
Transport Area Working Group B. Briscoe, Ed.
Internet-Draft Independent
Intended status: Informational K. De Schepper
Expires: November 22, 2021 Nokia Bell Labs
 M. Bagnulo Braun
 Universidad Carlos III de Madrid
 G. White
 CableLabs
 May 21, 2021

Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service:
Architecture

draft-ietf-tsvwg-l4s-arch-09

Abstract

 This document describes the L4S architecture, which enables Internet
 applications to achieve Low queuing Latency, Low Loss, and Scalable
 throughput (L4S). The insight on which L4S is based is that the root
 cause of queuing delay is in the congestion controllers of senders,
 not in the queue itself. The L4S architecture is intended to enable
 all Internet applications to transition away from congestion
 control algorithms that cause queuing delay, to a new class of
 congestion controls that induce very little queuing, aided by
 explicit congestion signaling from the network. This new class of
 congestion control can provide low latency for capacity-seeking
 flows, so applications can achieve both high bandwidth and low
 latency.

 The architecture primarily concerns incremental deployment. It
 defines mechanisms that allow the new class of L4S congestion
 controls to coexist with 'Classic' congestion controls in a shared
 network. These mechanisms aim to ensure that the latency and
 throughput performance using an L4S-compliant congestion controller
 is usually much better (and never worse) than the performance would
 have been using a 'Classic' congestion controller, and that competing
 flows continuing to use 'Classic' controllers are typically not
 impacted by the presence of L4S. These characteristics are important
 to encourage adoption of L4S congestion control algorithms and L4S
 compliant network elements.

 The L4S architecture consists of three components: network support to
 isolate L4S traffic from classic traffic; protocol features that
 allow network elements to identify L4S traffic; and host support for
 L4S congestion controls.

Briscoe, et al. Expires November 22, 2021 [Page 1]

Internet-Draft L4S Architecture May 2021

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 22, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. L4S Architecture Overview 5
3. Terminology . 6
4. L4S Architecture Components 7
5. Rationale . 12
5.1. Why These Primary Components? 12
5.2. What L4S adds to Existing Approaches 14

6. Applicability . 17
6.1. Applications . 17
6.2. Use Cases . 19
6.3. Applicability with Specific Link Technologies 20
6.4. Deployment Considerations 20
6.4.1. Deployment Topology 21
6.4.2. Deployment Sequences 22

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Briscoe, et al. Expires November 22, 2021 [Page 2]

Internet-Draft L4S Architecture May 2021

6.4.3. L4S Flow but Non-ECN Bottleneck 25
6.4.4. L4S Flow but Classic ECN Bottleneck 25
6.4.5. L4S AQM Deployment within Tunnels 26

7. IANA Considerations (to be removed by RFC Editor) 26
8. Security Considerations 26
8.1. Traffic Rate (Non-)Policing 26
8.2. 'Latency Friendliness' 27
8.3. Interaction between Rate Policing and L4S 29
8.4. ECN Integrity . 29
8.5. Privacy Considerations 30

9. Acknowledgements . 31
10. Informative References 31
Appendix A. Standardization items 38

 Authors' Addresses . 40

1. Introduction

 It is increasingly common for _all_ of a user's applications at any
 one time to require low delay: interactive Web, Web services, voice,
 conversational video, interactive video, interactive remote presence,
 instant messaging, online gaming, remote desktop, cloud-based
 applications and video-assisted remote control of machinery and
 industrial processes. In the last decade or so, much has been done
 to reduce propagation delay by placing caches or servers closer to
 users. However, queuing remains a major, albeit intermittent,
 component of latency. For instance spikes of hundreds of
 milliseconds are common, even with state-of-the-art active queue
 management (AQM). During a long-running flow, queuing is typically
 configured to cause overall network delay to roughly double relative
 to expected base (unloaded) path delay. Low loss is also important
 because, for interactive applications, losses translate into even
 longer retransmission delays.

 It has been demonstrated that, once access network bit rates reach
 levels now common in the developed world, increasing capacity offers
 diminishing returns if latency (delay) is not addressed.
 Differentiated services (Diffserv) offers Expedited Forwarding
 (EF [RFC3246]) for some packets at the expense of others, but this is
 not sufficient when all (or most) of a user's applications require
 low latency.

 Therefore, the goal is an Internet service with very Low queueing
 Latency, very Low Loss and Scalable throughput (L4S). Very low
 queuing latency means less than 1 millisecond (ms) on average and
 less than about 2 ms at the 99th percentile. L4S is potentially for
 all traffic - a service for all traffic needs none of the
 configuration or management baggage (traffic policing, traffic

https://datatracker.ietf.org/doc/html/rfc3246

Briscoe, et al. Expires November 22, 2021 [Page 3]

Internet-Draft L4S Architecture May 2021

 contracts) associated with favouring some traffic over others. This
 document describes the L4S architecture for achieving these goals.

 It must be said that queuing delay only degrades performance
 infrequently [Hohlfeld14]. It only occurs when a large enough
 capacity-seeking (e.g. TCP) flow is running alongside the user's
 traffic in the bottleneck link, which is typically in the access
 network. Or when the low latency application is itself a large
 capacity-seeking or adaptive rate (e.g. interactive video) flow. At
 these times, the performance improvement from L4S must be sufficient
 that network operators will be motivated to deploy it.

 Active Queue Management (AQM) is part of the solution to queuing
 under load. AQM improves performance for all traffic, but there is a
 limit to how much queuing delay can be reduced by solely changing the
 network; without addressing the root of the problem.

 The root of the problem is the presence of standard TCP congestion
 control (Reno [RFC5681]) or compatible variants (e.g. TCP
 Cubic [RFC8312]). We shall use the term 'Classic' for these Reno-
 friendly congestion controls. Classic congestion controls induce
 relatively large saw-tooth-shaped excursions up the queue and down
 again, which have been growing as flow rate scales [RFC3649]. So if
 a network operator naively attempts to reduce queuing delay by
 configuring an AQM to operate at a shallower queue, a Classic
 congestion control will significantly underutilize the link at the
 bottom of every saw-tooth.

 It has been demonstrated that if the sending host replaces a Classic
 congestion control with a 'Scalable' alternative, when a suitable AQM
 is deployed in the network the performance under load of all the
 above interactive applications can be significantly improved. For
 instance, queuing delay under heavy load with the example DCTCP/DualQ
 solution cited below on a DSL or Ethernet link is roughly 1 to 2
 milliseconds at the 99th percentile without losing link
 utilization [DualPI2Linux], [DCttH15] (for other link types, see

Section 6.3). This compares with 5 to 20 ms on _average_ with a
 Classic congestion control and current state-of-the-art AQMs such as
 FQ-CoDel [RFC8290], PIE [RFC8033] or DOCSIS PIE [RFC8034] and about
 20-30 ms at the 99th percentile [DualPI2Linux].

 It has also been demonstrated [DCttH15], [DualPI2Linux] that it is
 possible to deploy such an L4S service alongside the existing best
 efforts service so that all of a user's applications can shift to it
 when their stack is updated. Access networks are typically designed
 with one link as the bottleneck for each site (which might be a home,
 small enterprise or mobile device), so deployment at each end of this
 link should give nearly all the benefit in each direction. The L4S

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc8290
https://datatracker.ietf.org/doc/html/rfc8033
https://datatracker.ietf.org/doc/html/rfc8034

Briscoe, et al. Expires November 22, 2021 [Page 4]

Internet-Draft L4S Architecture May 2021

 approach also requires component mechanisms at the endpoints to
 fulfill its goal. This document presents the L4S architecture, by
 describing the different components and how they interact to provide
 the scalable, low latency, low loss Internet service.

2. L4S Architecture Overview

 There are three main components to the L4S architecture:

 1) Network: L4S traffic needs to be isolated from the queuing
 latency of Classic traffic. One queue per application flow (FQ)
 is one way to achieve this, e.g. FQ-CoDel [RFC8290]. However,
 just two queues is sufficient and does not require inspection of
 transport layer headers in the network, which is not always
 possible (see Section 5.2). With just two queues, it might seem
 impossible to know how much capacity to schedule for each queue
 without inspecting how many flows at any one time are using each.
 And it would be undesirable to arbitrarily divide access network
 capacity into two partitions. The Dual Queue Coupled AQM was
 developed as a minimal complexity solution to this problem. It
 acts like a 'semi-permeable' membrane that partitions latency but
 not bandwidth. As such, the two queues are for transition from
 Classic to L4S behaviour, not bandwidth prioritization. Section 4
 gives a high level explanation of how FQ and DualQ solutions work,
 and [I-D.ietf-tsvwg-aqm-dualq-coupled] gives a full explanation of
 the DualQ Coupled AQM framework.

 2) Protocol: A host needs to distinguish L4S and Classic packets
 with an identifier so that the network can classify them into
 their separate treatments. [I-D.ietf-tsvwg-ecn-l4s-id] concludes
 that all alternatives involve compromises, but the ECT(1) and CE
 codepoints of the ECN field represent a workable solution.

 3) Host: Scalable congestion controls already exist. They solve the
 scaling problem with Reno congestion control that was explained in
 [RFC3649]. The one used most widely (in controlled environments)
 is Data Center TCP (DCTCP [RFC8257]), which has been implemented
 and deployed in Windows Server Editions (since 2012), in Linux and
 in FreeBSD. Although DCTCP as-is 'works' well over the public
 Internet, most implementations lack certain safety features that
 will be necessary once it is used outside controlled environments
 like data centres (see Section 6.4.3 and Appendix A). Scalable
 congestion control will also need to be implemented in protocols
 other than TCP (QUIC, SCTP, RTP/RTCP, RMCAT, etc.). Indeed,
 between the present document being drafted and published, the
 following scalable congestion controls were implemented: TCP
 Prague [PragueLinux], QUIC Prague, an L4S variant of the RMCAT
 SCReAM controller [RFC8298] and the L4S ECN part of

https://datatracker.ietf.org/doc/html/rfc8290
https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298

Briscoe, et al. Expires November 22, 2021 [Page 5]

Internet-Draft L4S Architecture May 2021

 BBRv2 [I-D.cardwell-iccrg-bbr-congestion-control] intended for TCP
 and QUIC transports.

3. Terminology

 Classic Congestion Control: A congestion control behaviour that can
 co-exist with standard TCP Reno [RFC5681] without causing
 significantly negative impact on its flow rate [RFC5033]. With
 Classic congestion controls, as flow rate scales, the number of
 round trips between congestion signals (losses or ECN marks) rises
 with the flow rate. So it takes longer and longer to recover
 after each congestion event. Therefore control of queuing and
 utilization becomes very slack, and the slightest disturbance
 prevents a high rate from being attained [RFC3649].

 For instance, with 1500 byte packets and an end-to-end round trip
 time (RTT) of 36 ms, over the years, as Reno flow rate scales from
 2 to 100 Mb/s the number of round trips taken to recover from a
 congestion event rises proportionately, from 4 to 200.
 Cubic [RFC8312] was developed to be less unscalable, but it is
 approaching its scaling limit; with the same RTT of 36 ms, at
 100Mb/s it takes about 106 round trips to recover, and at 800 Mb/s
 its recovery time triples to over 340 round trips, or still more
 than 12 seconds (Reno would take 57 seconds).

