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Abstract

This specification defines the protocol to be used for a new network

service called low latency, low loss and scalable throughput (L4S).

L4S uses an Explicit Congestion Notification (ECN) scheme at the IP

layer that is similar to the original (or 'Classic') ECN approach,

except as specified within. L4S uses 'scalable' congestion control,

which induces much more frequent control signals from the network

and it responds to them with much more fine-grained adjustments, so

that very low (typically sub-millisecond on average) and

consistently low queuing delay becomes possible for L4S traffic

without compromising link utilization. Thus even capacity-seeking

(TCP-like) traffic can have high bandwidth and very low delay at the

same time, even during periods of high traffic load.

The L4S identifier defined in this document distinguishes L4S from

'Classic' (e.g. TCP-Reno-friendly) traffic. It gives an incremental

migration path so that suitably modified network bottlenecks can

distinguish and isolate existing traffic that still follows the

Classic behaviour, to prevent it degrading the low queuing delay and

low loss of L4S traffic. This specification defines the rules that

L4S transports and network elements need to follow with the

intention that L4S flows neither harm each other's performance nor

that of Classic traffic. Examples of new active queue management

(AQM) marking algorithms and examples of new transports (whether

TCP-like or real-time) are specified separately.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
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1. Introduction

This specification defines the protocol to be used for a new network

service called low latency, low loss and scalable throughput (L4S).

L4S uses an Explicit Congestion Notification (ECN) scheme at the IP

layer with the same set of codepoint transitions as the original (or

'Classic') Explicit Congestion Notification (ECN [RFC3168]). RFC

3168 required an ECN mark to be equivalent to a drop, both when

applied in the network and when responded to by a transport. Unlike

Classic ECN marking, the network applies L4S marking more

immediately and more aggressively than drop, and the transport

response to each mark is reduced and smoothed relative to that for

drop. The two changes counterbalance each other so that the



throughput of an L4S flow will be roughly the same as a comparable

non-L4S flow under the same conditions. Nonetheless, the much more

frequent ECN control signals and the finer responses to these

signals result in very low queuing delay without compromising link

utilization, and this low delay can be maintained during high load.

For instance, queuing delay under heavy and highly varying load with

the example DCTCP/DualQ solution cited below on a DSL or Ethernet

link is sub-millisecond on average and roughly 1 to 2 milliseconds

at the 99th percentile without losing link

utilization [DualPI2Linux], [DCttH19]. Note that the inherent

queuing delay while waiting to acquire a discontinuous medium such

as WiFi has to be minimized in its own right, so it would be

additional to the above (see section 6.3 of [I-D.ietf-tsvwg-l4s-

arch]).

L4S relies on 'scalable' congestion controls for these delay

properties and for preserving low delay as flow rate scales, hence

the name. The congestion control used in Data Center TCP (DCTCP) is

an example of a scalable congestion control, but DCTCP is applicable

solely to controlled environments like data centres [RFC8257],

because it is too aggressive to co-exist with existing TCP-Reno-

friendly traffic. The DualQ Coupled AQM, which is defined in a

complementary experimental specification [I-D.ietf-tsvwg-aqm-dualq-

coupled], is an AQM framework that enables scalable congestion

controls derived from DCTCP to co-exist with existing traffic, each

getting roughly the same flow rate when they compete under similar

conditions. Note that a scalable congestion control is still not

safe to deploy on the Internet unless it satisfies the requirements

listed in Section 4.

L4S is not only for elastic (TCP-like) traffic - there are scalable

congestion controls for real-time media, such as the L4S variant of

the SCReAM [RFC8298] real-time media congestion avoidance technique

(RMCAT). The factor that distinguishes L4S from Classic traffic is

its behaviour in response to congestion. The transport wire

protocol, e.g. TCP, QUIC, SCTP, DCCP, RTP/RTCP, is orthogonal (and

therefore not suitable for distinguishing L4S from Classic packets).

The L4S identifier defined in this document is the key piece that

distinguishes L4S from 'Classic' (e.g. Reno-friendly) traffic. It

gives an incremental migration path so that suitably modified

network bottlenecks can distinguish and isolate existing Classic

traffic from L4S traffic to prevent the former from degrading the

very low delay and loss of the new scalable transports, without

harming Classic performance at these bottlenecks. Initial

implementation of the separate parts of the system has been

motivated by the performance benefits.
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1.1. Latency, Loss and Scaling Problems

Latency is becoming the critical performance factor for many (most?)

applications on the public Internet, e.g. interactive Web, Web

services, voice, conversational video, interactive video,

interactive remote presence, instant messaging, online gaming,

remote desktop, cloud-based applications, and video-assisted remote

control of machinery and industrial processes. In the 'developed'

world, further increases in access network bit-rate offer

diminishing returns, whereas latency is still a multi-faceted

problem. In the last decade or so, much has been done to reduce

propagation time by placing caches or servers closer to users.

However, queuing remains a major intermittent component of latency.

The Diffserv architecture provides Expedited Forwarding [RFC3246],

so that low latency traffic can jump the queue of other traffic. If

growth in high-throughput latency-sensitive applications continues,

periods with solely latency-sensitive traffic will become

increasingly common on links where traffic aggregation is low. For

instance, on the access links dedicated to individual sites (homes,

small enterprises or mobile devices). These links also tend to

become the path bottleneck under load. During these periods, if all

the traffic were marked for the same treatment, at these bottlenecks

Diffserv would make no difference. Instead, it becomes imperative to

remove the underlying causes of any unnecessary delay.

The bufferbloat project has shown that excessively-large buffering

('bufferbloat') has been introducing significantly more delay than

the underlying propagation time. These delays appear only

intermittently--only when a capacity-seeking (e.g. TCP) flow is long

enough for the queue to fill the buffer, making every packet in

other flows sharing the buffer sit through the queue.

Active queue management (AQM) was originally developed to solve this

problem (and others). Unlike Diffserv, which gives low latency to

some traffic at the expense of others, AQM controls latency for all

traffic in a class. In general, AQM methods introduce an increasing

level of discard from the buffer the longer the queue persists above

a shallow threshold. This gives sufficient signals to capacity-

seeking (aka. greedy) flows to keep the buffer empty for its

intended purpose: absorbing bursts. However, RED [RFC2309] and other

algorithms from the 1990s were sensitive to their configuration and

hard to set correctly. So, this form of AQM was not widely deployed.

More recent state-of-the-art AQM methods, e.g. FQ-CoDel [RFC8290],

PIE [RFC8033], Adaptive RED [ARED01], are easier to configure,

because they define the queuing threshold in time not bytes, so it

is invariant for different link rates. However, no matter how good

the AQM, the sawtoothing sending window of a Classic congestion

¶

¶

¶

¶



control will either cause queuing delay to vary or cause the link to

be underutilized. Even with a perfectly tuned AQM, the additional

queuing delay will be of the same order as the underlying speed-of-

light delay across the network, thereby roughly doubling the total

round-trip time.

If a sender's own behaviour is introducing queuing delay variation,

no AQM in the network can 'un-vary' the delay without significantly

compromising link utilization. Even flow-queuing (e.g. [RFC8290]),

which isolates one flow from another, cannot isolate a flow from the

delay variations it inflicts on itself. Therefore those applications

that need to seek out high bandwidth but also need low latency will

have to migrate to scalable congestion control.

Altering host behaviour is not enough on its own though. Even if

hosts adopt low latency behaviour (scalable congestion controls),

they need to be isolated from the behaviour of existing Classic

congestion controls that induce large queue variations. L4S enables

that migration by providing latency isolation in the network and

distinguishing the two types of packets that need to be isolated:

L4S and Classic. L4S isolation can be achieved with a queue per flow

(e.g. [RFC8290]) but a DualQ [I-D.ietf-tsvwg-aqm-dualq-coupled] is

sufficient, and actually gives better tail latency. Both approaches

are addressed in this document.

The DualQ solution was developed to make very low latency available

without requiring per-flow queues at every bottleneck. This was

because per-flow-queuing (FQ) has well-known downsides - not least

the need to inspect transport layer headers in the network, which

makes it incompatible with privacy approaches such as IPSec VPN

tunnels, and incompatible with link layer queue management, where

transport layer headers can be hidden, e.g. 5G.

Latency is not the only concern addressed by L4S: It was known when

TCP congestion avoidance was first developed that it would not scale

to high bandwidth-delay products (footnote 6 of Jacobson and Karels 

[TCP-CA]). Given regular broadband bit-rates over WAN distances are

already [RFC3649] beyond the scaling range of Reno congestion

control, 'less unscalable' Cubic [RFC8312] and Compound [I-

D.sridharan-tcpm-ctcp] variants of TCP have been successfully

deployed. However, these are now approaching their scaling limits.

Unfortunately, fully scalable congestion controls such as DCTCP 

[RFC8257] outcompete Classic ECN congestion controls sharing the

same queue, which is why they have been confined to private data

centres or research testbeds.

It turns out that these scalable congestion control algorithms that

solve the latency problem can also solve the scalability problem of

Classic congestion controls. The finer sawteeth in the congestion
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Classic Congestion Control:

Scalable Congestion Control:

window have low amplitude, so they cause very little queuing delay

variation and the average time to recover from one congestion signal

to the next (the average duration of each sawtooth) remains

invariant, which maintains constant tight control as flow-rate

scales. A background paper [DCttH19] gives the full explanation of

why the design solves both the latency and the scaling problems,

both in plain English and in more precise mathematical form. The

explanation is summarised without the maths in Section 4 of the L4S

architecture document [I-D.ietf-tsvwg-l4s-arch].

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in 

[RFC2119]. In this document, these words will appear with that

interpretation only when in ALL CAPS. Lower case uses of these words

are not to be interpreted as carrying RFC-2119 significance.

Note: [I-D.ietf-tsvwg-l4s-arch] repeats the following definitions,

but if there are accidental differences those below take precedence.

A congestion control behaviour that can

co-exist with standard Reno [RFC5681] without causing

significantly negative impact on its flow rate [RFC5033]. With

Classic congestion controls, such as Reno or Cubic, because flow

rate has scaled since TCP congestion control was first designed

in 1988, it now takes hundreds of round trips (and growing) to

recover after a congestion signal (whether a loss or an ECN mark)

as shown in the examples in section 5.1 of [I-D.ietf-tsvwg-l4s-

arch] and in [RFC3649]. Therefore control of queuing and

utilization becomes very slack, and the slightest disturbances

(e.g. from new flows starting) prevent a high rate from being

attained.

A congestion control where the average

time from one congestion signal to the next (the recovery time)

remains invariant as the flow rate scales, all other factors

being equal. This maintains the same degree of control over

queueing and utilization whatever the flow rate, as well as

ensuring that high throughput is robust to disturbances. For

instance, DCTCP averages 2 congestion signals per round-trip

whatever the flow rate, as do other recently developed scalable

congestion controls, e.g. Relentless TCP [Mathis09], TCP Prague 

[I-D.briscoe-iccrg-prague-congestion-control], [PragueLinux],

BBRv2 [I-D.cardwell-iccrg-bbr-congestion-control] and the L4S

variant of SCREAM for real-time media [SCReAM], [RFC8298]). See 

Section 4.3 for more explanation.
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Classic service:

Low-Latency, Low-Loss Scalable throughput (L4S) service:

Reno-friendly:

Classic ECN:

The Classic service is intended for all the

congestion control behaviours that co-exist with Reno [RFC5681]

(e.g. Reno itself, Cubic [RFC8312], Compound [I-D.sridharan-tcpm-

ctcp], TFRC [RFC5348]). The term 'Classic queue' means a queue

providing the Classic service.

The 'L4S'

service is intended for traffic from scalable congestion control

algorithms, such as TCP Prague [I-D.briscoe-iccrg-prague-

congestion-control], which was derived from DCTCP [RFC8257]. The

L4S service is for more general traffic than just TCP Prague--it

allows the set of congestion controls with similar scaling

properties to Prague to evolve, such as the examples listed above

(Relentless, SCReAM). The term 'L4S queue' means a queue

providing the L4S service.

The terms Classic or L4S can also qualify other nouns, such as

'queue', 'codepoint', 'identifier', 'classification', 'packet',

'flow'. For example: an L4S packet means a packet with an L4S

identifier sent from an L4S congestion control.

Both Classic and L4S services can cope with a proportion of

unresponsive or less-responsive traffic as well, but in the L4S

case its rate has to be smooth enough or low enough not to build

a queue (e.g. DNS, VoIP, game sync datagrams, etc).

