
Workgroup: Transport Area Working Group

Internet-Draft:

draft-ietf-tsvwg-multipath-dccp-14

Published: 17 March 2024

Intended Status: Standards Track

Expires: 18 September 2024

Authors: M. Amend, Ed.

DT

A. Brunstrom

Karlstad University

A. Kassler

Karlstad University

V. Rakocevic

City, University of London

S. Johnson

BT

DCCP Extensions for Multipath Operation with Multiple Addresses

Abstract

DCCP communications as defined in [RFC4340] are restricted to a

single path per connection, yet multiple paths often exist between

peers. The simultaneous use of available multiple paths for a DCCP

session could improve resource usage within the network and, thus,

improve user experience through higher throughput and improved

resilience to network failures. Use cases for Multipath DCCP (MP-

DCCP) are mobile devices (e.g., handsets, vehicles) and residential

home gateways simultaneously connected to distinct networks as,

e.g., a cellular and a Wireless Local Area (WLAN) network or a

cellular and a fixed access network. Compared to the existing

multipath protocols, such as MPTCP, MP-DCCP provides specific

support for non-TCP user traffic (e.g., UDP or plain IP).

This document specifies a set of extensions to DCCP to support

multipath operations. Multipath DCCP provides the ability to

simultaneously use multiple paths between peers. The protocol offers

the same type of service to applications as DCCP and provides the

components necessary to establish and use multiple DCCP flows across

different paths simultaneously.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Multipath DCCP in the Networking Stack

1.2. Terminology

1.3. Requirements Language

2. Operation Overview

2.1. MP-DCCP Concept

3. MP-DCCP Protocol

3.1. Multipath Capable Feature

3.2. Multipath Option

3.2.1. MP_CONFIRM

3.2.2. MP_JOIN

3.2.3. MP_FAST_CLOSE

3.2.4. MP_KEY

3.2.5. MP_SEQ

3.2.6. MP_HMAC

3.2.7. MP_RTT

3.2.8. MP_ADDADDR

3.2.9. MP_REMOVEADDR

3.2.10. MP_PRIO

3.2.11. MP_CLOSE

3.2.12. Experimental Multipath option MP_EXP for private use

3.3. MP-DCCP Handshaking Procedure

3.4. Address knowledge exchange

3.4.1. Advertising a new path (MP_ADDADDR)

3.4.2. Removing a path (MP_REMOVEADDR)

3.5. Closing an MP-DCCP connection

3.6. Fallback

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.7. State Diagram

3.8. Congestion Control Considerations

3.9. Maximum Packet Size Considerations

3.10. Maximum number of Subflows

3.11. Path usage strategies

3.11.1. Path mobility

3.11.2. Concurrent path usage

4. Security Considerations

5. Interactions with Middleboxes

6. Implementation

7. Acknowledgments

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Differences from Multipath TCP

Authors' Addresses

1. Introduction

Datagram Congestion Control Protocol (DCCP) [RFC4340] is a transport

protocol that provides bidirectional unicast connections of

congestion-controlled unreliable datagrams. DCCP communications are

restricted to one single path. This document specifies a set of

protocol changes that add multipath support to DCCP; specifically,

support for signaling and setting up multiple paths (a.k.a,

"subflows"), managing these subflows, reordering of data, and

termination of sessions.

Multipath DCCP (MP-DCCP) enables a DCCP connection to simultaneously

establish a flow across multiple paths. This can be beneficial to

applications that transfer large amounts of data, by utilizing the

capacity/connectivity offered by multiple paths. In addition, the

multipath extensions enable to tradeoff timeliness and reliability,

which is important for low-latency applications that do not require

guaranteed delivery services, such as Audio/Video streaming.

MP-DCCP was first suggested in the context of the 3GPP work on 5G

multi-access solutions [I-D.amend-tsvwg-multipath-framework-mpdccp]

and for hybrid access networks

[I-D.lhwxz-hybrid-access-network-architecture]

[I-D.muley-network-based-bonding-hybrid-access], where MP-DCCP can

be applied for load-balancing, seamless session handover, and

bandwidth aggregation (referred to as Access Traffic Steering,

Switching, and Splitting (ATSSS) in the 3GPP terminology

[TS23.501]). More details on potential use cases for MP-DCCP are

provided in [multipath-dccp.org], [IETF115.Slides], and

[MP-DCCP.Paper]. All these use cases profit from an Open Source

Linux reference implementation provided under [multipath-dccp.org].

¶

¶

¶

Encapsulation for DCCP in UDP is defined in [RFC6773].

[I-D.amend-tsvwg-multipath-framework-mpdccp] proposes a lightweight

encapsulation for DCCP flow headers appropriate for unreliable IP

traffic in terms of UDP and other non-TCP packets in comparison to

MPTCP. This is not considered in the present specification.

Similar to MP-DCCP, MP-QUIC is designed to enable the simultaneous

usage of multiple paths for a single connection

[I-D.ietf-quic-multipath]. MP-QUIC is based on QUIC in a similar way

as MP-DCCP is based on DCCP. MP-QUIC inherits the properties of QUIC

with its various facets of encryption, multi-streaming and the

STREAM and DATAGRAM transport characteristic. This makes a practical

multipath implementation very complex. In contrast, MP-DCCP is based

exclusively on the lean concept of DCCP. For traffic that is already

encrypted, MP-DCCP is the more efficient choice as it does not apply

its own encryption mechanisms. Also, the procedures defined by MP-

DCCP, which allow subsequent reordering of traffic, improve

performance, as shown in [MP-DCCP.Paper], and are not available in

MP-QUIC.

1.1. Multipath DCCP in the Networking Stack

MP-DCCP provides a set of features to DCCP; Figure 1 illustrates

this layering. It operates at the transport layer and can be used as

a transport for both higher and lower layers. It is designed to be

used by applications in the same way as DCCP with no changes to the

application itself.

Figure 1: Comparison of standard DCCP and MP-DCCP protocol stacks

1.2. Terminology

This document uses terms that are either specific for multipath

transport or are defined in the context of MP-DCCP, similar to

[RFC8684], as follows:

Path: A sequence of links between a sender and a receiver, defined

in this context by a 4-tuple of source and destination address/port

pairs.

¶

¶

¶

 +-------------------------------+

 | Application |

+---------------+ +-------------------------------+

| Application | | MP-DCCP |

+---------------+ + - - - - - - - + - - - - - - - +

| DCCP | |Subflow (DCCP) |Subflow (DCCP) |

+---------------+ +-------------------------------+

| IP | | IP | IP |

+---------------+ +-------------------------------+

¶

¶

(MP-DCCP) Connection: A set of one or more subflows, over which an

application can communicate between two hosts. The MP-DCCP

connection is exposed as single DCCP socket to the application.

Connection Identifier (CI): A locally unique identifier given to a

multipath connection by a host.

Host: An end host operating an MP-DCCP implementation, and either

initiating or accepting an MP-DCCP connection.

Subflow: A subflow refers to a DCCP flow transmitted using a

specific path (4-tuple of source and destination address/port pairs)

that forms one of the multipath flows used by a single connection.

In addition to these terms, within the framework of MP-DCCP, the

interpretation of, and effect on, regular single-path DCCP semantics

is discussed in Section 3.

1.3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Operation Overview

DCCP transmits congestion-controlled unreliable datagrams over a

single path.

Various congestion control mechanisms have been specified to

optimize DCCP performance for specific traffic types in terms of

profiles denoted by a Congestion Control IDentifier (CCID). However,

DCCP does not provide built-in support for managing multiple

subflows within one DCCP connection.

The extension of DCCP for Multipath-DCCP (MP-DCCP) is described in

detail in Section 3.

At a high level of the MP-DCCP operation, the data stream from a

DCCP application is split by MP-DCCP operation into one or more

subflows which can be transmitted via different - also physically

isolated - paths. The corresponding control information allows the

receiver to optionally re-assemble and deliver the received data in

the originally transmitted order to the recipient application. This

may be necessary because DCCP does not guarantee in-order delivery.

The details of the transmission scheduling mechanism and optional

reordering mechanism are up to the sender and receiver,

respectively, and are outside the scope of this document.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A Multipath DCCP connection provides a bidirectional connection of

datagrams between two hosts exchanging data using DCCP. It does not

require any change to the applications. Multipath DCCP enables the

hosts to use multiple paths with different IP addresses to transport

the packets of an MP-DCCP connection. MP-DCCP manages the request,

set-up, authentication, prioritization, modification, and removal of

the DCCP subflows on different paths as well as the exchange of

performance parameters.

The number of DCCP subflows can vary during the lifetime of a

Multipath DCCP connection. The details of the path management

decisions for when to add or remove subflows are outside the scope

of this document.

The Multipath Capability for MP-DCCP is negotiated with a new DCCP

feature, as specified in Section 3.1. Once negotiated, all

subsequent MP-DCCP operations for that connection are signalled with

a variable length multipath-related option, as described in

Section 3. All MP-DCCP operations are signaled by Multipath options

described in Section 3.2. Options that require confirmation from the

remote peer are retransmitted by the sender until confirmed or until

confirmation is no longer considered relevant.

The following sections define MP-DCCP behavior in detail.

2.1. MP-DCCP Concept

Figure 2 provides a general overview of the MP-DCCP working mode,

whose main characteristics are summarized in this section.

Figure 2: Example MP-DCCP usage scenario

An MP-DCCP connection begins with a 4-way handshake, between two

hosts. In Figure 2, an MP-DCCP connection is established between

addresses A1 and B1 on Hosts A and B, respectively. In the

¶

¶

¶

¶

 Host A Host B

------------------------ ------------------------

Address A1 Address A2 Address B1 Address B2

---------- ---------- ---------- ----------

 | | | |

 | (DCCP subflow setup) | |

 |----------------------------------->| |

 |<-----------------------------------| |

 | | | |

 | | (DCCP subflow setup)| |

 | |--------------------->| |

 | |<---------------------| |

 | merge individual DCCP subflows to one MP-DCCP connection

 | | | |

*

handshake, a Multipath Capable feature is used to negotiate

multipath support for the connection. Host specific keys are also

exchanged between Host A and Host B during the handshake. The

details of the MP-DCCP handshaking procedure is described in

Section 3.3. MP-DCCP does not require both peers to have more

than one address.

When additional paths and corresponding addresses/ports are

available, additional DCCP subflows can be created on these paths

and attached to the existing MP-DCCP connection. An MP_JOIN

option is used to connect a new DCCP subflow to an existing MP-

DCCP connection. It contains a Connection Identifier during the

setup of the initial subflow and is exchanged in the 4-way

handshake for the subflow together with the Multipath Capable

feature. The example in Figure 2 illustrates creation of an

additional DCCP subflow between Address A2 on Host A and Address

B1 on Host B. The two subflows continues to provide a single

connection to the applications at both endpoints.

MP-DCCP identifies multiple paths by the presence of multiple

addresses/ports at hosts. Combinations of these multiple

addresses/ports indicate the additional paths. In the example,

other potential paths that could be set up are A1<->B2 and A2<-

>B2. Although the additional subflow in the example is shown as

being initiated from A2, an additional subflow could

alternatively have been initiated from B1 or B2.

The discovery and setup of additional subflows is achieved

through a path management method including the logic and details

of the procedures for adding/removing subflows; this document

describes measures to allow a host to initiate new subflows and

signal available addresses between peers. The definition of a

path management method is, however, out of scope of this document

and subject to a corresponding policy and the specifics of the

implementation. If a MP-DCCP peer host limits the maximum number

of paths that can be maintained (e.g., similar to what is

discussed in Section 3.4 of [RFC8041], the creation of new

subflows from that peer host needs to be avoided and incoming

subflow requests terminated.

Through the use of multipath options, MP-DCCP adds connection-

level sequence numbers and exchange of Round-Trip Time (RTT)

information to enable optional reordering features. As a hint for

scheduling decisions, a multipath option that allows a peer to

indicate its priorities for what path to use is also defined.