 Scalable Congestion Control: A congestion control where the average
 time from one congestion signal to the next (the recovery time)
 remains invariant as the flow rate scales, all other factors being
 equal. This maintains the same degree of control over queueing
 and utilization whatever the flow rate, as well as ensuring that
 high throughput is more robust to disturbances (e.g. from new
 flows starting). For instance, DCTCP averages 2 congestion
 signals per round-trip whatever the flow rate, as do other
 recently developed scalable congestion controls, e.g. Relentless
 TCP [Mathis09], TCP Prague [PragueLinux] and the L4S variant of
 SCReAM for real-time media [RFC8298]).See Section 4.3 of
 [I-D.ietf-tsvwg-ecn-l4s-id] for more explanation.

 Classic service: The Classic service is intended for all the
 congestion control behaviours that co-exist with Reno [RFC5681]
 (e.g. Reno itself, Cubic [RFC8312],
 Compound [I-D.sridharan-tcpm-ctcp], TFRC [RFC5348]). The term
 'Classic queue' means a queue providing the Classic service.

 Low-Latency, Low-Loss Scalable throughput (L4S) service: The 'L4S'
 service is intended for traffic from scalable congestion control
 algorithms, such as Data Center TCP [RFC8257]. The L4S service is
 for more general traffic than just DCTCP--it allows the set of

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc8298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc8257

Briscoe, et al. Expires November 22, 2021 [Page 6]

Internet-Draft L4S Architecture May 2021

 congestion controls with similar scaling properties to DCTCP to
 evolve, such as the examples listed above (Relentless, Prague,
 SCReAM). The term 'L4S queue' means a queue providing the L4S
 service.

 The terms Classic or L4S can also qualify other nouns, such as
 'queue', 'codepoint', 'identifier', 'classification', 'packet',
 'flow'. For example: an L4S packet means a packet with an L4S
 identifier sent from an L4S congestion control.

 Both Classic and L4S services can cope with a proportion of
 unresponsive or less-responsive traffic as well, as long as it
 does not build a queue (e.g. DNS, VoIP, game sync datagrams, etc).

 Reno-friendly: The subset of Classic traffic that excludes
 unresponsive traffic and excludes experimental congestion controls
 intended to coexist with Reno but without always being strictly
 friendly to it (as allowed by [RFC5033]). Reno-friendly is used
 in place of 'TCP-friendly', given that friendliness is a property
 of the congestion controller (Reno), not the wire protocol (TCP),
 which is used with many different congestion control behaviours.

 Classic ECN: The original Explicit Congestion Notification (ECN)
 protocol [RFC3168], which requires ECN signals to be treated as
 equivalent to drops, both when generated in the network and when
 responded to by the sender.

 The names used for the four codepoints of the 2-bit IP-ECN field
 are as defined in [RFC3168]: Not ECT, ECT(0), ECT(1) and CE, where
 ECT stands for ECN-Capable Transport and CE stands for Congestion
 Experienced.

 Site: A home, mobile device, small enterprise or campus, where the
 network bottleneck is typically the access link to the site. Not
 all network arrangements fit this model but it is a useful, widely
 applicable generalization.

4. L4S Architecture Components

 The L4S architecture is composed of the following elements.

 Protocols: The L4S architecture encompasses two identifier changes
 (an unassignment and an assignment) and optional further identifiers:

 a. An essential aspect of a scalable congestion control is the use
 of explicit congestion signals rather than losses, because the
 signals need to be sent frequently and immediately. In contrast,
 'Classic' ECN [RFC3168] requires an ECN signal to be treated as

https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires November 22, 2021 [Page 7]

Internet-Draft L4S Architecture May 2021

 equivalent to drop, both when it is generated in the network and
 when it is responded to by hosts. L4S needs networks and hosts
 to support a different meaning for ECN:

 * much more frequent signals--too often to require an equivalent
 excessive degree of drop from non-ECN flows;

 * immediately tracking every fluctuation of the queue--too soon
 to warrant dropping packets from non-ECN flows.

 So the standards track [RFC3168] has had to be updated to allow
 L4S packets to depart from the 'same as drop' constraint.
 [RFC8311] is a standards track update to relax specific
 requirements in RFC 3168 (and certain other standards track
 RFCs), which clears the way for the experimental changes proposed
 for L4S. [RFC8311] also reclassifies the original experimental
 assignment of the ECT(1) codepoint as an ECN nonce [RFC3540] as
 historic.

 b. [I-D.ietf-tsvwg-ecn-l4s-id] recommends ECT(1) is used as the
 identifier to classify L4S packets into a separate treatment from
 Classic packets. This satisfies the requirements for identifying
 an alternative ECN treatment in [RFC4774].

 The CE codepoint is used to indicate Congestion Experienced by
 both L4S and Classic treatments. This raises the concern that a
 Classic AQM earlier on the path might have marked some ECT(0)
 packets as CE. Then these packets will be erroneously classified
 into the L4S queue. Appendix B of [I-D.ietf-tsvwg-ecn-l4s-id]
 explains why five unlikely eventualities all have to coincide for
 this to have any detrimental effect, which even then would only
 involve a vanishingly small likelihood of a spurious
 retransmission.

 c. A network operator might wish to include certain unresponsive,
 non-L4S traffic in the L4S queue if it is deemed to be smoothly
 enough paced and low enough rate not to build a queue. For
 instance, VoIP, low rate datagrams to sync online games,
 relatively low rate application-limited traffic, DNS, LDAP, etc.
 This traffic would need to be tagged with specific identifiers,
 e.g. a low latency Diffserv Codepoint such as Expedited
 Forwarding (EF [RFC3246]), Non-Queue-Building
 (NQB [I-D.white-tsvwg-nqb]), or operator-specific identifiers.

 Network components: The L4S architecture aims to provide low latency
 without the _need_ for per-flow operations in network components.
 Nonetheless, the architecture does not preclude per-flow solutions -
 it encompasses the following combinations:

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc4774
https://datatracker.ietf.org/doc/html/rfc3246

Briscoe, et al. Expires November 22, 2021 [Page 8]

Internet-Draft L4S Architecture May 2021

 a. The Dual Queue Coupled AQM (illustrated in Figure 1) achieves the
 'semi-permeable' membrane property mentioned earlier as follows.
 The obvious part is that using two separate queues isolates the
 queuing delay of one from the other. The less obvious part is
 how the two queues act as if they are a single pool of bandwidth
 without the scheduler needing to decide between them. This is
 achieved by having the Classic AQM provide a congestion signal to
 both queues in a manner that ensures a consistent response from
 the two types of congestion control. In other words, the Classic
 AQM generates a drop/mark probability based on congestion in the
 Classic queue, uses this probability to drop/mark packets in that
 queue, and also uses this probability to affect the marking
 probability in the L4S queue. This coupling of the congestion
 signaling between the two queues makes the L4S flows slow down to
 leave the right amount of capacity for the Classic traffic (as
 they would if they were the same type of traffic sharing the same
 queue). Then the scheduler can serve the L4S queue with
 priority, because the L4S traffic isn't offering up enough
 traffic to use all the priority that it is given. Therefore, on
 short time-scales (sub-round-trip) the prioritization of the L4S
 queue protects its low latency by allowing bursts to dissipate
 quickly; but on longer time-scales (round-trip and longer) the
 Classic queue creates an equal and opposite pressure against the
 L4S traffic to ensure that neither has priority when it comes to
 bandwidth. The tension between prioritizing L4S and coupling
 marking from Classic results in per-flow fairness. To protect
 against unresponsive traffic in the L4S queue taking advantage of
 the prioritization and starving the Classic queue, it is
 advisable not to use strict priority, but instead to use a
 weighted scheduler (see Appendix A of
 [I-D.ietf-tsvwg-aqm-dualq-coupled]).

 When there is no Classic traffic, the L4S queue's AQM comes into
 play, and it sets an appropriate marking rate to maintain very
 low queuing delay.

 The Dual Queue Coupled AQM has been specified as generically as
 possible [I-D.ietf-tsvwg-aqm-dualq-coupled] without specifying
 the particular AQMs to use in the two queues so that designers
 are free to implement diverse ideas. Informational appendices in
 that draft give pseudocode examples of two different specific AQM
 approaches: one called DualPI2 (pronounced Dual PI
 Squared) [DualPI2Linux] that uses the PI2 variant of PIE, and a
 zero-config variant of RED called Curvy RED. A DualQ Coupled AQM
 based on PIE has also been specified and implemented for Low
 Latency DOCSIS [DOCSIS3.1].

Briscoe, et al. Expires November 22, 2021 [Page 9]

Internet-Draft L4S Architecture May 2021

 (2) (1)
 .-------^------. .--------------^-------------------.
 ,-(3)-----. ______
 ; ________ : L4S --------. | |
 :|Scalable| : _\ ||____| mark |
 :| sender | : __________ / / || / |______|\ _________
 :|________|\; | |/ --------' ^ \1|condit'nl|
 `---------'_| IP-ECN | Coupling : \|priority |_\
 ________ / |Classifier| : /|scheduler| /
 |Classic |/ |__________|\ --------. ___:__ / |_________|
 | sender | _\ || | |||____| mark/|/
 |________| / || | ||| / | drop |
 Classic --------' |______|

 Figure 1: Components of an L4S Solution: 1) Isolation in separate
 network queues; 2) Packet Identification Protocol; and 3) Scalable
 Sending Host

 b. A scheduler with per-flow queues can be used for L4S. It is
 simple to modify an existing design such as FQ-CoDel or FQ-PIE.
 For instance within each queue of an FQ-CoDel system, as well as
 a CoDel AQM, immediate (unsmoothed) shallow threshold ECN marking
 has been added (see Sec.5.2.7 of [RFC8290]). Then the Classic
 AQM such as CoDel or PIE is applied to non-ECN or ECT(0) packets,
 while the shallow threshold is applied to ECT(1) packets, to give
 sub-millisecond average queue delay.

 c. It would also be possible to use dual queues for isolation, but
 with per-flow marking to control flow-rates (instead of the
 coupled per-queue marking of the Dual Queue Coupled AQM). One of
 the two queues would be for isolating L4S packets, which would be
 classified by the ECN codepoint. Flow rates could be controlled
 by flow-specific marking. The policy goal of the marking could
 be to differentiate flow rates (e.g. [Nadas20], which requires
 additional signalling of a per-flow 'value'), or to equalize
 flow-rates (perhaps in a similar way to Approx Fair CoDel [AFCD],
 [I-D.morton-tsvwg-codel-approx-fair], but with two queues not
 one).

 Note that whenever the term 'DualQ' is used loosely without
 saying whether marking is per-queue or per-flow, it means a dual
 queue AQM with per-queue marking.

