.

Partial user messages transmission and reception.

7. Socket API Considerations

This section describes how the socket API defined in [RFC6458] is

extended to provide a way for the application to observe the HMAC

algorithms used for sending and receiving of AUTH chunks.

Please note that this section is informational only.

A socket API implementation based on [RFC6458] is, by means of the

existing SCTP_AUTHENTICATION_EVENT event, extended to provide the

event notification whenever a new HMAC algorithm is used in a

received AUTH chunk.

Furthermore, two new socket options for the level IPPROTO_SCTP and

the name SCTP_SEND_HMAC_IDENT and SCTP_EXPOSE_HMAC_IDENT_CHANGES are

defined as described below. The first socket option is used to query

the HMAC algorithm used for sending AUTH chunks. The second enables

the monitoring of HMAC algorithms used in received AUTH chunks via

the SCTP_AUTHENTICATION_EVENT event.

Support for the SCTP_SEND_HMAC_IDENT and

SCTP_EXPOSE_HMAC_IDENT_CHANGES socket options also need to be added

to the function sctp_opt_info().

7.1. Socket Option to Get the HMAC Identifier being Sent

(SCTP_SEND_HMAC_IDENT)

During the SCTP association establishment a HMAC Identifier is

selected which is used by an SCTP endpoint when sending AUTH chunks.

An application can access the result of this selection by using this

read-only socket option, which uses the level IPPROTO_SCTP and the

name SCTP_SEND_HMAC_IDENT.

The following structure is used to access HMAC Identifier used for

sending AUTH chunks:

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

struct sctp_assoc_value {

 sctp_assoc_t assoc_id;

 uint32_t assoc_value;

};

¶

assoc_value:

This parameter is ignored for one-to-one style sockets. For one-

to-many style sockets, the application fills in an association

identifier. It is an error to use SCTP_{FUTURE|CURRENT|ALL}_ASSOC

in assoc_id.

This parameter contains the HMAC Identifier used for

sending AUTH chunks.

7.2. Exposing the HMAC Identifiers being Received

Section 6.1.8 of [RFC6458] defines the SCTP_AUTHENTICATION_EVENT

event, which uses the following structure:

This document updates this structure to

by renaming auth_keynumber to auth_identifier. auth_identifier just

replaces auth_keynumber in the context of [RFC6458]. In addition to

that, the SCTP_AUTHENTICATION_EVENT event is extended to also

indicate when a new HMAC Identifier is received and such reporting

is explicitly enabled as described in Section 7.3. In this case

auth_indication is SCTP_AUTH_NEW_HMAC and the new HMAC identifier is

reported in auth_identifier.

7.3. Socket Option to Expose HMAC Identifier Usage

(SCTP_EXPOSE_HMAC_IDENT_CHANGES)

This options allows the application to enable and disable the

reception of SCTP_AUTHENTICATION_EVENT events when a new HMAC

Identifiers has been received in an AUTH chunk (see Section 7.2).

This read/write socket option uses the level IPPROTO_SCTP and the

name SCTP_EXPOSE_HMAC_IDENT_CHANGES. It is needed to provide

¶

¶

¶

struct sctp_authkey_event {

 uint16_t auth_type;

 uint16_t auth_flags;

 uint32_t auth_length;

 uint16_t auth_keynumber;

 uint32_t auth_indication;

 sctp_assoc_t auth_assoc_id;

};

¶

¶

struct sctp_authkey_event {

 uint16_t auth_type;

 uint16_t auth_flags;

 uint32_t auth_length;

 uint16_t auth_identifier; /* formerly auth_keynumber */

 uint32_t auth_indication;

 sctp_assoc_t auth_assoc_id;

};

¶

¶

assoc_id:

assoc_value:

backwards compatibility and the default is that these events are not

reported.

The following structure is used to enable or disable the reporting

of newly received HMAC Identifiers in AUTH chunks:

This parameter is ignored for one-to-one style sockets.

For one-to-many style sockets, the application may fill in an

association identifier or SCTP_{FUTURE|CURRENT|ALL}_ASSOC.

Newly received HMAC Identifiers are reported if, and

only if, this parameter is non-zero.

8. IANA Considerations

8.1. TLS Exporter Label

RFC 6083 defined a TLS Exporter Label registry as described in

[RFC5705]. IANA is requested to update the reference for the label

"EXPORTER_DTLS_OVER_SCTP" to this specification.