Subflows are terminated in the same way as regular DCCP

connections, as described in ([RFC4340], Section 8.3). MP-DCCP

connections are closed by including an MP_CLOSE option in subflow

¶

*

¶

*

¶

*

¶

*

¶

*

Rec'n Rule:

Initial Value:

Req'd:

DCCP-CloseReq or DCCP-Close messages. An MP-DCCP connection may

also be reset through the use of an MP_FAST_CLOSE option. Key

data from the initial handshake is included in the MP_CLOSE and

MP_FAST_CLOSE to protect from unauthorized shutdown of MP-DCCP

connections.

3. MP-DCCP Protocol

The DCCP protocol feature list ([RFC4340], Section 6.4) is updated

by adding a new Multipath feature with Feature number 10, as shown

in Table 1.

Number Meaning Rec'n Rule Initial Value Req'd

10 Multipath Capable SP 0 N

Table 1: Multipath feature

The reconciliation rule used for the feature. SP

indicates the server-priority.

The initial value for the feature. Every feature has

a known initial value.

This column is "Y" if and only if every DCCP implementation

MUST understand the feature. If it is "N", then the feature

behaves like an extension, and it is safe to respond to Change

options for the feature with empty Confirm options.

This specification adds a DCCP protocol option as defined in

([RFC4340], Section 5.8) providing a new Multipath related variable-

length option with option type 46, as shown in Table 2.

Type Option Length Meaning DCCP-Data?

46 variable Multipath Y

Table 2: Multipath option set

3.1. Multipath Capable Feature

A DCCP endpoint negotiates the Multipath Capable Feature to

determine whether multipath extensions can be enabled for a DCCP

connection.

The Multipath Capable feature (MP_CAPABLE) has feature number 10 and

follows the structure for features given in [RFC4340] Section 6.

Beside the negotiation of the feature itself, also one or several

values can be exchanged. The value field specified here for the

Multipath Capable feature has a length of one-byte and can be

repeated several times within the DCCP option for feature

negotiation if required for example to announce support of different

¶

¶

¶

¶

¶

¶

¶

versions of the protocol. For that, the leftmost four bits in

Figure 3 specify the compatible version of the MP-DCCP

implementation and MUST be set to 0 following this specification.

The four bits following the Version field are unassigned in version

0 and MUST be set to zero by the sender and MUST be ignored by the

receiver.

Figure 3: Format of the Multipath Capable feature value field

The setting of the MP_CAPABLE feature MUST follow the server-

priority reconciliation rule described in ([RFC4340], Section

6.3.1). This allows multiple versions to be specified in order of

priority.

The negotiation MUST be a part of the initial handshake procedure

described in Section 3.3. No subsequent re-negotiation of the

MP_CAPABLE feature is allowed for the same MP-DCCP connection.

Clients MUST include a Change R option during the initial handshake

request to supply a list of supported MP-DCCP protocol versions,

ordered by preference.

Servers MUST include a Confirm L option in the subsequent response

to agree on an MP-DCCP version to be used from the Client list,

followed by its own supported version(s), ordered by preference. Any

subflow added to an existing MP-DCCP connection MUST use the version

negotiated for the first subflow.

If no agreement is found, the Server MUST reply with an empty

Confirm L option with feature number 10 and no values.

An example of successful version negotiation is shown hereafter and

follows the negotiation example shown in [RFC4340] Section 6.5. For

better understanding, this example uses the unspecified MP-DCCP

versions 1 and 2 in addition to the MP-DCCP version 0 specified in

this document:

¶

 0 1 2 3 4 5 6 7

 +-----------+------------+

 | Version | Unassigned |

 +-----------+------------+

¶

¶

¶

¶

¶

¶

Figure 4: Example of MP-DCCP support negotiation using MP_CAPABLE

The Client indicates support for both MP-DCCP versions 1 and 0,

with a preference for version 1.

Server agrees on using MP-DCCP version 1 indicated by the first

value, and supplies its own preference list with the following

values.

MP-DCCP is then enabled between the Client and Server with

version 1.

Unlike the example in Figure 4, this document only allows the

negotiation of MP-DCCP version 0, which means that client and server

must support it.

If the version negotiation fails or the MP_CAPABLE feature is not

present in the DCCP-Request or DCCP-Response packets of the initial

handshake procedure, the MP-DCCP connection SHOULD fallback to

regular DCCP or MUST close the connection. Further details are

specified in Section 3.6

3.2. Multipath Option

MP-DCCP uses one single option to signal various multipath-related

operations. The format of this multipath option is shown in

Figure 5.

Figure 5: Multipath option format

The fields used by the the multipath option are described in

Table 3. MP_OPT refers to an Multipath option.

 Client Server

 ------ ------

 DCCP-Req + Change R(MP_CAPABLE, 1 0)

 ----------------------------------->

 DCCP-Resp + Confirm L(MP_CAPABLE, 1, 2 1 0)

 <-----------------------------------

 * agreement on version = 1 *

1.

¶

2.

¶

3.

¶

¶

¶

¶

 1 2 3

 01234567 89012345 67890123 45678901 23456789

+--------+--------+--------+--------+--------+

|00101110| Length | MP_OPT | Value(s) ...

+--------+--------+--------+--------+--------+

 Type=46

¶

Type
Option

Length
MP_OPT Meaning

46 var 0 =MP_CONFIRM
Confirm reception and processing

of an MP_OPT option

46 12 1 =MP_JOIN
Join path to an existing MP-DCCP

connection

46 var
2

=MP_FAST_CLOSE

Close an MP-DCCP connection

unconditionally

46 var 3 =MP_KEY Exchange key material for MP_HMAC

46 9 4 =MP_SEQ Multipath Sequence Number

46 23 5 =MP_HMAC HMA Code for authentication

46 12 6 =MP_RTT Transmit RTT values

46 var 7 =MP_ADDADDR Advertise additional Address

46 4
8

=MP_REMOVEADDR
Remove Address

46 4 9 =MP_PRIO Change subflow Priority

46 var 10 =MP_CLOSE Close an MP-DCCP subflow

46 var 11 =MP_EXP Experimental for private use

46 TBD >11 Reserved for future MP options.

Table 3: MP_OPT option types

Future MP options could be defined in a later version or extension

to this specification.

These operations are largely inspired by the signals defined in

[RFC8684].

3.2.1. MP_CONFIRM

Figure 6: Format of the MP_CONFIRM option

Some multipath options require confirmation from the remote peer

(see Table 4). Such options will be retransmitted by the sender

until an MP_CONFIRM is received or confirmation of options is

identified outdated. The further processing of the multipath options

in the receiving host is not the subject of MP_CONFIRM.

Multipath options could arrive out-of-order, therefore multipath

options defined in Table 4 MUST be sent in a DCCP datagram with

MP_SEQ Section 3.2.5. This allows a receiver to identify whether

¶

¶

 1 2 3 4 5

 01234567 89012345 67890123 45678901 23456789 01234567 89012345

 +--------+--------+--------+--------+--------+--------+--------+

 |00101110| var |00000000| List of confirmations ...

 +--------+--------+--------+--------+--------+--------+--------+

 Type=46 Length MP_OPT=0

¶

multipath options are associated with obsolete datasets (information

carried in the option header) that would otherwise conflict with

newer datasets. In the case of MP_ADDADDR or MP_REMOVEADDR the same

dataset is identified based on AddressID, whereas the same dataset

for MP_PRIO is identified by the subflow in use. An outdated

multipath option is detected at the receiver if a previous multipath

option referring to the same dataset contained a higher sequence

number in the MP_SEQ. An MP_CONFIRM MAY be generated for multipath

options that are identified as outdated.

Similarly an MP_CONFIRM could arrive out of order. The associated

MP_SEQ received MUST be echoed to ensure that the most recent

multipath option is confirmed. This protects from inconsistencies

that could occur, e.g. if three MP_PRIO options are sent one after

the other on one path in order to first set the path priority to 0,

then to 1 and finally to 0 again. Without an associated MP_SEQ, a

loss of the third MP_PRIO option and a loss of the MP_CONFIRM of the

second update and the third update would cause the sender to

incorrectly interpret that the priority value was set to 0 without

recognizing that the receiver has applied priority value 1.

The length of the MP_CONFIRM option and the path over which the

option is sent depend on the confirmed multipath options and the

received MP_SEQ, which are both copied verbatim and appended as a

list of confirmations. The list is structured by first listing the

received MP_SEQ followed by the related multipath option or options

to confirm. The same rules apply when multipath options with

different MP_SEQs are confirmed at once. This could happen if a

datagram with MP_PRIO and a first MP_SEQ_1 and another datagram with

MP_ADDADDR and a second MP_SEQ_2 are received in short succession.

In this case, the structure described above is concatenated

resulting in MP_SEQ_2 + MP_ADDADDR + MP_SEQ_1 + MP_PRIO. The order

of the confirmed multipath options in the list of confirmations MUST

reflect the incoming order at the host who sends the MP_CONFIRM,

with the most recent suboption received listed first. This could

allow the host receiving the MP_CONFIRM to verify that the options

were applied in the correct order and to take countermeasures if

they were not, e.g., if an MP_REMOVEADDR overtakes an MP_ADDADDR

that refers to the same dataset.

Type Option Length MP_OPT MP_CONFIRM Sending path

46 var 7 =MP_ADDADDR Any available

46 4 8 =MP_REMOVEADDR Any available

46 4 9 =MP_PRIO Any available

Table 4: Multipath options requiring confirmation

An example to illustrate the MP-DCCP confirm procedure for the

MP_PRIO option is shown in Figure 7. The host A sends a DCCP-Request

¶

¶

¶

on path A2-B2 with an MP_PRIO option with value 1 and associated

sequence number of 1. Host B replies on the same path in this

instance (any path can be used) with a DCCP-Response containing the

MP_CONFIRM option and a list containing the original sequence number

(1) together with the associated option (MP_PRIO).

Figure 7: Example MP-DCCP CONFIRM procedure

A second example to illustrate the same MP-DCCP confirm procedure

but where an out of date option is also delivered is shown in

(Figure 8. Here, the first DCCP-Data is sent from Host A to Host B

with option MP_PRIO set to 4. Host A subsequently sends the second

DCCP-Data with option MP_PRIO set to 1. In this case, the delivery

of the first MP_PRIO is delayed in the network between Host A and

Host B and arrives after the second MP_PRIO. Host B ignores this

second MP_PRIO as the associated sequence number is earlier than the

first. Host B sends a DCCP-Ack confirming receipt of the MP_PRIO(1)

with sequence number 2.

¶

 Host A Host B

------------------------ ------------------------

Address A1 Address A2 Address B1 Address B2

---------- ---------- ---------- ----------

 | | | |

 | | DCCP-Request(seqno 1) + MP_PRIO(1)| |

 | |-->|

 | | | |

 | | DCCP-Response + | |

 | |<---- MP_CONFIRM(seqno 1, MP_PRIO) --------|

 | | | |

¶

 Host A Host B

------------------------ ------------------------

Address A1 Address A2 Address B1 Address B2

---------- ---------- ---------- ----------

 | | | |

 | | DCCP-Data(seqno 1) + MP_PRIO(4) | |

 | |------------ | |

 | | \ | |

 | | DCCP-Data(seqno 2) + MP_PRIO(1) | |

 | |--------------\--------------------------->|

 | | \ | |

 | | -------------------------->|

 | | | |

 | | DCCP-Ack + | |

 | |<---- MP_CONFIRM(seqno 2, MP_PRIO) --------|

 | | | |

Figure 8: Example MP-DCCP CONFIRM procedure with outdated suboption

3.2.2. MP_JOIN

Figure 9: Format of the MP_JOIN suboption

The MP_JOIN option is used to add a new subflow to an existing MP-

DCCP connection and REQUIRES a successful establishment of the first

subflow using MP_KEY. The Connection Identifier (CI) is the one from

the peer host, which was previously exchanged with the MP_KEY

option. MP_HMAC MUST be set when using MP_JOIN within a DCCP-

Response packet (See Section 3.2.6 for details).

The MP_JOIN option includes an "Addr ID" (Address ID) generated by

the sender of the option, used to identify the source address of

this packet, even if the IP header was changed in transit by a

middlebox. The value of this field is generated by the sender and

MUST map uniquely to a source IP address for the sending host. The

Address ID allows address removal (Section 3.2.9) without needing to

know what the source address at the receiver is, thus allowing

address removal through NATs. The Address ID also allows correlation

between new subflow setup attempts and address signaling

(Section 3.2.8), to prevent setting up duplicate subflows on the

same path, if an MP_JOIN and MP_ADDADDR are sent at the same time.