The subset of Classic traffic that is friendly to

the standard Reno congestion control defined for TCP in 

[RFC5681]. The TFRC spec. [RFC5348] indirectly implies that

'friendly' is defined as "generally within a factor of two of the

sending rate of a TCP flow under the same conditions". Reno-

friendly is used here in place of 'TCP-friendly', given the

latter has become imprecise, because the TCP protocol is now used

with so many different congestion control behaviours, and Reno is

used in non-TCP transports such as QUIC [RFC9000].

The original Explicit Congestion Notification (ECN)

protocol [RFC3168], which requires ECN signals to be treated the

same as drops, both when generated in the network and when

responded to by the sender. For L4S, the names used for the four

codepoints of the 2-bit IP-ECN field are unchanged from those

defined in [RFC3168]: Not ECT, ECT(0), ECT(1) and CE, where ECT

stands for ECN-Capable Transport and CE stands for Congestion

Experienced. A packet marked with the CE codepoint is termed
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Site:

'ECN-marked' or sometimes just 'marked' where the context makes

ECN obvious.

A home, mobile device, small enterprise or campus, where the

network bottleneck is typically the access link to the site. Not

all network arrangements fit this model but it is a useful,

widely applicable generalization.

1.3. Scope

The new L4S identifier defined in this specification is applicable

for IPv4 and IPv6 packets (as for Classic ECN [RFC3168]). It is

applicable for the unicast, multicast and anycast forwarding modes.

The L4S identifier is an orthogonal packet classification to the

Differentiated Services Code Point (DSCP) [RFC2474]. Section 5.4

explains what this means in practice.

This document is intended for experimental status, so it does not

update any standards track RFCs. Therefore it depends on [RFC8311],

which is a standards track specification that:

updates the ECN proposed standard [RFC3168] to allow experimental

track RFCs to relax the requirement that an ECN mark must be

equivalent to a drop (when the network applies markings and/or

when the sender responds to them). For instance, in the ABE

experiment [RFC8511] this permits a sender to respond less to ECN

marks than to drops;

changes the status of the experimental ECN nonce [RFC3540] to

historic;

makes consequent updates to the following additional proposed

standard RFCs to reflect the above two bullets:

ECN for RTP [RFC6679];

the congestion control specifications of various DCCP

congestion control identifier (CCID) profiles [RFC4341], 

[RFC4342], [RFC5622].

This document is about identifiers that are used for interoperation

between hosts and networks. So the audience is broad, covering

developers of host transports and network AQMs, as well as covering

how operators might wish to combine various identifiers, which would

require flexibility from equipment developers.
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2. Choice of L4S Packet Identifier: Requirements

This subsection briefly records the process that led to the chosen

L4S identifier.

The identifier for packets using the Low Latency, Low Loss, Scalable

throughput (L4S) service needs to meet the following requirements:

it SHOULD survive end-to-end between source and destination end-

points: across the boundary between host and network, between

interconnected networks, and through middleboxes;

it SHOULD be visible at the IP layer;

it SHOULD be common to IPv4 and IPv6 and transport-agnostic;

it SHOULD be incrementally deployable;

it SHOULD enable an AQM to classify packets encapsulated by outer

IP or lower-layer headers;

it SHOULD consume minimal extra codepoints;

it SHOULD be consistent on all the packets of a transport layer

flow, so that some packets of a flow are not served by a

different queue to others.

Whether the identifier would be recoverable if the experiment failed

is a factor that could be taken into account. However, this has not

been made a requirement, because that would favour schemes that

would be easier to fail, rather than those more likely to succeed.

It is recognised that any choice of identifier is unlikely to

satisfy all these requirements, particularly given the limited space

left in the IP header. Therefore a compromise will always be

necessary, which is why all the above requirements are expressed

with the word 'SHOULD' not 'MUST'.

After extensive assessment of alternative schemes, "ECT(1) and CE

codepoints" was chosen as the best compromise. Therefore this scheme

is defined in detail in the following sections, while Appendix B

records its pros and cons against the above requirements.

3. L4S Packet Identification

The L4S treatment is an experimental track alternative packet

marking treatment to the Classic ECN treatment in [RFC3168], which

has been updated by [RFC8311] to allow experiments such as the one

defined in the present specification. [RFC4774] discusses some of

the issues and evaluation criteria when defining alternative ECN
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TCP:

semantics. Like Classic ECN, L4S ECN identifies both network and

host behaviour: it identifies the marking treatment that network

nodes are expected to apply to L4S packets, and it identifies

packets that have been sent from hosts that are expected to comply

with a broad type of sending behaviour.

For a packet to receive L4S treatment as it is forwarded, the sender

sets the ECN field in the IP header to the ECT(1) codepoint. See 

Section 4 for full transport layer behaviour requirements, including

feedback and congestion response.

A network node that implements the L4S service always classifies

arriving ECT(1) packets for L4S treatment and by default classifies

CE packets for L4S treatment unless the heuristics described in 

Section 5.3 are employed. See Section 5 for full network element

behaviour requirements, including classification, ECN-marking and

interaction of the L4S identifier with other identifiers and per-hop

behaviours.

4. Transport Layer Behaviour (the 'Prague Requirements')

4.1. Codepoint Setting

A sender that wishes a packet to receive L4S treatment as it is

forwarded, MUST set the ECN field in the IP header (v4 or v6) to the

ECT(1) codepoint.

4.2. Prerequisite Transport Feedback

For a transport protocol to provide scalable congestion control

(Section 4.3) it MUST provide feedback of the extent of CE marking

on the forward path. When ECN was added to TCP [RFC3168], the

feedback method reported no more than one CE mark per round trip.

Some transport protocols derived from TCP mimic this behaviour while

others report the accurate extent of ECN marking. This means that

some transport protocols will need to be updated as a prerequisite

for scalable congestion control. The position for a few well-known

transport protocols is given below.

Support for the accurate ECN feedback requirements [RFC7560]

(such as that provided by AccECN [I-D.ietf-tcpm-accurate-ecn]) by

both ends is a prerequisite for scalable congestion control in

TCP. Therefore, the presence of ECT(1) in the IP headers even in

one direction of a TCP connection will imply that both ends

support accurate ECN feedback. However, the converse does not

apply. So even if both ends support AccECN, either of the two
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SCTP:

RTP over UDP:

QUIC:

DCCP:

ends can choose not to use a scalable congestion control,

whatever the other end's choice.

A suitable ECN feedback mechanism for SCTP could add a chunk

to report the number of received CE marks (e.g. [I-D.stewart-

tsvwg-sctpecn]), and update the ECN feedback protocol sketched

out in Appendix A of the standards track specification of SCTP 

[RFC4960].

A prerequisite for scalable congestion control is for

both (all) ends of one media-level hop to signal ECN support 

[RFC6679] and use the new generic RTCP feedback format of 

[RFC8888]. The presence of ECT(1) implies that both (all) ends of

that media-level hop support ECN. However, the converse does not

apply. So each end of a media-level hop can independently choose

not to use a scalable congestion control, even if both ends

support ECN.

Support for sufficiently fine-grained ECN feedback is

provided by the v1 IETF QUIC transport [RFC9000].

The ACK vector in DCCP [RFC4340] is already sufficient to

report the extent of CE marking as needed by a scalable

congestion control.

4.3. Prerequisite Congestion Response

As a condition for a host to send packets with the L4S identifier

(ECT(1)), it SHOULD implement a congestion control behaviour that

ensures that, in steady state, the average duration between induced

ECN marks does not increase as flow rate scales up, all other

factors being equal. This is termed a scalable congestion control.

This invariant duration ensures that, as flow rate scales, the

average period with no feedback information about capacity does not

become excessive. It also ensures that queue variations remain

small, without having to sacrifice utilization.

With a congestion control that sawtooths to probe capacity, this

duration is called the recovery time, because each time the sawtooth

yields, on average it take this time to recover to its previous high

point. A scalable congestion control does not have to sawtooth, but

it has to coexist with scalable congestion controls that do.

For instance, for DCTCP [RFC8257], TCP Prague [I-D.briscoe-iccrg-

prague-congestion-control], [PragueLinux] and the L4S variant of

SCReAM [RFC8298], the average recovery time is always half a round

trip (or half a reference round trip), whatever the flow rate.

As with all transport behaviours, a detailed specification (probably

an experimental RFC) is expected for each congestion control,
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following the guidelines for specifying new congestion control

algorithms in [RFC5033]. In addition it is expected to document

these L4S-specific matters, specifically the timescale over which

the proportionality is averaged, and control of burstiness. The

recovery time requirement above is worded as a 'SHOULD' rather than

a 'MUST' to allow reasonable flexibility for such implementations.

The condition 'all other factors being equal', allows the recovery

time to be different for different round trip times, as long as it

does not increase with flow rate for any particular RTT.

Saying that the recovery time remains roughly invariant is

equivalent to saying that the number of ECN CE marks per round trip

remains invariant as flow rate scales, all other factors being

equal. For instance, an average recovery time of half of 1 RTT is

equivalent to 2 ECN marks per round trip. For those familiar with

steady-state congestion response functions, it is also equivalent to

say that the congestion window is inversely proportional to the

proportion of bytes in packets marked with the CE codepoint (see

section 2 of [PI2]).

In order to coexist safely with other Internet traffic, a scalable

congestion control MUST NOT tag its packets with the ECT(1)

codepoint unless it complies with the following bulleted

requirements:

A scalable congestion control MUST be capable of being replaced

by a Classic congestion control (by application and/or by

administrative control). If a Classic congestion control is

activated, it will not tag its packets with the ECT(1)

codepoint (see Appendix A.1.3 for rationale).

As well as responding to ECN markings, a scalable congestion

control MUST react to packet loss in a way that will coexist

safely with Classic congestion controls such as standard Reno 

[RFC5681], as required by [RFC5033] (see Appendix A.1.4 for

rationale).

In uncontrolled environments, monitoring MUST be implemented to

support detection of problems with an ECN-capable AQM at the

path bottleneck that appears not to support L4S and might be in

a shared queue. Such monitoring SHOULD be applied to live

traffic that is using Scalable congestion control.

Alternatively, monitoring need not be applied to live traffic,

if monitoring has been arranged to cover the paths that live

traffic takes through uncontrolled environments.

A function to detect the above problems with an ECN-capable AQM

MUST also be implemented and used. The detection function
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SHOULD be capable of making the congestion control adapt its

ECN-marking response in real-time to coexist safely with

Classic congestion controls such as standard Reno [RFC5681], as

required by [RFC5033]. This could be complemented by more

detailed offline detection of potential problems. If only

offline detection is used and potential problems with such an

AQM are detected on certain paths, the scalable congestion

control MUST be replaced by a Classic congestion control, at

least for the problem paths.

See Section 4.3.1, Appendix A.1.5 and [I-D.ietf-tsvwg-l4sops]

for rationale.

Note that a scalable congestion control is not expected to

change to setting ECT(0) while it transiently adapts to coexist

with Classic congestion controls, whereas a replacement

congestion control that solely behaves in the Classic way will

set ECT(0).

In the range between the minimum likely RTT and typical RTTs

expected in the intended deployment scenario, a scalable

congestion control MUST converge towards a rate that is as

independent of RTT as is possible without compromising

stability or efficiency (see Appendix A.1.6 for rationale).

A scalable congestion control SHOULD remain responsive to

congestion when typical RTTs over the public Internet are

significantly smaller because they are no longer inflated by

queuing delay. It would be preferable for the minimum window of

a scalable congestion control to be lower than 1 segment rather

than use the timeout approach described for TCP in S.6.1.2 of 

[RFC3168] (or an equivalent for other transports). However, a

lower minimum is not set as a formal requirement for L4S

experiments (see Appendix A.1.7 for rationale).

A scalable congestion control's loss detection SHOULD be

resilient to reordering over an adaptive time interval that

scales with throughput and adapts to reordering (as in 

[RFC8985]), as opposed to counting only in fixed units of

packets (as in the 3 DupACK rule of [RFC5681] and [RFC6675],

which is not scalable). As data rates increase (e.g., due to

new and/or improved technology), congestion controls that

detect loss by counting in units of packets become more likely

to incorrectly treat reordering events as congestion-caused

loss events (see Appendix A.1.8 for further rationale). This

requirement does not apply to congestion controls that are

solely used in controlled environments where the network

introduces hardly any reordering.
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A scalable congestion control is expected to limit the queue

caused by bursts of packets. It would not seem necessary to set

the limit any lower than 10% of the minimum RTT expected in a

typical deployment (e.g. additional queuing of roughly 250 us

for the public Internet). This would be converted to a number

of packets under the worst-case assumption that the bottleneck

link capacity equals the current flow rate. No normative

requirement to limit bursts is given here and, until there is

more industry experience from the L4S experiment, it is not

even known whether one is needed - it seems to be in an L4S

sender's self-interest to limit bursts.