8.2. SCTP Adaptation Layer Indication Code Point

[RFC5061] defined a IANA registry for Adaptation Code Points to be

used in the Adaptation Layer Indication parameter. The registry was

at time of writing located: https://www.iana.org/assignments/sctp-

parameters/sctp-parameters.xhtml#sctp-parameters-27 IANA is

requested to assign one Adaptation Code Point for DTLS/SCTP per the

below proposed entry in Table 1.

Code Point (32-bit number) Description Reference

0x00000002 DTLS/SCTP [RFC-TBD]

Table 1: Adaptation Code Point

RFC-Editor Note: Please replace [RFC-TBD] with the RFC number given

to this specification.

9. Security Considerations

The security considerations given in [I-D.ietf-tls-dtls13],

[RFC4895], and [RFC4960] also apply to this document.

¶

¶

struct sctp_assoc_value {

 sctp_assoc_t assoc_id;

 uint32_t assoc_value;

};

¶

¶

¶

¶

¶

¶

¶

9.1. Cryptographic Considerations

Over the years, there have been several serious attacks on earlier

versions of Transport Layer Security (TLS), including attacks on its

most commonly used ciphers and modes of operation. [RFC7457]

summarizes the attacks that were known at the time of publishing and

BCP 195 [RFC7525] [RFC8996] provide recommendations for improving

the security of deployed services that use TLS.

When DTLS/SCTP is used with DTLS 1.2 [RFC6347], DTLS 1.2 MUST be

configured to disable options known to provide insufficient

security. HTTP/2 [RFC7540] gives good minimum requirements based on

the attacks that where publicly known in 2015. DTLS 1.3 [I-D.ietf-

tls-dtls13] only define strong algorithms without major weaknesses

at the time of publication. Many of the TLS registries have a

"Recommended" column. Parameters not marked as "Y" are NOT

RECOMMENDED to support. DTLS 1.3 is preferred over DTLS 1.2 being a

newer protocol that addresses known vulnerabilities and only defines

strong algorithms without known major weaknesses at the time of

publication.

DTLS 1.3 requires rekeying before algorithm specific AEAD limits

have been reached. The AEAD limits equations are equally valid for

DTLS 1.2 and SHOULD be followed for DTLS/SCTP, but are not mandated

by the DTLS 1.2 specification.

HMAC-SHA-256 as used in SCTP-AUTH has a very large tag length and

very good integrity properties. The SCTP-AUTH key can be used longer

than the current algorithms in the TLS record layer. The SCTP-AUTH

key is rekeyed when a new DTLS connection is set up at which point a

new SCTP-AUTH key is derived using the TLS-Exporter.

(D)TLS 1.3 [RFC8446] discusses forward secrecy from EC(DHE),

KeyUpdate, and tickets/resumption. Forward secrecy limits the effect

of key leakage in one direction (compromise of a key at time T2 does

not compromise some key at time T1 where T1 < T2). Protection in the

other direction (compromise at time T1 does not compromise keys at

time T2) can be achieved by rerunning EC(DHE). If a long-term

authentication key has been compromised, a full handshake with

EC(DHE) gives protection against passive attackers. If the

resumption_master_secret has been compromised, a resumption

handshake with EC(DHE) gives protection against passive attackers

and a full handshake with EC(DHE) gives protection against active

attackers. If a traffic secret has been compromised, any handshake

with EC(DHE) gives protection against active attackers.

The document "Confidentiality in the Face of Pervasive Surveillance:

A Threat Model and Problem Statement" [RFC7624] defines key

exfiltration as the transmission of cryptographic keying material

¶

¶

¶

¶

¶

for an encrypted communication from a collaborator, deliberately or

unwittingly, to an attacker. Using the terms in RFC 7624, forward

secrecy without rerunning EC(DHE) still allows an attacker to do

static key exfiltration. Rerunning EC(DHE) forces and attacker to

dynamic key exfiltration (or content exfiltration).

When using DTLS 1.3 [I-D.ietf-tls-dtls13], AEAD limits and forward

secrecy can be achieved by sending post-handshake KeyUpdate

messages, which triggers rekeying of DTLS. Such symmetric rekeying

gives significantly less protection against key leakage than re-

running Diffie-Hellman as explained above. After leakage of

application_traffic_secret_N, an attacker can passively eavesdrop on

all future data sent on the connection including data encrypted with

application_traffic_secret_N+1, application_traffic_secret_N+2, etc.

