
Workgroup: Network Working Group

Internet-Draft: draft-ietf-tsvwg-natsupp-23

Published: 25 October 2021

Intended Status: Standards Track

Expires: 28 April 2022

Authors: R. R. Stewart

Netflix, Inc.

M. Tüxen

Münster Univ. of Appl. Sciences

I. Rüngeler

Münster Univ. of Appl. Sciences

Stream Control Transmission Protocol (SCTP) Network Address Translation

Support

Abstract

The Stream Control Transmission Protocol (SCTP) provides a reliable

communications channel between two end-hosts in many ways similar to

the Transmission Control Protocol (TCP). With the widespread

deployment of Network Address Translators (NAT), specialized code

has been added to NAT functions for TCP that allows multiple hosts

to reside behind a NAT function and yet share a single IPv4 address,

even when two hosts (behind a NAT function) choose the same port

numbers for their connection. This additional code is sometimes

classified as Network Address and Port Translation (NAPT).

This document describes the protocol extensions needed for the SCTP

endpoints and the mechanisms for NAT functions necessary to provide

similar features of NAPT in the single point and multipoint

traversal scenario.

Finally, a YANG module for SCTP NAT is defined.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions

3. Terminology

4. Motivation and Overview

4.1. SCTP NAT Traversal Scenarios

4.1.1. Single Point Traversal

4.1.2. Multipoint Traversal

4.2. Limitations of Classical NAPT for SCTP

4.3. The SCTP-Specific Variant of NAT

5. Data Formats

5.1. Modified Chunks

5.1.1. Extended ABORT Chunk

5.1.2. Extended ERROR Chunk

5.2. New Error Causes

5.2.1. VTag and Port Number Collision Error Cause

5.2.2. Missing State Error Cause

5.2.3. Port Number Collision Error Cause

5.3. New Parameters

5.3.1. Disable Restart Parameter

5.3.2. VTags Parameter

6. Procedures for SCTP Endpoints and NAT Functions

6.1. Association Setup Considerations for Endpoints

6.2. Handling of Internal Port Number and Verification Tag

Collisions

6.2.1. NAT Function Considerations

6.2.2. Endpoint Considerations

6.3. Handling of Internal Port Number Collisions

6.3.1. NAT Function Considerations

6.3.2. Endpoint Considerations

6.4. Handling of Missing State

6.4.1. NAT Function Considerations

6.4.2. Endpoint Considerations

¶

¶

https://trustee.ietf.org/license-info

6.5. Handling of Fragmented SCTP Packets by NAT Functions

6.6. Multi Point Traversal Considerations for Endpoints

7. SCTP NAT YANG Module

7.1. Tree Structure

7.2. YANG Module

8. Various Examples of NAT Traversals

8.1. Single-homed Client to Single-homed Server

8.2. Single-homed Client to Multi-homed Server

8.3. Multihomed Client and Server

8.4. NAT Function Loses Its State

8.5. Peer-to-Peer Communications

9. Socket API Considerations

9.1. Get or Set the NAT Friendliness (SCTP_NAT_FRIENDLY)

10. IANA Considerations

10.1. New Chunk Flags for Two Existing Chunk Types

10.2. Three New Error Causes

10.3. Two New Chunk Parameter Types

10.4. One New URI

10.5. One New YANG Module

11. Security Considerations

12. Normative References

13. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

Stream Control Transmission Protocol (SCTP) [RFC4960] provides a

reliable communications channel between two end-hosts in many ways

similar to TCP [RFC0793]. With the widespread deployment of Network

Address Translators (NAT), specialized code has been added to NAT

functions for TCP that allows multiple hosts to reside behind a NAT

function using private-use addresses (see [RFC6890]) and yet share a

single IPv4 address, even when two hosts (behind a NAT function)

choose the same port numbers for their connection. This additional

code is sometimes classified as Network Address and Port Translation

(NAPT). Please note that this document focuses on the case where the

NAT function maps a single or multiple internal addresses to a

single external address and vice versa.

To date, specialized code for SCTP has not yet been added to most

NAT functions so that only a translation of IP addresses is

supported. The end result of this is that only one SCTP-capable host

can successfully operate behind such a NAT function and this host

can only be single-homed. The only alternative for supporting legacy

NAT functions is to use UDP encapsulation as specified in [RFC6951].