Each sender in a session can use a scalable congestion control

independently of the congestion control used by the receiver(s) when

they send data. Therefore there might be ECT(1) packets in one

direction and ECT(0) or Not-ECT in the other.

Later (Section 5.4.1.1) this document discusses the conditions for

mixing other "'Safe' Unresponsive Traffic" (e.g. DNS, LDAP, NTP,

voice, game sync packets) with L4S traffic. To be clear, although

such traffic can share the same queue as L4S traffic, it is not

appropriate for the sender to tag it as ECT(1), except in the

(unlikely) case that it satisfies the above conditions.

4.3.1. Guidance on Congestion Response in the RFC Series

RFC 3168 requires the congestion responses to a CE-marked packet and

a dropped packet to be the same. RFC 8311 is a standards-track

update to RFC 3168 intended to enable experimentation with ECN,

including the L4S experiment. RFC 8311 allows an experimental

congestion control's response to a CE-marked packet to differ from

the response to a dropped packet, provided that the differences are

documented in an experimental RFC, such as the present document.

BCP 124 [RFC4774] gives guidance to protocol designers, when

specifying alternative semantics for the ECN field. RFC 8311

explained that it did not need to update the best current practice

in BCP 124 in order to relax the 'equivalence with drop' requirement

because, although BCP 124 quotes the same requirement from RFC 3168,

the BCP does not impose requirements based on it. BCP124 describes

three options for incremental deployment, with Option 3 (in Section

4.3 of BCP 124) best matching the L4S case. Option 3's requirement

for end-nodes is that they respond to CE marks "in a way that is

friendly to flows using IETF-conformant congestion control." This

echoes other general congestion control requirements in the RFC

series, for example [RFC5033], which says "...congestion controllers

that have a significantly negative impact on traffic using standard

congestion control may be suspect", or [RFC8085] concerning UDP

congestion control says "Bulk-transfer applications that choose not

7. 
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Prevalence:

to implement TFRC or TCP-like windowing SHOULD implement a

congestion control scheme that results in bandwidth (capacity) use

that competes fairly with TCP within an order of magnitude."

The third normative bullet in Section 4.3 above (which concerns L4S

response to congestion from a Classic ECN AQM) aims to ensure that

these 'coexistence' requirements are satisfied, but it makes some

compromises. This subsection highlights and justifies those

compromises and Appendix A.1.5 and [I-D.ietf-tsvwg-l4sops] give

detailed analysis, examples and references (the normative text in

that bullet takes precedence if any informative elaboration leads to

ambiguity). The approach is based on an assessment of the risk of

harm, which is a combination of the prevalence of the conditions

necessary for harm to occur, and the potential severity of the harm

if they do.

There are three cases:

Drop Tail: Coexistence between L4S and Classic flows is not

in doubt where the bottleneck does not support any form of

ECN, which has remained by far the most prevalent case

since the ECN RFC was published in 2001.

L4S: Coexistence is not in doubt if the bottleneck supports

L4S.

Classic ECN [RFC3168]: The compromises centre around cases

where the bottleneck supports Classic ECN but not L4S. But

it depends on which sub-case:

Shared Queue with Classic ECN: The members of the

Transport Working group are not aware of any current

deployments of single-queue Classic ECN bottlenecks in

the Internet. Nonetheless, at the scale of the Internet,

rarity need not imply small numbers, nor that there will

be rarity in future.

Per-Flow-queues with Classic ECN: Most AQMs with per-

flow-queuing (FQ) deployed from 2012 onwards had Classic

ECN enabled by default, specifically FQ-CoDel [RFC8290]

and COBALT [COBALT]. But the compromises only apply to

the second of two further sub-cases:

With per-flow-queuing, co-existence between Classic

and L4S flows is not normally a problem, because

different flows are not meant to coexist within the

same queue,

However, the isolation between L4S and Classic flows

is not perfect in cases where the hashes of flow IDs
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Severity:

collide or where multiple flows within a layer-3 VPN

are encapsulated within one flow ID.

To summarize, the coexistence problem is confined to cases of

imperfect flow isolation in an FQ, or in potential cases where a

Classic ECN AQM has been deployed in a shared queue (see [I-

D.ietf-tsvwg-l4sops] for further details including recent surveys

attempting to quantify prevalence). Further, if one of these

cases does occur, the coexistence problem does not arise unless

sources of Classic and L4S flows are simultaneously sharing the

same bottleneck queue (e.g. different applications in the same

household) and flows of each type have to be large enough to

coincide for long enough for any throughput imbalance to have

developed.

Where long-running L4S and Classic flows coincide in a

shared queue, testing of one L4S congestion control (TCP Prague)

has found that the imbalance in average throughput between an L4S

and a Classic flow can reach 25:1 in favour of L4S in the worst

case [ecn-fallback]. However, when capacity is most scarce, the

Classic flow gets a higher proportion of the link, for instance

over a 4 Mb/s link the throughput ratio is below ~10:1 over paths

with a base RTT below 100 ms, and falls below ~5:1 for base RTTs

below 20ms.

These throughput ratios can clearly fall well outside current RFC

guidance on coexistence. However, the tendency towards leaving a

greater share for Classic flows at lower link rate and the very

limited prevalence of the conditions necessary for harm to occur led

to the possibility of allowing the RFC requirements to be

compromised, albeit briefly::

The recommended approach is still to detect and adapt to a

Classic ECN AQM in real-time, which is fully consistent with all

the RFCs on coexistence. In other words, the "SHOULD"s in the

third bullet of Section 4.3 above expect the sender to implement

something similar to the proof of concept code that detects the

presence of a Classic ECN AQM and falls back to a Classic

congestion response within a few round trips [ecn-fallback].

However, although this code reliably detects a Classic ECN AQM,

the current code can also wrongly categorize an L4S AQM as

Classic, most often in cases when link rate is low or RTT is

high. Although this is the safe way round, and although

implementers are expected to be able to improve on this proof of

concept, concerns have been raised that implementers might lose

faith in such detection and disable it.

Therefore the third bullet in Section 4.3 above allows a

compromise where coexistence could diverge from the requirements
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in the RFC Series briefly, but mandatory monitoring is required,

in order to detect such cases and trigger remedial action. This

approach tolerates a brief divergence from the RFCs given the

likely low prevalence and given harm here means a flow progresses

more slowly than otherwise, but it does progress. [I-D.ietf-

tsvwg-l4sops] outlines a range of example remedial actions that

include alterations either to the sender or to the network.

However, the final normative requirement in the third bullet of 

Section 4.3 above places ultimate responsibility for remedial

action on the sender. If coexistence problems with a Classic ECN

AQM are detected (implying they have not been resolved by the

network), it says the sender "MUST" revert to a Classic

congestion control."

[I-D.ietf-tsvwg-l4sops] also gives example ways in which L4S

congestion controls can be rolled out initially in lower risk

scenarios.

4.4. Filtering or Smoothing of ECN Feedback

Section 5.2 below specifies that an L4S AQM is expected to signal

L4S ECN immediately, to avoid introducing delay due to filtering or

smoothing. This contrasts with a Classic AQM, which filters out

variations in the queue before signalling ECN marking or drop. In

the L4S architecture [I-D.ietf-tsvwg-l4s-arch], responsibility for

smoothing out these variations shifts to the sender's congestion

control.

This shift of responsibility has the advantage that each sender can

smooth variations over a timescale proportionate to its own RTT.

Whereas, in the Classic approach, the network doesn't know the RTTs

of any of the flows, so it has to smooth out variations for a worst-

case RTT to ensure stability. For all the typical flows with shorter

RTT than the worst-case, this makes congestion control unnecessarily

sluggish.

This also gives an L4S sender the choice not to smooth, depending on

its context (start-up, congestion avoidance, etc). Therefore, this

document places no requirement on an L4S congestion control to

smooth out variations in any particular way. Implementers are

encouraged to openly publish the approach they take to smoothing,

and the results and experience they gain during the L4S experiment.

5. Network Node Behaviour
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5.1. Classification and Re-Marking Behaviour

A network node that implements the L4S service:

MUST classify arriving ECT(1) packets for L4S treatment, unless

overridden by another classifier (e.g., see Section 5.4.1.2);

MUST classify arriving CE packets for L4S treatment as well,

unless overridden by a another classifier or unless the exception

referred to next applies;

CE packets might have originated as ECT(1) or ECT(0), but the

above rule to classify them as if they originated as ECT(1) is

the safe choice (see Appendix B for rationale). The exception is

where some flow-aware in-network mechanism happens to be

available for distinguishing CE packets that originated as

ECT(0), as described in Section 5.3, but there is no implication

that such a mechanism is necessary.

An L4S AQM treatment follows similar codepoint transition rules to

those in RFC 3168. Specifically, the ECT(1) codepoint MUST NOT be

changed to any other codepoint than CE, and CE MUST NOT be changed

to any other codepoint. An ECT(1) packet is classified as ECN-

capable and, if congestion increases, an L4S AQM algorithm will

increasingly mark the ECN field as CE, otherwise forwarding packets

unchanged as ECT(1). Necessary conditions for an L4S marking

treatment are defined in Section 5.2.

Under persistent overload an L4S marking treatment MUST begin

applying drop to L4S traffic until the overload episode has

subsided, as recommended for all AQM methods in [RFC7567] (Section

4.2.1), which follows the similar advice in RFC 3168 (Section 7).

During overload, it MUST apply the same drop probability to L4S

traffic as it would to Classic traffic.

Where an L4S AQM is transport-aware, this requirement could be

satisfied by using drop in only the most overloaded individual per-

flow AQMs. In a DualQ with flow-aware queue protection (e.g. [I-

D.briscoe-docsis-q-protection]), this could be achieved by

redirecting packets in those flows contributing most to the overload

out of the L4S queue so that they are subjected to drop in the

Classic queue.

For backward compatibility in uncontrolled environments, a network

node that implements the L4S treatment MUST also implement an AQM

treatment for the Classic service as defined in Section 1.2. This

Classic AQM treatment need not mark ECT(0) packets, but if it does,

see Section 5.2 for the strengths of the markings relative to drop.

It MUST classify arriving ECT(0) and Not-ECT packets for treatment

by this Classic AQM (for the DualQ Coupled AQM, see the extensive
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discussion on classification in Sections 2.3 and 2.5.1.1 of [I-

D.ietf-tsvwg-aqm-dualq-coupled]).

In case unforeseen problems arise with the L4S experiment, it MUST

be possible to configure an L4S implementation to disable the L4S

treatment. Once disabled, all packets of all ECN codepoints will

receive Classic treatment and ECT(1) packets MUST be treated as if

they were Not-ECT.

5.2. The Strength of L4S CE Marking Relative to Drop

The relative strengths of L4S CE and drop are irrelevant where AQMs

are implemented in separate queues per-application-flow, which are

then explicitly scheduled (e.g. with an FQ scheduler as in 

[RFC8290]). Nonetheless, the relationship between them needs to be

defined for the coupling between L4S and Classic congestion signals

in a DualQ Coupled AQM [I-D.ietf-tsvwg-aqm-dualq-coupled], as below.

Unless an AQM node schedules application flows explicitly, the

likelihood that the AQM drops a Not-ECT Classic packet (p_C) MUST be

roughly proportional to the square of the likelihood that it would

have marked it if it had been an L4S packet (p_L). That is

p_C ~= (p_L / k)^2

The constant of proportionality (k) does not have to be standardised

for interoperability, but a value of 2 is RECOMMENDED. The term

'likelihood' is used above to allow for marking and dropping to be

either probabilistic or deterministic.

This formula ensures that Scalable and Classic flows will converge

to roughly equal congestion windows, for the worst case of Reno

congestion control. This is because the congestion windows of

Scalable and Classic congestion controls are inversely proportional

to p_L and sqrt(p_C) respectively. So squaring p_C in the above

formula counterbalances the square root that characterizes Reno-

friendly flows.

Note that, contrary to RFC 3168, an AQM implementing the L4S and

Classic treatments does not mark an ECT(1) packet under the same

conditions that it would have dropped a Not-ECT packet, as allowed

by [RFC8311], which updates RFC 3168. However, if it marks ECT(0)

packets, it does so under the same conditions that it would have

dropped a Not-ECT packet [RFC3168].