Note that KeyUpdate does not update the exporter_secret.

DTLS/SCTP is in many deployments replacing IPsec. For IPsec, NIST

(US), BSI (Germany), and ANSSI (France) recommends very frequent re-

run of Diffie-Hellman to provide forward secrecy and force attackers

to dynamic key extraction [RFC7624]. ANSSI writes "It is recommended

to force the periodic renewal of the keys, e.g., every hour and

every 100 GB of data, in order to limit the impact of a key

compromise." [ANSSI-DAT-NT-003].

For many DTLS/SCTP deployments the SCTP association is expected to

have a very long lifetime of months or even years. For associations

with such long lifetimes there is a need to frequently re-

authenticate both client and server. TLS Certificate lifetimes

significantly shorter than a year are common which is shorter than

many expected DTLS/SCTP associations.

SCTP-AUTH re-rekeying, periodic authentication of both endpoints,

and frequent re-run of Diffie-Hellman to force attackers to dynamic

key extraction is in DTLS/SCTP per this specification achieved by

setting up new DTLS connections over the same SCTP association.

Implementations SHOULD set up new connections frequently to force

attackers to dynamic key extraction. Implementations MUST set up new

connections before any of the certificates expire. It is RECOMMENDED

that all negotiated and exchanged parameters are the same except for

the timestamps in the certificates. Clients and servers MUST NOT

accept a change of identity during the setup of a new connections,

but MAY accept negotiation of stronger algorithms and security

parameters, which might be motivated by new attacks.

Allowing new connections can enable denial-of-service attacks. The

endpoints SHOULD limit the frequency of new connections.

When DTLS/SCTP is used with DTLS 1.2 [RFC6347], the TLS Session Hash

and Extended Master Secret Extension [RFC7627] MUST be used to

¶

¶

¶

¶

¶

¶

prevent unknown key-share attacks where an attacker establishes the

same key on several connections. DTLS 1.3 always prevents these

kinds of attacks. The use of SCTP-AUTH then cryptographically binds

new connections to the old connection. This together with mandatory

mutual authentication (on the DTLS layer) and a requirement to not

accept new identities mitigates MITM attacks that have plagued

renegotiation [TRISHAKE].

9.2. Downgrade Attacks

A peer supporting DTLS/SCTP according to this specification, DTLS/

SCTP according to [RFC6083] and/or SCTP without DTLS may be

vulnerable to downgrade attacks where on on-path attacker interferes

with the protocol setup to lower or disable security. If possible,

it is RECOMMENDED that the peers have a policy only allowing DTLS/

SCTP according to this specification.

9.3. Targeting DTLS Messages

The DTLS handshake messages and other control messages, i.e. not

application data can easily be identified when using DTLS 1.2 as

their content type is not encrypted. With DTLS 1.3 there is no

unprotected content type. However, they will sent with an PPID of 0

if sent in their own SCTP user messages. Section 4.4 proposes a

basic behavior that will stil make it easily for anyone to detect

the DTLS messages that are not proteceted user messages.

9.4. Authentication and Policy Decisions

DTLS/SCTP MUST be mutually authenticated. Authentication is the

process of establishing the identity of a user or system and

verifying that the identity is valid. DTLS only provides proof of

possession of a key. DTLS/SCTP MUST perform identity authentication.

It is RECOMMENDED that DTLS/SCTP is used with certificate-based

authentication. When certificates are used the applicatication using

DTLS/SCTP is reposible for certificate policies, certificate chain

validation, and identity authentication (HTTPS does for example

match the hostname with a subjectAltName of type dNSName). The

application using DTLS/SCTP MUST define what the identity is and how

it is encoded and the client and server MUST use the same identity

format. Guidance on server certificate validation can be found in

[RFC6125]. DTLS/SCTP enables periodic transfer of mutual revocation

information (OSCP stapling) every time a new parallel connection is

set up. All security decisions MUST be based on the peer's

authenticated identity, not on its transport layer identity.

It is possible to authenticate DTLS endpoints based on IP addresses

in certificates. SCTP associations can use multiple IP addresses per

SCTP endpoint. Therefore, it is possible that DTLS records will be

¶

¶

¶

¶

sent from a different source IP address or to a different

destination IP address than that originally authenticated. This is

not a problem provided that no security decisions are made based on

the source or destination IP addresses.