¶

¶

The NAT function in the document refers to NAPT functions described

in Section 2.2 of [RFC3022], NAT64 [RFC6146], or DS-Lite AFTR

[RFC6333].

This document specifies procedures allowing a NAT function to

support SCTP by providing similar features to those provided by a

NAPT for TCP (see [RFC5382] and [RFC7857]), UDP (see [RFC4787] and

[RFC7857]), and ICMP (see [RFC5508] and [RFC7857]). This document

also specifies a set of data formats for SCTP packets and a set of

SCTP endpoint procedures to support NAT traversal. An SCTP

implementation supporting these procedures can assure that in both

single-homed and multi-homed cases a NAT function will maintain the

appropriate state without the NAT function needing to change port

numbers.

It is possible and desirable to make these changes for a number of

reasons:

It is desirable for SCTP internal end-hosts on multiple platforms

to be able to share a NAT function's external IP address in the

same way that a TCP session can use a NAT function.

If a NAT function does not need to change any data within an SCTP

packet, it will reduce the processing burden of NAT'ing SCTP by

not needing to execute the CRC32c checksum used by SCTP.

Not having to touch the IP payload makes the processing of ICMP

messages by NAT functions easier.

An SCTP-aware NAT function will need to follow these procedures for

generating appropriate SCTP packet formats.

When considering SCTP-aware NAT it is possible to have multiple

levels of support. At each level, the Internal Host, Remote Host,

and NAT function does or does not support the procedures described

in this document. The following table illustrates the results of the

various combinations of support and if communications can occur

between two endpoints.

Internal Host NAT Function Remote Host Communication

Support Support Support Yes

Support Support No Support Limited

Support No Support Support None

Support No Support No Support None

No Support Support Support Limited

No Support Support No Support Limited

No Support No Support Support None

No Support No Support No Support None

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

Internal-Address (Int-Addr)

Internal-Port (Int-Port)

Internal-VTag (Int-VTag)

Remote-Address (Rem-Addr)

Remote-Port (Rem-Port)

Remote-VTag (Rem-VTag)

Table 1: Communication possibilities

From the table it can be seen that no communication can occur when a

NAT function does not support SCTP-aware NAT. This assumes that the

NAT function does not handle SCTP packets at all and all SCTP

packets sent from behind a NAT function are discarded by the NAT

function. In some cases, where the NAT function supports SCTP-aware

NAT, but one of the two hosts does not support the feature,

communication can possibly occur in a limited way. For example, only

one host can have a connection when a collision case occurs.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Terminology

This document uses the following terms, which are depicted in Figure

1. Familiarity with the terminology used in [RFC4960] and [RFC5061]

is assumed.

An internal address that is known to the internal host.

The port number that is in use by the host holding the Internal-

Address.

The SCTP Verification Tag (VTag) (see Section 3.1 of [RFC4960])

that the internal host has chosen for an association. The VTag is

a unique 32-bit tag that accompanies any incoming SCTP packet for

this association to the Internal-Address.

The address that an internal host is attempting to contact.

The port number used by the host holding the Remote-Address.

The Verification Tag (VTag) (see Section 3.1 of [RFC4960]) that

the host holding the Remote-Address has chosen for an

association. The VTag is a unique 32-bit tag that accompanies any

outgoing SCTP packet for this association to the Remote-Address.

¶

¶

¶

¶

¶

¶

¶

¶

¶

External-Address (Ext-Addr)

An external address assigned to the NAT function, that it uses as

a source address when sending packets towards a Remote-Address.

Figure 1: Basic Network Setup

4. Motivation and Overview

4.1. SCTP NAT Traversal Scenarios

This section defines the notion of single and multipoint NAT

traversal.

4.1.1. Single Point Traversal

In this case, all packets in the SCTP association go through a

single NAT function, as shown in Figure 2.

Figure 2: Single NAT Function Scenario

A variation of this case is shown in Figure 3, i.e., multiple NAT

functions in the forwarding path between two endpoints.