Also, In the L4S architecture [I-D.ietf-tsvwg-l4s-arch], the sender,

not the network, is responsible for smoothing out variations in the

queue. So, an L4S AQM MUST signal congestion as soon as possible.

Then, an L4S sender generally interprets CE marking as an unsmoothed

signal.
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This requirement does not prevent an L4S AQM from mixing in

additional congestion signals that are smoothed, such as the signals

from a Classic smoothed AQM that are coupled with unsmoothed L4S

signals in the coupled DualQ [I-D.ietf-tsvwg-aqm-dualq-coupled]. But

only as long as the onset of congestion can be signalled

immediately, and can be interpreted by the sender as if it has been

signalled immediately, which is important for interoperability

5.3. Exception for L4S Packet Identification by Network Nodes with

Transport-Layer Awareness

To implement L4S packet classification, a network node does not need

to identify transport-layer flows. Nonetheless, if an L4S network

node classifies packets by their transport-layer flow ID and their

ECN field, and if all the ECT packets in a flow have been ECT(0),

the node MAY classify any CE packets in the same flow as if they

were Classic ECT(0) packets. In all other cases, a network node MUST

classify all CE packets as if they were ECT(1) packets. Examples of

such other cases are: i) if no ECT packets have yet been identified

in a flow; ii) if it is not desirable for a network node to identify

transport-layer flows; or iii) if some ECT packets in a flow have

been ECT(1) (this advice will need to be verified as part of L4S

experiments).

5.4. Interaction of the L4S Identifier with other Identifiers

The examples in this section concern how additional identifiers

might complement the L4S identifier to classify packets between

class-based queues. Firstly Section 5.4.1 considers two queues, L4S

and Classic, as in the Coupled DualQ AQM [I-D.ietf-tsvwg-aqm-dualq-

coupled], either alone (Section 5.4.1.1) or within a larger queuing

hierarchy (Section 5.4.1.2). Then Section 5.4.2 considers schemes

that might combine per-flow 5-tuples with other identifiers.

5.4.1. DualQ Examples of Other Identifiers Complementing L4S

Identifiers

5.4.1.1. Inclusion of Additional Traffic with L4S

In a typical case for the public Internet a network element that

implements L4S in a shared queue might want to classify some low-

rate but unresponsive traffic (e.g. DNS, LDAP, NTP, voice, game sync

packets) into the low latency queue to mix with L4S traffic. In this

case it would not be appropriate to call the queue an L4S queue,

because it is shared by L4S and non-L4S traffic. Instead it will be

called the low latency or L queue. The L queue then offers two

different treatments:

The L4S treatment, which is a combination of the L4S AQM

treatment and a priority scheduling treatment;
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The low latency treatment, which is solely the priority

scheduling treatment, without ECN-marking by the AQM.

To identify packets for just the scheduling treatment, it would be

inappropriate to use the L4S ECT(1) identifier, because such traffic

is unresponsive to ECN marking. Examples of relevant non-ECN

identifiers are:

address ranges of specific applications or hosts configured to

be, or known to be, safe, e.g. hard-coded IoT devices sending low

intensity traffic;

certain low data-volume applications or protocols (e.g. ARP,

DNS);

specific Diffserv codepoints that indicate traffic with limited

burstiness such as the EF (Expedited Forwarding [RFC3246]),

Voice-Admit [RFC5865] or proposed NQB (Non-Queue-Building [I-

D.ietf-tsvwg-nqb]) service classes or equivalent local-use DSCPs

(see [I-D.briscoe-tsvwg-l4s-diffserv]).

In summary, a network element that implements L4S in a shared queue

MAY classify additional types of packets into the L queue based on

identifiers other than the ECN field, but the types SHOULD be 'safe'

to mix with L4S traffic, where 'safe' is explained in Section

5.4.1.1.1.

A packet that carries one of these non-ECN identifiers to classify

it into the L queue would not be subject to the L4S ECN marking

treatment, unless it also carried an ECT(1) or CE codepoint. The

specification of an L4S AQM MUST define the behaviour for packets

with unexpected combinations of codepoints, e.g. a non-ECN-based

classifier for the L queue, but ECT(0) in the ECN field (for

examples see section 2.5.1.1 of [I-D.ietf-tsvwg-aqm-dualq-coupled]).

For clarity, non-ECN identifiers, such as the examples itemized

above, might be used by some network operators who believe they

identify non-L4S traffic that would be safe to mix with L4S traffic.

They are not alternative ways for a host to indicate that it is

sending L4S packets. Only the ECT(1) ECN codepoint indicates to a

network element that a host is sending L4S packets (and CE indicates

that it could have originated as ECT(1)). Specifically ECT(1)

indicates that the host claims its behaviour satisfies the

prerequisite transport requirements in Section 4.

In order to include non-L4S packets in the L queue, a network node

MUST NOT alter Not-ECT or ECT(0) in the IP-ECN field to an L4S

identifier. This ensures that these codepoints survive for any

potential use later on the network path.
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5.4.1.1.1. 'Safe' Unresponsive Traffic

The above section requires unresponsive traffic to be 'safe' to mix

with L4S traffic. Ideally this means that the sender never sends any

sequence of packets at a rate that exceeds the available capacity of

the bottleneck link. However, typically an unresponsive transport

does not even know the bottleneck capacity of the path, let alone

its available capacity. Nonetheless, an application can be

considered safe enough if it paces packets out (not necessarily

completely regularly) such that its maximum instantaneous rate from

packet to packet stays well below a typical broadband access rate.

This is a vague but useful definition, because many low latency

applications of interest, such as DNS, voice, game sync packets,

RPC, ACKs, keep-alives, could match this description.

Low rate streams such as voice and game sync packets, might not use

continuously adapting ECN-based congestion control, but they ought

to at least use a 'circuit-breaker' style of congestion response 

[RFC8083]. If the volume of traffic from unresponsive applications

is high enough to overload the link, this will at least protect the

capacity available to responsive applications. However, queuing

delay in the L queue will probably rise to that controlled by the

Classic (drop-based) AQM. If a network operator considers that such

self-restraint is not enough, it might want to police the L queue

(see Section 8.2 of [I-D.ietf-tsvwg-l4s-arch]).

5.4.1.2. Exclusion of Traffic From L4S Treatment

To extend the above example, an operator might want to exclude some

traffic from the L4S treatment for a policy reason, e.g. security

(traffic from malicious sources) or commercial (e.g. initially the

operator may wish to confine the benefits of L4S to business

customers).

In this exclusion case, the classifier MUST classify on the relevant

locally-used identifiers (e.g. source addresses) before classifying

the non-matching traffic on the end-to-end L4S ECN identifier.

A network node MUST NOT alter the end-to-end L4S ECN identifier from

L4S to Classic, because an operator decision to exclude certain

traffic from L4S treatment is local-only. The end-to-end L4S

identifier then survives for other operators to use, or indeed, they

can apply their own policy, independently based on their own choice

of locally-used identifiers. This approach also allows any operator

to remove its locally-applied exclusions in future, e.g. if it

wishes to widen the benefit of the L4S treatment to all its

customers.
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A network node that supports L4S but excludes certain packets

carrying the L4S identifier from L4S treatment MUST still apply

marking or dropping that is compatible with an L4S congestion

response. For instance, it could either drop such packets with the

same likelihood as Classic packets or it could ECN-mark them with a

likelihood appropriate to L4S traffic (e.g. the coupled probability

in a DualQ coupled AQM) but aiming for the Classic delay target. It

MUST NOT ECN-mark such packets with a Classic marking probability,

which could confuse the sender.

5.4.1.3. Generalized Combination of L4S and Other Identifiers

L4S concerns low latency, which it can provide for all traffic

without differentiation and without necessarily affecting bandwidth

allocation. Diffserv provides for differentiation of both bandwidth

and low latency, but its control of latency depends on its control

of bandwidth. The two can be combined if a network operator wants to

control bandwidth allocation but it also wants to provide low

latency - for any amount of traffic within one of these allocations

of bandwidth (rather than only providing low latency by limiting

bandwidth) [I-D.briscoe-tsvwg-l4s-diffserv].

The DualQ examples so far have been framed in the context of

providing the default Best Efforts Per-Hop Behaviour (PHB) using two

queues - a Low Latency (L) queue and a Classic (C) Queue. This

single DualQ structure is expected to be the most common and useful

arrangement. But, more generally, an operator might choose to

control bandwidth allocation through a hierarchy of Diffserv PHBs at

a node, and to offer one (or more) of these PHBs using a pair of

queues for a low latency and a Classic variant of the PHB.

In the first case, if we assume that a network element provides no

PHBs except the DualQ, if a packet carries ECT(1) or CE, the network

element would classify it for the L4S treatment irrespective of its

DSCP. And, if a packet carried (say) the EF DSCP, the network

element could classify it into the L queue irrespective of its ECN

codepoint. However, where the DualQ is in a hierarchy of other PHBs,

the classifier would classify some traffic into other PHBs based on

DSCP before classifying between the low latency and Classic queues

(based on ECT(1), CE and perhaps also the EF DSCP or other

identifiers as in the above example). [I-D.briscoe-tsvwg-l4s-

diffserv] gives a number of examples of such arrangements to address

various requirements.

[I-D.briscoe-tsvwg-l4s-diffserv] describes how an operator might use

L4S to offer low latency as well as using Diffserv for bandwidth

differentiation. It identifies two main types of approach, which can

be combined: the operator might split certain Diffserv PHBs between

L4S and a corresponding Classic service. Or it might split the L4S
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and/or the Classic service into multiple Diffserv PHBs. In either of

these cases, a packet would have to be classified on its Diffserv

and ECN codepoints.

In summary, there are numerous ways in which the L4S ECN identifier

(ECT(1) and CE) could be combined with other identifiers to achieve

particular objectives. The following categorization articulates

those that are valid, but it is not necessarily exhaustive. Those

tagged 'Recommended-standard-use' could be set by the sending host

or a network. Those tagged 'Local-use' would only be set by a

network:

Identifiers Complementing the L4S Identifier

Including More Traffic in the L Queue

(Could use Recommended-standard-use or Local-use

identifiers)

Excluding Certain Traffic from the L Queue

(Local-use only)

Identifiers to place L4S classification in a PHB Hierarchy

(Could use Recommended-standard-use or Local-use identifiers)

PHBs Before L4S ECN Classification

PHBs After L4S ECN Classification

5.4.2. Per-Flow Queuing Examples of Other Identifiers Complementing

L4S Identifiers

At a node with per-flow queueing (e.g. FQ-CoDel [RFC8290]), the L4S

identifier could complement the Layer-4 flow ID as a further level

of flow granularity (i.e. Not-ECT and ECT(0) queued separately from

ECT(1) and CE packets). "Risk of reordering Classic CE packets" in 

Appendix B discusses the resulting ambiguity if packets originally

marked ECT(0) are marked CE by an upstream AQM before they arrive at

a node that classifies CE as L4S. It argues that the risk of

reordering is vanishingly small and the consequence of such a low

level of reordering is minimal.

Alternatively, it could be assumed that it is not in a flow's own

interest to mix Classic and L4S identifiers. Then the AQM could use

the ECN field to switch itself between a Classic and an L4S AQM

behaviour within one per-flow queue. For instance, for ECN-capable

packets, the AQM might consist of a simple marking threshold and an
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L4S ECN identifier might simply select a shallower threshold than a

Classic ECN identifier would.

5.5. Limiting Packet Bursts from Links

As well as senders needing to limit packet bursts (Section 4.3),

links need to limit the degree of burstiness they introduce. In both

cases (senders and links) this is a tradeoff, because batch-handling

of packets is done for good reason, e.g. processing efficiency or to

make efficient use of medium acquisition delay. Some take the

attitude that there is no point reducing burst delay at the sender

below that introduced by links (or vice versa). However, delay

reduction proceeds by cutting down 'the longest pole in the tent',

which turns the spotlight on the next longest, and so on.

This document does not set any quantified requirements for links to

limit burst delay, primarily because link technologies are outside

the remit of L4S specifications. Nonetheless, the following two

subsections outline opportunities for addressing bursty links in the

process of L4S implementation and deployment.

5.5.1. Limiting Packet Bursts from Links Fed by an L4S AQM

It would not make sense to implement an L4S AQM that feeds into a

particular link technology without also reviewing opportunities to

reduce any form of burst delay introduced by that link technology.