 Host mechanisms: The L4S architecture includes two main mechanisms in
 the end host that we enumerate next:

https://datatracker.ietf.org/doc/html/rfc8290

Briscoe, et al. Expires November 22, 2021 [Page 10]

Internet-Draft L4S Architecture May 2021

 a. Scalable Congestion Control: Data Center TCP is the most widely
 used example. It has been documented as an informational record
 of the protocol currently in use in controlled
 environments [RFC8257]. A draft list of safety and performance
 improvements for a scalable congestion control to be usable on
 the public Internet has been drawn up (the so-called 'Prague L4S
 requirements' in Appendix A of [I-D.ietf-tsvwg-ecn-l4s-id]). The
 subset that involve risk of harm to others have been captured as
 normative requirements in Section 4 of
 [I-D.ietf-tsvwg-ecn-l4s-id]. TCP Prague has been implemented in
 Linux as a reference implementation to address these requirements
 [PragueLinux].

 Transport protocols other than TCP use various congestion
 controls that are designed to be friendly with Reno. Before they
 can use the L4S service, it will be necessary to implement
 scalable variants of each of these congestion control behaviours.
 They will eventually need to be updated to implement a scalable
 congestion response, which they will have to indicate by using
 the ECT(1) codepoint. Scalable variants are under consideration
 for some new transport protocols that are themselves under
 development, e.g. QUIC. Also the L4S ECN part of
 BBRv2 [I-D.cardwell-iccrg-bbr-congestion-control] is a scalable
 congestion control intended for the TCP and QUIC transports,
 amongst others. Also an L4S variant of the RMCAT SCReAM
 controller [RFC8298] has been implemented for media transported
 over RTP.

 b. ECN feedback is sufficient for L4S in some transport protocols
 (specifically DCCP [RFC4340] and QUIC [I-D.ietf-quic-transport]).
 But others either require update or are in the process of being
 updated:

 * For the case of TCP, the feedback protocol for ECN embeds the
 assumption from Classic ECN [RFC3168] that an ECN mark is
 equivalent to a drop, making it unusable for a scalable TCP.
 Therefore, the implementation of TCP receivers will have to be
 upgraded [RFC7560]. Work to standardize and implement more
 accurate ECN feedback for TCP (AccECN) is in
 progress [I-D.ietf-tcpm-accurate-ecn], [PragueLinux].

 * ECN feedback is only roughly sketched in an appendix of the
 SCTP specification [RFC4960]. A fuller specification has been
 proposed in a long-expired draft [I-D.stewart-tsvwg-sctpecn],
 which would need to be implemented and deployed before SCTCP
 could support L4S.

https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7560
https://datatracker.ietf.org/doc/html/rfc4960

Briscoe, et al. Expires November 22, 2021 [Page 11]

Internet-Draft L4S Architecture May 2021

 * For RTP, sufficient ECN feedback was defined in [RFC6679], but
 [I-D.ietf-avtcore-cc-feedback-message] defines the latest
 standards track improvements.

5. Rationale

5.1. Why These Primary Components?

 Explicit congestion signalling (protocol): Explicit congestion
 signalling is a key part of the L4S approach. In contrast, use of
 drop as a congestion signal creates a tension because drop is both
 an impairment (less would be better) and a useful signal (more
 would be better):

 * Explicit congestion signals can be used many times per round
 trip, to keep tight control, without any impairment. Under
 heavy load, even more explicit signals can be applied so the
 queue can be kept short whatever the load. Whereas state-of-
 the-art AQMs have to introduce very high packet drop at high
 load to keep the queue short. Further, when using ECN, the
 congestion control's sawtooth reduction can be smaller and
 therefore return to the operating point more often, without
 worrying that this causes more signals (one at the top of each
 smaller sawtooth). The consequent smaller amplitude sawteeth
 fit between a very shallow marking threshold and an empty
 queue, so queue delay variation can be very low, without risk
 of under-utilization.

 * Explicit congestion signals can be sent immediately to track
 fluctuations of the queue. L4S shifts smoothing from the
 network (which doesn't know the round trip times of all the
 flows) to the host (which knows its own round trip time).
 Previously, the network had to smooth to keep a worst-case
 round trip stable, which delayed congestion signals by 100-200
 ms.

 All the above makes it clear that explicit congestion signalling
 is only advantageous for latency if it does not have to be
 considered 'equivalent to' drop (as was required with Classic
 ECN [RFC3168]). Therefore, in an L4S AQM, the L4S queue uses a
 new L4S variant of ECN that is not equivalent to drop (see section

5.2 of [I-D.ietf-tsvwg-ecn-l4s-id]), while the Classic queue uses
 either classic ECN [RFC3168] or drop, which are equivalent to each
 other.

 Before Classic ECN was standardized, there were various proposals
 to give an ECN mark a different meaning from drop. However, there
 was no particular reason to agree on any one of the alternative

https://datatracker.ietf.org/doc/html/rfc6679
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires November 22, 2021 [Page 12]

Internet-Draft L4S Architecture May 2021

 meanings, so 'equivalent to drop' was the only compromise that
 could be reached. RFC 3168 contains a statement that:

 "An environment where all end nodes were ECN-Capable could
 allow new criteria to be developed for setting the CE
 codepoint, and new congestion control mechanisms for end-node
 reaction to CE packets. However, this is a research issue, and
 as such is not addressed in this document."

 Latency isolation (network): L4S congestion controls keep queue
 delay low whereas Classic congestion controls need a queue of the
 order of the RTT to avoid under-utilization. One queue cannot
 have two lengths, therefore L4S traffic needs to be isolated in a
 separate queue (e.g. DualQ) or queues (e.g. FQ).

 Coupled congestion notification: Coupling the congestion
 notification between two queues as in the DualQ Coupled AQM is not
 necessarily essential, but it is a simple way to allow senders to
 determine their rate, packet by packet, rather than be overridden
 by a network scheduler. An alternative is for a network scheduler
 to control the rate of each application flow (see discussion in

Section 5.2).

 L4S packet identifier (protocol): Once there are at least two
 treatments in the network, hosts need an identifier at the IP
 layer to distinguish which treatment they intend to use.

 Scalable congestion notification: A scalable congestion control in
 the host keeps the signalling frequency from the network high so
 that rate variations can be small when signalling is stable, and
 rate can track variations in available capacity as rapidly as
 possible otherwise.

 Low loss: Latency is not the only concern of L4S. The 'Low Loss"
 part of the name denotes that L4S generally achieves zero
 congestion loss due to its use of ECN. Otherwise, loss would
 itself cause delay, particularly for short flows, due to
 retransmission delay [RFC2884].

 Scalable throughput: The "Scalable throughput" part of the name
 denotes that the per-flow throughput of scalable congestion
 controls should scale indefinitely, avoiding the imminent scaling
 problems with Reno-friendly congestion control
 algorithms [RFC3649]. It was known when TCP congestion avoidance
 was first developed that it would not scale to high bandwidth-
 delay products (see footnote 6 in [TCP-CA]). Today, regular
 broadband bit-rates over WAN distances are already beyond the
 scaling range of Classic Reno congestion control. So `less

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc3649

Briscoe, et al. Expires November 22, 2021 [Page 13]

Internet-Draft L4S Architecture May 2021

 unscalable' Cubic [RFC8312] and Compound [I-D.sridharan-tcpm-ctcp]
 variants of TCP have been successfully deployed. However, these
 are now approaching their scaling limits. As the examples in

Section 3 demonstrate, as flow rate scales Classic congestion
 controls like Reno or Cubic induce a congestion signal more and
 more infrequently (hundreds of round trips at today's flow rates
 and growing), which makes dynamic control very sloppy. In
 contrast on average a scalable congestion control like DCTCP or
 TCP Prague induces 2 congestion signals per round trip, which
 remains invariant for any flow rate, keeping dynamic control very
 tight.

 Although work on scaling congestion controls tends to start with
 TCP as the transport, the above is not intended to exclude other
 transports (e.g. SCTP, QUIC) or less elastic algorithms
 (e.g. RMCAT), which all tend to adopt the same or similar
 developments.

5.2. What L4S adds to Existing Approaches

 All the following approaches address some part of the same problem
 space as L4S. In each case, it is shown that L4S complements them or
 improves on them, rather than being a mutually exclusive alternative:

 Diffserv: Diffserv addresses the problem of bandwidth apportionment
 for important traffic as well as queuing latency for delay-
 sensitive traffic. Of these, L4S solely addresses the problem of
 queuing latency. Diffserv will still be necessary where important
 traffic requires priority (e.g. for commercial reasons, or for
 protection of critical infrastructure traffic) - see
 [I-D.briscoe-tsvwg-l4s-diffserv]. Nonetheless, the L4S approach
 can provide low latency for _all_ traffic within each Diffserv
 class (including the case where there is only the one default
 Diffserv class).

 Also, Diffserv only works for a small subset of the traffic on a
 link. As already explained, it is not applicable when all the
 applications in use at one time at a single site (home, small
 business or mobile device) require low latency. In contrast,
 because L4S is for all traffic, it needs none of the management
 baggage (traffic policing, traffic contracts) associated with
 favouring some packets over others. This baggage has probably
 held Diffserv back from widespread end-to-end deployment.

 In particular, because networks tend not to trust end systems to
 identify which packets should be favoured over others, where
 networks assign packets to Diffserv classes they often use packet
 inspection of application flow identifiers or deeper inspection of

https://datatracker.ietf.org/doc/html/rfc8312

Briscoe, et al. Expires November 22, 2021 [Page 14]

Internet-Draft L4S Architecture May 2021

 application signatures. Thus, nowadays, Diffserv doesn't always
 sit well with encryption of the layers above IP. So users have to
 choose between privacy and QoS.

 As with Diffserv, the L4S identifier is in the IP header. But, in
 contrast to Diffserv, the L4S identifier does not convey a want or
 a need for a certain level of quality. Rather, it promises a
 certain behaviour (scalable congestion response), which networks
 can objectively verify if they need to. This is because low delay
 depends on collective host behaviour, whereas bandwidth priority
 depends on network behaviour.

 State-of-the-art AQMs: AQMs such as PIE and FQ-CoDel give a
 significant reduction in queuing delay relative to no AQM at all.
 L4S is intended to complement these AQMs, and should not distract
 from the need to deploy them as widely as possible. Nonetheless,
 AQMs alone cannot reduce queuing delay too far without
 significantly reducing link utilization, because the root cause of
 the problem is on the host - where Classic congestion controls use
 large saw-toothing rate variations. The L4S approach resolves
 this tension by ensuring hosts can minimize the size of their
 sawteeth without appearing so aggressive to Classic flows that
 they starve them.

 Per-flow queuing or marking: Similarly, per-flow approaches such as
 FQ-CoDel or Approx Fair CoDel [AFCD] are not incompatible with the
 L4S approach. However, per-flow queuing alone is not enough - it
 only isolates the queuing of one flow from others; not from
 itself. Per-flow implementations still need to have support for
 scalable congestion control added, which has already been done in
 FQ-CoDel (see Sec.5.2.7 of [RFC8290]). Without this simple
 modification, per-flow AQMs like FQ-CoDel would still not be able
 to support applications that need both very low delay and high
 bandwidth, e.g. video-based control of remote procedures, or
 interactive cloud-based video (see Note 1 below).