The Address IDs of the subflow used in the initial DCCP Request/

Response exchange of the first subflow in the connection are

implicit, and have the value zero. A host MUST store the mappings

between Address IDs and addresses both for itself and the remote

host. An implementation will also need to know which local and

remote Address IDs are associated with which established subflows,

for when addresses are removed from a local or remote host. An

Address ID always MUST be unique over the lifetime of a subflow and

can only be re-assigned if sender and receiver no longer have them

in use.

The Nonce is a 32-bit random value locally generated for every

MP_JOIN option. Together with the CI, the Nonce value builds the

 1 2 3

 01234567 89012345 67890123 45678901

 +--------+--------+--------+--------+

 |00101110|00001100|00000001| Addr ID|

 +--------+--------+--------+--------+

 | Connection Identifier |

 +--------+--------+--------+--------+

 | Nonce |

 +--------+--------+--------+--------+

 Type=46 Length=12 MP_OPT=1

¶

¶

¶

basis to calculate the HMAC used in the handshaking process as

described in Section 3.3.

If the CI cannot be verified by the receiving host during a

handshake negotiation, the new subflow MUST be closed, as specified

in Section 3.6.

3.2.3. MP_FAST_CLOSE

DCCP can send a Close or Reset signal to abruptly close a

connection. Using MP-DCCP, a regular Close or Reset only has the

scope of the subflow over which a signal was received. As such, it

will only close the subflow and does not affect other remaining

subflows or the MP-DCCP connection (unless it is the last subflow).

This permits break-before-make handover between subflows.

In order to provide an MP-DCCP-level "reset" and thus allow the

abrupt closure of the MP-DCCP connection, the MP_FAST_CLOSE

suboption can be used.

Figure 10: Format of the MP_FAST_CLOSE suboption

When host A wants to abruptly close an MP-DCCP connection with host

B, it will send out the MP_FAST_CLOSE. The MP_FAST_CLOSE suboption

MUST be sent from host A on all subflows using a DCCP-Reset packet

with Reset Code 13. The requirement to send the MP_FAST_CLOSE on all

subflows increases the probability that host B will receive the

MP_FAST_CLOSE to take the same action. To protect from unauthorized

shutdown of a MP-DCCP connection, the selected Key Data of the peer

host during the handshaking procedure is carried by the

MP_FAST_CLOSE option.

After sending the MP_FAST_CLOSE on all subflows, host A will tear

down all subflows and the multipath DCCP connection immediately

terminates.

Upon reception of the first MP_FAST_CLOSE with successfully

validated Key Data, host B will send a DCCP Reset packet response on

all subflows to host A with Reset Code 13 to clean potential

middlebox states. Host B will then tear down all subflows and

terminate the MP-DCCP connection.

¶

¶

¶

¶

 1 2 3

 01234567 89012345 67890123 45678901 23456789

 +--------+--------+--------+--------+--------+

 |00101110| var |00000010| Key Data ...

 +--------+--------+--------+--------+--------+

 Type=46 Length MP_OPT=2

¶

¶

¶

Plain Text

ECDHE-SHA256-C25519

3.2.4. MP_KEY

Figure 11: Format of the MP_KEY suboption

The MP_KEY suboption is used to exchange a Connection Identifier

(CI) and key material between hosts for a given connection. The CI

is a unique number that is configured per host during the initial

exchange of a connection with MP_KEY and is necessary to connect

other DCCP subflows to an MP-DCCP connection with MP_JOIN

(Section 3.2.2). Its size of 32-bits also defines the maximum number

of simultaneous MP-DCCP connections in a host to 2^32. According to

the Key related elements of the MP_KEY suboption, the Length varies

between 17 and 73 Bytes for a single-key message, and up to 115

Bytes when all specified Key Types 0-2 are provided. The Key Type

field specifies the type of the following key data. The set of key

types are shown in Table 5.

Key Type
Key Length

(Bytes)
Meaning

0 =Plain Text 8 Plain Text Key

1 =ECDHE-C25519-

SHA256
32

ECDHE with SHA256 and

Curve25519

2 =ECDHE-C25519-

SHA512
64

ECDHE with SHA512 and

Curve25519

3-255 Unassigned

Table 5: MP_KEY key types

Key Material is exchanged in plain text between hosts, and the

key parts (key-a, key-b) are used by each host to generate the

derived key (d-key) by concatenating the two parts with the local

key in front (e.g. hostA d-key(A)=(key-a+key-b), hostB d-

key(B)=(key-b+key-a)).

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---------------+---------------+---------------+---------------+

 |0 0 1 0 1 1 1 0| var |0 0 0 0 0 0 1 1| resvd |

 +---------------+---------------+---------------+---------------+

 | Connection Identifier |

 +---------------+---------------+---------------+---------------+

 | Key Type (1) | Key Data (1) | Key Type (2) | Key Data (2) |

 +---------------+---------------+---------------+---------------+

 | Key Type (3) | ...

 +---------------+---------------+

 Type=46 Length MP_OPT=3

¶

¶

ECDHE-SHA512-C25519

Public Key Material is exchanged via ECDHE key exchange with

SHA256 and Curve 25519 to generate the derived key (d-key) from

the shared secret. The full potential of ECDHE use is realized

when it is combined with peer authentication technologies to

protect against men-in-the-middle attacks. This can be achieved,

for example, with separate use and verification of certificates

issued by a certificate authority.

Public Key Material is exchanged via ECDHE key exchange with

SHA512 and Curve 25519 to generate the derived key (d-key) from

the shared secret.

Multiple keys are only permitted in the DCCP-Request message of the

handshake procedure for the first subflow. This allows the hosts to

agree on a single key type to be used, as described in Section 3.3

It is possible that not all hosts will have all key types. If the

key type cannot be agreed in the handshake procedure, the MP-DCCP

connection MUST fall back to not using MP-DCCP, as indicated in

Section 3.6.

3.2.5. MP_SEQ

Figure 12: Format of the MP_SEQ suboption

The MP_SEQ suboption is used for end-to-end 48-bit datagram-based

sequence numbers of an MP-DCCP connection. The initial data sequence

number (IDSN) SHOULD be set randomly [RFC4086].

The MP_SEQ number space is independent from the path individual

sequence number space and MUST be sent with all DCCP-Data and DCCP-

DataACK packets.

When the sequence number space is exhausted, the sequence number

MUST be wrapped. [RFC7323] provides guidance on selecting an

appropriately sized sequence number space according to the maximum

segment lifetime of TCP. 64 bits is the recommended size for TCP to

avoid the sequence number space going through within the segment

lifetime. For DCCP, the Maximum Segment Lifetime is the same as that

¶

¶

¶

¶

 1 2 3 4 5

 01234567 89012345 67890123 45678901 23456789 01234567 89012345

 +--------+--------+--------+--------+--------+--------+--------+

 |00101110|00001001|00000100| Multipath Sequence Number

 +--------+--------+--------+--------+--------+--------+--------+

 |

 +--------+--------+

 Type=46 Length=9 MP_OPT=4

¶

¶

of TCP as specified in [RFC4340], Section 3.4. Compared to TCP, the

sequence number for DCCP is incremented per packet rather than per

byte transmitted. For this reason, the 48 bits chosen in MP_SEQ are

considered sufficiently large.

3.2.6. MP_HMAC

Figure 13: Format of the MP_HMAC suboption

The MP_HMAC suboption is used to provide authentication for the

MP_ADDADDR, and MP_REMOVEADDR suboptions. In addition, it provides

authentication for subflows joining an existing MP_DCCP connection,

as described in the second and third step of the handshake of a

subsequent subflow in Section 3.3. For this specification of MP-

DCCP, the HMAC code is generated according to [RFC2104] in

combination with the SHA256 hash algorithm described in [RFC6234],

with the output truncated to the leftmost 160 bits (20 bytes).

The "Key" used for the HMAC computation is the derived key (d-key)

described in Section 3.2.4, while the HMAC "Message" for MP_JOIN,

MP_ADDADDR and MP_REMOVEADDR is a concatenation of:

for MP_JOIN: The nonces of the MP_JOIN messages for which

authentication shall be performed. Depending on whether Host A or

Host B performs the HMAC-SHA256 calculation, it is carried out as

follows: MP_HMAC(A) = HMAC-SHA256(Key=d-key(A), Msg=RA+RB)

MP_HMAC(B) = HMAC-SHA256(Key=d-key(B), Msg=RB+RA) An usage

example is shown in Figure 21.

for MP_ADDADDR: The Address ID with associated IP address and if

defined port, otherwise two octets of value 0. IP address and

port MUST be used in network byte order (NBO). Depending on

whether Host A or Host B performs the HMAC-SHA256 calculation, it

is carried out as follows: MP_HMAC(A) = HMAC-SHA256(Key=d-key(A),

Msg=Address ID+NBO(IP)+NBO(Port)) MP_HMAC(B) = HMAC-SHA256(Key=d-

key(B), Msg=Address ID+NBO(IP)+NBO(Port))

for MP_REMOVEADDR: Solely the Address ID. Depending on whether

Host A or Host B performs the HMAC-SHA256 calculation, it is

carried out as follows: MP_HMAC(A) = HMAC-SHA256(Key=d-key(A),

Msg=Address ID) MP_HMAC(B) = HMAC-SHA256(Key=d-key(B),

Msg=Address ID)

¶

 1 2 3 4

 01234567 89012345 67890123 45678901 23456789 01234567

 +--------+--------+--------+--------+--------+--------+

 |00101110|00010111|00000101| HMAC-SHA256 (20 bytes) ...

 +--------+--------+--------+--------+--------+--------+

 Type=46 Length=23 MP_OPT=5

¶

¶

*

¶

*

¶

*

¶

MP_JOIN, MP_ADDADDR and MP_REMOVEADDR can co-exist or be used

multiple times within a single DCCP packet. All these multipath

options require an individual MP_HMAC option. This ensures that the

MP_HMAC is correctly associated. Otherwise, the receiver cannot

validate multiple MP_JOIN, MP_ADDADDR or MP_REMOVEADDR. Therefore, a

MP_HMAC MUST directly follow its associated multipath option. In the

likely case of sending a MP_JOIN together with a MP_ADDADDR, this

results in concatenating MP_JOIN + MP_HMAC_1 + MP_ADDADDR +

MP_HMAC_2, whereas the first MP_HMAC_1 is associated with the

MP_JOIN and the second MP_HMAC_2 is associated with the MP_ADDADDR

suboption.

On the receiver side, the HMAC validation of the suboptions MUST be

carried out according to the sending sequence in which the

associated MP_HMAC follows a suboption. If the suboption cannot be

validated by a receiving host because the HMAC validation fails, the

subsequent handling depends on which suboption was being verified.

If the suboption to be authenticated was either MP_ADDADDR or

MP_REMOVEADDR, the receiving host MUST silently ignore it (see

Section 3.2.8 and Section 3.2.9). If the suboption to be

authenticated was MP_JOIN, the subflow MUST be closed (see

Section 3.6). In the event that an MP_HMAC cannot be associated with

a suboption, unless it is an MP_HMAC sent in DCCP-Ack in response to

a DCCP-Response packet containing an MP_JOIN option, this MP_HMAC

MUST be ignored.

3.2.7. MP_RTT

Figure 14: Format of the MP_RTT suboption

The MP_RTT suboption is used to transmit RTT values and age

(represented in milliseconds) that belong to the path over which

this information is transmitted. This information is useful for the

receiving host to calculate the RTT difference between the subflows

and to estimate whether missing data has been lost.

The RTT and Age information is a 32-bit integer. This covers a

period of approximately 1193 hours.