This would at least limit the bursts that the link would otherwise

introduce into the onward traffic, which would cause jumpy feedback

to the sender as well as potential extra queuing delay downstream.

This document does not presume to even give guidance on an

appropriate target for such burst delay until there is more industry

experience of L4S. However, as suggested in Section 4.3 it would not

seem necessary to limit bursts lower than roughly 10% of the minimum

base RTT expected in the typical deployment scenario (e.g. 250 us

burst duration for links within the public Internet).

5.5.2. Limiting Packet Bursts from Links Upstream of an L4S AQM

The initial scope of the L4S experiment is to deploy L4S AQMs at

bottlenecks and L4S congestion controls at senders. This is expected

to highlight interactions with the most bursty upstream links and

lead operators to tune down the burstiness of those links in their

network that are configurable, or failing that, to have to

compromise on the delay target of some L4S AQMs. It might also

require specific redesign work relevant to the most problematic link

types. Such knock-on effects of initial L4S deployment would all be

part of the learning from the L4S experiment.

The details of such link changes are beyond the scope of the present

document. Nonetheless, where L4S technology is being implemented on
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an outgoing interface of a device, it would make sense to consider

opportunities for reducing bursts arriving at other incoming

interface(s). For instance, where an L4S AQM is implemented to feed

into the upstream WAN interface of a home gateway, there would be

opportunities to alter the WiFi profiles sent out of any WiFi

interfaces from the same device, in order to mitigate incoming

bursts of aggregated WiFi frames from other WiFi stations.

6. Behaviour of Tunnels and Encapsulations

6.1. No Change to ECN Tunnels and Encapsulations in General

The L4S identifier is expected to work through and within any tunnel

without modification, as long as the tunnel propagates the ECN field

in any of the ways that have been defined since the first variant in

the year 2001 [RFC3168]. L4S will also work with (but does not rely

on) any of the more recent updates to ECN propagation in [RFC4301], 

[RFC6040] or [I-D.ietf-tsvwg-rfc6040update-shim]. However, it is

likely that some tunnels still do not implement ECN propagation at

all. In these cases, L4S will work through such tunnels, but within

them the outer header of L4S traffic will appear as Classic.

AQMs are typically implemented where an IP-layer buffer feeds into a

lower layer, so they are agnostic to link layer encapsulations.

Where a bottleneck link is not IP-aware, the L4S identifier is still

expected to work within any lower layer encapsulation without

modification, as long it propagates the ECN field as defined for the

link technology, for example for MPLS [RFC5129] or TRILL [I-D.ietf-

trill-ecn-support]. In some of these cases, e.g. layer-3 Ethernet

switches, the AQM accesses the IP layer header within the outer

encapsulation, so again the L4S identifier is expected to work

without modification. Nonetheless, the programme to define ECN for

other lower layers is still in progress [I-D.ietf-tsvwg-ecn-encap-

guidelines].

6.2. VPN Behaviour to Avoid Limitations of Anti-Replay

If a mix of L4S and Classic packets is sent into the same security

association (SA) of a virtual private network (VPN), and if the VPN

egress is employing the optional anti-replay feature, it could

inappropriately discard Classic packets (or discard the records in

Classic packets) by mistaking their greater queuing delay for a

replay attack (see "Dropped Packets for Tunnels with Replay

Protection Enabled" in [Heist21] for the potential performance

impact). This known problem is common to both IPsec [RFC4301] and

DTLS [RFC6347] VPNs, given they use similar anti-replay window

mechanisms. The mechanism used can only check for replay within its

window, so if the window is smaller than the degree of reordering,

it can only assume there might be a replay attack and discard all
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the packets behind the trailing edge of the window. The

specifications of IPsec AH [RFC4302] and ESP [RFC4303] suggest that

an implementer scales the size of the anti-replay window with

interface speed, and the current draft of DTLS 1.3 [I-D.ietf-tls-

dtls13] says "The receiver SHOULD pick a window large enough to

handle any plausible reordering, which depends on the data rate."

However, in practice, the size of a VPN's anti-replay window is not

always scaled appropriately.

If a VPN carrying traffic participating in the L4S experiment

experiences inappropriate replay detection, the foremost remedy

would be to ensure that the egress is configured to comply with the

above window-sizing requirements.

If an implementation of a VPN egress does not support a sufficiently

large anti-replay window, e.g. due to hardware limitations, one of

the temporary alternatives listed in order of preference below might

be feasible instead:

If the VPN can be configured to classify packets into different

SAs indexed by DSCP, apply the appropriate locally defined DSCPs

to Classic and L4S packets. The DSCPs could be applied by the

network (based on the least significant bit of the ECN field), or

by the sending host. Such DSCPs would only need to survive as far

as the VPN ingress.

If the above is not possible and it is necessary to use L4S,

either of the following might be appropriate as a last resort:

disable anti-replay protection at the VPN egress, after

considering the security implications (optional anti-replay is

mandatory in both IPsec and DTLS);

configure the tunnel ingress not to propagate ECN to the

outer, which would lose the benefits of L4S and Classic ECN

over the VPN.

Modification to VPN implementations is outside the present scope,

which is why this section has so far focused on reconfiguration.

Although this document does not define any requirements for VPN

implementations, determining whether there is a need for such

requirements could be one aspect of L4S experimentation.

7. L4S Experiments

This section describes open questions that L4S Experiments ought to

focus on. This section also documents outstanding open issues that

will need to be investigated as part of L4S experimentation, given

they could not be fully resolved during the WG phase. It also lists

metrics that will need to be monitored during experiments
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(summarizing text elsewhere in L4S documents) and finally lists some

potential future directions that researchers might wish to

investigate.

In addition to this section, [I-D.ietf-tsvwg-aqm-dualq-coupled] sets

operational and management requirements for experiments with DualQ

Coupled AQMs; and General operational and management requirements

for experiments with L4S congestion controls are given in Section 4

and Section 5 above, e.g. co-existence and scaling requirements,

incremental deployment arrangements.

The specification of each scalable congestion control will need to

include protocol-specific requirements for configuration and

monitoring performance during experiments. Appendix A of [RFC5706]

provides a helpful checklist.

7.1. Open Questions

L4S experiments would be expected to answer the following questions:

Have all the parts of L4S been deployed, and if so, what

proportion of paths support it?

What types of L4S AQMs were deployed, e.g. FQ, coupled DualQ,

uncoupled DualQ, other? And how prevalent was each?

Are the signalling patterns emitted by the deployed AQMs in

any way different from those expected when the Prague

requirements for endpoints were written?

Does use of L4S over the Internet result in significantly

improved user experience?

Has L4S enabled novel interactive applications?

Did use of L4S over the Internet result in improvements to the

following metrics:

queue delay (mean and 99th percentile) under various loads;

utilization;

starvation / fairness;

scaling range of flow rates and RTTs?

How dependent was the performance of L4S service on the

bottleneck bandwidth or the path RTT?
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How much do bursty links in the Internet affect L4S performance

(see "Underutilization with Bursty Links" in [Heist21]) and how

prevalent are they? How much limitation of burstiness from

upstream links was needed and/or was realized - both at senders

and at links, especially radio links or how much did L4S target

delay have to be increased to accommodate the bursts (see bullet

#7 in Section 4.3 and Section 5.5.2)?

Is the initial experiment with mis-marked bursty traffic at high

RTT (see "Underutilization with Bursty Traffic" in [Heist21])

indicative of similar problems at lower RTTs and, if so, how

effective is the suggested remedy in Appendix A.1 of [I-D.ietf-

tsvwg-aqm-dualq-coupled] (or possible other remedies)?

Was per-flow queue protection typically (un)necessary?

How well did overload protection or queue protection work?

How well did L4S flows coexist with Classic flows when sharing a

bottleneck?

How frequently did problems arise?

What caused any coexistence problems, and were any problems

due to single-queue Classic ECN AQMs (this assumes single-

queue Classic ECN AQMs can be distinguished from FQ ones)?

How prevalent were problems with the L4S service due to tunnels /

encapsulations that do not support ECN decapsulation?

How easy was it to implement a fully compliant L4S congestion

control, over various different transport protocols (TCP, QUIC,

RMCAT, etc)?

Monitoring for harm to other traffic, specifically bandwidth

starvation or excess queuing delay, will need to be conducted

alongside all early L4S experiments. It is hard, if not impossible,

for an individual flow to measure its impact on other traffic. So

such monitoring will need to be conducted using bespoke monitoring

across flows and/or across classes of traffic.

7.2. Open Issues

What is the best way forward to deal with L4S over single-queue

Classic ECN AQM bottlenecks, given current problems with

misdetecting L4S AQMs as Classic ECN AQMs? See [I-D.ietf-tsvwg-

l4sops].

Fixing the poor Interaction between current L4S congestion

controls and CoDel with only Classic ECN support during flow

*

¶

*

¶

* ¶

- ¶

*

¶

* - ¶

-

¶

*

¶

*

¶

¶

*

¶

*



startup. Originally, this was due to a bug in the initialization

of the congestion EWMA in the Linux implementation of TCP Prague.

That was quickly fixed, which removed the main performance

impact, but further improvement would be useful (either by

modifying CoDel, Scalable congestion controls, or both).

7.3. Future Potential

Researchers might find that L4S opens up the following interesting

areas for investigation:

Potential for faster convergence time and tracking of available

capacity;

Potential for improvements to particular link technologies, and

cross-layer interactions with them;

Potential for using virtual queues, e.g. to further reduce

latency jitter, or to leave headroom for capacity variation in

radio networks;

Development and specification of reverse path congestion control

using L4S building bocks (e.g. AccECN, QUIC);

Once queuing delay is cut down, what becomes the 'second longest

pole in the tent' (other than the speed of light)?

Novel alternatives to the existing set of L4S AQMs;

Novel applications enabled by L4S.

8. IANA Considerations

The 01 codepoint of the ECN Field of the IP header is specified by

the present Experimental RFC. The process for an experimental RFC to

assign this codepoint in the IP header (v4 and v6) is documented in

Proposed Standard [RFC8311], which updates the Proposed Standard 

[RFC3168].

When the present document is published as an RFC, IANA is asked to

update the 01 entry in the registry, "ECN Field (Bits 6-7)" to the

following (see https://www.iana.org/assignments/dscp-registry/dscp-

registry.xhtml#ecn-field ):

Binary Keyword References

01
ECT(1) (ECN-Capable

Transport(1))[1]

[RFC8311] [RFC Errata 5399]

[RFCXXXX]

Table 1

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

¶

¶



[XXXX is the number that the RFC Editor assigns to the present

document (this sentence to be removed by the RFC Editor)].

9. Security Considerations

Approaches to assure the integrity of signals using the new

identifier are introduced in Appendix C.1. See the security

considerations in the L4S architecture [I-D.ietf-tsvwg-l4s-arch] for

further discussion of mis-use of the identifier, as well as

extensive discussion of policing rate and latency in regard to L4S.

If the anti-replay window of a VPN egress is too small, it will

mistake deliberate delay differences as a replay attack, and discard

higher delay packets (e.g. Classic) carried within the same security

association (SA) as low delay packets (e.g. L4S). Section 6.2

recommends that VPNs used in L4S experiments are configured with a

sufficiently large anti-replay window, as required by the relevant

specifications. It also discusses other alternatives.

If a user taking part in the L4S experiment sets up a VPN without

being aware of the above advice, and if the user allows anyone to

send traffic into their VPN, they would open up a DoS vulnerability

in which an attacker could induce the VPN's anti-replay mechanism to

discard enough of the user's Classic (C) traffic (if they are

receiving any) to cause a significant rate reduction. While the user

is actively downloading C traffic, the attacker sends C traffic into

the VPN to fill the remainder of the bottleneck link, then sends

intermittent L4S packets to maximize the chance of exceeding the

VPN's replay window. The user can prevent this attack by following

the recommendations in Section 6.2.

The recommendation to detect loss in time units prevents the ACK-

splitting attacks described in [Savage-TCP].
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Appendix A. Rationale for the 'Prague L4S Requirements'

This appendix is informative, not normative. It gives a list of

modifications to current scalable congestion controls so that they

can be deployed over the public Internet and coexist safely with

existing traffic. The list complements the normative requirements in

Section 4 that a sender has to comply with before it can set the L4S

identifier in packets it sends into the Internet. As well as

rationale for safety improvements (the requirements in Section 4)

this appendix also includes preferable performance improvements

(optimizations).