¶

 Internal Network | External Network

 |

 Internal | External Remote

 Address | Address /--\/--\ Address

+--------+ +-----+ / \ +--------+

| Host A |=========| NAT |=======| Network |==========| Host B |

+--------+ +-----+ \ / +--------+

 Internal | \--/\--/ Remote

 Internal Port | Port Remote

 VTag | VTag

¶

¶

 Internal Network | External Network

 |

 | /--\/--\

+--------+ +-----+ / \ +--------+

| Host A |=========| NAT |========= | Network | ========| Host B |

+--------+ +-----+ \ / +--------+

 | \--/\--/

 |

¶

Figure 3: Serial NAT Functions Scenario

Although one of the main benefits of SCTP multi-homing is redundant

paths, in the single point traversal scenario the NAT function

represents a single point of failure in the path of the SCTP multi-

homed association. However, the rest of the path can still benefit

from path diversity provided by SCTP multi-homing.

The two SCTP endpoints in this case can be either single-homed or

multi-homed. However, the important thing is that the NAT function

in this case sees all the packets of the SCTP association.

4.1.2. Multipoint Traversal

This case involves multiple NAT functions and each NAT function only

sees some of the packets in the SCTP association. An example is

shown in Figure 4.

Figure 4: Parallel NAT Functions Scenario

This case does not apply to a single-homed SCTP association (i.e.,

both endpoints in the association use only one IP address). The

advantage here is that the existence of multiple NAT traversal

points can preserve the path diversity of a multi-homed association

for the entire path. This in turn can improve the robustness of the

communication.

 Internal | External : Internal | External

 | : |

 | : | /--\/--\

+--------+ +-----+ : +-----+ / \ +--------+

| Host A |==| NAT |=======:=======| NAT |==| Network |==| Host B |

+--------+ +-----+ : +-----+ \ / +--------+

 | : | \--/\--/

 | : |

¶

¶

¶

 Internal | External

 +------+ /---\/---\

 /=======|NAT A |=========\ / \

+--------+ / +------+ \/ \ +--------+

| Host A |/ | | Network |===| Host B |

+--------+\ | \ / +--------+

 \ +------+ / \ /

 \=======|NAT B |=========/ \---\/---/

 +------+

 |

¶

4.2. Limitations of Classical NAPT for SCTP

Using classical NAPT possibly results in changing one of the SCTP

port numbers during the processing, which requires the recomputation

of the transport layer checksum by the NAPT function. Whereas for

UDP and TCP this can be done very efficiently, for SCTP the checksum

(CRC32c) over the entire packet needs to be recomputed (see Appendix

B of [RFC4960] for details of the CRC32c computation). This would

considerably add to the NAT computational burden, however hardware

support can mitigate this in some implementations.

An SCTP endpoint can have multiple addresses but only has a single

port number to use. To make multipoint traversal work, all the NAT

functions involved need to recognize the packets they see as

belonging to the same SCTP association and perform port number

translation in a consistent way. One possible way of doing this is

to use a pre-defined table of port numbers and addresses configured

within each NAT function. Other mechanisms could make use of NAT to

NAT communication. Such mechanisms have not been deployed on a wide

scale base and thus are not a preferred solution. Therefore an SCTP

variant of NAT function has been developed (see Section 4.3).

4.3. The SCTP-Specific Variant of NAT

In this section it is allowed that there are multiple SCTP capable

hosts behind a NAT function that share one External-Address.

Furthermore, this section focuses on the single point traversal

scenario (see Section 4.1.1).

The modification of outgoing SCTP packets sent from an internal host

is simple: the source address of the packets has to be replaced with

the External-Address. It might also be necessary to establish some

state in the NAT function to later handle incoming packets.

Typically, the NAT function has to maintain a NAT binding table of

Internal-VTag, Internal-Port, Remote-VTag, Remote-Port, Internal-

Address, and whether the restart procedure is disabled or not. An

entry in that NAT binding table is called a NAT-State control block.

The function Create() obtains the just mentioned parameters and

returns a NAT-State control block. A NAT function MAY allow creating

NAT-State control blocks via a management interface.

For SCTP packets coming from the external realm of the NAT function

the destination address of the packets has to be replaced with the

Internal-Address of the host to which the packet has to be

delivered, if a NAT state entry is found. The lookup of the

Internal-Address is based on the Remote-VTag, Remote-Port, Internal-

VTag and the Internal-Port.