¶

¶

 1 2 3 4 5

 01234567 89012345 67890123 45678901 23456789 01234567 89012345

 +--------+--------+--------+--------+--------+--------+--------+

 |00101110|00001100|00000110|RTT Type| RTT

 +--------+--------+--------+--------+--------+--------+--------+

 | Age |

 +--------+--------+--------+--------+--------+

 Type=46 Length=12 MP_OPT=6

¶

¶

Raw RTT (=0)

Min RTT (=1)

Max RTT (=2)

Smooth RTT (=3)

Age

The Field RTT type indicates the type of RTT estimation, according

to the following description:

Raw RTT value of the last Datagram Round-Trip

Min RTT value over a given period

Max RTT value over a given period

Averaged RTT value over a given period

Each CCID specifies the algorithms and period applied for their

corresponding RTT estimations.The availability of the above

described types, to be used in the MP_RTT option, depends on the

CCID implementation in place.

The Age parameter defines the time difference between now -

creation of the MP_RTT option - and the conducted RTT measurement

in milliseconds. If no previous measurement exists, e.g., when

initialized, the value is 0.

An example of a flow showing the exchange of path individual RTT

information is provided in Figure 15. RTT1 refers to the first path

and RTT2 to the second path. The RTT values could be extracted from

the sender's Congestion Control procedure and are conveyed to the

receiving host using the MP_RTT suboption. With the reception of

RTT1 and RTT2, the receiver is able to calculate the path_delta

which corresponds to the absolute difference of both values. In the

case that the path individual RTTs are symmetric in the down- and

uplink directions and there is no jitter, packets with missing

sequence number MP_SEQ, e.g., in a reordering process, can be

assumed lost after path_delta/2.

Figure 15: Exemplary flow of MP_RTT exchange and usage

¶

¶

¶

¶

¶

¶

¶

¶

 MP-DCCP MP-DCCP

 Sender Receiver

 +--------+ MP_RTT(RTT1) +-------------+

 | RTT1 |----------------| |

 | | | path_delta= |

 | | MP_RTT(RTT2) | |RTT1-RTT2| |

 | RTT2 |----------------| |

 +--------+ +-------------+

3.2.8. MP_ADDADDR

The MP_ADDADDR suboption announces additional addresses (and,

optionally, port numbers) by which a host can be reached. This can

be sent at any time during an existing MP-DCCP connection, when the

sender wishes to enable multiple paths and/or when additional paths

become available. Multiple instances of this suboption within a

packet can simultaneously advertise new addresses.

The Length is variable depending on the address family (IPv4 or

IPv6) and whether a port number is used. This field is in range

between 8 and 22 bytes.

The final 2 octets, optionally specify the DCCP port number to use,

and their presence can be inferred from the length of the option.

Although it is expected that the majority of use cases will use the

same port pairs as used for the initial subflow (e.g., port 80

remains port 80 on all subflows, as does the ephemeral port at the

client), there could be cases (such as port-based load balancing)

where the explicit specification of a different port is required. If

no port is specified, the receiving host MUST assume that any

attempt to connect to the specified address uses the port already

used by the subflow on which the MP_ADDADDR signal was sent.

Along with the MP_ADDADDR option an MP_HMAC option MUST be sent for

authentication. The truncated HMAC parameter present in this MP_HMAC

option is the leftmost 20 bytes of an HMAC, negotiated and

calculated as described in Section 3.2.6. In the same way as for

MP_JOIN, the key for the HMAC algorithm, in the case of the message

transmitted by Host A, will be Key-A followed by Key-B, and in the

case of Host B, Key-B followed by Key-A. These are the keys that

were exchanged and selected in the original MP_KEY handshake. The

message for the HMAC is the Address ID, IP address, and port number

that precede the HMAC in the MP_ADDADDR option. If the port number

is not present in the MP_ADDADDR option, the HMAC message will

include 2 octets of value zero. The rationale for the HMAC is to

prevent unauthorized entities from injecting MP_ADDADDR signals in

an attempt to hijack a connection. Note that, additionally, the

presence of this HMAC prevents the address from being changed in

flight unless the key is known by an intermediary. If a host

receives an MP_ADDADDR option for which it cannot validate the HMAC,

it SHOULD silently ignore the option.

The presence of an MP_SEQ Section 3.2.5 MUST be ensured in a DCCP

datagram in which MP_ADDADDR is sent, as described in Section 3.2.1.

¶

¶

¶

¶

¶

Figure 16: Format of the MP_ADDADDR suboption

Each address has an Address ID that could be used for uniquely

identifying the address within a connection for address removal.

Each host maintains a list of unique Address IDs and it manages

these as it wishes. The Address ID is also used to identify MP_JOIN

options (see Section 3.2.2) relating to the same address, even when

address translators are in use. The Address ID MUST uniquely

identify the address for the sender of the option (within the scope

of the connection); the mechanism for allocating such IDs is

implementation specific.

All Address IDs learned via either MP_JOIN or MP_ADDADDR can be

stored by the receiver in a data structure that gathers all the

Address-ID-to-address mappings for a connection (identified by a CI

pair). In this way, there is a stored mapping between the Address

ID, the observed source address, and the CI pair for future

processing of control information for a connection. Note that an

implementation MAY discard incoming address advertisements - for

example, to avoid the required mapping state, or because advertised

addresses are of no use to it (for example, IPv6 addresses when it

has IPv4 only). Therefore, a host MUST treat address advertisements

as soft state, and the sender MAY choose to refresh advertisements

periodically.

A host MAY advertise private addresses, e.g., because there is a NAT

on the path. It is desirable to allow this, since there could be

cases where both hosts have additional interfaces on the same

private network.

The MP_JOIN handshake to create a new subflow (Section 3.2.2)

provides mechanisms to minimize security risks. The MP_JOIN message

contains a 32-bit CI that uniquely identifies a connection to the

receiving host. If the CI is unknown, the host MUST send a DCCP-

Reset.

Further security considerations around the issue of MP_ADDADDR

messages that accidentally misdirect, or maliciously direct, new

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---------------+---------------+-------+-------+---------------+

 |0 0 1 0 1 1 1 0| var |0 0 0 0 0 1 1 1| Address ID |

 +---------------+---------------+-------+-------+---------------+

 | Address (IPv4 - 4 bytes / IPv6 - 16 bytes) |

 +-------------------------------+-------------------------------+

 | Port (2 bytes, optional) | + MP_HMAC option

 +-------------------------------+

 Type=46 Length MP_OPT=7

¶

¶

¶

¶

MP_JOIN attempts are discussed in Section 4. If a sending host of an

MP_ADDADDR knows that no incoming subflows can be established at a

particular address, an MP_ADDADDR SHOULD NOT announce that address

unless the sending host has new knowledge about the possibility to

do so. This information can be obtained from local firewall or

routing settings, knowledge about availability of external NAT or

firewall, or from connectivity checks performed by the host/

application.

The reception of an MP_ADDADDR message is acknowledged using

MP_CONFIRM (Section 3.2.1). This ensures reliable exchange of

address information.

A host MAY send an MP_ADDADDR message with an already assigned

Address ID, but the Address MUST be the same as previously assigned

to this Address ID, and the Port MUST be different from one already

in use for this Address ID. If these conditions are not met, the

receiver SHOULD silently ignore the MP_ADDADDR. A host wishing to

replace an existing Address ID MUST first remove the existing one

(Section 3.2.9).

A host that receives an MP_ADDADDR, but finds at connection set up

that the IP address and port number is unsuccessful, SHOULD NOT

perform further connection attempts to this address/port combination

for this connection. However, a sender that wishes to trigger a new

incoming connection attempt on a previously advertised address/port

combination can therefore refresh the MP_ADDADDR information by

sending the option again.

3.2.9. MP_REMOVEADDR

If, during the lifetime of an MP-DCCP connection, a previously

announced address becomes invalid (e.g., if an interface

disappears), the affected host SHOULD announce this. The peer can

remove a previously added address with an Address ID from a

connection using the Remove Address (MP_REMOVEADDR) suboption. This

will terminate any subflows currently using that address.

Along with the MP_REMOVEADDR suboption a MP_HMAC option MUST be sent

for authentication. The truncated HMAC parameter present in this

MP_HMAC option is the leftmost 20 bytes of an HMAC, negotiated and

calculated as described in Section 3.2.6. In the same way as for

MP_JOIN, the key for the HMAC algorithm, in the case of the message

transmitted by Host A, will be Key-A followed by Key-B, and in the

case of Host B, Key-B followed by Key-A. These are the keys that

were exchanged and selected in the original MP_KEY handshake. The

message for the HMAC is the Address ID.

¶

¶

¶

¶

¶

¶

The rationale for using a HMAC is to prevent unauthorized entities

from injecting MP_REMOVEADDR signals in an attempt to hijack a

connection. Note that, additionally, the presence of this HMAC

prevents the address from being modified in flight unless the key is

known by an intermediary. If a host receives an MP_REMOVEADDR option

for which it cannot validate the HMAC, it SHOULD silently ignore the

option.

A receiver MUST include a MP_SEQ Section 3.2.5 in a DCCP datagram

that sends an MP_REMOVEADDR. Further details are given in

Section 3.2.1.

The reception of an MP_REMOVEADDR message is acknowledged using

MP_CONFIRM (Section 3.2.1). This ensures reliable exchange of

address information. To avoid inconsistent states, the sender

releases the address ID only after MP_REMOVEADDR has been confirmed.

The sending and receiving of this message SHOULD trigger the closing

procedure described in [RFC4340] between the client and the server,

respectively on the affected subflow(s) (if possible). This helps

remove middlebox state, before removing any local state.

Address removal is done by Address ID to allow the use of NATs and

other middleboxes that rewrite source addresses. If there is no

address at the requested Address ID, the receiver will silently

ignore the request.

Figure 17: Format of the MP_REMOVEADDR suboption

A subflow that is still functioning MUST be closed with a DCCP-Close

exchange as in regular DCCP, rather than using this option. For more

information, see Section 3.5.

3.2.10. MP_PRIO

The path priority SHOULD be considered as hints for the packet

scheduler when making decisions which path to use for payload

traffic. When a single specific path from the set of available paths

is treated with higher priority compared to the others when making

scheduling decisions for payload traffic, a host can signal such

¶

¶

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

|0 0 1 0 1 1 1 0|0 0 0 0 0 1 0 0|0 0 0 0 1 0 0 0| Address ID |

+---------------+---------------+---------------+---------------+

 Type=46 Length=4 MP_OPT=8

-> followed by MP_HMAC option

¶

change in priority to the peer. This could be used when there are

different costs for using different paths (e.g., WiFi is free while

cellular has limit on volume, 5G has higher energy consumption). The

priority of a path could also change, for example, when a mobile

host runs out of battery, the usage of only a single path may be the

preferred choice of the user.

The MP_PRIO suboption, shown below, can be used to set a priority

flag for the subflow over which the suboption is received.

Figure 18: Format of the MP_PRIO suboption

The following values are available for the Prio field:

0: Do not use. The path is not available.

1: Standby: do not use this path for traffic scheduling, if

another path (secondary or primary) is available. The path will

only be used if other secondary or primary paths are not

established.

2: Secondary: do not use this path for traffic scheduling, if the

other paths are good enough. The path will be used occasionally

for increasing temporarily the available capacity, e.g. when

primary paths are congested or are not available. This is the

recommended setting for paths that have costs or data caps as

these paths will be used less frequently then primary paths.

3 - 15: Primary: The path can be used for packet scheduling

decisions. The priority number indicates the relative priority of

one path over the other for primary paths. Higher numbers

indicate higher priority. The peer should consider sending

traffic first over higher priority paths. This is the recommended

setting for paths that do not have a cost or data caps associated

with them as these paths will be frequently used.

Example use cases include: 1) Setting Wi-Fi path to Primary and

Cellular paths to Secondary. In this case Wi-Fi will be used and

Cellular will be used only if the Wi-Fi path is congested or not

available. Such setting results in using the Cellular path only

temporally, if more capacity is needed than the WiFi path can

provide, indicating a clear priority of the Wi-Fi path over the

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---------------+---------------+---------------+--------------+

 |0 0 1 0 1 1 1 0|0 0 0 0 0 1 0 0|0 0 0 0 1 0 0 1|(resvd)| prio |

 +---------------+---------------+---------------+--------------+

 Type=46 Length=4 MP_OPT=9

¶

* ¶

*

¶

*

¶

*

¶

Cellular due to e.g. cost reasons. 2) Setting Wi-Fi path to Primary

and Cellular to Standby. In this case Wi-Fi will be used and

Cellular will be used only if the Wi-Fi path is not available. 3)

Setting Wi-Fi path to Primary and Cellular path to Primary. In this

case, both paths can be used when making packet scheduling

decisions.