 Although per-flow techniques are not incompatible with L4S, it is
 important to have the DualQ alternative. This is because handling
 end-to-end (layer 4) flows in the network (layer 3 or 2) precludes
 some important end-to-end functions. For instance:

 A. Per-flow forms of L4S like FQ-CoDel are incompatible with full
 end-to-end encryption of transport layer identifiers for
 privacy and confidentiality (e.g. IPSec or encrypted VPN
 tunnels), because they require packet inspection to access the
 end-to-end transport flow identifiers.

https://datatracker.ietf.org/doc/html/rfc8290

Briscoe, et al. Expires November 22, 2021 [Page 15]

Internet-Draft L4S Architecture May 2021

 In contrast, the DualQ form of L4S requires no deeper
 inspection than the IP layer. So, as long as operators take
 the DualQ approach, their users can have both very low queuing
 delay and full end-to-end encryption [RFC8404].

 B. With per-flow forms of L4S, the network takes over control of
 the relative rates of each application flow. Some see it as
 an advantage that the network will prevent some flows running
 faster than others. Others consider it an inherent part of
 the Internet's appeal that applications can control their rate
 while taking account of the needs of others via congestion
 signals. They maintain that this has allowed applications
 with interesting rate behaviours to evolve, for instance,
 variable bit-rate video that varies around an equal share
 rather than being forced to remain equal at every instant, or
 scavenger services that use less than an equal share of
 capacity [LEDBAT_AQM].

 The L4S architecture does not require the IETF to commit to
 one approach over the other, because it supports both, so that
 the market can decide. Nonetheless, in the spirit of 'Do one
 thing and do it well' [McIlroy78], the DualQ option provides
 low delay without prejudging the issue of flow-rate control.
 Then, flow rate policing can be added separately if desired.
 This allows application control up to a point, but the network
 can still choose to set the point at which it intervenes to
 prevent one flow completely starving another.

 Note:

 1. It might seem that self-inflicted queuing delay within a per-
 flow queue should not be counted, because if the delay wasn't
 in the network it would just shift to the sender. However,
 modern adaptive applications, e.g. HTTP/2 [RFC7540] or some
 interactive media applications (see Section 6.1), can keep low
 latency objects at the front of their local send queue by
 shuffling priorities of other objects dependent on the
 progress of other transfers. They cannot shuffle objects once
 they have released them into the network.

 Alternative Back-off ECN (ABE): Here again, L4S is not an
 alternative to ABE but a complement that introduces much lower
 queuing delay. ABE [RFC8511] alters the host behaviour in
 response to ECN marking to utilize a link better and give ECN
 flows faster throughput. It uses ECT(0) and assumes the network
 still treats ECN and drop the same. Therefore ABE exploits any
 lower queuing delay that AQMs can provide. But as explained

https://datatracker.ietf.org/doc/html/rfc8404
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc8511

Briscoe, et al. Expires November 22, 2021 [Page 16]

Internet-Draft L4S Architecture May 2021

 above, AQMs still cannot reduce queuing delay too far without
 losing link utilization (to allow for other, non-ABE, flows).

 BBR: Bottleneck Bandwidth and Round-trip propagation time
 (BBR [I-D.cardwell-iccrg-bbr-congestion-control]) controls queuing
 delay end-to-end without needing any special logic in the network,
 such as an AQM. So it works pretty-much on any path (although it
 has not been without problems, particularly capacity sharing in
 BBRv1). BBR keeps queuing delay reasonably low, but perhaps not
 quite as low as with state-of-the-art AQMs such as PIE or FQ-
 CoDel, and certainly nowhere near as low as with L4S. Queuing
 delay is also not consistently low, due to BBR's regular bandwidth
 probing spikes and its aggressive flow start-up phase.

 L4S complements BBR. Indeed BBRv2 uses L4S ECN and a scalable L4S
 congestion control behaviour in response to any ECN signalling
 from the path. The L4S ECN signal complements the delay based
 congestion control aspects of BBR with an explicit indication that
 hosts can use, both to converge on a fair rate and to keep below a
 shallow queue target set by the network. Without L4S ECN, both
 these aspects need to be assumed or estimated.

6. Applicability

6.1. Applications

 A transport layer that solves the current latency issues will provide
 new service, product and application opportunities.

 With the L4S approach, the following existing applications also
 experience significantly better quality of experience under load:

 o Gaming, including cloud based gaming;

 o VoIP;

 o Video conferencing;

 o Web browsing;

 o (Adaptive) video streaming;

 o Instant messaging.

 The significantly lower queuing latency also enables some interactive
 application functions to be offloaded to the cloud that would hardly
 even be usable today:

Briscoe, et al. Expires November 22, 2021 [Page 17]

Internet-Draft L4S Architecture May 2021

 o Cloud based interactive video;

 o Cloud based virtual and augmented reality.

 The above two applications have been successfully demonstrated with
 L4S, both running together over a 40 Mb/s broadband access link
 loaded up with the numerous other latency sensitive applications in
 the previous list as well as numerous downloads - all sharing the
 same bottleneck queue simultaneously [L4Sdemo16]. For the former, a
 panoramic video of a football stadium could be swiped and pinched so
 that, on the fly, a proxy in the cloud could generate a sub-window of
 the match video under the finger-gesture control of each user. For
 the latter, a virtual reality headset displayed a viewport taken from
 a 360 degree camera in a racing car. The user's head movements
 controlled the viewport extracted by a cloud-based proxy. In both
 cases, with 7 ms end-to-end base delay, the additional queuing delay
 of roughly 1 ms was so low that it seemed the video was generated
 locally.

 Using a swiping finger gesture or head movement to pan a video are
 extremely latency-demanding actions--far more demanding than VoIP.
 Because human vision can detect extremely low delays of the order of
 single milliseconds when delay is translated into a visual lag
 between a video and a reference point (the finger or the orientation
 of the head sensed by the balance system in the inner ear --- the
 vestibular system).

 Without the low queuing delay of L4S, cloud-based applications like
 these would not be credible without significantly more access
 bandwidth (to deliver all possible video that might be viewed) and
 more local processing, which would increase the weight and power
 consumption of head-mounted displays. When all interactive
 processing can be done in the cloud, only the data to be rendered for
 the end user needs to be sent.

 Other low latency high bandwidth applications such as:

 o Interactive remote presence;

 o Video-assisted remote control of machinery or industrial
 processes.

 are not credible at all without very low queuing delay. No amount of
 extra access bandwidth or local processing can make up for lost time.

Briscoe, et al. Expires November 22, 2021 [Page 18]

Internet-Draft L4S Architecture May 2021

6.2. Use Cases

 The following use-cases for L4S are being considered by various
 interested parties:

 o Where the bottleneck is one of various types of access network:
 e.g. DSL, Passive Optical Networks (PON), DOCSIS cable, mobile,
 satellite (see Section 6.3 for some technology-specific details)

 o Private networks of heterogeneous data centres, where there is no
 single administrator that can arrange for all the simultaneous
 changes to senders, receivers and network needed to deploy DCTCP:

 * a set of private data centres interconnected over a wide area
 with separate administrations, but within the same company

 * a set of data centres operated by separate companies
 interconnected by a community of interest network (e.g. for the
 finance sector)

 * multi-tenant (cloud) data centres where tenants choose their
 operating system stack (Infrastructure as a Service - IaaS)

 o Different types of transport (or application) congestion control:

 * elastic (TCP/SCTP);

 * real-time (RTP, RMCAT);

 * query (DNS/LDAP).

 o Where low delay quality of service is required, but without
 inspecting or intervening above the IP layer [RFC8404]:

 * mobile and other networks have tended to inspect higher layers
 in order to guess application QoS requirements. However, with
 growing demand for support of privacy and encryption, L4S
 offers an alternative. There is no need to select which
 traffic to favour for queuing, when L4S gives favourable
 queuing to all traffic.

 o If queuing delay is minimized, applications with a fixed delay
 budget can communicate over longer distances, or via a longer
 chain of service functions [RFC7665] or onion routers.

 o If delay jitter is minimized, it is possible to reduce the
 dejitter buffers on the receive end of video streaming, which
 should improve the interactive experience

https://datatracker.ietf.org/doc/html/rfc8404
https://datatracker.ietf.org/doc/html/rfc7665

Briscoe, et al. Expires November 22, 2021 [Page 19]

Internet-Draft L4S Architecture May 2021

6.3. Applicability with Specific Link Technologies

 Certain link technologies aggregate data from multiple packets into
 bursts, and buffer incoming packets while building each burst. WiFi,
 PON and cable all involve such packet aggregation, whereas fixed
 Ethernet and DSL do not. No sender, whether L4S or not, can do
 anything to reduce the buffering needed for packet aggregation. So
 an AQM should not count this buffering as part of the queue that it
 controls, given no amount of congestion signals will reduce it.

 Certain link technologies also add buffering for other reasons,
 specifically:

 o Radio links (cellular, WiFi, satellite) that are distant from the
 source are particularly challenging. The radio link capacity can
 vary rapidly by orders of magnitude, so it is considered desirable
 to hold a standing queue that can utilize sudden increases of
 capacity;

 o Cellular networks are further complicated by a perceived need to
 buffer in order to make hand-overs imperceptible;

 L4S cannot remove the need for all these different forms of
 buffering. However, by removing 'the longest pole in the tent'
 (buffering for the large sawteeth of Classic congestion controls),
 L4S exposes all these 'shorter poles' to greater scrutiny.

 Until now, the buffering needed for these additional reasons tended
 to be over-specified - with the excuse that none were 'the longest
 pole in the tent'. But having removed the 'longest pole', it becomes
 worthwhile to minimize them, for instance reducing packet aggregation
 burst sizes and MAC scheduling intervals.

6.4. Deployment Considerations

 L4S AQMs, whether DualQ [I-D.ietf-tsvwg-aqm-dualq-coupled] or FQ,
 e.g. [RFC8290] are, in themselves, an incremental deployment
 mechanism for L4S - so that L4S traffic can coexist with existing
 Classic (Reno-friendly) traffic. Section 6.4.1 explains why only
 deploying an L4S AQM in one node at each end of the access link will
 realize nearly all the benefit of L4S.

 L4S involves both end systems and the network, so Section 6.4.2
 suggests some typical sequences to deploy each part, and why there
 will be an immediate and significant benefit after deploying just one
 part.

https://datatracker.ietf.org/doc/html/rfc8290

Briscoe, et al. Expires November 22, 2021 [Page 20]

Internet-Draft L4S Architecture May 2021

Section 6.4.3 and Section 6.4.4 describe the converse incremental
 deployment case where there is no L4S AQM at the network bottleneck,
 so any L4S flow traversing this bottleneck has to take care in case
 it is competing with Classic traffic.

6.4.1. Deployment Topology

 L4S AQMs will not have to be deployed throughout the Internet before
 L4S will work for anyone. Operators of public Internet access
 networks typically design their networks so that the bottleneck will
 nearly always occur at one known (logical) link. This confines the
 cost of queue management technology to one place.