¶

¶

¶

¶

¶

¶

The entries in the NAT binding table need to fulfill some uniqueness

conditions. There can not be more than one entry NAT binding table

with the same pair of Internal-Port and Remote-Port. This rule can

be relaxed, if all NAT binding table entries with the same Internal-

Port and Remote-Port have the support for the restart procedure

disabled (see Section 5.3.1). In this case there can not be no more

than one entry with the same Internal-Port, Remote-Port and Remote-

VTag and no more than one NAT binding table entry with the same

Internal-Port, Remote-Port, and Int-VTag.

The processing of outgoing SCTP packets containing an INIT chunk is

illustrated in the following figure. This scenario is valid for all

message flows in this section.

Normally a NAT binding table entry will be created.

However, it is possible that there is already a NAT binding table

entry with the same Remote-Port, Internal-Port, and Internal-VTag

but different Internal-Address and the restart procedure is

disabled. In this case the packet containing the INIT chunk MUST be

dropped by the NAT and a packet containing an ABORT chunk SHOULD be

sent to the SCTP host that originated the packet with the M bit set

and 'VTag and Port Number Collision' error cause (see Section 5.1.1

for the format). The source address of the packet containing the

ABORT chunk MUST be the destination address of the packet containing

the INIT chunk.

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

 INIT[Initiate-Tag]

 Int-Addr:Int-Port ------> Rem-Addr:Rem-Port

 Rem-VTag=0

 Create(Initiate-Tag, Int-Port, 0, Rem-Port, Int-Addr,

 IsRestartDisabled)

 Returns(NAT-State control block)

 Translate To:

 INIT[Initiate-Tag]

 Ext-Addr:Int-Port ------> Rem-Addr:Rem-Port

 Rem-VTag=0

¶

¶

¶

If an outgoing SCTP packet contains an INIT or ASCONF chunk and a

matching NAT binding table entry is found, the packet is processed

as a normal outgoing packet.

It is also possible that a NAT binding table entry with the same

Remote-Port and Internal-Port exists without an Internal-VTag

conflict but there exists a NAT binding table entry with the same

port numbers but a different Internal-Address and the restart

procedure is not disabled. In such a case the packet containing the

INIT chunk MUST be dropped by the NAT function and a packet

containing an ABORT chunk SHOULD be sent to the SCTP host that

originated the packet with the M bit set and 'Port Number Collision'

error cause (see Section 5.1.1 for the format).

The processing of outgoing SCTP packets containing no INIT chunks is

described in the following figure.

The processing of incoming SCTP packets containing an INIT ACK chunk

is illustrated in the following figure. The Lookup() function has as

input the Internal-VTag, Internal-Port, Remote-VTag, and Remote-

Port. It returns the corresponding entry of the NAT binding table

and updates the Remote-VTag by substituting it with the value of the

Initiate-Tag of the INIT ACK chunk. The wildcard character signifies

that the parameter's value is not considered in the Lookup()

function or changed in the Update() function, respectively.

¶

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

Int-Addr:Int-Port ------> Rem-Addr:Rem-Port

 Rem-VTag

 Translate To:

 Ext-Addr:Int-Port ------> Rem-Addr:Rem-Port

 Rem-VTag

¶

¶

In the case where the Lookup function fails because it does not find

an entry, the SCTP packet is dropped. If it succeeds, the Update

routine inserts the Remote-VTag (the Initiate-Tag of the INIT ACK

chunk) in the NAT-State control block.

The processing of incoming SCTP packets containing an ABORT or

SHUTDOWN COMPLETE chunk with the T bit set is illustrated in the

following figure.

For an incoming packet containing an INIT chunk a table lookup is

made only based on the addresses and port numbers. If an entry with

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

 INIT ACK[Initiate-Tag]

 Ext-Addr:Int-Port <---- Rem-Addr:Rem-Port

 Int-VTag

 Lookup(Int-VTag, Int-Port, *, Rem-Port)

 Update(*, *, Initiate-Tag, *)

 Returns(NAT-State control block containing Int-Addr)

 INIT ACK[Initiate-Tag]

 Int-Addr:Int-Port <------ Rem-Addr:Rem-Port

 Int-VTag

¶

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

 Ext-Addr:Int-Port <------ Rem-Addr:Rem-Port

 Rem-VTag

 Lookup(*, Int-Port, Rem-VTag, Rem-Port)

 Returns(NAT-State control block containing Int-Addr)

 Int-Addr:Int-Port <------ Rem-Addr:Rem-Port

 Rem-VTag

¶

a Remote-VTag of zero is found, it is considered a match and the

Remote-VTag is updated. If an entry with a non-matching Remote-VTag

is found or no entry is found, the incoming packet is silently

dropped. If an entry with a matching Remote-VTag is found, the

incoming packet is forwarded. This allows the handling of INIT

collision through NAT functions.