If not specified, the default behavior is to always use a path for

packet scheduling decisions (MP_PRIO=3), when the path has been

established and added to an existing MP-DCCP connection. At least

one path ought to have a MP_PRIO value greater or equal to one for

it to be allowed to send on the connection. It is RECOMMENDED to

update at least one path to a non-zero MP_PRIO value when an MP-DCCP

connection enters a state where all paths remain with an MP_PRIO

value of zero. This helps an MP-DCCP connection to schedule when the

multipath scheduler strictly respects MP_PRIO value 0. MP_PRIO is

assumed to be exchanged reliably using the MP_CONFIRM mechanisms

(see Table 4).

The relative ratio of the primary path values 3-15 depends on the

path usage strategy, which is described in more detail in

Section 3.11. In the case of path mobility Section 3.11.1, only one

path can be used at a time and MUST be the appropriate one that has

the highest available priority value including also the prio numbers

1 and 2. In the other case of concurrent path usage

(Section 3.11.2), the definition is up to the multipath scheduler

logic.

A MP_SEQ Section 3.2.5 MUST be present in a DCCP datagram in which

MP_PRIO is sent. Further details are given in Section 3.2.1.

3.2.11. MP_CLOSE

Figure 19: Format of the MP_CLOSE suboption

An MP-DCCP connection can be gracefully closed by sending and

MP_CLOSE to the peer host. On all subflows, the regular termination

procedure as described in [RFC4340] MUST be initiated using MP_CLOSE

in the initial packet (either a DCCP-CloseReq or a DCCP-Close). When

a DCCP-CloseReq is used, the following DCCP-Close MUST also carry

the MP_CLOSE to avoid keeping a state in the sender of the DCCP-

CloseReq. At the initiator of the DCCP-CloseReq, all sockets

¶

¶

¶

¶

 1 2 3

 01234567 89012345 67890123 45678901 23456789

 +--------+--------+--------+--------+--------+

 |00101110| var |00001010| Key Data ...

 +--------+--------+--------+--------+--------+

 Type=46 Length MP_OPT=10

including the MP-DCCP connection socket, transition to CLOSEREQ

state. To protect from unauthorized shutdown of a multi-path

connection, the selected Key Data of the peer host during the

handshaking procedure MUST be included in by the MP_CLOSE option and

must be validated by the peer host. Note, the Key Data is different

between MP_CLOSE option carried by DCCP-CloseReq or DCCP-Close.

On reception of the first DCCP-CloseReq carrying a MP_CLOSE with

valid Key Data, or due to a local decision, all subflows transition

to the CLOSING state before transmitting a DCCP-Close carrying

MP_CLOSE. The MP-DCCP connection socket on the host sending the

DCCP-Close reflects the state of the initial subflow during

handshake with MP_KEY option. If the initial subflow no longer

exists, the state moves immediately to CLOSED.

Upon reception of the first DCCP-Close carrying a MP_CLOSE with

valid Key Data at the peer host, all subflows, as well as the MP-

DCCP connection socket, move to the CLOSED state. After this, a

DCCP-Reset with Reset Code 1 MUST be sent on any subflow in response

to a received DCCP-Close containing a valid MP_CLOSE option.

When the MP-DCCP connection socket is in CLOSEREQ or CLOSE state,

new subflow requests using MP_JOIN MUST be ignored.

Contrary to a MP_FAST_CLOSE Section 3.2.3, no single-sided abrupt

termination is applied.

3.2.12. Experimental Multipath option MP_EXP for private use

This section reserves a Multipath option to define and specify any

experimental additional feature for improving and optimization of

the MP-DCCP protocol. This option could be applicable to specific

environments or scenarios according to potential new requirements

and is meant for private use only. MP_OPT feature number 11 is

specified with an exemplary description as below:

Figure 20: Format of the MP_EXP suboption

The Data field can carry any data according to the foreseen use by

the experimenters with a maximum length of 252 Bytes.

¶

¶

¶

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

|0 0 1 0 1 1 1 0| var |0 0 0 0 1 0 1 1| Data TBD |

+---------------+---------------+---------------+---------------+

| ...

+---+

 Type=46 Length MP_OPT=11

¶

3.3. MP-DCCP Handshaking Procedure

An example to illustrate the MP-DCCP handshake procedure is shown in

Figure 21.

Figure 21: Example MP-DCCP handshake

The basic initial handshake for the first subflow is as follows:

Host A sends a DCCP-Request with the MP-Capable feature Change

request and the MP_KEY option with an Host-specific CI-A and a

Key-A for each of the supported key types as described in

Section 3.2.4. CI-A is a unique identifier during the lifetime of

a MP-DCCP connection.

Host B sends a DCCP-Response with Confirm feature for MP-Capable

and the MP_Key option with a unique Host-specific CI-B and a

single Host-specific Key-B. The type of the key is chosen from

the list of supported types from the previous request.

Host A sends a DCCP-Ack to confirm the proper key exchange.

Host B sends a DCCP-Ack to complete the handshake and set both

connection ends to the OPEN state.

¶

 Host A Host B

------------------------ ----------

Address A1 Address A2 Address B1

---------- ---------- ----------

 | | |

 | DCCP-Request + Change R (MP_CAPABLE,...) |

 |---- MP_KEY(CI-A + Key-A(1), Key-A(2),...) --------->|

 |<------------------- MP_KEY(CI-B + Key-B) -----------|

 | DCCP-Response + Confirm L (MP_CAPABLE, ...) |

 | | |

 | DCCP-Ack | |

 |-->|

 |<--|

 | DCCP-Ack | |

 | | |

 | |DCCP-Request + Change R(MP_CAPABLE,...)|

 | |--- MP_JOIN(CI-B,RA) ----------------->|

 | |<------MP_JOIN(CI-A,RB) + MP_HMAC(B)---|

 | |DCCP-Response+Confirm L(MP_CAPABLE,...)|

 | | |

 | |DCCP-Ack |

 | |-------- MP_HMAC(A) ------------------>|

 | |<--------------------------------------|

 | |DCCP-ACK |

¶

*

¶

*

¶

* ¶

*

¶

It should be noted that DCCP is protected against corruption of DCCP

header data (section 9 of [RFC4340]), so no additional mechanisms

beyond the general confirmation are required to ensure that the

header data has been properly received.

Host A waits for the final DCCP-Ack from host B before starting any

establishment of additional subflow connections.

The handshake for subsequent subflows based on a successful initial

handshake is as follows:

Host A sends a DCCP-Request with the MP-Capable feature Change

request and the MP_JOIN option with Host B's CI-B, obtained

during the initial handshake. Additionally, an own random nonce

RA is transmitted with the MP_JOIN.

Host B computes the HMAC of the DCCP-Request and sends a DCCP-

Response with Confirm feature option for MP-Capable and the

MP_JOIN option with the CI-A and a random nonce RB together with

the computed MP_HMAC. The HMAC is calculated by taking the

leftmost 20 bytes from the SHA256 hash of a HMAC code created by

using the nonce received with MP_JOIN(A) and the local nonce RB

as message and the derived key described in Section 3.2.4 as key:

MP_HMAC(B) = HMAC-SHA256(Key=d-key(B), Msg=RB+RA)

Host A sends a DCCP-Ack with the HMAC computed for the DCCP-

Response. The HMAC is calculated by taking the leftmost 20 bytes

from the SHA256 hash of a HMAC code created by using the local

nonce RA and the nonce received with MP_JOIN(B) as message and

the derived key described in Section 3.2.4 as key:

MP_HMAC(A) = HMAC-SHA256(Key=d-key(A), Msg=RA+RB)

Host B sends a DCCP-Ack to confirm the HMAC and to conclude the

handshaking.

3.4. Address knowledge exchange

3.4.1. Advertising a new path (MP_ADDADDR)

When a host (Host A) wants to advertise the availability of a new

path, it should use the MP_ADDADDR option (Section 3.2.8) as shown

in the example in Figure 22. The MP_ADDADDR option passed in the

DCCP-Data contains the following parameters: * an identifier (id 2)

for the new IP address which is used as a reference in subsequent

control exchanges. * the IP address of the new path (A2_IP) * A pair

of octets specifying the port number associated with this IP

address. The value of 00 here indicates that the port number is the

same as that used for the initial subflow address A1_IP

¶

¶

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

¶

The following options MUST be included in a packet carrying

MP_ADDADDR: * the leftmost 20 bytes of the HMAC(A) generated during

the initial handshaking procedure described in Section 3.3 and

Section 3.2.6 * the MP_SEQ option with the sequence number (seqno

12) for this message according to Section 3.2.5.

Host B acknowledges receipt of the MP_ADDADDR message with a DCCP-

Ack containing the MP_CONFIRM option. The parameters supplied in

this response are as follows: * an MP_CONFIRM containing the MP_SEQ

number (seqno 12) of the packet carrying the option that we are

confirming together with the MP_ADDADDR option * the leftmost 20

bytes of the HMAC(B) generated during the initial handshaking

procedure Section 3.3

Figure 22: Example MP-DCCP ADDADDR procedure

3.4.2. Removing a path (MP_REMOVEADDR)

When a host (Host A) wants to indicate that a path is no longer

available, it should use the MP_REMOVEADDR option (Section 3.2.9) as

shown in the example in Figure 23. The MP_REMOVEADDR option passed

in the DCCP-Data contains the following parameters: * an identifier

(id 2) for the IP address to remove (A2_IP) and which was specified

in a previous MP_ADDADDR message.

The following options must be included in a packet carrying

MP_REMOVEADDR * the leftmost 20 bytes of the HMAC(A) generated

during the initial handshaking procedure described in Section 3.3

and Section 3.2.6 * the MP_SEQ option with the sequence number

(seqno 33) for this message according to Section 3.2.5.

Host B acknowledges receipt of the MP_REMOVEADDR message with a

DCCP-Ack containing the MP_CONFIRM option. The parameters supplied

in this response are as follows: * an MP_CONFIRM containing the

MP_SEQ number (seqno 33) of the packet carrying the option that we

are confirming, together with the MP_REMOVEADDR option * the

leftmost 20 bytes of the HMAC(B) generated during the initial

handshaking procedure Section 3.3

¶

¶

 Host A Host B

------------------------ -----------

Address A1 Address A2 Address B1

---------- ---------- -----------

 | | |

 | DCCP-Data + MP_ADDADDR(id 2, A2_IP, 00) + |

 |------- MP_HMAC(A) + MP_SEQ(seqno 12) -------------->|

 | | |

 | DCCP-Ack + MP_HMAC(B) + |

 |<----- MP_CONFIRM(seqno 12, MP_ADDADDR) -------------|

¶

¶

¶

Figure 23: Example MP-DCCP REMOVEADDR procedure

3.5. Closing an MP-DCCP connection

When a host wants to close an existing subflow but not the whole MP-

DCCP connection, it MUST initiate the regular DCCP connection

termination procedure as described in Section 5.6 of [RFC4340],

i.e., it sends a DCCP-Close/DCCP-Reset on the subflow. This may be

preceded by a DCCP-CloseReq. In the event of an irregular

termination of a subflow, e.g., during subflow establishment, it

MUST use an appropriate DCCP reset code as specified in IANA

[DCCP.Parameter] for DCCP operations. This could be, for example,

sending reset code 5 (Option Error) when an MP-DCCP option provides

invalid data or reset code 9 (Too Busy) when the maximum number of

maintainable paths is reached. Note that receiving a reset code 9

for secondary subflows SHOULD NOT impact already existing active

subflows. If necessary, these subflows are terminated in a

subsequent step using the procedures described in this section.

A host terminates an MP-DCCP connection using the DCCP connection

termination specified in section 5.5 of [RFC4340] on each subflow

with the first packet on each subflow carrying MP_CLOSE (see

Section 3.2.11).