9.5. Resumption and Tickets

In DTLS 1.3 any number of tickets can be issued in a connection and

the tickets can be used for resumption as long as they are valid,

which is up to seven days. The nodes in a resumed connection have

the same roles (client or server) as in the connection where the

ticket was issued. In DTLS/SCTP, there are no significant

performance benefits with resumption and an implementation can chose

to never issue any tickets. If tickets and resumption are used it is

enough to issue a single ticket per connection.

9.6. Privacy Considerations

[RFC6973] suggests that the privacy considerations of IETF protocols

be documented.

For each SCTP user message, the user also provides a stream

identifier, a flag to indicate whether the message is sent ordered

or unordered, and a payload protocol identifier. Although DTLS/SCTP

provides privacy for the actual user message, the other three

information fields are not confidentiality protected. They are sent

as cleartext because they are part of the SCTP DATA chunk header.

It is RECOMMENDED that DTLS/SCTP is used with certificate based

authentication in DTLS 1.3 [I-D.ietf-tls-dtls13] to provide identity

protection. DTLS/SCTP MUST be used with a key exchange method

providing forward secrecy.

9.7. Pervasive Monitoring

As required by [RFC7258], work on IETF protocols needs to consider

the effects of pervasive monitoring and mitigate them when possible.

Pervasive Monitoring is widespread surveillance of users. By

encrypting more information including user identities, DTLS 1.3

offers much better protection against pervasive monitoring.

Massive pervasive monitoring attacks relying on key exchange without

forward secrecy has been reported. By mandating forward secrecy,

DTLS/SCTP effectively mitigate many forms of passive pervasive

monitoring and limits the amount of compromised data due to key

compromise.

An important mitigation of pervasive monitoring is to force

attackers to do dynamic key exfiltration instead of static key

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3758]

exfiltration. Dynamic key exfiltration increases the risk of

discovery for the attacker [RFC7624]. DTLS/SCTP per this

specification encourages implementations to frequently set up new

DTLS connections with (EC)DHE over the same SCTP association to

force attackers to do dynamic key exfiltration.

In addition to the privacy attacks discussed above, surveillance on

a large scale may enable tracking of a user over a wider

geographical area and across different access networks. Using

information from DTLS/SCTP together with information gathered from

other protocols increase the risk of identifying individual users.

10. Contributors

Michael Tuexen contributed as co-author to the intitial versions

this draft. Michael's contributions include:

The use of the Adaptation Layer Indication.

Socket API extension

Many editorial improvements.

11. Acknowledgments

The authors of RFC 6083 which this document is based on are Michael

Tuexen, Eric Rescorla, and Robin Seggelmann.

The RFC 6083 authors thanked Anna Brunstrom, Lars Eggert, Gorry

Fairhurst, Ian Goldberg, Alfred Hoenes, Carsten Hohendorf, Stefan

Lindskog, Daniel Mentz, and Sean Turner for their invaluable

comments.

The authors of this document want to thank Daria Ivanova, Li Yan,

and GitHub user vanrein for their contribution.

12. References

12.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.

Conrad, "Stream Control Transmission Protocol (SCTP)

Partial Reliability Extension", RFC 3758, DOI 10.17487/

RFC3758, May 2004, <https://www.rfc-editor.org/info/

rfc3758>.

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3758
https://www.rfc-editor.org/info/rfc3758

[RFC4895]

[RFC4960]

[RFC5705]

[RFC6347]

[RFC7627]

[RFC7540]

[RFC8174]

[RFC8260]

[RFC8446]

[RFC8996]

[I-D.ietf-tls-dtls13]

Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,

"Authenticated Chunks for the Stream Control Transmission

Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August

2007, <https://www.rfc-editor.org/info/rfc4895>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/info/rfc4960>.

Rescorla, E., "Keying Material Exporters for Transport

Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,

March 2010, <https://www.rfc-editor.org/info/rfc5705>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,

Langley, A., and M. Ray, "Transport Layer Security (TLS)

Session Hash and Extended Master Secret Extension", RFC

7627, DOI 10.17487/RFC7627, September 2015, <https://

www.rfc-editor.org/info/rfc7627>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,

"Stream Schedulers and User Message Interleaving for the

Stream Control Transmission Protocol", RFC 8260, DOI

10.17487/RFC8260, November 2017, <https://www.rfc-

editor.org/info/rfc8260>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Moriarty, K. and S. Farrell, "Deprecating TLS 1.0 and TLS

1.1", BCP 195, RFC 8996, DOI 10.17487/RFC8996, March

2021, <https://www.rfc-editor.org/info/rfc8996>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

https://www.rfc-editor.org/info/rfc4895
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8996

[I-D.ietf-tls-dtls-connection-id]

[RFC3436]

[RFC3788]

[RFC5061]

[RFC6083]

[RFC6125]

[RFC6458]

[RFC6973]

ietf-tls-dtls13-43, 30 April 2021, <https://www.ietf.org/

internet-drafts/draft-ietf-tls-dtls13-43.txt>.