The processing of other incoming SCTP packets is described in the

following figure.

5. Data Formats

This section defines the formats used to support NAT traversal.

Section 5.1 and Section 5.2 describe chunks and error causes sent by

NAT functions and received by SCTP endpoints. Section 5.3 describes

parameters sent by SCTP endpoints and used by NAT functions and SCTP

endpoints.

5.1. Modified Chunks

This section presents existing chunks defined in [RFC4960] for which

additional flags are specified by this document.

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

 Ext-Addr:Int-Port <------ Rem-Addr:Rem-Port

 Int-VTag

 Lookup(Int-VTag, Int-Port, *, Rem-Port)

 Returns(NAT-State control block containing Internal-Address)

 Int-Addr:Int-Port <------ Rem-Addr:Rem-Port

 Int-VTag

¶

¶

¶

5.1.1. Extended ABORT Chunk

The ABORT chunk is extended to add the new 'M bit'. The M bit

indicates to the receiver of the ABORT chunk that the chunk was not

generated by the peer SCTP endpoint, but instead by a middle box

(e.g., NAT).

[NOTE to RFC-Editor: Assignment of M bit to be confirmed by IANA.]

5.1.2. Extended ERROR Chunk

The ERROR chunk defined in [RFC4960] is extended to add the new 'M

bit'. The M bit indicates to the receiver of the ERROR chunk that

the chunk was not generated by the peer SCTP endpoint, but instead

by a middle box.

[NOTE to RFC-Editor: Assignment of M bit to be confirmed by IANA.]

5.2. New Error Causes

This section defines the new error causes added by this document.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 6 | Reserved |M|T| Length |

+-+

\ \

/ zero or more Error Causes /

\ \

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 9 | Reserved |M|T| Length |

+-+

\ \

/ zero or more Error Causes /

\ \

+-+

¶

¶

¶

¶

Cause Code: 2 bytes (unsigned integer)

Cause Length: 2 bytes (unsigned integer)

Chunk: variable length

5.2.1. VTag and Port Number Collision Error Cause

This field holds the IANA defined cause code for the 'VTag and

Port Number Collision' Error Cause. IANA is requested to assign

the value 0x00B0 for this cause code.

This field holds the length in bytes of the error cause. The

value MUST be the length of the Cause-Specific Information plus

4.

The Cause-Specific Information is filled with the chunk that

caused this error. This can be an INIT, INIT ACK, or ASCONF

chunk. Note that if the entire chunk will not fit in the ERROR

chunk or ABORT chunk being sent then the bytes that do not fit

are truncated.

[NOTE to RFC-Editor: Assignment of cause code to be confirmed by

IANA.]

5.2.2. Missing State Error Cause

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 0x00B0 | Cause Length = Variable |

+-+

\ Chunk /

/ \

+-+

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 0x00B1 | Cause Length = Variable |

+-+

\ Original Packet /

/ \

+-+

¶

Cause Code: 2 bytes (unsigned integer)

Cause Length: 2 bytes (unsigned integer)

Original Packet: variable length

Cause Code: 2 bytes (unsigned integer)

Cause Length: 2 bytes (unsigned integer)

Chunk: variable length

This field holds the IANA defined cause code for the 'Missing

State' Error Cause. IANA is requested to assign the value 0x00B1

for this cause code.

This field holds the length in bytes of the error cause. The

value MUST be the length of the Cause-Specific Information plus

4.

The Cause-Specific Information is filled with the IPv4 or IPv6

packet that caused this error. The IPv4 or IPv6 header MUST be

included. Note that if the packet will not fit in the ERROR chunk

or ABORT chunk being sent then the bytes that do not fit are

truncated.