The requirements and recommendations in Section 4) have become know

as the Prague L4S Requirements, because they were originally
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identified at an ad hoc meeting during IETF-94 in Prague 

[TCPPrague]. They were originally called the 'TCP Prague

Requirements', but they are not solely applicable to TCP, so the

name and wording has been generalized for all transport protocols,

and the name 'TCP Prague' is now used for a specific implementation

of the requirements.

At the time of writing, DCTCP [RFC8257] is the most widely used

scalable transport protocol. In its current form, DCTCP is specified

to be deployable only in controlled environments. Deploying it in

the public Internet would lead to a number of issues, both from the

safety and the performance perspective. The modifications and

additional mechanisms listed in this section will be necessary for

its deployment over the global Internet. Where an example is needed,

DCTCP is used as a base, but the requirements in Section 4 apply

equally to other scalable congestion controls, covering adaptive

real-time media, etc., not just capacity-seeking behaviours.

A.1. Rationale for the Requirements for Scalable Transport Protocols

A.1.1. Use of L4S Packet Identifier

Description: A scalable congestion control needs to distinguish the

packets it sends from those sent by Classic congestion controls (see

the precise normative requirement wording in Section 4.1).

Motivation: It needs to be possible for a network node to classify

L4S packets without flow state into a queue that applies an L4S ECN

marking behaviour and isolates L4S packets from the queuing delay of

Classic packets.

A.1.2. Accurate ECN Feedback

Description: The transport protocol for a scalable congestion

control needs to provide timely, accurate feedback about the extent

of ECN marking experienced by all packets (see the precise normative

requirement wording in Section 4.2).

Motivation: Classic congestion controls only need feedback about the

existence of a congestion episode within a round trip, not precisely

how many packets were marked with ECN or dropped. Therefore, in

2001, when ECN feedback was added to TCP [RFC3168], it could not

inform the sender of more than one ECN mark per RTT. Since then,

requirements for more accurate ECN feedback in TCP have been defined

in [RFC7560] and [I-D.ietf-tcpm-accurate-ecn] specifies a change to

the TCP protocol to satisfy these requirements. Most other transport

protocols already satisfy this requirement (see Section 4.2).
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A.1.3. Capable of Replacement by Classic Congestion Control

Description: It needs to be possible to replace the implementation

of a scalable congestion control with a Classic control (see the

precise normative requirement wording in Section 4.3).

Motivation: L4S is an experimental protocol, therefore it seems

prudent to be able to disable it at source in case of insurmountable

problems, perhaps due to some unexpected interaction on a particular

sender; over a particular path or network; with a particular

receiver or even ultimately an insurmountable problem with the

experiment as a whole.

A.1.4. Fall back to Classic Congestion Control on Packet Loss

Description: As well as responding to ECN markings in a scalable

way, a scalable congestion control needs to react to packet loss in

a way that will coexist safely with a Reno congestion control 

[RFC5681] (see the precise normative requirement wording in Section

4.3).

Motivation: Part of the safety conditions for deploying a scalable

congestion control on the public Internet is to make sure that it

behaves properly when it builds a queue at a network bottleneck that

has not been upgraded to support L4S. Packet loss can have many

causes, but it usually has to be conservatively assumed that it is a

sign of congestion. Therefore, on detecting packet loss, a scalable

congestion control will need to fall back to Classic congestion

control behaviour. If it does not comply, it could starve Classic

traffic.

A scalable congestion control can be used for different types of

transport, e.g. for real-time media or for reliable transport like

TCP. Therefore, the particular Classic congestion control behaviour

to fall back on will need to be dependent on the specific congestion

control implementation. In the particular case of DCTCP, the DCTCP

specification [RFC8257] states that "It is RECOMMENDED that an

implementation deal with loss episodes in the same way as

conventional TCP." For safe deployment, Section 4.3 requires any

specification of a scalable congestion control for the public

Internet to define the above requirement as a "MUST".

Even though a bottleneck is L4S capable, it might still become

overloaded and have to drop packets. In this case, the sender may

receive a high proportion of packets marked with the CE bit set and

also experience loss. Current DCTCP implementations each react

differently to this situation. At least one implementation reacts

only to the drop signal (e.g. by halving the CWND) and at least

another DCTCP implementation reacts to both signals (e.g. by halving
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Monitoring:

the CWND due to the drop and also further reducing the CWND based on

the proportion of marked packet). A third approach for the public

Internet has been proposed that adjusts the loss response to result

in a halving when combined with the ECN response. We believe that

further experimentation is needed to understand what is the best

behaviour for the public Internet, which may or not be one of these

existing approaches.

A.1.5. Coexistence with Classic Congestion Control at Classic ECN

bottlenecks

Description: Monitoring has to be in place so that a non-L4S but

ECN-capable AQM can be detected at path bottlenecks. This is in case

such an AQM has been implemented in a shared queue, in which case

any long-running scalable flow would predominate over any

simultaneous long-running Classic flow sharing the queue. The

precise requirement wording in Section 4.3 is written so that such a

problem could either be resolved in real-time, or via administrative

intervention.

Motivation: Similarly to the discussion in Appendix A.1.4, this

requirement in Section 4.3 is a safety condition to ensure an L4S

congestion control coexists well with Classic flows when it builds a

queue at a shared network bottleneck that has not been upgraded to

support L4S. Nonetheless, if necessary, it is considered reasonable

to resolve such problems over management timescales (possibly

involving human intervention) because:

although a Classic flow can considerably reduce its throughput in

the face of a competing scalable flow, it still makes progress

and does not starve;

implementations of a Classic ECN AQM in a queue that is intended

to be shared are believed to be rare;

detection of such AQMs is not always clear-cut; so focused out-

of-band testing (or even contacting the relevant network

operator) would improve certainty.

Therefore, the relevant normative requirement (Section 4.3) is

divided into three stages: monitoring, detection and action:

Monitoring involves collection of the measurement data

to be analysed. Monitoring is expressed as a 'MUST' for

uncontrolled environments, although the placement of the

monitoring function is left open. Whether monitoring has to be

applied in real-time is expressed as a 'SHOULD'. This allows for

the possibility that the operator of an L4S sender (e.g. a CDN)

might prefer to test out-of-band for signs of Classic ECN AQMs,
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Detection:

Action:

perhaps to avoid continually consuming resources to monitor live

traffic.

Detection involves analysis of the monitored data to

detect the likelihood of a Classic ECN AQM. Detection can either

directly detect actual coexistence problems between flows, or it

can aim to identify AQM technologies that are likely to present

coexistence problems, based on knowledge of AQMs deployed at the

time. The requirements recommend that detection occurs live in

real-time. However, detection is allowed to be deferred (e.g. it

might involve further testing targeted at candidate AQMs);

This involves the act of switching the sender to a Classic

congestion control. This might occur in real-time within the

congestion control for the subsequent duration of a flow, or it

might involve administrative action to switch to Classic

congestion control for a specific interface or for a certain set

of destination addresses.

Instead of the sender taking action itself, the operator of the

sender (e.g. a CDN) might prefer to ask the network operator to

modify the Classic AQM's treatment of L4S packets; or to ensure

L4S packets bypass the AQM; or to upgrade the AQM to support L4S

(see [I-D.ietf-tsvwg-l4sops]). Once L4S flows no longer shared

the Classic ECN AQM they would obviously no longer detect it, and

the requirement to act on it would no longer apply.

The whole set of normative requirements concerning Classic ECN AQMs

in Section 4.3 is worded so that it does not apply in controlled

environments, such as private networks or data centre networks. CDN

servers placed within an access ISP's network can be considered as a

single controlled environment, but any onward networks served by the

access network, including all the attached customer networks, would

be unlikely to fall under the same degree of coordinated control.

Monitoring is expressed as a 'MUST' for these uncontrolled segments

of paths (e.g. beyond the access ISP in a home network), because

there is a possibility that there might be a shared queue Classic

ECN AQM in that segment. Nonetheless, the intent of the wording is

to only require occasional monitoring of these uncontrolled regions,

and not to burden CDN operators if monitoring never uncovers any

potential problems.

More detailed discussion of all the above options and alternatives

can be found in [I-D.ietf-tsvwg-l4sops].

Having said all the above, the approach recommended in Section 4.3

is to monitor, detect and act in real-time on live traffic. A

passive monitoring algorithm to detect a Classic ECN AQM at the

bottleneck and fall back to Classic congestion control is described
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in an extensive technical report [ecn-fallback], which also provides

a link to Linux source code, and a large online visualization of its

evaluation results. Very briefly, the algorithm primarily monitors

RTT variation using the same algorithm that maintains the mean

deviation of TCP's smoothed RTT, but it smooths over a duration of

the order of a Classic sawtooth. The outcome is also conditioned on

other metrics such as the presence of CE marking and congestion

avoidance phase having stabilized. The report also identifies

further work to improve the approach, for instance improvements with

low capacity links and combining the measurements with a cache of

what had been learned about a path in previous connections. The

report also suggests alternative approaches.

Although using passive measurements within live traffic (as above)

can detect a Classic ECN AQM, it is much harder (perhaps impossible)

to determine whether or not the AQM is in a shared queue.

Nonetheless, this is much easier using active test traffic out-of-

band, because two flows can be used. Section 4 of the same report 

[ecn-fallback] describes a simple technique to detect a Classic ECN

AQM and determine whether it is in a shared queue, summarized here.

An L4S-enabled test server could be set up so that, when a test

client accesses it, it serves a script that gets the client to open

two parallel long-running flows. It could serve one with a Classic

congestion control (C, that sets ECT(0)) and one with a scalable CC

(L, that sets ECT(1)). If neither flow induces any ECN marks, it can

be presumed the path does not contain a Classic ECN AQM. If either

flow induces some ECN marks, the server could measure the relative

flow rates and round trip times of the two flows. Table 2 shows the

AQM that can be inferred for various cases (presuming the AQM

behaviours known at the time of writing).

Rate RTT Inferred AQM

L > C L = C Classic ECN AQM (FIFO)

L = C L = C Classic ECN AQM (FQ)

L = C L < C FQ-L4S AQM

L ~= C L < C Coupled DualQ AQM

Table 2: Out-of-band testing with two

parallel flows. L:=L4S, C:=Classic.

Finally, we motivate the recommendation in Section 4.3 that a

scalable congestion control is not expected to change to setting

ECT(0) while it adapts its behaviour to coexist with Classic flows.

This is because the sender needs to continue to check whether it
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made the right decision - and switch back if it was wrong, or if a

different link becomes the bottleneck:

If, as recommended, the sender changes only its behaviour but not

its codepoint to Classic, its codepoint will still be compatible

with either an L4S or a Classic AQM. If the bottleneck does

actually support both, it will still classify ECT(1) into the

same L4S queue, where the sender can measure that switching to

Classic behaviour was wrong, so that it can switch back.

In contrast, if the sender changes both its behaviour and its

codepoint to Classic, even if the bottleneck supports both, it

will classify ECT(0) into the Classic queue, reinforcing the

sender's incorrect decision so that it never switches back.

Also, not changing codepoint avoids the risk of being flipped to

a different path by a load balancer or multipath routing that

hashes on the whole of the ex-ToS byte (unfortunately still a

common pathology).

Note that if a flow is configured to only use a Classic congestion

control, it is then entirely appropriate not to use ECT(1).

A.1.6. Reduce RTT dependence

Description: A scalable congestion control needs to reduce RTT bias

as much as possible at least over the low to typical range of RTTs

that will interact in the intended deployment scenario (see the

precise normative requirement wording in Section 4.3).

Motivation: The throughput of Classic congestion controls is known

to be inversely proportional to RTT, so one would expect flows over

very low RTT paths to nearly starve flows over larger RTTs. However,

Classic congestion controls have never allowed a very low RTT path

to exist because they induce a large queue. For instance, consider

two paths with base RTT 1 ms and 100 ms. If a Classic congestion

control induces a 100 ms queue, it turns these RTTs into 101 ms and

200 ms leading to a throughput ratio of about 2:1. Whereas if a

scalable congestion control induces only a 1 ms queue, the ratio is

2:101, leading to a throughput ratio of about 50:1.

Therefore, with very small queues, long RTT flows will essentially

starve, unless scalable congestion controls comply with this

requirement in Section 4.3.