 The case of mesh networks is different and will be discussed later in
 this section. But the known bottleneck case is generally true for
 Internet access to all sorts of different 'sites', where the word
 'site' includes home networks, small- to medium-sized campus or
 enterprise networks and even cellular devices (Figure 2). Also, this
 known-bottleneck case tends to be applicable whatever the access link
 technology; whether xDSL, cable, PON, cellular, line of sight
 wireless or satellite.

 Therefore, the full benefit of the L4S service should be available in
 the downstream direction when an L4S AQM is deployed at the ingress
 to this bottleneck link. And similarly, the full upstream service
 will be available once an L4S AQM is deployed at the ingress into the
 upstream link. (Of course, multi-homed sites would only see the full
 benefit once all their access links were covered.)

Briscoe, et al. Expires November 22, 2021 [Page 21]

Internet-Draft L4S Architecture May 2021

 ()
 __ __ ()
 |DQ________/DQ|(enterprise)
 ___ |__/ __| (/campus)
 () (______)
 () ___||_
 +----+ () __ __ / \
 | DC |-----(Core)|DQ_______________/DQ|| home |
 +----+ () |__/ __||______|
 (_____) __
 |DQ__/\ __ ,===.
 |__/ \ ____/DQ||| ||mobile
 \/ __|||_||device
 | o |
 `---'

 Figure 2: Likely location of DualQ (DQ) Deployments in common access
 topologies

 Deployment in mesh topologies depends on how over-booked the core is.
 If the core is non-blocking, or at least generously provisioned so
 that the edges are nearly always the bottlenecks, it would only be
 necessary to deploy an L4S AQM at the edge bottlenecks. For example,
 some data-centre networks are designed with the bottleneck in the
 hypervisor or host NICs, while others bottleneck at the top-of-rack
 switch (both the output ports facing hosts and those facing the
 core).

 An L4S AQM would eventually also need to be deployed at any other
 persistent bottlenecks such as network interconnections, e.g. some
 public Internet exchange points and the ingress and egress to WAN
 links interconnecting data-centres.

6.4.2. Deployment Sequences

 For any one L4S flow to work, it requires 3 parts to have been
 deployed. This was the same deployment problem that ECN
 faced [RFC8170] so we have learned from that experience.

 Firstly, L4S deployment exploits the fact that DCTCP already exists
 on many Internet hosts (Windows, FreeBSD and Linux); both servers and
 clients. Therefore, just deploying an L4S AQM at a network
 bottleneck immediately gives a working deployment of all the L4S
 parts. DCTCP needs some safety concerns to be fixed for general use
 over the public Internet (see Section 4.3 of
 [I-D.ietf-tsvwg-ecn-l4s-id]), but DCTCP is not on by default, so

https://datatracker.ietf.org/doc/html/rfc8170

Briscoe, et al. Expires November 22, 2021 [Page 22]

Internet-Draft L4S Architecture May 2021

 these issues can be managed within controlled deployments or
 controlled trials.

 Secondly, the performance improvement with L4S is so significant that
 it enables new interactive services and products that were not
 previously possible. It is much easier for companies to initiate new
 work on deployment if there is budget for a new product trial. If,
 in contrast, there were only an incremental performance improvement
 (as with Classic ECN), spending on deployment tends to be much harder
 to justify.

 Thirdly, the L4S identifier is defined so that initially network
 operators can enable L4S exclusively for certain customers or certain
 applications. But this is carefully defined so that it does not
 compromise future evolution towards L4S as an Internet-wide service.
 This is because the L4S identifier is defined not only as the end-to-
 end ECN field, but it can also optionally be combined with any other
 packet header or some status of a customer or their access link (see
 section 5.4 of [I-D.ietf-tsvwg-ecn-l4s-id]). Operators could do this
 anyway, even if it were not blessed by the IETF. However, it is best
 for the IETF to specify that, if they use their own local identifier,
 it must be in combination with the IETF's identifier. Then, if an
 operator has opted for an exclusive local-use approach, later they
 only have to remove this extra rule to make the service work
 Internet-wide - it will already traverse middleboxes, peerings, etc.

 +-+--------------------+----------------------+---------------------+
 | | Servers or proxies | Access link | Clients |
 +-+--------------------+----------------------+---------------------+
 |0| DCTCP (existing) | | DCTCP (existing) |
 +-+--------------------+----------------------+---------------------+
 |1| |Add L4S AQM downstream| |
 | | WORKS DOWNSTREAM FOR CONTROLLED DEPLOYMENTS/TRIALS |
 +-+--------------------+----------------------+---------------------+
2	Upgrade DCTCP to		Replace DCTCP feedb'k
	TCP Prague		with AccECN
	FULLY WORKS DOWNSTREAM		
+-+--------------------+----------------------+---------------------+			
			Upgrade DCTCP to
3		Add L4S AQM upstream	TCP Prague
	FULLY WORKS UPSTREAM AND DOWNSTREAM		
 +-+--------------------+----------------------+---------------------+

 Figure 3: Example L4S Deployment Sequence

Briscoe, et al. Expires November 22, 2021 [Page 23]

Internet-Draft L4S Architecture May 2021

 Figure 3 illustrates some example sequences in which the parts of L4S
 might be deployed. It consists of the following stages:

 1. Here, the immediate benefit of a single AQM deployment can be
 seen, but limited to a controlled trial or controlled deployment.
 In this example downstream deployment is first, but in other
 scenarios the upstream might be deployed first. If no AQM at all
 was previously deployed for the downstream access, an L4S AQM
 greatly improves the Classic service (as well as adding the L4S
 service). If an AQM was already deployed, the Classic service
 will be unchanged (and L4S will add an improvement on top).

 2. In this stage, the name 'TCP Prague' [PragueLinux] is used to
 represent a variant of DCTCP that is safe to use in a production
 Internet environment. If the application is primarily
 unidirectional, 'TCP Prague' at one end will provide all the
 benefit needed. For TCP transports, Accurate ECN feedback
 (AccECN) [I-D.ietf-tcpm-accurate-ecn] is needed at the other end,
 but it is a generic ECN feedback facility that is already planned
 to be deployed for other purposes, e.g. DCTCP, BBR. The two ends
 can be deployed in either order, because, in TCP, an L4S
 congestion control only enables itself if it has negotiated the
 use of AccECN feedback with the other end during the connection
 handshake. Thus, deployment of TCP Prague on a server enables
 L4S trials to move to a production service in one direction,
 wherever AccECN is deployed at the other end. This stage might
 be further motivated by the performance improvements of TCP
 Prague relative to DCTCP (see Appendix A.2 of
 [I-D.ietf-tsvwg-ecn-l4s-id]).

 Unlike TCP, from the outset, QUIC ECN
 feedback [I-D.ietf-quic-transport] has supported L4S. Therefore,
 if the transport is QUIC, one-ended deployment of a Prague
 congestion control at this stage is simple and sufficient.

 3. This is a two-move stage to enable L4S upstream. An L4S AQM or
 TCP Prague can be deployed in either order as already explained.
 To motivate the first of two independent moves, the deferred
 benefit of enabling new services after the second move has to be
 worth it to cover the first mover's investment risk. As
 explained already, the potential for new interactive services
 provides this motivation. An L4S AQM also improves the upstream
 Classic service - significantly if no other AQM has already been
 deployed.

 Note that other deployment sequences might occur. For instance: the
 upstream might be deployed first; a non-TCP protocol might be used
 end-to-end, e.g. QUIC, RTP; a body such as the 3GPP might require L4S

Briscoe, et al. Expires November 22, 2021 [Page 24]

Internet-Draft L4S Architecture May 2021

 to be implemented in 5G user equipment, or other random acts of
 kindness.

6.4.3. L4S Flow but Non-ECN Bottleneck

 If L4S is enabled between two hosts, the L4S sender is required to
 coexist safely with Reno in response to any drop (see Section 4.3 of
 [I-D.ietf-tsvwg-ecn-l4s-id]).

 Unfortunately, as well as protecting Classic traffic, this rule
 degrades the L4S service whenever there is any loss, even if the
 cause is not persistent congestion at a bottleneck, e.g.:

 o congestion loss at other transient bottlenecks, e.g. due to bursts
 in shallower queues;

 o transmission errors, e.g. due to electrical interference;

 o rate policing.

 Three complementary approaches are in progress to address this issue,
 but they are all currently research:

 o In Prague congestion control, ignore certain losses deemed
 unlikely to be due to congestion (using some ideas from
 BBR [I-D.cardwell-iccrg-bbr-congestion-control] regarding isolated
 losses). This could mask any of the above types of loss while
 still coexisting with drop-based congestion controls.

 o A combination of RACK, L4S and link retransmission without
 resequencing could repair transmission errors without the head of
 line blocking delay usually associated with link-layer
 retransmission [UnorderedLTE], [I-D.ietf-tsvwg-ecn-l4s-id];

 o Hybrid ECN/drop rate policers (see Section 8.3).

 L4S deployment scenarios that minimize these issues (e.g. over
 wireline networks) can proceed in parallel to this research, in the
 expectation that research success could continually widen L4S
 applicability.

6.4.4. L4S Flow but Classic ECN Bottleneck

 Classic ECN support is starting to materialize on the Internet as an
 increased level of CE marking. It is hard to detect whether this is
 all due to the addition of support for ECN in the Linux
 implementation of FQ-CoDel, which is not problematic, because FQ
 inherently forces the throughput of each flow to be equal

Briscoe, et al. Expires November 22, 2021 [Page 25]

Internet-Draft L4S Architecture May 2021

 irrespective of its aggressiveness. However, some of this Classic
 ECN marking might be due to single-queue ECN deployment. This case
 is discussed in Section 4.3 of [I-D.ietf-tsvwg-ecn-l4s-id]).

6.4.5. L4S AQM Deployment within Tunnels

 An L4S AQM uses the ECN field to signal congestion. So, in common
 with Classic ECN, if the AQM is within a tunnel or at a lower layer,
 correct functioning of ECN signalling requires correct propagation of
 the ECN field up the layers [RFC6040],
 [I-D.ietf-tsvwg-rfc6040update-shim],
 [I-D.ietf-tsvwg-ecn-encap-guidelines].

7. IANA Considerations (to be removed by RFC Editor)

 This specification contains no IANA considerations.

8. Security Considerations

8.1. Traffic Rate (Non-)Policing

 Because the L4S service can serve all traffic that is using the
 capacity of a link, it should not be necessary to rate-police access
 to the L4S service. In contrast, Diffserv only works if some packets
 get less favourable treatment than others. So Diffserv has to use
 traffic rate policers to limit how much traffic can be favoured. In
 turn, traffic policers require traffic contracts between users and
 networks as well as pairwise between networks. Because L4S will lack
 all this management complexity, it is more likely to work end-to-end.

 During early deployment (and perhaps always), some networks will not
 offer the L4S service. In general, these networks should not need to
 police L4S traffic - they are required not to change the L4S
 identifier, merely treating the traffic as best efforts traffic, as
 they already treat traffic with ECT(1) today. At a bottleneck, such
 networks will introduce some queuing and dropping. When a scalable
 congestion control detects a drop it will have to respond safely with
 respect to Classic congestion controls (as required in Section 4.3 of
 [I-D.ietf-tsvwg-ecn-l4s-id]). This will degrade the L4S service to
 be no better (but never worse) than Classic best efforts, whenever a
 non-ECN bottleneck is encountered on a path (see Section 6.4.3).