[NOTE to RFC-Editor: Assignment of cause code to be confirmed by

IANA.]

5.2.3. Port Number Collision Error Cause

This field holds the IANA defined cause code for the 'Port Number

Collision' Error Cause. IANA is requested to assign the value

0x00B2 for this cause code.

This field holds the length in bytes of the error cause. The

value MUST be the length of the Cause-Specific Information plus

4.

The Cause-Specific Information is filled with the chunk that

caused this error. This can be an INIT, INIT ACK, or ASCONF

chunk. Note that if the entire chunk will not fit in the ERROR

chunk or ABORT chunk being sent then the bytes that do not fit

are truncated.

[NOTE to RFC-Editor: Assignment of cause code to be confirmed by

IANA.]

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 0x00B2 | Cause Length = Variable |

+-+

\ Chunk /

/ \

+-+

¶

¶

¶

¶

¶

Parameter Type: 2 bytes (unsigned integer)

Parameter Length: 2 bytes (unsigned integer)

5.3. New Parameters

This section defines new parameters and their valid appearance

defined by this document.

5.3.1. Disable Restart Parameter

This parameter is used to indicate that the restart procedure is

requested to be disabled. Both endpoints of an association MUST

include this parameter in the INIT chunk and INIT ACK chunk when

establishing an association and MUST include it in the ASCONF chunk

when adding an address to successfully disable the restart

procedure.

This field holds the IANA defined parameter type for the Disable

Restart Parameter. IANA is requested to assign the value 0xC007

for this parameter type.

This field holds the length in bytes of the parameter. The value

MUST be 4.

[NOTE to RFC-Editor: Assignment of parameter type to be confirmed by

IANA.]

The Disable Restart Parameter MAY appear in INIT, INIT ACK and

ASCONF chunks and MUST NOT appear in any other chunk.

5.3.2. VTags Parameter

This parameter is used to help a NAT function to recover from state

loss.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 0xC007 | Length = 4 |

+-+

¶

¶

¶

¶

¶

¶

Parameter Type: 2 bytes (unsigned integer)

Parameter Length: 2 bytes (unsigned integer)

ASCONF-Request Correlation ID: 4 bytes (unsigned integer)

Internal Verification Tag: 4 bytes (unsigned integer)

Remote Verification Tag: 4 bytes (unsigned integer)

This field holds the IANA defined parameter type for the VTags

Parameter. IANA is requested to assign the value 0xC008 for this

parameter type.

This field holds the length in bytes of the parameter. The value

MUST be 16.

This is an opaque integer assigned by the sender to identify each

request parameter. The receiver of the ASCONF Chunk will copy

this 32-bit value into the ASCONF Response Correlation ID field

of the ASCONF ACK response parameter. The sender of the packet

containing the ASCONF chunk can use this same value in the ASCONF

ACK chunk to find which request the response is for. The receiver

MUST NOT change the value of the ASCONF-Request Correlation ID.

The Verification Tag that the internal host has chosen for the

association. The Verification Tag is a unique 32-bit tag that

accompanies any incoming SCTP packet for this association to the

Internal-Address.

The Verification Tag that the host holding the Remote-Address has

chosen for the association. The VTag is a unique 32-bit tag that

accompanies any outgoing SCTP packet for this association to the

Remote-Address.

[NOTE to RFC-Editor: Assignment of parameter type to be confirmed by

IANA.]

The VTags Parameter MAY appear in ASCONF chunks and MUST NOT appear

in any other chunk.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Parameter Type = 0xC008 | Parameter Length = 16 |

+-+

| ASCONF-Request Correlation ID |

+-+

| Internal Verification Tag |

+-+

| Remote Verification Tag |

+-+

¶

¶

¶

¶

¶

¶

¶

¶

6. Procedures for SCTP Endpoints and NAT Functions

If an SCTP endpoint is behind an SCTP-aware NAT, a number of

problems can arise as it tries to communicate with its peers:

IP addresses can not be included in the SCTP packet. This is

discussed in Section 6.1.

More than one host behind a NAT function could select the same

VTag and source port number when communicating with the same peer

server. This creates a situation where the NAT function will not

be able to tell the two associations apart. This situation is

discussed in Section 6.2.