Additionally, an MP-DCCP connection may be closed abruptly using the

"Fast Close" procedure described in Section 3.2.3, where a DCCP-

 Host A Host B

------------------------ -----------

Address A1 Address A2 Address B1

---------- ---------- -----------

 | | |

 | DCCP-Data + MP_REMOVEADDR(id 2) + |

 |------- MP_HMAC(A) + MP_SEQ(seqno 33) -------------->|

 | | |

 | DCCP-Ack + MP_HMAC(B) + |

 |<----- MP_CONFIRM(seqno 33, MP_REMOVEADDR) ----------|

¶

¶

 Host A Host B

 ------ ------

 <- Optional DCCP-CloseReq +

 MP_CLOSE [A's key]

 [on all subflows]

 DCCP-Close + MP_CLOSE ->

 [B's key] [on all subflows]

 <- DCCP-Reset

 [on all subflows]

¶

Reset is sent on all subflows, each carrying the MP_FAST_CLOSE

option.

3.6. Fallback

When a subflow fails to operate following MP-DCCP intended behavior,

it is necessary to proceed with a fallback. This may be either

falling back to regular DCCP [RFC4340] or removing a problematic

subflow. The main reasons for subflow failing include: no MP support

at peer host, failure to negotiate protocol version, loss of

Multipath options, faulty/non-supported MP-DCCP options or

modification of payload data.

At the start of an MP-DCCP connection, the handshake ensures

exchange of MP-DCCP feature and options and thus ensures that the

path is fully MP-DCCP capable. If during the handshake procedure it

appears that DCCP-Request or DCCP-Response messages do not carry the

MP_CAPABLE feature, the MP-DCCP connection will not be established

and the handshake SHOULD fallback to regular DCCP (if this is not

possible it MUST be closed).

A connection SHOULD fallback to regular DCCP if the endpoints fail

to agree on a protocol version to use during the Multipath Capable

feature negotiation. This is described in Section 3.1. The protocol

version negotiation distinguishes between negotiation for the

initial connection establishment, and addition of subsequent

subflows. If protocol version negotiation is not successful during

the initial connection establishment, MP-DCCP connection will

fallback to regular DCCP.

The fallback procedure to regular DCCP MUST be also applied if the

MP_KEY Section 3.2.4 Key Type cannot be negotiated.

If a subflow attempts to join an existing MP-DCCP connection, but

MP-DCCP options or MP_CAPABLE feature are not present or are faulty

in the handshake procedure, that subflow MUST be closed. This is

especially the case if a different MP_CAPABLE version than the

originally negotiated version is used. Reception of a non-verifiable

MP_HMAC (Section 3.2.6) or an invalid CI used in MP_JOIN

(Section 3.2.2) during flow establishment MUST cause the subflow to

be closed.

¶

 Host A Host B

 ------ ------

 DCCP-Reset + MP_FAST_CLOSE ->

 [B's key] [on all subflows]

 <- DCCP-Reset

 [on all subflows]

¶

¶

¶

¶

¶

¶

The subflow closing procedure MUST be also applied if a final ACK

carrying MP_KEY with wrong Key-A/Key-B is received or MP_KEY option

is malformed.

Another relevant case is when payload data is modified by

middleboxes. DCCP uses checksum to protect the data, as described in

section 9 of [RFC4340]. A checksum will fail if the data has been

changed in any way. All data from the start of the segment that

failed the checksum onwards cannot be considered trustworthy. DCCP

defines that if the checksum fails, the receiving endpoint MUST drop

the application data and report that data as dropped due to

corruption using a Data Dropped option (Drop Code 3, Corrupt). If

data is dropped due to corruption for an MP-DCCP connection, the

affected subflow MAY be closed.

3.7. State Diagram

The MP-DCCP per subflow state transitions to a large extent follow

the state transitions defined for DCCP in [RFC4340], with some

modifications due to the MP-DCCP four-way handshake and fast close

procedures. The state diagram below illustrates the most common

state transitions. The diagram is illustrative. For example, there

are arcs (not shown) from several additional states to TIMEWAIT,

contingent on the receipt of a valid DCCP-Reset.

The states transitioned when moving from the CLOSED to OPEN state

during the four-way handshake remain the same as for DCCP, but it is

no longer possible to transmit application data while in the REQUEST

state. The fast close procedure can be triggered by either the

client or the server and results in the transmission of a Reset

packet. The fast close procedure moves the state of the client and

server directly to TIMEWAIT and CLOSED, respectively.

¶

¶

¶

¶

Figure 24: Most common state transitions of a MP-DCCP subflow

3.8. Congestion Control Considerations

Senders MUST manage per-path congestion status, and avoid to sending

more data on a given path than congestion control for each path

allows.

 +----------------------------+ +------------------------------+

 | v v |

 | +----------+ |

 | +-------------+ CLOSED +-------------+ |

 | | passive +----------+ active | |

 | | open open | |

 | | snd Request | |

 | v v |

 | +-----------+ +----------+ |

 | | LISTEN | | REQUEST | |

 | +-----+-----+ +----+-----+ |

 | | rcv Request rcv Response | |

 | | snd Response snd Ack | |

 | v v |

 | +-----------+ +----------+ |

 | | RESPOND | | PARTOPEN | |

 | +-----+-----+ +----+-----+ |

 | | rcv Ack rcv Ack/DataAck | |

 | | snd Ack | |

 | | +-----------+ | |

 | +------------>| OPEN |<-----------+ |

 | +--+-+-+-+--+ |

 | server active close | | | | active close |

 | snd CloseReq | | | | or rcv CloseReq |

 | | | | | snd Close |

 | | | | | |

 | +-----------+ | | | | +----------+ |

 | | CLOSEREQ |<---------+ | | +----------->| CLOSING | |

 | +-----+-----+ | | +----+-----+ |

 | | rcv Close | | rcv Reset | |

 | | snd Reset | | | |

 | | | | active FastClose | |

 |<----------+ rcv Close | | or rcv FastClose v |

 | or server active FastClose | | snd Reset +----+-----+ |

 | or server rcv FastClose | +------------->| TIMEWAIT | |

 | snd Reset | +----+-----+ |

 +------------------------------+ | |

 +-----------+

 2MSL timer expires

¶

3.9. Maximum Packet Size Considerations

A DCCP implementation maintains the maximum packet size (MPS) during

operation of a DCCP session. This procedure is specified for single-

path DCCP in [RFC4340], Section 14. Without any restrictions, this

is adopted for MP-DCCP operations, in particular the PMTU

measurement and the Sender Behaviour. The DCCP application interface

SHOULD allow the application to discover the current MPS. This

reflects the current supported largest size for the data stream that

can be used across the set of all active MP-DCCP subflows.

3.10. Maximum number of Subflows

In theory, an infinite number of subflows can be created within an

MP-DCCP connection, as there is no element in the protocol that

represents a restriction. In practical scenarios, however, there

will be resource limitations on the host or use cases that do not

benefit from additional subflows.

It is RECOMMENDED to limit the number of subflows in implementations

and to reject incoming subflow requests with a DCCP-Reset using the

Reset Code "too busy" as specified in [RFC4340] if this limit is

exceeded.

3.11. Path usage strategies

MP-DCCP can be configured to realize one of several strategies for

path usage, via selecting one DCCP subflow of the multiple DCCP

subflows within a MP-DCCP connection for data transmission. This can

be a dynamic process further facilitated by the means of DCCP and

MP-DCCP defined options such as path preference using MP-PRIO,

adding or removing DCCP subflows using MP_REMOVEADDR, MP_ADDADDR or

DCCP-Close/DCCP-Reset and also path metrics such as packet-loss-

rate, CWND or RTT provided by the Congestion Control Algorithm.

Selecting an appropriate method can allow MP-DCCP to realize

different path utilization strategies that make MP-DCCP suitable for

end-to-end implementation over the Internet or in controlled

environments such as Hybrid Access or 5G ATSSS.

3.11.1. Path mobility

The path mobility strategy provides the use of a single path with a

seamless handover function to continue the connection when the

currently used path is deemed unsuitable for service delivery. Some

of the DCCP subflows of a MP-DCCP connection might become inactive

due to either the occurrence of certain error conditions (e.g., DCCP

timeout, packet loss threshold, RTT threshold, closed/removed) or

adjustments from the MP-DCCP user. When there is outbound data to

send and the primary path becomes inactive (e.g., due to failures)

or de-prioritized, the MP-DCCP endpoint SHOULD try to send the data

¶

¶

¶

¶

through an alternate path with a different source or destination

address (depending on the point of failure), if one exists. This

process SHOULD respect the path priority configured by MP_PRIO or if

not available pick the most divergent source-destination pair from

the original used source-destination pair. Note: Rules for picking

the most appropriate source-destination pair are an implementation

decision and are not specified within this document. Path mobility

is supported in the current Linux reference implementation

[multipath-dccp.org].

3.11.2. Concurrent path usage

Different to a path mobility strategy, the selection between MP-DCCP

subflows is a per-packet decision that is a part of the multipath

scheduling process. This method would allow multiple subflows to be

simultaneously used to aggregate the path resources to obtain higher

connection throughput.

In this scenario, the selection of congestion control, per-packet

scheduling and potential re-ordering method determines a concurrent

path utilization strategy and result in a particular transport

characteristic. A concurrent path usage method uses a scheduling

design that could seek to maximize reliability, throughput,

minimizing latency, etc.

Concurrent path usage over the Internet can have implications. When

a Multipath DCCP connection uses two or more paths, there is no

guarantee that these paths are fully disjoint. When two (or more)

subflows share the same bottleneck, using a standard congestion

control scheme could result in an unfair distribution of the

capacity with the multipath connection using more capacity than

competing single path connections.

Multipath TCP uses the coupled congestion control Linked Increases

Algorithm (LIA) specified in the experimental specification

[RFC6356] to solve this problem. This scheme could also be specified

for Multipath DCCP. The same applies to other coupled congestion

control schemes that have been proposed for Multipath TCP such as

Opportunistic Linked Increases Algorithm [OLIA].

The specification of scheduling for concurrent multipath and related

the congestion control algorithms and re-ordering methods for use in

the general Internet are outside the scope of this document. If, and

when, the IETF specifies a method for concurrent usage of multiple

paths for the general Internet, the framework specified in this

document could be used to provide an IETF recommended method for MP-

DCCP.

¶

¶

¶

¶

¶

4. Security Considerations

Similar to DCCP, MP-DCCP does not provide cryptographic security

guarantees inherently. Thus, if applications need cryptographic

security (integrity, authentication, confidentiality, access

control, and anti-replay protection) the use of IPsec, DTLS over

DCCP [RFC5238] or other end-to-end security is recommended; Secure

Real-time Transport Protocol (SRTP) [RFC3711] is one candidate

protocol for authentication. Together with Encryption of Header

Extensions in SRTP, as provided by [RFC6904], also integrity would

be provided.

DCCP [RFC4340] provides protection against hijacking and limits the

potential impact of some denial-of-service attacks, but DCCP

provides no inherent protection against an on-path attacker snooping

on data packets. Regarding the security of MP-DCCP no additional

risks should be introduced compared to regular DCCP. Thereof derived

are the following key security requirements to be fulfilled by MP-

DCCP:

Provide a mechanism to confirm that parties involved in a subflow

handshake are identical to those in the original connection

setup.

Provide verification that the new address to be included in a MP

connection is valid for a peer to receive traffic at before using

it.

Provide replay protection, i.e., ensure that a request to add/

remove a subflow is 'fresh'.

To achieve these goals, MP-DCCP includes a hash-based handshake

algorithm documented in Sections Section 3.2.4, Section 3.2.6 and

Section 3.3. The security of the MP-DCCP connection depends on the

use of keys that are shared once at the start of the first subflow

and are never sent again over the network. To ease demultiplexing

while not revealing cryptographic material, subsequent subflows use

the initially exchanged CI information. The keys exchanged once at

the beginning are concatenated and used as keys for creating Hash-

based Message Authentication Codes (HMACs) used on subflow setup, in

order to verify that the parties in the handshake of subsequent

subflows are the same as in the original connection setup. It also

provides verification that the peer can receive traffic at this new

address. Replay attacks would still be possible when only keys are

used; therefore, the handshakes use single-use random numbers

(nonces) at both ends -- this ensures that the HMAC will never be

the same on two handshakes. Guidance on generating random numbers

suitable for use as keys is given in [RFC4086]. During normal

operation, regular DCCP protection mechanisms (such as header

¶

¶

*

¶

*

¶

*

¶

checksum to protect DCCP headers against corruption) is designed to

provide the same level of protection against attacks on individual

DCCP subflows as exists for regular DCCP.