 In some cases, networks that solely support Classic ECN [RFC3168] in
 a single queue bottleneck might opt to police L4S traffic in order to
 protect competing Classic ECN traffic.

 Certain network operators might choose to restrict access to the L4S
 class, perhaps only to selected premium customers as a value-added

https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires November 22, 2021 [Page 26]

Internet-Draft L4S Architecture May 2021

 service. Their packet classifier (item 2 in Figure 1) could identify
 such customers against some other field (e.g. source address range)
 as well as ECN. If only the ECN L4S identifier matched, but not the
 source address (say), the classifier could direct these packets (from
 non-premium customers) into the Classic queue. Explaining clearly
 how operators can use an additional local classifiers (see section

5.4 of [I-D.ietf-tsvwg-ecn-l4s-id]) is intended to remove any
 motivation to bleach the L4S identifier. Then at least the L4S ECN
 identifier will be more likely to survive end-to-end even though the
 service may not be supported at every hop. Such local arrangements
 would only require simple registered/not-registered packet
 classification, rather than the managed, application-specific traffic
 policing against customer-specific traffic contracts that Diffserv
 uses.

8.2. 'Latency Friendliness'

 Like the Classic service, the L4S service relies on self-constraint -
 limiting rate in response to congestion. In addition, the L4S
 service requires self-constraint in terms of limiting latency
 (burstiness). It is hoped that self-interest and guidance on dynamic
 behaviour (especially flow start-up, which might need to be
 standardized) will be sufficient to prevent transports from sending
 excessive bursts of L4S traffic, given the application's own latency
 will suffer most from such behaviour.

 Whether burst policing becomes necessary remains to be seen. Without
 it, there will be potential for attacks on the low latency of the L4S
 service.

 If needed, various arrangements could be used to address this
 concern:

 Local bottleneck queue protection: A per-flow (5-tuple) queue
 protection function [I-D.briscoe-docsis-q-protection] has been
 developed for the low latency queue in DOCSIS, which has adopted
 the DualQ L4S architecture. It protects the low latency service
 from any queue-building flows that accidentally or maliciously
 classify themselves into the low latency queue. It is designed to
 score flows based solely on their contribution to queuing (not
 flow rate in itself). Then, if the shared low latency queue is at
 risk of exceeding a threshold, the function redirects enough
 packets of the highest scoring flow(s) into the Classic queue to
 preserve low latency.

 Distributed traffic scrubbing: Rather than policing locally at each
 bottleneck, it may only be necessary to address problems
 reactively, e.g. punitively target any deployments of new bursty

Briscoe, et al. Expires November 22, 2021 [Page 27]

Internet-Draft L4S Architecture May 2021

 malware, in a similar way to how traffic from flooding attack
 sources is rerouted via scrubbing facilities.

 Local bottleneck per-flow scheduling: Per-flow scheduling should
 inherently isolate non-bursty flows from bursty (see Section 5.2
 for discussion of the merits of per-flow scheduling relative to
 per-flow policing).

 Distributed access subnet queue protection: Per-flow queue
 protection could be arranged for a queue structure distributed
 across a subnet inter-communicating using lower layer control
 messages (see Section 2.1.4 of [QDyn]). For instance, in a radio
 access network user equipment already sends regular buffer status
 reports to a radio network controller, which could use this
 information to remotely police individual flows.

 Distributed Congestion Exposure to Ingress Policers: The Congestion
 Exposure (ConEx) architecture [RFC7713] which uses egress audit to
 motivate senders to truthfully signal path congestion in-band
 where it can be used by ingress policers. An edge-to-edge variant
 of this architecture is also possible.

 Distributed Domain-edge traffic conditioning: An architecture
 similar to Diffserv [RFC2475] may be preferred, where traffic is
 proactively conditioned on entry to a domain, rather than
 reactively policed only if it is leads to queuing once combined
 with other traffic at a bottleneck.

 Distributed core network queue protection: The policing function
 could be divided between per-flow mechanisms at the network
 ingress that characterize the burstiness of each flow into a
 signal carried with the traffic, and per-class mechanisms at
 bottlenecks that act on these signals if queuing actually occurs
 once the traffic converges. This would be somewhat similar to the
 idea behind core stateless fair queuing, which is in turn similar
 to [Nadas20].

 None of these possible queue protection capabilities are considered a
 necessary part of the L4S architecture, which works without them (in
 a similar way to how the Internet works without per-flow rate
 policing). Indeed, under normal circumstances, latency policers
 would not intervene, and if operators found they were not necessary
 they could disable them. Part of the L4S experiment will be to see
 whether such a function is necessary, and which arrangements are most
 appropriate to the size of the problem.

https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc2475

Briscoe, et al. Expires November 22, 2021 [Page 28]

Internet-Draft L4S Architecture May 2021

8.3. Interaction between Rate Policing and L4S

 As mentioned in Section 5.2, L4S should remove the need for low
 latency Diffserv classes. However, those Diffserv classes that give
 certain applications or users priority over capacity, would still be
 applicable in certain scenarios (e.g. corporate networks). Then,
 within such Diffserv classes, L4S would often be applicable to give
 traffic low latency and low loss as well. Within such a Diffserv
 class, the bandwidth available to a user or application is often
 limited by a rate policer. Similarly, in the default Diffserv class,
 rate policers are used to partition shared capacity.

 A classic rate policer drops any packets exceeding a set rate,
 usually also giving a burst allowance (variants exist where the
 policer re-marks non-compliant traffic to a discard-eligible Diffserv
 codepoint, so they may be dropped elsewhere during contention).
 Whenever L4S traffic encounters one of these rate policers, it will
 experience drops and the source will have to fall back to a Classic
 congestion control, thus losing the benefits of L4S (Section 6.4.3).
 So, in networks that already use rate policers and plan to deploy
 L4S, it will be preferable to redesign these rate policers to be more
 friendly to the L4S service.

 L4S-friendly rate policing is currently a research area (note that
 this is not the same as latency policing). It might be achieved by
 setting a threshold where ECN marking is introduced, such that it is
 just under the policed rate or just under the burst allowance where
 drop is introduced. This could be applied to various types of rate
 policer, e.g. [RFC2697], [RFC2698] or the 'local' (non-ConEx) variant
 of the ConEx congestion policer [I-D.briscoe-conex-policing]. It
 might also be possible to design scalable congestion controls to
 respond less catastrophically to loss that has not been preceded by a
 period of increasing delay.

 The design of L4S-friendly rate policers will require a separate
 dedicated document. For further discussion of the interaction
 between L4S and Diffserv, see [I-D.briscoe-tsvwg-l4s-diffserv].

8.4. ECN Integrity

 Receiving hosts can fool a sender into downloading faster by
 suppressing feedback of ECN marks (or of losses if retransmissions
 are not necessary or available otherwise). Various ways to protect
 transport feedback integrity have been developed. For instance:

 o The sender can test the integrity of the receiver's feedback by
 occasionally setting the IP-ECN field to the congestion
 experienced (CE) codepoint, which is normally only set by a

https://datatracker.ietf.org/doc/html/rfc2697
https://datatracker.ietf.org/doc/html/rfc2698

Briscoe, et al. Expires November 22, 2021 [Page 29]

Internet-Draft L4S Architecture May 2021

 congested link. Then the sender can test whether the receiver's
 feedback faithfully reports what it expects (see 2nd para of

Section 20.2 of [RFC3168]).

 o A network can enforce a congestion response to its ECN markings
 (or packet losses) by auditing congestion exposure
 (ConEx) [RFC7713].

 o The TCP authentication option (TCP-AO [RFC5925]) can be used to
 detect tampering with TCP congestion feedback.

 o The ECN Nonce [RFC3540] was proposed to detect tampering with
 congestion feedback, but it has been reclassified as
 historic [RFC8311].

Appendix C.1 of [I-D.ietf-tsvwg-ecn-l4s-id] gives more details of
 these techniques including their applicability and pros and cons.

8.5. Privacy Considerations

 As discussed in Section 5.2, the L4S architecture does not preclude
 approaches that inspect end-to-end transport layer identifiers. For
 instance it is simple to add L4S support to FQ-CoDel, which
 classifies by application flow ID in the network. However, the main
 innovation of L4S is the DualQ AQM framework that does not need to
 inspect any deeper than the outermost IP header, because the L4S
 identifier is in the IP-ECN field.

 Thus, the L4S architecture enables very low queuing delay without
 requiring inspection of information above the IP layer. This means
 that users who want to encrypt application flow identifiers, e.g. in
 IPSec or other encrypted VPN tunnels, don't have to sacrifice low
 delay [RFC8404].

 Because L4S can provide low delay for a broad set of applications
 that choose to use it, there is no need for individual applications
 or classes within that broad set to be distinguishable in any way
 while traversing networks. This removes much of the ability to
 correlate between the delay requirements of traffic and other
 identifying features [RFC6973]. There may be some types of traffic
 that prefer not to use L4S, but the coarse binary categorization of
 traffic reveals very little that could be exploited to compromise
 privacy.

https://datatracker.ietf.org/doc/html/rfc3168#section-20.2
https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8404
https://datatracker.ietf.org/doc/html/rfc6973

Briscoe, et al. Expires November 22, 2021 [Page 30]

Internet-Draft L4S Architecture May 2021

9. Acknowledgements

 Thanks to Richard Scheffenegger, Wes Eddy, Karen Nielsen, David Black
 and Jake Holland for their useful review comments.

 Bob Briscoe and Koen De Schepper were part-funded by the European
 Community under its Seventh Framework Programme through the Reducing
 Internet Transport Latency (RITE) project (ICT-317700). Bob Briscoe
 was also part-funded by the Research Council of Norway through the
 TimeIn project, partly by CableLabs and partly by the Comcast
 Innovation Fund. The views expressed here are solely those of the
 authors.

10. Informative References

 [AFCD] Xue, L., Kumar, S., Cui, C., Kondikoppa, P., Chiu, C-H.,
 and S-J. Park, "Towards fair and low latency next
 generation high speed networks: AFCD queuing", Journal of
 Network and Computer Applications 70:183--193, July 2016.

 [DCttH15] De Schepper, K., Bondarenko, O., Briscoe, B., and I.
 Tsang, "`Data Centre to the Home': Ultra-Low Latency for
 All", RITE project Technical Report , 2015,
 <http://riteproject.eu/publications/>.

 [DOCSIS3.1]
 CableLabs, "MAC and Upper Layer Protocols Interface
 (MULPI) Specification, CM-SP-MULPIv3.1", Data-Over-Cable
 Service Interface Specifications DOCSIS(R) 3.1 Version i17
 or later, January 2019, <https://specification-

search.cablelabs.com/CM-SP-MULPIv3.1>.

 [DualPI2Linux]
 Albisser, O., De Schepper, K., Briscoe, B., Tilmans, O.,
 and H. Steen, "DUALPI2 - Low Latency, Low Loss and
 Scalable (L4S) AQM", Proc. Linux Netdev 0x13 , March 2019,
 <https://www.netdevconf.org/0x13/session.html?talk-

DUALPI2-AQM>.