The RTT bias in current Classic congestion controls works

satisfactorily when the RTT is higher than typical, and L4S does not

change that. So, there is no additional requirement in Section 4.3

for high RTT L4S flows to remove RTT bias - they can but they don't

have to.
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A.1.7. Scaling down to fractional congestion windows

Description: A scalable congestion control needs to remain

responsive to congestion when typical RTTs over the public Internet

are significantly smaller because they are no longer inflated by

queuing delay (see the precise normative requirement wording in 

Section 4.3).

Motivation: As currently specified, the minimum congestion window of

ECN-capable TCP (and its derivatives) is expected to be 2 sender

maximum segment sizes (SMSS), or 1 SMSS after a retransmission

timeout. Once the congestion window reaches this minimum, if there

is further ECN-marking, TCP is meant to wait for a retransmission

timeout before sending another segment (see section 6.1.2 of 

[RFC3168]). In practice, most known window-based congestion control

algorithms become unresponsive to ECN congestion signals at this

point. No matter how much ECN marking, the congestion window no

longer reduces. Instead, the sender's lack of any further congestion

response forces the queue to grow, overriding any AQM and increasing

queuing delay (making the window large enough to become responsive

again). This can result in a stable but deeper queue, or it might

drive the queue to loss, then the retransmission timeout mechanism

acts as a backstop.

Most window-based congestion controls for other transport protocols

have a similar minimum window, albeit when measured in bytes for

those that use smaller packets.

L4S mechanisms significantly reduce queueing delay so, over the same

path, the RTT becomes lower. Then this problem becomes surprisingly

common [sub-mss-prob]. This is because, for the same link capacity,

smaller RTT implies a smaller window. For instance, consider a

residential setting with an upstream broadband Internet access of

8 Mb/s, assuming a max segment size of 1500 B. Two upstream flows

will each have the minimum window of 2 SMSS if the RTT is 6 ms or

less, which is quite common when accessing a nearby data centre. So,

any more than two such parallel TCP flows will become unresponsive

to ECN and increase queuing delay.

Unless scalable congestion controls address the requirement in 

Section 4.3 from the start, they will frequently become unresponsive

to ECN, negating the low latency benefit of L4S, for themselves and

for others.

That would seem to imply that scalable congestion controllers ought

to be required to be able work with a congestion window less than

1 SMSS. For instance, if an ECN-capable TCP gets an ECN-mark when it

is already sitting at a window of 1 SMSS, RFC 3168 requires it to

defer sending for a retransmission timeout. A less drastic but more
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complex mechanism can maintain a congestion window less than 1 SMSS

(significantly less if necessary), as described in [Ahmed19]. Other

approaches are likely to be feasible.

However, the requirement in Section 4.3 is worded as a "SHOULD"

because it is believed that the existence of a minimum window is not

all bad. When competing with an unresponsive flow, a minimum window

naturally protects the flow from starvation by at least keeping some

data flowing.

By stating the requirement to go lower than 1 SMSS as a "SHOULD",

while the requirement in RFC 3168 still stands as well, we shall be

able to watch the choices of minimum window evolve in different

scalable congestion controllers.

A.1.8. Measuring Reordering Tolerance in Time Units

Description: When detecting loss, a scalable congestion control

needs to be tolerant to reordering over an adaptive time interval,

which scales with throughput, rather than counting only in fixed

units of packets, which does not scale (see the precise normative

requirement wording in Section 4.3).

Motivation: A primary purpose of L4S is scalable throughput (it's in

the name). Scalability in all dimensions is, of course, also a goal

of all IETF technology. The inverse linear congestion response in 

Section 4.3 is necessary, but not sufficient, to solve the

congestion control scalability problem identified in [RFC3649]. As

well as maintaining frequent ECN signals as rate scales, it is also

important to ensure that a potentially false perception of loss does

not limit throughput scaling.

End-systems cannot know whether a missing packet is due to loss or

reordering, except in hindsight - if it appears later. So they can

only deem that there has been a loss if a gap in the sequence space

has not been filled, either after a certain number of subsequent

packets has arrived (e.g. the 3 DupACK rule of standard TCP

congestion control [RFC5681]) or after a certain amount of time

(e.g. the RACK approach [RFC8985]).

As we attempt to scale packet rate over the years:

Even if only some sending hosts still deem that loss has occurred

by counting reordered packets, all networks will have to keep

reducing the time over which they keep packets in order. If some

link technologies keep the time within which reordering occurs

roughly unchanged, then loss over these links, as perceived by

these hosts, will appear to continually rise over the years.
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In contrast, if all senders detect loss in units of time, the

time over which the network has to keep packets in order stays

roughly invariant.

Therefore hosts have an incentive to detect loss in time units (so

as not to fool themselves too often into detecting losses when there

are none). And for hosts that are changing their congestion control

implementation to L4S, there is no downside to including time-based

loss detection code in the change (loss recovery implemented in

hardware is an exception, covered later). Therefore requiring L4S

hosts to detect loss in time-based units would not be a burden.

If the requirement in Section 4.3 were not placed on L4S hosts, even

though it would be no burden on hosts to comply, all networks would

face unnecessary uncertainty over whether some L4S hosts might be

detecting loss by counting packets. Then all link technologies will

have to unnecessarily keep reducing the time within which reordering

occurs. That is not a problem for some link technologies, but it

becomes increasingly challenging for other link technologies to

continue to scale, particularly those relying on channel bonding for

scaling, such as LTE, 5G and DOCSIS.

Given Internet paths traverse many link technologies, any scaling

limit for these more challenging access link technologies would

become a scaling limit for the Internet as a whole.

It might be asked how it helps to place this loss detection

requirement only on L4S hosts, because networks will still face

uncertainty over whether non-L4S flows are detecting loss by

counting DupACKs. The answer is that those link technologies for

which it is challenging to keep squeezing the reordering time will

only need to do so for non-L4S traffic (which they can do because

the L4S identifier is visible at the IP layer). Therefore, they can

focus their processing and memory resources into scaling non-L4S

(Classic) traffic. Then, the higher the proportion of L4S traffic,

the less of a scaling challenge they will have.

To summarize, there is no reason for L4S hosts not to be part of the

solution instead of part of the problem.

Requirement ("MUST") or recommendation ("SHOULD")? As explained

above, this is a subtle interoperability issue between hosts and

networks, which seems to need a "MUST". Unless networks can be

certain that all L4S hosts follow the time-based approach, they

still have to cater for the worst case - continually squeeze

reordering into a smaller and smaller duration - just for hosts that

might be using the counting approach. However, it was decided to

express this as a recommendation, using "SHOULD". The main

justification was that networks can still be fairly certain that L4S
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hosts will follow this recommendation, because following it offers

only gain and no pain.

Details:

The speed of loss recovery is much more significant for short flows

than long, therefore a good compromise is to adapt the reordering

window; from a small fraction of the RTT at the start of a flow, to

a larger fraction of the RTT for flows that continue for many round

trips.

This is broadly the approach adopted by TCP RACK (Recent

ACKnowledgements) [RFC8985]. However, RACK starts with the 3 DupACK

approach, because the RTT estimate is not necessarily stable. As

long as the initial window is paced, such initial use of 3 DupACK

counting would amount to time-based loss detection and therefore

would satisfy the time-based loss detection recommendation of 

Section 4.3. This is because pacing of the initial window would

ensure that 3 DupACKs early in the connection would be spread over a

small fraction of the round trip.

As mentioned above, hardware implementations of loss recovery using

DupACK counting exist (e.g. some implementations of RoCEv2 for

RDMA). For low latency, these implementations can change their

congestion control to implement L4S, because the congestion control

(as distinct from loss recovery) is implemented in software. But

they cannot easily satisfy this loss recovery requirement. However,

it is believed they do not need to, because such implementations are

believed to solely exist in controlled environments, where the

network technology keeps reordering extremely low anyway. This is

why controlled environments with hardly any reordering are excluded

from the scope of the normative recommendation in Section 4.3.

Detecting loss in time units also prevents the ACK-splitting attacks

described in [Savage-TCP].

A.2. Scalable Transport Protocol Optimizations

A.2.1. Setting ECT in Control Packets and Retransmissions

Description: This item concerns TCP and its derivatives (e.g. SCTP)

as well as RTP/RTCP [RFC6679]. The original specification of ECN for

TCP precluded the use of ECN on control packets and retransmissions.

Similarly [RFC6679] precludes the use of ECT on RTCP datagrams, in

case the path changes after it has been checked for ECN traversal.

To improve performance, scalable transport protocols ought to enable

ECN at the IP layer in TCP control packets (SYN, SYN-ACK, pure ACKs,

etc.) and in retransmitted packets. The same is true for other

transports, e.g. SCTP, RTCP.
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Motivation (TCP): RFC 3168 prohibits the use of ECN on these types

of TCP packet, based on a number of arguments. This means these

packets are not protected from congestion loss by ECN, which

considerably harms performance, particularly for short flows. [I-

D.ietf-tcpm-generalized-ecn] proposes experimental use of ECN on all

types of TCP packet as long as AccECN feedback [I-D.ietf-tcpm-

accurate-ecn] is available (which itself satisfies the accurate

feedback requirement in Section 4.2 for using a scalable congestion

control).

Motivation (RTCP): L4S experiments in general will need to observe

the rule in [RFC6679] that precludes ECT on RTCP datagrams.

Nonetheless, as ECN usage becomes more widespread, it would be

useful to conduct specific experiments with ECN-capable RTCP to

gather data on whether such caution is necessary.

A.2.2. Faster than Additive Increase

Description: It would improve performance if scalable congestion

controls did not limit their congestion window increase to the

standard additive increase of 1 SMSS per round trip [RFC5681] during

congestion avoidance. The same is true for derivatives of TCP

congestion control, including similar approaches used for real-time

media.

Motivation: As currently defined [RFC8257], DCTCP uses the

traditional Reno additive increase in congestion avoidance phase.

When the available capacity suddenly increases (e.g. when another

flow finishes, or if radio capacity increases) it can take very many

round trips to take advantage of the new capacity. TCP Cubic 

[RFC8312] was designed to solve this problem, but as flow rates have

continued to increase, the delay accelerating into available

capacity has become prohibitive. See, for instance, the examples in

Section 5.1 of [I-D.ietf-tsvwg-l4s-arch]. Even when out of its Reno-

compatibility mode, every 8x scaling of Cubic's flow rate leads to

2x more acceleration delay.

In the steady state, DCTCP induces about 2 ECN marks per round trip,

so it is possible to quickly detect when these signals have

disappeared and seek available capacity more rapidly, while

minimizing the impact on other flows (Classic and scalable) 

[LinuxPacedChirping]. Alternatively, approaches such as Adaptive

Acceleration (A2DTCP [A2DTCP]) have been proposed to address this

problem in data centres, which might be deployable over the public

Internet.
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A.2.3. Faster Convergence at Flow Start

Description: It would improve performance if scalable congestion

controls converged (reached their steady-state share of the

capacity) faster than Classic congestion controls or at least no

slower. This affects the flow start behaviour of any L4S congestion

control derived from a Classic transport that uses TCP slow start,

including those for real-time media.

Motivation: As an example, a new DCTCP flow takes longer than a

Classic congestion control to obtain its share of the capacity of

the bottleneck when there are already ongoing flows using the

bottleneck capacity. In a data centre environment DCTCP takes about

a factor of 1.5 to 2 longer to converge due to the much higher

typical level of ECN marking that DCTCP background traffic induces,

which causes new flows to exit slow start early [Alizadeh-

stability]. In testing for use over the public Internet the

convergence time of DCTCP relative to a regular loss-based TCP slow

start is even less favourable [Paced-Chirping] due to the shallow

ECN marking threshold needed for L4S. It is exacerbated by the

typically greater mismatch between the link rate of the sending host

and typical Internet access bottlenecks. This problem is detrimental

in general, but would particularly harm the performance of short

flows relative to Classic congestion controls.

Appendix B. Compromises in the Choice of L4S Identifier

This appendix is informative, not normative. As explained in Section

2, there is insufficient space in the IP header (v4 or v6) to fully

accommodate every requirement. So the choice of L4S identifier

involves tradeoffs. This appendix records the pros and cons of the

choice that was made.

Non-normative recap of the chosen codepoint scheme:

Packets with ECT(1) and conditionally packets with CE signify L4S

semantics as an alternative to the semantics of Classic ECN 

[RFC3168], specifically:

The ECT(1) codepoint signifies that the packet was sent by an

L4S-capable sender.