As discussed in Section 3.2.8, a host may advertise its private

addresses, but these might point to different hosts in the

receiver's network. The MP_JOIN handshake (Section 3.2.2) is

designed to ensure that this does not set up a subflow to the

incorrect host. However, it could still create unwanted DCCP

handshake traffic. This feature of MP-DCCP could be a target for

denial-of-service exploits, with malicious participants in MP-DCCP

connections encouraging the recipient to target other hosts in the

network. Therefore, implementations should consider heuristics at

both the sender and receiver to reduce the impact of this.

As described in Section 3.9, a Maximum Packet Size (MPS) is

maintained for a MP-DCCP connection. If MP-DCCP exposes a minimum

MPS across all paths, any change to one path impacts the sender for

all paths. To mitigate attacks that seek to force a low MPS, MP-DCCP

could detect an attempt to reduce the MPS less than a minimum MPS,

and then stop using these paths.

5. Interactions with Middleboxes

Issues from interaction with on-path middleboxes such as NATs,

firewalls, proxies, intrusion detection systems (IDSs), and others

have to be considered for all extensions to standard protocols since

otherwise unexpected reactions of middleboxes may hinder its

deployment. DCCP already provides means to mitigate the potential

impact of middleboxes, also in comparison to TCP (see [RFC4043],

Section 16). When both hosts are located behind a NAT or firewall

entity, specific measures have to be applied such as the [RFC5596]-

specified simultaneous-open technique that update the (traditionally

asymmetric) connection-establishment procedures for DCCP. Further

standardized technologies addressing middleboxes operating as NATs

are provided in [RFC5597].

[RFC6773] specifies UDP Encapsulation for NAT Traversal of DCCP

sessions, similar to other UDP encapsulations such as for SCTP

[RFC6951]. Future specifications by the IETF could specify other

methods for DCCP encapsulation.

The security impact of MP-DCCP aware middleboxes is discussed in

Section 4

6. Implementation

The approach described above has been implemented in open source

across different testbeds and a new scheduling algorithm has been

¶

¶

¶

¶

¶

¶

extensively tested. Also demonstrations of a laboratory setup have

been executed and have been published at [multipath-dccp.org].

7. Acknowledgments

[RFC6824] and [RFC8684] defined Multipath TCP and provided important

inputs for this specification.

The authors gratefully acknowledge significant input into this

document from Dirk von Hugo, Nathalie Romo Moreno, Omar Nassef,

Mohamed Boucadair, Simone Ferlin, Olivier Bonaventure, Gorry

Fairhurst and Behcet Sarikaya.

8. IANA Considerations

This section provides guidance to the Internet Assigned Numbers

Authority (IANA) regarding registration of values related to the MP

extension of the DCCP protocol in accordance with [RFC8126]. This

document defines one new value which is requested to be allocated in

the IANA DCCP Feature Numbers registry and three new registries to

be allocated in the DCCP registry group.

This document requests IANA to assign a new DCCP feature parameter

for negotiating the support of multipath capability for DCCP

sessions between hosts as described in Section 3. The following

entry in Table 6 should be added to the Feature Numbers registry in

the DCCP registry group according to [RFC4340], Section 19.4. under

the "DCCP Protocol" heading.

Value Feature Name Specification

10 suggested Multipath Capable [ThisDocument]

Table 6: Addition to DCCP Feature Numbers

registry

Sect. Section 3.1 specifies the new 1-Byte entry above includes a 4-

bit part to specify the version of the used MP-DCCP implementation.

This document requests IANA to create a new 'MP-DCCP Versions'

registry within the DCCP registry group to track the MP-DCCP

version. The initial content of this registry is as follows:

Version Value Specification

0 0000 suggested [ThisDocument]

Unassigned 0001 - 1111

Table 7: MP-DCCP Versions Registry

Future MP-DCCP versions 1 to 15 are assigned from this registry

using the Specification Required policy (Section 4.6 of [RFC8126]).

¶

¶

¶

¶

¶

¶

¶

This document requests IANA to assign value 46 in the DCCP "Option

Types" registry to "Multipath Options", as described in Section 3.2.

IANA is requested to create a new 'Multipath Options' registry

within the DCCP registry group. The following entries in Table 8

should be added to the new 'Multipath Options' registry. The

registry in Table 8 has an upper boundary of 255 in the numeric

value field.

Multipath

Option
Name Description Reference

MP_OPT=0 MP_CONFIRM

Confirm reception/

processing of an MP_OPT

option

Section 3.2.1

MP_OPT=1 MP_JOIN
Join subflow to existing

MP-DCCP connection
Section 3.2.2

MP_OPT=2 MP_FAST_CLOSE Close MP-DCCP connection Section 3.2.3

MP_OPT=3 MP_KEY
Exchange key material

for MP_HMAC
Section 3.2.4

MP_OPT=4 MP_SEQ
Multipath sequence

number
Section 3.2.5

MP_OPT=5 MP_HMAC
Hash-based message auth.

code for MP-DCCP
Section 3.2.6

MP_OPT=6 MP_RTT
Transmit RTT values and

calculation parameters
Section 3.2.7

MP_OPT=7 MP_ADDADDR
Advertise additional

address(es)/port(s)
Section 3.2.8

MP_OPT=8 MP_REMOVEADDR
Remove address(es)/

port(s)
Section 3.2.9

MP_OPT=9 MP_PRIO Change subflow priority Section 3.2.10

MP_OPT=10 MP_CLOSE Close MP-DCCP subflow Section 3.2.11

MP_OPT=11 MP_EXP
Experimental suboption

for private use
Section 3.2.12

MP_OPT>11 Unassigned
Reserved for future

Multipath Options

Table 8: Multipath Options registry

Future Multipath options with MP_OPT>11 are assigned from this

registry using the Specification Required policy (Section 4.6 of

[RFC8126]).

In addition IANA is requested to assign a new DCCP Reset Code value

13 suggested in the DCCP Reset Codes Registry, with the short

description "Abrupt MP termination". Use of this reset code is

defined in section Section 3.2.3.

In addition IANA is requested to assign for this version of the MP-

DCCP protocol a new 'Multipath Key Type' registry containing three

¶

¶

¶

¶

[DCCP.Parameter]

[RFC2119]

[RFC4340]

[I-D.amend-iccrg-multipath-reordering]

[I-D.amend-tsvwg-multipath-framework-mpdccp]

different suboptions to the MP_KEY option to identify the MP_KEY Key

types in terms of 8-bit values as specified in Section 3.2.4

according to the entries in Table 9 below. Values in range 3-255

(decimal) inclusive remain unassigned in this here specified version

0 of the protocol and are assigned via Specification Required

[RFC8126] in potential future versions of the MP-DCCP protocol.

Type Name Meaning Reference

0 Plain Text Plain text key Section 3.2.4

1
ECDHE-C25519-

SHA256

ECDHE with SHA256 and

Curve25519
Section 3.2.4

2
ECDHE-C25519-

SHA512

ECDHE with SHA512 and

Curve25519
Section 3.2.4

3-255 Unassigned Reserved for future use Section 3.2.4

Table 9: Multipath Key Type registry with the MP_KEY Key Types for key

data exchange on different paths

9. References

9.1. Normative References

"IANA Datagram Congestion Control Protocol (DCCP)

Parameters", n.d., <https://www.iana.org/assignments/

dccp-parameters/dccp-parameters.xhtml>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Kohler, E., Handley, M., and S. Floyd, "Datagram

Congestion Control Protocol (DCCP)", RFC 4340, DOI

10.17487/RFC4340, March 2006, <https://www.rfc-

editor.org/rfc/rfc4340>.

9.2. Informative References

Amend, M. and D. Von Hugo,

"Multipath sequence maintenance", Work in Progress,

Internet-Draft, draft-amend-iccrg-multipath-

reordering-03, 25 October 2021, <https://

datatracker.ietf.org/doc/html/draft-amend-iccrg-

multipath-reordering-03>.

Amend, M., Bogenfeld, E., Brunstrom, A., Kassler, A.,

and V. Rakocevic, "A multipath framework for UDP traffic

over heterogeneous access networks", Work in Progress,

¶

https://www.iana.org/assignments/dccp-parameters/dccp-parameters.xhtml
https://www.iana.org/assignments/dccp-parameters/dccp-parameters.xhtml
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4340
https://www.rfc-editor.org/rfc/rfc4340
https://datatracker.ietf.org/doc/html/draft-amend-iccrg-multipath-reordering-03
https://datatracker.ietf.org/doc/html/draft-amend-iccrg-multipath-reordering-03
https://datatracker.ietf.org/doc/html/draft-amend-iccrg-multipath-reordering-03

[I-D.ietf-quic-multipath]

[I-D.lhwxz-hybrid-access-network-architecture]

[I-D.muley-network-based-bonding-hybrid-access]

[IETF115.Slides]

[MP-DCCP.Paper]

[multipath-dccp.org]

[OLIA]

Internet-Draft, draft-amend-tsvwg-multipath-framework-

mpdccp-01, 8 July 2019, <https://datatracker.ietf.org/

doc/html/draft-amend-tsvwg-multipath-framework-

mpdccp-01>.

Liu, Y., Ma, Y., De Coninck, Q.,

Bonaventure, O., Huitema, C., and M. Kuehlewind,

"Multipath Extension for QUIC", Work in Progress,

Internet-Draft, draft-ietf-quic-multipath-06, 23 October

2023, <https://datatracker.ietf.org/doc/html/draft-ietf-

quic-multipath-06>.

Leymann, N., Heidemann, C., Cullen, M., Xue, L., and M.

Zhang, "Hybrid Access Network Architecture", Work in

Progress, Internet-Draft, draft-lhwxz-hybrid-access-

network-architecture-02, 13 January 2015, <https://

datatracker.ietf.org/doc/html/draft-lhwxz-hybrid-access-

network-architecture-02>.

Muley, P., Henderickx, W., Geng, L., Liu, H., Cardullo,

L., Newton, J., Seo, S., Draznin, S., and B. Patil,

"Network based Bonding solution for Hybrid Access", Work

in Progress, Internet-Draft, draft-muley-network-based-

bonding-hybrid-access-03, 22 October 2018, <https://

datatracker.ietf.org/doc/html/draft-muley-network-based-

bonding-hybrid-access-03>.

Amend, M., "MP-DCCP for enabling transfer of UDP/IP

traffic over multiple data paths in multi-connectivity

networks", IETF105 , n.d., <https://datatracker.ietf.org/

meeting/105/materials/slides-105-tsvwg-sessa-62-dccp-

extensions-for-multipath-operation-00>.

Amend, M., Bogenfeld, E., Cvjetkovic, M., Rakocevic, V.,

Pieska, M., Kassler, A., and A. Brunstrom, "A Framework

for Multiaccess Support for Unreliable Internet Traffic

using Multipath DCCP", DOI 10.1109/LCN44214.2019.8990746,

October 2019, <https://doi.org/10.1109/

LCN44214.2019.8990746>.

"Multipath extension for DCCP", n.d., <https://

multipath-dccp.org/>.

Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.