If an SCTP endpoint is a server communicating with multiple peers

and the peers are behind the same NAT function, then the these

peers cannot be distinguished by the server. This case is

discussed in Section 6.3.

A restart of a NAT function during a conversation could cause a

loss of its state. This problem and its solution is discussed in

Section 6.4.

NAT functions need to deal with SCTP packets being fragmented at

the IP layer. This is discussed in Section 6.5.

An SCTP endpoint can be behind two NAT functions in parallel

providing redundancy. The method to set up this scenario is

discussed in Section 6.6.

The mechanisms to solve these problems require additional chunks and

parameters, defined in this document, and modified handling

procedures from those specified in [RFC4960] as described below.

6.1. Association Setup Considerations for Endpoints

The association setup procedure defined in [RFC4960] allows multi-

homed SCTP endpoints to exchange its IP-addresses by using IPv4 or

IPv6 address parameters in the INIT and INIT ACK chunks. However,

this does not work when NAT functions are present.

Every association setup from a host behind a NAT function MUST NOT

use multiple internal addresses. The INIT chunk MUST NOT contain an

IPv4 Address parameter, IPv6 Address parameter, or Supported Address

Types parameter. The INIT ACK chunk MUST NOT contain any IPv4

Address parameter or IPv6 Address parameter using non-global

addresses. The INIT chunk and the INIT ACK chunk MUST NOT contain

any Host Name parameters.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

If the association is intended to be finally multi-homed, the

procedure in Section 6.6 MUST be used.

The INIT and INIT ACK chunk SHOULD contain the Disable Restart

parameter defined in Section 5.3.1.

6.2. Handling of Internal Port Number and Verification Tag Collisions

Consider the case where two hosts in the Internal-Address space want

to set up an SCTP association with the same service provided by some

remote hosts. This means that the Remote-Port is the same. If they

both choose the same Internal-Port and Internal-VTag, the NAT

function cannot distinguish between incoming packets anymore.

However, this is unlikely. The Internal-VTags are chosen at random

and if the Internal-Ports are also chosen from the ephemeral port

range at random (see [RFC6056]) this gives a 46-bit random number

that has to match.

The same can happen with the Remote-VTag when a packet containing an

INIT ACK chunk or an ASCONF chunk is processed by the NAT function.

6.2.1. NAT Function Considerations

If the NAT function detects a collision of internal port numbers and

verification tags, it SHOULD send a packet containing an ABORT chunk

with the M bit set if the collision is triggered by a packet

containing an INIT or INIT ACK chunk. If such a collision is

triggered by a packet containing an ASCONF chunk, it SHOULD send a

packet containing an ERROR chunk with the M bit. The M bit is a new

bit defined by this document to express to SCTP that the source of

this packet is a "middle" box, not the peer SCTP endpoint (see

Section 5.1.1). If a packet containing an INIT ACK chunk triggers

the collision, the corresponding packet containing the ABORT chunk

MUST contain the same source and destination address and port

numbers as the packet containing the INIT ACK chunk. If a packet

containing an INIT chunk or an ASCONF chunk, the source and

destination address and port numbers MUST be swapped.

The sender of the packet containing an ERROR or ABORT chunk MUST

include the error cause with cause code 'VTag and Port Number

Collision' (see Section 5.2.1).

6.2.2. Endpoint Considerations

The sender of the packet containing the INIT chunk or the receiver

of a packet containing the INIT ACK chunk, upon reception of a

packet containing an ABORT chunk with M bit set and the appropriate

error cause code for colliding NAT binding table state is included,

SHOULD reinitiate the association setup procedure after choosing a

¶

¶

¶

¶

¶

¶

new initiate tag, if the association is in COOKIE-WAIT state. In any

other state, the SCTP endpoint MUST NOT respond.

The sender of the packet containing the ASCONF chunk, upon reception

of a packet containing an ERROR chunk with M bit set, MUST stop

adding the path to the association.

6.3. Handling of Internal Port Number Collisions

When two SCTP hosts are behind an SCTP-aware NAT it is possible that

two SCTP hosts in the Internal-Address space will want to set up an

SCTP association with the same server running on the same remote

host. If the two hosts choose the same internal port, this is

considered an internal port number collision.