 [Hohlfeld14]
 Hohlfeld , O., Pujol, E., Ciucu, F., Feldmann, A., and P.
 Barford, "A QoE Perspective on Sizing Network Buffers",
 Proc. ACM Internet Measurement Conf (IMC'14) hmm, November
 2014.

http://riteproject.eu/publications/
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM

Briscoe, et al. Expires November 22, 2021 [Page 31]

Internet-Draft L4S Architecture May 2021

 [I-D.briscoe-conex-policing]
 Briscoe, B., "Network Performance Isolation using
 Congestion Policing", draft-briscoe-conex-policing-01
 (work in progress), February 2014.

 [I-D.briscoe-docsis-q-protection]
 Briscoe, B. and G. White, "Queue Protection to Preserve
 Low Latency", draft-briscoe-docsis-q-protection-00 (work
 in progress), July 2019.

 [I-D.briscoe-tsvwg-l4s-diffserv]
 Briscoe, B., "Interactions between Low Latency, Low Loss,
 Scalable Throughput (L4S) and Differentiated Services",

draft-briscoe-tsvwg-l4s-diffserv-02 (work in progress),
 November 2018.

 [I-D.cardwell-iccrg-bbr-congestion-control]
 Cardwell, N., Cheng, Y., Yeganeh, S. H., and V. Jacobson,
 "BBR Congestion Control", draft-cardwell-iccrg-bbr-

congestion-control-00 (work in progress), July 2017.

 [I-D.ietf-avtcore-cc-feedback-message]
 Sarker, Z., Perkins, C., Singh, V., and M. A. Ramalho,
 "RTP Control Protocol (RTCP) Feedback for Congestion
 Control", draft-ietf-avtcore-cc-feedback-message-09 (work
 in progress), November 2020.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-34 (work
 in progress), January 2021.

 [I-D.ietf-tcpm-accurate-ecn]
 Briscoe, B., Kuehlewind, M., and R. Scheffenegger, "More
 Accurate ECN Feedback in TCP", draft-ietf-tcpm-accurate-

ecn-14 (work in progress), February 2021.

 [I-D.ietf-tcpm-generalized-ecn]
 Bagnulo, M. and B. Briscoe, "ECN++: Adding Explicit
 Congestion Notification (ECN) to TCP Control Packets",

draft-ietf-tcpm-generalized-ecn-07 (work in progress),
 February 2021.

 [I-D.ietf-tsvwg-aqm-dualq-coupled]
 Schepper, K. D., Briscoe, B., and G. White, "DualQ Coupled
 AQMs for Low Latency, Low Loss and Scalable Throughput
 (L4S)", draft-ietf-tsvwg-aqm-dualq-coupled-14 (work in
 progress), March 2021.

https://datatracker.ietf.org/doc/html/draft-briscoe-conex-policing-01
https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-00
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-cc-feedback-message-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-14
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-14
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-07
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-aqm-dualq-coupled-14

Briscoe, et al. Expires November 22, 2021 [Page 32]

Internet-Draft L4S Architecture May 2021

 [I-D.ietf-tsvwg-ecn-encap-guidelines]
 Briscoe, B. and J. Kaippallimalil, "Guidelines for Adding
 Congestion Notification to Protocols that Encapsulate IP",

draft-ietf-tsvwg-ecn-encap-guidelines-15 (work in
 progress), March 2021.

 [I-D.ietf-tsvwg-ecn-l4s-id]
 Schepper, K. D. and B. Briscoe, "Explicit Congestion
 Notification (ECN) Protocol for Ultra-Low Queuing Delay
 (L4S)", draft-ietf-tsvwg-ecn-l4s-id-14 (work in progress),
 March 2021.

 [I-D.ietf-tsvwg-rfc6040update-shim]
 Briscoe, B., "Propagating Explicit Congestion Notification
 Across IP Tunnel Headers Separated by a Shim", draft-ietf-

tsvwg-rfc6040update-shim-13 (work in progress), March
 2021.

 [I-D.morton-tsvwg-codel-approx-fair]
 Morton, J. and P. G. Heist, "Controlled Delay Approximate
 Fairness AQM", draft-morton-tsvwg-codel-approx-fair-01
 (work in progress), March 2020.

 [I-D.sridharan-tcpm-ctcp]
 Sridharan, M., Tan, K., Bansal, D., and D. Thaler,
 "Compound TCP: A New TCP Congestion Control for High-Speed
 and Long Distance Networks", draft-sridharan-tcpm-ctcp-02
 (work in progress), November 2008.

 [I-D.stewart-tsvwg-sctpecn]
 Stewart, R. R., Tuexen, M., and X. Dong, "ECN for Stream
 Control Transmission Protocol (SCTP)", draft-stewart-

tsvwg-sctpecn-05 (work in progress), January 2014.

 [I-D.white-tsvwg-nqb]
 White, G. and T. Fossati, "Identifying and Handling Non
 Queue Building Flows in a Bottleneck Link", draft-white-

tsvwg-nqb-02 (work in progress), June 2019.

 [L4Sdemo16]
 Bondarenko, O., De Schepper, K., Tsang, I., and B.
 Briscoe, "Ultra-Low Delay for All: Live Experience, Live
 Analysis", Proc. MMSYS'16 pp33:1--33:4, May 2016,
 <http://dl.acm.org/citation.cfm?doid=2910017.2910633
 (videos of demos:

https://riteproject.eu/dctth/#1511dispatchwg)>.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-encap-guidelines-15
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-14
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc6040update-shim-13
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc6040update-shim-13
https://datatracker.ietf.org/doc/html/draft-morton-tsvwg-codel-approx-fair-01
https://datatracker.ietf.org/doc/html/draft-sridharan-tcpm-ctcp-02
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-white-tsvwg-nqb-02
https://datatracker.ietf.org/doc/html/draft-white-tsvwg-nqb-02
http://dl.acm.org/citation.cfm?doid=2910017.2910633
https://riteproject.eu/dctth/#1511dispatchwg

Briscoe, et al. Expires November 22, 2021 [Page 33]

Internet-Draft L4S Architecture May 2021

 [LEDBAT_AQM]
 Al-Saadi, R., Armitage, G., and J. But, "Characterising
 LEDBAT Performance Through Bottlenecks Using PIE, FQ-CoDel
 and FQ-PIE Active Queue Management", Proc. IEEE 42nd
 Conference on Local Computer Networks (LCN) 278--285,
 2017, <https://ieeexplore.ieee.org/document/8109367>.

 [Mathis09]
 Mathis, M., "Relentless Congestion Control", PFLDNeT'09 ,
 May 2009, <https://www.gdt.id.au/~gdt/
 presentations/2010-07-06-questnet-tcp/reference-
 materials/papers/mathis-relentless-congestion-
 control.pdf>.

 [McIlroy78]
 McIlroy, M., Pinson, E., and B. Tague, "UNIX Time-Sharing
 System: Foreword", The Bell System Technical Journal
 57:6(1902--1903), July 1978,
 <https://archive.org/details/bstj57-6-1899>.

 [Nadas20] Nadas, S., Gombos, G., Fejes, F., and S. Laki, "A
 Congestion Control Independent L4S Scheduler", Proc.
 Applied Networking Research Workshop (ANRW '20) 45--51,
 July 2020.

 [NewCC_Proc]
 Eggert, L., "Experimental Specification of New Congestion
 Control Algorithms", IETF Operational Note ion-tsv-alt-cc,
 July 2007.

 [PragueLinux]
 Briscoe, B., De Schepper, K., Albisser, O., Misund, J.,
 Tilmans, O., Kuehlewind, M., and A. Ahmed, "Implementing
 the `TCP Prague' Requirements for Low Latency Low Loss
 Scalable Throughput (L4S)", Proc. Linux Netdev 0x13 ,
 March 2019, <https://www.netdevconf.org/0x13/

session.html?talk-tcp-prague-l4s>.

 [QDyn] Briscoe, B., "Rapid Signalling of Queue Dynamics",
 bobbriscoe.net Technical Report TR-BB-2017-001;
 arXiv:1904.07044 [cs.NI], September 2017,
 <https://arxiv.org/abs/1904.07044>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

https://ieeexplore.ieee.org/document/8109367
https://www.gdt.id.au/~gdt/
https://archive.org/details/bstj57-6-1899
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://arxiv.org/abs/1904.07044
https://datatracker.ietf.org/doc/html/rfc2475
https://www.rfc-editor.org/info/rfc2475

Briscoe, et al. Expires November 22, 2021 [Page 34]

Internet-Draft L4S Architecture May 2021

 [RFC2697] Heinanen, J. and R. Guerin, "A Single Rate Three Color
 Marker", RFC 2697, DOI 10.17487/RFC2697, September 1999,
 <https://www.rfc-editor.org/info/rfc2697>.

 [RFC2698] Heinanen, J. and R. Guerin, "A Two Rate Three Color
 Marker", RFC 2698, DOI 10.17487/RFC2698, September 1999,
 <https://www.rfc-editor.org/info/rfc2698>.

 [RFC2884] Hadi Salim, J. and U. Ahmed, "Performance Evaluation of
 Explicit Congestion Notification (ECN) in IP Networks",

RFC 2884, DOI 10.17487/RFC2884, July 2000,
 <https://www.rfc-editor.org/info/rfc2884>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
 J., Courtney, W., Davari, S., Firoiu, V., and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
 <https://www.rfc-editor.org/info/rfc3246>.

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces",

RFC 3540, DOI 10.17487/RFC3540, June 2003,
 <https://www.rfc-editor.org/info/rfc3540>.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
RFC 3649, DOI 10.17487/RFC3649, December 2003,

 <https://www.rfc-editor.org/info/rfc3649>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <https://www.rfc-editor.org/info/rfc4340>.

 [RFC4774] Floyd, S., "Specifying Alternate Semantics for the
 Explicit Congestion Notification (ECN) Field", BCP 124,

RFC 4774, DOI 10.17487/RFC4774, November 2006,
 <https://www.rfc-editor.org/info/rfc4774>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

https://datatracker.ietf.org/doc/html/rfc2697
https://www.rfc-editor.org/info/rfc2697
https://datatracker.ietf.org/doc/html/rfc2698
https://www.rfc-editor.org/info/rfc2698
https://datatracker.ietf.org/doc/html/rfc2884
https://www.rfc-editor.org/info/rfc2884
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3246
https://www.rfc-editor.org/info/rfc3246
https://datatracker.ietf.org/doc/html/rfc3540
https://www.rfc-editor.org/info/rfc3540
https://datatracker.ietf.org/doc/html/rfc3649
https://www.rfc-editor.org/info/rfc3649
https://datatracker.ietf.org/doc/html/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://datatracker.ietf.org/doc/html/bcp124
https://datatracker.ietf.org/doc/html/rfc4774
https://www.rfc-editor.org/info/rfc4774
https://datatracker.ietf.org/doc/html/rfc4960
https://www.rfc-editor.org/info/rfc4960

Briscoe, et al. Expires November 22, 2021 [Page 35]

Internet-Draft L4S Architecture May 2021

 [RFC5033] Floyd, S. and M. Allman, "Specifying New Congestion
 Control Algorithms", BCP 133, RFC 5033,
 DOI 10.17487/RFC5033, August 2007,
 <https://www.rfc-editor.org/info/rfc5033>.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",

RFC 5348, DOI 10.17487/RFC5348, September 2008,
 <https://www.rfc-editor.org/info/rfc5348>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, DOI 10.17487/RFC6040, November
 2010, <https://www.rfc-editor.org/info/rfc6040>.