Le Boudec, "MPTCP is not pareto-optimal: performance

issues and a possible solution", Proceedings of the 8th

https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-framework-mpdccp-01
https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-framework-mpdccp-01
https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-framework-mpdccp-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-06
https://datatracker.ietf.org/doc/html/draft-lhwxz-hybrid-access-network-architecture-02
https://datatracker.ietf.org/doc/html/draft-lhwxz-hybrid-access-network-architecture-02
https://datatracker.ietf.org/doc/html/draft-lhwxz-hybrid-access-network-architecture-02
https://datatracker.ietf.org/doc/html/draft-muley-network-based-bonding-hybrid-access-03
https://datatracker.ietf.org/doc/html/draft-muley-network-based-bonding-hybrid-access-03
https://datatracker.ietf.org/doc/html/draft-muley-network-based-bonding-hybrid-access-03
https://datatracker.ietf.org/meeting/105/materials/slides-105-tsvwg-sessa-62-dccp-extensions-for-multipath-operation-00
https://datatracker.ietf.org/meeting/105/materials/slides-105-tsvwg-sessa-62-dccp-extensions-for-multipath-operation-00
https://datatracker.ietf.org/meeting/105/materials/slides-105-tsvwg-sessa-62-dccp-extensions-for-multipath-operation-00
https://doi.org/10.1109/LCN44214.2019.8990746
https://doi.org/10.1109/LCN44214.2019.8990746
https://multipath-dccp.org/
https://multipath-dccp.org/

[RFC0793]

[RFC2104]

[RFC3711]

[RFC4043]

[RFC4086]

[RFC5238]

[RFC5595]

[RFC5596]

[RFC5597]

[RFC6234]

international conference on Emerging networking

experiments and technologies, ACM , 2012.

Postel, J., "Transmission Control Protocol", RFC 793, DOI

10.17487/RFC0793, September 1981, <https://www.rfc-

editor.org/rfc/rfc793>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/rfc/rfc2104>.

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

Norrman, "The Secure Real-time Transport Protocol

(SRTP)", RFC 3711, DOI 10.17487/RFC3711, March 2004,

<https://www.rfc-editor.org/rfc/rfc3711>.

Pinkas, D. and T. Gindin, "Internet X.509 Public Key

Infrastructure Permanent Identifier", RFC 4043, DOI

10.17487/RFC4043, May 2005, <https://www.rfc-editor.org/

rfc/rfc4043>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/rfc/rfc4086>.

Phelan, T., "Datagram Transport Layer Security (DTLS)

over the Datagram Congestion Control Protocol (DCCP)",

RFC 5238, DOI 10.17487/RFC5238, May 2008, <https://

www.rfc-editor.org/rfc/rfc5238>.

Fairhurst, G., "The Datagram Congestion Control Protocol

(DCCP) Service Codes", RFC 5595, DOI 10.17487/RFC5595,

September 2009, <https://www.rfc-editor.org/rfc/rfc5595>.

Fairhurst, G., "Datagram Congestion Control Protocol

(DCCP) Simultaneous-Open Technique to Facilitate NAT/

Middlebox Traversal", RFC 5596, DOI 10.17487/RFC5596,

September 2009, <https://www.rfc-editor.org/rfc/rfc5596>.

Denis-Courmont, R., "Network Address Translation (NAT)

Behavioral Requirements for the Datagram Congestion

Control Protocol", BCP 150, RFC 5597, DOI 10.17487/

RFC5597, September 2009, <https://www.rfc-editor.org/rfc/

rfc5597>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc3711
https://www.rfc-editor.org/rfc/rfc4043
https://www.rfc-editor.org/rfc/rfc4043
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc5238
https://www.rfc-editor.org/rfc/rfc5238
https://www.rfc-editor.org/rfc/rfc5595
https://www.rfc-editor.org/rfc/rfc5596
https://www.rfc-editor.org/rfc/rfc5597
https://www.rfc-editor.org/rfc/rfc5597

[RFC6356]

[RFC6773]

[RFC6824]

[RFC6904]

[RFC6951]

[RFC7323]

[RFC8041]

[RFC8126]

[RFC8174]

[RFC8684]

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/rfc/rfc6234>.

Raiciu, C., Handley, M., and D. Wischik, "Coupled

Congestion Control for Multipath Transport Protocols",

RFC 6356, DOI 10.17487/RFC6356, October 2011, <https://

www.rfc-editor.org/rfc/rfc6356>.

Phelan, T., Fairhurst, G., and C. Perkins, "DCCP-UDP: A

Datagram Congestion Control Protocol UDP Encapsulation

for NAT Traversal", RFC 6773, DOI 10.17487/RFC6773,

November 2012, <https://www.rfc-editor.org/rfc/rfc6773>.

Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,

"TCP Extensions for Multipath Operation with Multiple

Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,

<https://www.rfc-editor.org/rfc/rfc6824>.

Lennox, J., "Encryption of Header Extensions in the

Secure Real-time Transport Protocol (SRTP)", RFC 6904,

DOI 10.17487/RFC6904, April 2013, <https://www.rfc-

editor.org/rfc/rfc6904>.

Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream

Control Transmission Protocol (SCTP) Packets for End-Host

to End-Host Communication", RFC 6951, DOI 10.17487/

RFC6951, May 2013, <https://www.rfc-editor.org/rfc/

rfc6951>.

Borman, D., Braden, B., Jacobson, V., and R.

Scheffenegger, Ed., "TCP Extensions for High

Performance", RFC 7323, DOI 10.17487/RFC7323, September

2014, <https://www.rfc-editor.org/rfc/rfc7323>.

Bonaventure, O., Paasch, C., and G. Detal, "Use Cases and

Operational Experience with Multipath TCP", RFC 8041, DOI

10.17487/RFC8041, January 2017, <https://www.rfc-

editor.org/rfc/rfc8041>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and

C. Paasch, "TCP Extensions for Multipath Operation with

https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc6356
https://www.rfc-editor.org/rfc/rfc6356
https://www.rfc-editor.org/rfc/rfc6773
https://www.rfc-editor.org/rfc/rfc6824
https://www.rfc-editor.org/rfc/rfc6904
https://www.rfc-editor.org/rfc/rfc6904
https://www.rfc-editor.org/rfc/rfc6951
https://www.rfc-editor.org/rfc/rfc6951
https://www.rfc-editor.org/rfc/rfc7323
https://www.rfc-editor.org/rfc/rfc8041
https://www.rfc-editor.org/rfc/rfc8041
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174

[TS23.501]

Multiple Addresses", RFC 8684, DOI 10.17487/RFC8684,

March 2020, <https://www.rfc-editor.org/rfc/rfc8684>.

3GPP, "System architecture for the 5G System; Stage 2;

Release 16", December 2020, <https://www.3gpp.org/ftp//

Specs/archive/23_series/23.501/23501-g70.zip>.

Appendix A. Differences from Multipath TCP

This appendix is Informative.

Multipath DCCP is similar to Multipath TCP [RFC8684], in that it

extends the related basic DCCP transport protocol [RFC4340] with

multipath capabilities in the same way as Multipath TCP extends TCP

[RFC0793]. However, because of the differences between the

underlying TCP and DCCP protocols, the transport characteristics of

MPTCP and MP-DCCP are different.

Table 10 compares the protocol characteristics of TCP and DCCP,

which are by nature inherited by their respective multipath

extensions. A major difference lies in the delivery of payload,

which is for TCP an exact copy of the generated byte-stream. DCCP

behaves in a different way and does not guarantee to deliver any

payload nor the order of delivery. Since this is mainly affecting

the receiving endpoint of a TCP or DCCP communication, many

similarities on the sender side can be identified. Both transport

protocols share the 3-way initiation of a communication and both

employ congestion control to adapt the sending rate to the path

characteristics.

Feature TCP DCCP

Full-Duplex yes yes

Connection-Oriented yes yes

Header option space 40 bytes < 1008 bytes or PMTU

Data transfer reliable unreliable

Packet-loss handling
re-

transmission
report only

Ordered data delivery yes no

Sequence numbers one per byte one per PDU

Flow control yes no

Congestion control yes yes

ECN support yes yes

Selective ACK yes
depends on congestion

control

Fix message

boundaries
no yes

Path MTU discovery yes yes

Fragmentation yes no

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8684
https://www.3gpp.org/ftp//Specs/archive/23_series/23.501/23501-g70.zip
https://www.3gpp.org/ftp//Specs/archive/23_series/23.501/23501-g70.zip

Feature TCP DCCP

SYN flood protection yes no

Half-open connections yes no

Table 10: TCP and DCCP protocol comparison

Consequently, the multipath features, shown in Table 11, are the

same, supporting volatile paths having varying capacity and latency,

session handover and path aggregation capabilities. All of them

profit by the existence of congestion control.

Feature MPTCP MP-DCCP

Volatile paths yes yes

Session handover yes yes

Path aggregation yes yes

Data reordering yes optional

Expandability limited by TCP header flexible

Table 11: MPTCP and MP-DCCP protocol comparison

Therefore, the sender logic is not much different between MP-DCCP

and MPTCP.

The receiver side for MP-DCCP has to deal with the unreliable

delivery provided by DCCP. The multipath sequence numbers included

in MP-DCCP (see Section 3.2.5) facilitates adding optional

mechanisms for data stream packet reordering at the receiver.

Information from the MP_RTT multipath option (Section 3.2.7), DCCP

path sequencing and the DCCP Timestamp Option provide further means

for advanced reordering approaches, e.g., as proposed in

[I-D.amend-iccrg-multipath-reordering]. Such mechanisms do, however,

not affect interoperability and are not part of the MP-DCCP

protocol. Many applications that use unreliable transport protocols

can also inherently process out-of-sequence data (e.g., through

adaptive audio and video buffers), and so additional reordering

support might not be necessary. The addition of optional reordering

mechanisms are likely to be needed when the different DCCP subflows

are routed across paths with different latencies. In theory,

applications using DCCP are aware that packet reordering could

occur, because DCCP does not provide mechanisms to restore the

original packet order.

In contrast to TCP, the receiver processing for MPTCP adopted a

rigid "just wait" approach, because TCP guarantees reliable in-order

delivery.

Authors' Addresses

Markus Amend (editor)

Deutsche Telekom

¶

¶

¶

¶

Deutsche-Telekom-Allee 9

64295 Darmstadt

Germany

Email: Markus.Amend@telekom.de

Anna Brunstrom

Karlstad University

Universitetsgatan 2

SE-651 88 Karlstad

Sweden

Email: anna.brunstrom@kau.se

Andreas Kassler

Karlstad University

Universitetsgatan 2

SE-651 88 Karlstad

Sweden

Email: andreas.kassler@kau.se

Veselin Rakocevic

City, University of London

Northampton Square

London

United Kingdom

Email: veselin.rakocevic.1@city.ac.uk

Stephen Johnson

BT

Adastral Park

Martlesham Heath

IP5 3RE

United Kingdom

Email: stephen.h.johnson@bt.com

mailto:Markus.Amend@telekom.de
mailto:anna.brunstrom@kau.se
mailto:andreas.kassler@kau.se
mailto:veselin.rakocevic.1@city.ac.uk
mailto:stephen.h.johnson@bt.com

	DCCP Extensions for Multipath Operation with Multiple Addresses
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Multipath DCCP in the Networking Stack
	1.2. Terminology
	1.3. Requirements Language

	2. Operation Overview
	2.1. MP-DCCP Concept

	3. MP-DCCP Protocol
	3.1. Multipath Capable Feature
	3.2. Multipath Option
	3.2.1. MP_CONFIRM
	3.2.2. MP_JOIN
	3.2.3. MP_FAST_CLOSE
	3.2.4. MP_KEY
	3.2.5. MP_SEQ
	3.2.6. MP_HMAC
	3.2.7. MP_RTT
	3.2.8. MP_ADDADDR
	3.2.9. MP_REMOVEADDR
	3.2.10. MP_PRIO
	3.2.11. MP_CLOSE
	3.2.12. Experimental Multipath option MP_EXP for private use

	3.3. MP-DCCP Handshaking Procedure
	3.4. Address knowledge exchange
	3.4.1. Advertising a new path (MP_ADDADDR)
	3.4.2. Removing a path (MP_REMOVEADDR)

	3.5. Closing an MP-DCCP connection
	3.6. Fallback
	3.7. State Diagram
	3.8. Congestion Control Considerations
	3.9. Maximum Packet Size Considerations
	3.10. Maximum number of Subflows
	3.11. Path usage strategies
	3.11.1. Path mobility
	3.11.2. Concurrent path usage

	4. Security Considerations
	5. Interactions with Middleboxes
	6. Implementation
	7. Acknowledgments
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Differences from Multipath TCP
	Authors' Addresses