Rescorla, E., Tschofenig, H.,

Fossati, T., and A. Kraus, "Connection Identifiers for

DTLS 1.2", Work in Progress, Internet-Draft, draft-ietf-

tls-dtls-connection-id-13, 22 June 2021, <https://

www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-

id-13.txt>.

12.2. Informative References

Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport

Layer Security over Stream Control Transmission

Protocol", RFC 3436, DOI 10.17487/RFC3436, December 2002,

<https://www.rfc-editor.org/info/rfc3436>.

Loughney, J., Tuexen, M., Ed., and J. Pastor-Balbas,

"Security Considerations for Signaling Transport

(SIGTRAN) Protocols", RFC 3788, DOI 10.17487/RFC3788,

June 2004, <https://www.rfc-editor.org/info/rfc3788>.

Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.

Kozuka, "Stream Control Transmission Protocol (SCTP)

Dynamic Address Reconfiguration", RFC 5061, DOI 10.17487/

RFC5061, September 2007, <https://www.rfc-editor.org/

info/rfc5061>.

Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram

Transport Layer Security (DTLS) for Stream Control

Transmission Protocol (SCTP)", RFC 6083, DOI 10.17487/

RFC6083, January 2011, <https://www.rfc-editor.org/info/

rfc6083>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.

Yasevich, "Sockets API Extensions for the Stream Control

Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011, <https://www.rfc-editor.org/info/

rfc6458>.

Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

Morris, J., Hansen, M., and R. Smith, "Privacy

Considerations for Internet Protocols", RFC 6973, DOI

https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-id-13.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-id-13.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-id-13.txt
https://www.rfc-editor.org/info/rfc3436
https://www.rfc-editor.org/info/rfc3788
https://www.rfc-editor.org/info/rfc5061
https://www.rfc-editor.org/info/rfc5061
https://www.rfc-editor.org/info/rfc6083
https://www.rfc-editor.org/info/rfc6083
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6458

[RFC7258]

[RFC7457]

[RFC7525]

[RFC7624]

[ANSSI-DAT-NT-003]

[TRISHAKE]

10.17487/RFC6973, July 2013, <https://www.rfc-editor.org/

info/rfc6973>.

Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is

an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

2014, <https://www.rfc-editor.org/info/rfc7258>.

Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing

Known Attacks on Transport Layer Security (TLS) and

Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,

February 2015, <https://www.rfc-editor.org/info/rfc7457>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Barnes, R., Schneier, B., Jennings, C., Hardie, T.,

Trammell, B., Huitema, C., and D. Borkmann,

"Confidentiality in the Face of Pervasive Surveillance: A

Threat Model and Problem Statement", RFC 7624, DOI

10.17487/RFC7624, August 2015, <https://www.rfc-

editor.org/info/rfc7624>.

Agence nationale de la sécurité des systèmes

d'information, "Recommendations for securing networks

with IPsec", ANSSI Technical Report DAT-NT-003 , August

2015, <<https://www.ssi.gouv.fr/uploads/2015/09/

NT_IPsec_EN.pdf>>.

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,

A., and P. Strub, "Triple Handshakes and Cookie Cutters:

Breaking and Fixing Authentication over TLS", IEEE

Symposium on Security & Privacy , April 2016, <https://

hal.inria.fr/hal-01102259/file/triple-handshakes-and-

cookie-cutters-oakland14.pdf>.

Appendix A. Motivation for Changes

This document proposes a number of changes to RFC 6083 that have

various different motivations:

Supporting Large User Messages: RFC 6083 allowed only user messages

that could fit within a single DTLS record. 3GPP has run into this

limitation where they have at least four SCTP using protocols (F1,

E1, Xn, NG-C) that can potentially generate messages over the size

of 16384 bytes.