 [RFC6679] Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
 and K. Carlberg, "Explicit Congestion Notification (ECN)
 for RTP over UDP", RFC 6679, DOI 10.17487/RFC6679, August
 2012, <https://www.rfc-editor.org/info/rfc6679>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7560] Kuehlewind, M., Ed., Scheffenegger, R., and B. Briscoe,
 "Problem Statement and Requirements for Increased Accuracy
 in Explicit Congestion Notification (ECN) Feedback",

RFC 7560, DOI 10.17487/RFC7560, August 2015,
 <https://www.rfc-editor.org/info/rfc7560>.

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

https://datatracker.ietf.org/doc/html/bcp133
https://datatracker.ietf.org/doc/html/rfc5033
https://www.rfc-editor.org/info/rfc5033
https://datatracker.ietf.org/doc/html/rfc5348
https://www.rfc-editor.org/info/rfc5348
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6040
https://www.rfc-editor.org/info/rfc6040
https://datatracker.ietf.org/doc/html/rfc6679
https://www.rfc-editor.org/info/rfc6679
https://datatracker.ietf.org/doc/html/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7560
https://www.rfc-editor.org/info/rfc7560
https://datatracker.ietf.org/doc/html/rfc7665
https://www.rfc-editor.org/info/rfc7665

Briscoe, et al. Expires November 22, 2021 [Page 36]

Internet-Draft L4S Architecture May 2021

 [RFC7713] Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)
 Concepts, Abstract Mechanism, and Requirements", RFC 7713,
 DOI 10.17487/RFC7713, December 2015,
 <https://www.rfc-editor.org/info/rfc7713>.

 [RFC8033] Pan, R., Natarajan, P., Baker, F., and G. White,
 "Proportional Integral Controller Enhanced (PIE): A
 Lightweight Control Scheme to Address the Bufferbloat
 Problem", RFC 8033, DOI 10.17487/RFC8033, February 2017,
 <https://www.rfc-editor.org/info/rfc8033>.

 [RFC8034] White, G. and R. Pan, "Active Queue Management (AQM) Based
 on Proportional Integral Controller Enhanced PIE) for
 Data-Over-Cable Service Interface Specifications (DOCSIS)
 Cable Modems", RFC 8034, DOI 10.17487/RFC8034, February
 2017, <https://www.rfc-editor.org/info/rfc8034>.

 [RFC8170] Thaler, D., Ed., "Planning for Protocol Adoption and
 Subsequent Transitions", RFC 8170, DOI 10.17487/RFC8170,
 May 2017, <https://www.rfc-editor.org/info/rfc8170>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [RFC8290] Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
 J., and E. Dumazet, "The Flow Queue CoDel Packet Scheduler
 and Active Queue Management Algorithm", RFC 8290,
 DOI 10.17487/RFC8290, January 2018,
 <https://www.rfc-editor.org/info/rfc8290>.

 [RFC8298] Johansson, I. and Z. Sarker, "Self-Clocked Rate Adaptation
 for Multimedia", RFC 8298, DOI 10.17487/RFC8298, December
 2017, <https://www.rfc-editor.org/info/rfc8298>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

 [RFC8312] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

https://datatracker.ietf.org/doc/html/rfc7713
https://www.rfc-editor.org/info/rfc7713
https://datatracker.ietf.org/doc/html/rfc8033
https://www.rfc-editor.org/info/rfc8033
https://datatracker.ietf.org/doc/html/rfc8034
https://www.rfc-editor.org/info/rfc8034
https://datatracker.ietf.org/doc/html/rfc8170
https://www.rfc-editor.org/info/rfc8170
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://datatracker.ietf.org/doc/html/rfc8290
https://www.rfc-editor.org/info/rfc8290
https://datatracker.ietf.org/doc/html/rfc8298
https://www.rfc-editor.org/info/rfc8298
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://datatracker.ietf.org/doc/html/rfc8312
https://www.rfc-editor.org/info/rfc8312

Briscoe, et al. Expires November 22, 2021 [Page 37]

Internet-Draft L4S Architecture May 2021

 [RFC8404] Moriarty, K., Ed. and A. Morton, Ed., "Effects of
 Pervasive Encryption on Operators", RFC 8404,
 DOI 10.17487/RFC8404, July 2018,
 <https://www.rfc-editor.org/info/rfc8404>.

 [RFC8511] Khademi, N., Welzl, M., Armitage, G., and G. Fairhurst,
 "TCP Alternative Backoff with ECN (ABE)", RFC 8511,
 DOI 10.17487/RFC8511, December 2018,
 <https://www.rfc-editor.org/info/rfc8511>.

 [TCP-CA] Jacobson, V. and M. Karels, "Congestion Avoidance and
 Control", Laurence Berkeley Labs Technical Report ,
 November 1988, <http://ee.lbl.gov/papers/congavoid.pdf>.

 [TCP-sub-mss-w]
 Briscoe, B. and K. De Schepper, "Scaling TCP's Congestion
 Window for Small Round Trip Times", BT Technical Report
 TR-TUB8-2015-002, May 2015,
 <http://www.bobbriscoe.net/projects/latency/sub-mss-

w.pdf>.

 [UnorderedLTE]
 Austrheim, M., "Implementing immediate forwarding for 4G
 in a network simulator", Masters Thesis, Uni Oslo , June
 2019.

Appendix A. Standardization items

 The following table includes all the items that will need to be
 standardized to provide a full L4S architecture.

 The table is too wide for the ASCII draft format, so it has been
 split into two, with a common column of row index numbers on the
 left.

 The columns in the second part of the table have the following
 meanings:

 WG: The IETF WG most relevant to this requirement. The "tcpm/iccrg"
 combination refers to the procedure typically used for congestion
 control changes, where tcpm owns the approval decision, but uses
 the iccrg for expert review [NewCC_Proc];

 TCP: Applicable to all forms of TCP congestion control;

 DCTCP: Applicable to Data Center TCP as currently used (in
 controlled environments);

https://datatracker.ietf.org/doc/html/rfc8404
https://www.rfc-editor.org/info/rfc8404
https://datatracker.ietf.org/doc/html/rfc8511
https://www.rfc-editor.org/info/rfc8511
http://ee.lbl.gov/papers/congavoid.pdf
http://www.bobbriscoe.net/projects/latency/sub-mss-w.pdf
http://www.bobbriscoe.net/projects/latency/sub-mss-w.pdf

Briscoe, et al. Expires November 22, 2021 [Page 38]

Internet-Draft L4S Architecture May 2021

 DCTCP bis: Applicable to any future Data Center TCP congestion
 control intended for controlled environments;

 XXX Prague: Applicable to a Scalable variant of XXX (TCP/SCTP/RMCAT)
 congestion control.

 +-----+------------------------+------------------------------------+
 | Req | Requirement | Reference |
 | # | | |
 +-----+------------------------+------------------------------------+
0	ARCHITECTURE	
1	L4S IDENTIFIER	[I-D.ietf-tsvwg-ecn-l4s-id] S.3
2	DUAL QUEUE AQM	[I-D.ietf-tsvwg-aqm-dualq-coupled]
3	Suitable ECN Feedback	[I-D.ietf-tcpm-accurate-ecn]
		S.4.2,
		[I-D.stewart-tsvwg-sctpecn].
	SCALABLE TRANSPORT -	
	SAFETY ADDITIONS	
4-1	Fall back to	[I-D.ietf-tsvwg-ecn-l4s-id] S.4.3,
	Reno/Cubic on loss	[RFC8257]
4-2	Fall back to	[I-D.ietf-tsvwg-ecn-l4s-id] S.4.3
	Reno/Cubic if classic	
	ECN bottleneck	
	detected	
4-3	Reduce RTT-dependence	[I-D.ietf-tsvwg-ecn-l4s-id] S.4.3
4-4	Scaling TCP's	[I-D.ietf-tsvwg-ecn-l4s-id] S.4.3,
	Congestion Window for	[TCP-sub-mss-w]
	Small Round Trip Times	
	SCALABLE TRANSPORT -	
	PERFORMANCE	
	ENHANCEMENTS	
5-1	Setting ECT in TCP	[I-D.ietf-tcpm-generalized-ecn]
	Control Packets and	
	Retransmissions	
5-2	Faster-than-additive	[I-D.ietf-tsvwg-ecn-l4s-id] (Appx
	increase	A.2.2)
5-3	Faster Convergence at	[I-D.ietf-tsvwg-ecn-l4s-id] (Appx
	Flow Start	A.2.2)
 +-----+------------------------+------------------------------------+

https://datatracker.ietf.org/doc/html/rfc8257

Briscoe, et al. Expires November 22, 2021 [Page 39]

Internet-Draft L4S Architecture May 2021

 +-----+--------+-----+-------+-----------+--------+--------+--------+
 | # | WG | TCP | DCTCP | DCTCP-bis | TCP | SCTP | RMCAT |
 | | | | | | Prague | Prague | Prague |
 +-----+--------+-----+-------+-----------+--------+--------+--------+
0	tsvwg	Y	Y	Y	Y	Y	Y
1	tsvwg			Y	Y	Y	Y
2	tsvwg	n/a	n/a	n/a	n/a	n/a	n/a
3	tcpm	Y	Y	Y	Y	n/a	n/a
4-1	tcpm		Y	Y	Y	Y	Y
4-2	tcpm/				Y	Y	?
	iccrg?						
4-3	tcpm/			Y	Y	Y	?
	iccrg?						
4-4	tcpm	Y	Y	Y	Y	Y	?
5-1	tcpm	Y	Y	Y	Y	n/a	n/a
5-2	tcpm/			Y	Y	Y	?
	iccrg?						
5-3	tcpm/			Y	Y	Y	?
	iccrg?						
 +-----+--------+-----+-------+-----------+--------+--------+--------+

Authors' Addresses

 Bob Briscoe (editor)
 Independent
 UK

 Email: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

http://bobbriscoe.net/

Briscoe, et al. Expires November 22, 2021 [Page 40]

Internet-Draft L4S Architecture May 2021

 Koen De Schepper
 Nokia Bell Labs
 Antwerp
 Belgium

 Email: koen.de_schepper@nokia.com
 URI: https://www.bell-labs.com/usr/koen.de_schepper

 Marcelo Bagnulo
 Universidad Carlos III de Madrid
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: 34 91 6249500
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es

 Greg White
 CableLabs
 US

 Email: G.White@CableLabs.com

https://www.bell-labs.com/usr/koen.de_schepper
http://www.it.uc3m.es

Briscoe, et al. Expires November 22, 2021 [Page 41]