Given shortage of codepoints, both L4S and Classic ECN sides

of an AQM have to use the same CE codepoint to indicate that a

packet has experienced congestion. If a packet that had

already been marked CE in an upstream buffer arrived at a

subsequent AQM, this AQM would then have to guess whether to

classify CE packets as L4S or Classic ECN. Choosing the L4S

treatment is a safer choice, because then a few Classic
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Consumes the last ECN codepoint:

ECN hard in some lower layers:

Risk of reordering Classic CE packets within a flow:

packets might arrive early, rather than a few L4S packets

arriving late.

Additional information might be available if the classifier

were transport-aware. Then it could classify a CE packet for

Classic ECN treatment if the most recent ECT packet in the

same flow had been marked ECT(0). However, the L4S service

ought not to need transport-layer awareness.

Cons:

The L4S service could potentially

supersede the service provided by Classic ECN, therefore using

ECT(1) to identify L4S packets could ultimately mean that the

ECT(0) codepoint was 'wasted' purely to distinguish one form of

ECN from its successor.

It is not always possible to support

the equivalent of an IP-ECN field in an AQM acting in a buffer

below the IP layer [I-D.ietf-tsvwg-ecn-encap-guidelines]. Then,

depending on the lower layer scheme, the L4S service might have

to drop rather than mark frames even though they might

encapsulate an ECN-capable packet.

Classifying

all CE packets into the L4S queue risks any CE packets that were

originally ECT(0) being incorrectly classified as L4S. If there

were delay in the Classic queue, these incorrectly classified CE

packets would arrive early, which is a form of reordering.

Reordering within a microflow can cause TCP senders (and senders

of similar transports) to retransmit spuriously. However, the

risk of spurious retransmissions would be extremely low for the

following reasons:

It is quite unusual to experience queuing at more than

one bottleneck on the same path (the available capacities

have to be identical).

In only a subset of these unusual cases would the first

bottleneck support Classic ECN marking while the second

supported L4S ECN marking, which would be the only

scenario where some ECT(0) packets could be CE marked by

an AQM supporting Classic ECN then the remainder

experienced further delay through the Classic side of a

subsequent L4S DualQ AQM.

Even then, when a few packets are delivered early, it

takes very unusual conditions to cause a spurious

retransmission, in contrast to when some packets are

delivered late. The first bottleneck has to apply CE-
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marks to at least N contiguous packets and the second

bottleneck has to inject an uninterrupted sequence of at

least N of these packets between two packets earlier in

the stream (where N is the reordering window that the

transport protocol allows before it considers a packet is

lost).

For example consider N=3, and consider the sequence of

packets 100, 101, 102, 103,... and imagine that

packets 150,151,152 from later in the flow are

injected as follows: 100, 150, 151, 101, 152, 102,

103... If this were late reordering, even one packet

arriving out of sequence would trigger a spurious

retransmission, but there is no spurious

retransmission here with early reordering, because

packet 101 moves the cumulative ACK counter forward

before 3 packets have arrived out of order. Later,

when packets 148, 149, 153... arrive, even though

there is a 3-packet hole, there will be no problem,

because the packets to fill the hole are already in

the receive buffer.

Even with the current TCP recommendation of N=3 [RFC5681]

spurious retransmissions will be unlikely for all the

above reasons. As RACK [RFC8985] is becoming widely

deployed, it tends to adapt its reordering window to a

larger value of N, which will make the chance of a

contiguous sequence of N early arrivals vanishingly

small.

Even a run of 2 CE marks within a Classic ECN flow is

unlikely, given FQ-CoDel is the only known widely

deployed AQM that supports Classic ECN marking and it

takes great care to separate out flows and to space any

markings evenly along each flow.

It is extremely unlikely that the above set of 5 eventualities

that are each unusual in themselves would all happen

simultaneously. But, even if they did, the consequences would

hardly be dire: the odd spurious fast retransmission. Whenever

the traffic source (a Classic congestion control) mistakes the

reordering of a string of CE marks for a loss, one might think

that it will reduce its congestion window as well as emitting a

spurious retransmission. However, it would have already reduced

its congestion window when the CE markings arrived early. If it

is using ABE [RFC8511], it might reduce cwnd a little more for a

loss than for a CE mark. But it will revert that reduction once

it detects that the retransmission was spurious.
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Insufficient anti-replay window in some pre-existing VPNs:

Hard to distinguish Classic ECN AQM:

In conclusion, the impact of early reordering on spurious

retransmissions due to CE being ambiguous will generally be

vanishingly small.

If delay

is reduced for a subset of the flows within a VPN, the anti-

replay feature of some VPNs is known to potentially mistake the

difference in delay for a replay attack. Section 6.2 recommends

that the anti-replay window at the VPN egress is sufficiently

sized, as required by the relevant specifications. However, in

some VPN implementations the maximum anti-replay window is

insufficient to cater for a large delay difference at prevailing

packet rates. Section 6.2 suggests alternative work-rounds for

such cases, but end-users using L4S over a VPN will need to be

able to recognize the symptoms of this problem, in order to seek

out these work-rounds.

With this scheme, when a

source receives ECN feedback, it is not explicitly clear which

type of AQM generated the CE markings. This is not a problem for

Classic ECN sources that send ECT(0) packets, because an L4S AQM

will recognize the ECT(0) packets as Classic and apply the

appropriate Classic ECN marking behaviour.

However, in the absence of explicit disambiguation of the CE

markings, an L4S source needs to use heuristic techniques to work

out which type of congestion response to apply (see Appendix A.

1.5). Otherwise, if long-running Classic flow(s) are sharing a

Classic ECN AQM bottleneck with long-running L4S flow(s), which

then apply an L4S response to Classic CE signals, the L4S flows

would outcompete the Classic flow(s). Experiments have shown that

L4S flows can take about 20 times more capacity share than

equivalent Classic flows. Nonetheless, as link capacity reduces

(e.g. to 4 Mb/s), the inequality reduces. So Classic flows always

make progress and are not starved.

When L4S was first proposed (in 2015, 14 years after [RFC3168]

was published), it was believed that Classic ECN AQMs had failed

to be deployed, because research measurements had found little or

no evidence of CE marking. In subsequent years Classic ECN was

included in per-flow-queuing (FQ) deployments, however an FQ

scheduler stops an L4S flow outcompeting Classic, because it

enforces equality between flow rates. It is not known whether

there have been any non-FQ deployments of Classic ECN AQMs in the

subsequent years, or whether there will be in future.

An algorithm for detecting a Classic ECN AQM as soon as a flow

stabilizes after start-up has been proposed [ecn-fallback] (see 

Appendix A.1.5 for a brief summary). Testbed evaluations of v2 of
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Non-L4S service for control packets:

Should work e2e:

Should work in tunnels:

Should work for many link technologies:

Could migrate to one codepoint:

the algorithm have shown detection is reasonably good for Classic

ECN AQMs, in a wide range of circumstances. However, although it

can correctly detect an L4S ECN AQM in many circumstances, its is

often incorrect at low link capacities and/or high RTTs. Although

this is the safe way round, there is a danger that it will

discourage use of the algorithm.

Solely for the case of TCP,

the Classic ECN RFCs [RFC3168] and [RFC5562] require a sender to

clear the ECN field to Not-ECT on retransmissions and on certain

control packets specifically pure ACKs, window probes and SYNs.

When L4S packets are classified by the ECN field, these TCP

control packets would not be classified into an L4S queue, and

could therefore be delayed relative to the other packets in the

flow. This would not cause reordering (because retransmissions

are already out of order, and these control packets typically

carry no data). However, it would make critical TCP control

packets more vulnerable to loss and delay. To address this

problem, [I-D.ietf-tcpm-generalized-ecn] proposes an experiment

in which all TCP control packets and retransmissions are ECN-

capable as long as appropriate ECN feedback is available in each

case.

Pros:

The ECN field generally propagates end-to-end

across the Internet without being wiped or mangled, at least over

fixed networks. Unlike the DSCP, the setting of the ECN field is

at least meant to be forwarded unchanged by networks that do not

support ECN.

The L4S identifiers work across and within

any tunnel that propagates the ECN field in any of the variant

ways it has been defined since ECN-tunneling was first specified

in the year 2001 [RFC3168]. However, it is likely that some

tunnels still do not implement ECN propagation at all.

At most, but not all, path

bottlenecks there is IP-awareness, so that L4S AQMs can be

located where the IP-ECN field can be manipulated. Bottlenecks at

lower layer nodes without IP-awareness either have to use drop to

signal congestion or a specific congestion notification facility

has to be defined for that link technology, including propagation

to and from IP-ECN. The programme to define these is progressing

and in each case so far the scheme already defined for ECN

inherently supports L4S as well (see Section 6.1).

If all Classic ECN senders

eventually evolve to use the L4S service, the ECT(0) codepoint
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L4 not required:

could be reused for some future purpose, but only once use of

ECT(0) packets had reduced to zero, or near-zero, which might

never happen.

Being based on the ECN field, this scheme does not

need the network to access transport layer flow identifiers.

Nonetheless, it does not preclude solutions that do.

Appendix C. Potential Competing Uses for the ECT(1) Codepoint

The ECT(1) codepoint of the ECN field has already been assigned once

for the ECN nonce [RFC3540], which has now been categorized as

historic [RFC8311]. ECN is probably the only remaining field in the

Internet Protocol that is common to IPv4 and IPv6 and still has

potential to work end-to-end, with tunnels and with lower layers.

Therefore, ECT(1) should not be reassigned to a different

experimental use (L4S) without carefully assessing competing

potential uses. These fall into the following categories:

C.1. Integrity of Congestion Feedback

Receiving hosts can fool a sender into downloading faster by

suppressing feedback of ECN marks (or of losses if retransmissions

are not necessary or available otherwise).

The historic ECN nonce protocol [RFC3540] proposed that a TCP sender

could set either of ECT(0) or ECT(1) in each packet of a flow and

remember the sequence it had set. If any packet was lost or

congestion marked, the receiver would miss that bit of the sequence.

An ECN Nonce receiver had to feed back the least significant bit of

the sum, so it could not suppress feedback of a loss or mark without

a 50-50 chance of guessing the sum incorrectly.

It is highly unlikely that ECT(1) will be needed for integrity

protection in future. The ECN Nonce RFC [RFC3540] as been

reclassified as historic, partly because other ways have been

developed to protect feedback integrity of TCP and other transports 

[RFC8311] that do not consume a codepoint in the IP header. For

instance:

the sender can test the integrity of the receiver's feedback by

occasionally setting the IP-ECN field to a value normally only

set by the network. Then it can test whether the receiver's

feedback faithfully reports what it expects (see para 2 of

Section 20.2 of [RFC3168]. This works for loss and it will work

for the accurate ECN feedback [RFC7560] intended for L4S.

A network can enforce a congestion response to its ECN markings

(or packet losses) by auditing congestion exposure (ConEx) 

[RFC7713]. Whether the receiver or a downstream network is

¶

¶

¶

¶

¶

¶

*

¶

*



suppressing congestion feedback or the sender is unresponsive to

the feedback, or both, ConEx audit can neutralise any advantage

that any of these three parties would otherwise gain.

The TCP authentication option (TCP-AO [RFC5925]) can be used to

detect any tampering with TCP congestion feedback (whether

malicious or accidental). TCP's congestion feedback fields are

immutable end-to-end, so they are amenable to TCP-AO protection,

which covers the main TCP header and TCP options by default.

However, TCP-AO is often too brittle to use on many end-to-end

paths, where middleboxes can make verification fail in their

attempts to improve performance or security, e.g. by

resegmentation or shifting the sequence space.

C.2. Notification of Less Severe Congestion than CE

Various researchers have proposed to use ECT(1) as a less severe

congestion notification than CE, particularly to enable flows to

fill available capacity more quickly after an idle period, when

another flow departs or when a flow starts, e.g. VCP [VCP], Queue

View (QV) [QV].

Before assigning ECT(1) as an identifier for L4S, we must carefully

consider whether it might be better to hold ECT(1) in reserve for

future standardisation of rapid flow acceleration, which is an

important and enduring problem [RFC6077].

Pre-Congestion Notification (PCN) is another scheme that assigns

alternative semantics to the ECN field. It uses ECT(1) to signify a

less severe level of pre-congestion notification than CE [RFC6660].

However, the ECN field only takes on the PCN semantics if packets

carry a Diffserv codepoint defined to indicate PCN marking within a

controlled environment. PCN is required to be applied solely to the

outer header of a tunnel across the controlled region in order not

to interfere with any end-to-end use of the ECN field. Therefore a

PCN region on the path would not interfere with the L4S service

identifier defined in Section 3.
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