¶

¶

https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7457
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7624
https://www.rfc-editor.org/info/rfc7624
https://datatracker.ietf.org/%3Chttps:/www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf%3E
https://datatracker.ietf.org/%3Chttps:/www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf%3E
https://hal.inria.fr/hal-01102259/file/triple-handshakes-and-cookie-cutters-oakland14.pdf
https://hal.inria.fr/hal-01102259/file/triple-handshakes-and-cookie-cutters-oakland14.pdf
https://hal.inria.fr/hal-01102259/file/triple-handshakes-and-cookie-cutters-oakland14.pdf

New Versions: Almost 10 years has passed since RFC 6083 was written,

and significant evolution has happened in the area of DTLS and

security algorithms. Thus DTLS 1.3 is the newest version of DTLS and

also the SHA-1 HMAC algorithm of RFC 4895 is getting towards the end

of usefulness. Use of DTLS 1.3 with long lived associations require

parallel DTLS connections. Thus, this document mandates usage of

relevant versions and algorithms.

Allowing DTLS Messages on any stream: RFC6083 requires DTLS messages

that are not user message data to sent on stream 0 and that this

stream is used with in-order delivery. That can actually limit the

applications that can use DTLS/SCTP. In addition with DTLS 1.3

encrypting the actual message type it is anyway not available.

Therefore a more flexible rule set is used that relies on DTLS

handling reordering.

Clarifications: Some implementation experiences have been gained

that motivates additional clarifications on the specification.

Avoid unsecured messages prior to DTLS handshake have completed.

Make clear that all messages are encrypted after DTLS handshake.

Authors' Addresses

Magnus Westerlund

Ericsson

Email: magnus.westerlund@ericsson.com

John Preuß Mattsson

Ericsson

Email: john.mattsson@ericsson.com

Claudio Porfiri

Ericsson

Email: claudio.porfiri@ericsson.com

¶

¶

¶

* ¶

* ¶

mailto:magnus.westerlund@ericsson.com
mailto:john.mattsson@ericsson.com
mailto:claudio.porfiri@ericsson.com

	Datagram Transport Layer Security (DTLS) over Stream Control Transmission Protocol (SCTP)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Overview
	1.1.1. Comparison with TLS for SCTP
	1.1.2. Changes from RFC 6083

	1.2. DTLS Version
	1.3. Terminology
	1.4. Abbreviations

	2. Conventions
	3. DTLS Considerations
	3.1. Version of DTLS
	3.2. Cipher Suites and Cryptographic Parameters
	3.3. Message Sizes
	3.4. Replay Protection
	3.5. Path MTU Discovery
	3.6. Retransmission of Messages

	4. SCTP Considerations
	4.1. Mapping of DTLS Records
	4.2. DTLS Connection Handling
	4.3. Payload Protocol Identifier Usage
	4.4. Stream Usage
	4.5. Chunk Handling
	4.6. SCTP-AUTH Hash Function
	4.7. Parallel DTLS connections
	4.8. Renegotiation and KeyUpdate
	4.8.1. DTLS 1.2 Considerations
	4.8.2. DTLS 1.3 Considerations

	4.9. DTLS Epochs
	4.9.1. DTLS 1.2 Considerations
	4.9.2. DTLS 1.3 Considerations

	4.10. Handling of Endpoint-Pair Shared Secrets
	4.10.1. DTLS 1.2 Considerations
	4.10.2. DTLS 1.3 Considerations

	4.11. Shutdown

	5. DTLS over SCTP Service
	5.1. Adaptation Layer Indication in INIT/INIT-ACK
	5.2. DTLS over SCTP Initialization
	5.3. Client Use Case
	5.4. Server Use Case
	5.5. RFC 6083 Fallback
	5.5.1. Client Fallback
	5.5.2. Server Fallback

	6. SCTP API Consideration
	7. Socket API Considerations
	7.1. Socket Option to Get the HMAC Identifier being Sent (SCTP_SEND_HMAC_IDENT)
	7.2. Exposing the HMAC Identifiers being Received
	7.3. Socket Option to Expose HMAC Identifier Usage (SCTP_EXPOSE_HMAC_IDENT_CHANGES)

	8. IANA Considerations
	8.1. TLS Exporter Label
	8.2. SCTP Adaptation Layer Indication Code Point

	9. Security Considerations
	9.1. Cryptographic Considerations
	9.2. Downgrade Attacks
	9.3. Targeting DTLS Messages
	9.4. Authentication and Policy Decisions
	9.5. Resumption and Tickets
	9.6. Privacy Considerations
	9.7. Pervasive Monitoring

	10. Contributors
	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Motivation for Changes
	Authors' Addresses