For the NAT function, appropriate tracking can be performed by

assuring that the VTags are unique between the two hosts.

6.3.1. NAT Function Considerations

The NAT function, when processing the packet containing the INIT ACK

chunk, SHOULD note in its NAT binding table if the association

supports the disable restart extension. This note is used when

establishing future associations (i.e. when processing a packet

containing an INIT chunk from an internal host) to decide if the

connection can be allowed. The NAT function does the following when

processing a packet containing an INIT chunk:

If the packet containing the INIT chunk is originating from an

internal port to a remote port for which the NAT function has no

matching NAT binding table entry, it MUST allow the packet

containing the INIT chunk creating an NAT binding table entry.

If the packet containing the INIT chunk matches an existing NAT

binding table entry, it MUST validate that the disable restart

feature is supported and, if it does, allow the packet containing

the INIT chunk to be forwarded.

If the disable restart feature is not supported, the NAT function

SHOULD send a packet containing an ABORT chunk with the M bit

set.

The 'Port Number Collision' error cause (see Section 5.2.3) MUST be

included in the ABORT chunk sent in response to the packet

containing an INIT chunk.

If the collision is triggered by a packet containing an ASCONF

chunk, a packet containing an ERROR chunk with the 'Port Number

Collision' error cause SHOULD be sent in response to the packet

containing the ASCONF chunk.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

6.3.2. Endpoint Considerations

For the remote SCTP server this means that the Remote-Port and the

Remote-Address are the same. If they both have chosen the same

Internal-Port the server cannot distinguish between both

associations based on the address and port numbers. For the server

it looks like the association is being restarted. To overcome this

limitation the client sends a Disable Restart parameter in the INIT

chunk.

When the server receives this parameter it does the following:

It MUST include a Disable Restart parameter in the INIT ACK to

inform the client that it will support the feature.

It MUST disable the restart procedures defined in [RFC4960] for

this association.

Servers that support this feature will need to be capable of

maintaining multiple connections to what appears to be the same peer

(behind the NAT function) differentiated only by the VTags.

6.4. Handling of Missing State

6.4.1. NAT Function Considerations

If the NAT function receives a packet from the internal network for

which the lookup procedure does not find an entry in the NAT binding

table, a packet containing an ERROR chunk SHOULD be sent back with

the M bit set. The source address of the packet containing the ERROR

chunk MUST be the destination address of the packet received from

the internal network. The verification tag is reflected and the T

bit is set. Such a packet containing an ERROR chunk SHOULD NOT be

sent if the received packet contains an ASCONF chunk with the VTags

parameter or an ABORT, SHUTDOWN COMPLETE or INIT ACK chunk. A packet

containing an ERROR chunk MUST NOT be sent if the received packet

contains an ERROR chunk with the M bit set. In any case, the packet

SHOULD NOT be forwarded to the remote address.

If the NAT function receives a packet from the internal network for

which it has no NAT binding table entry and the packet contains an

ASCONF chunk with the VTags parameter, the NAT function MUST update

its NAT binding table according to the verification tags in the

VTags parameter and, if present, the Disable Restart parameter.

When sending a packet containing an ERROR chunk, the error cause

'Missing State' (see Section 5.2.2) MUST be included and the M bit

of the ERROR chunk MUST be set (see Section 5.1.2).

¶

¶

*

¶

*

¶

¶

¶

¶

¶

6.4.2. Endpoint Considerations

Upon reception of this packet containing the ERROR chunk by an SCTP

endpoint the receiver takes the following actions:

It SHOULD validate that the verification tag is reflected by

looking at the VTag that would have been included in an outgoing

packet. If the validation fails, discard the received packet

containing the ERROR chunk.

It SHOULD validate that the peer of the SCTP association supports

the dynamic address extension. If the validation fails, discard

the received packet containing the ERROR chunk.

It SHOULD generate a packet containing a new ASCONF chunk

containing the VTags parameter (see Section 5.3.2) and the

Disable Restart parameter (see Section 5.3.1) if the association

is using the disable restart feature. By processing this packet

the NAT function can recover the appropriate state. The

procedures for generating an ASCONF chunk can be found in

[RFC5061].

The peer SCTP endpoint receiving such a packet containing an ASCONF

chunk SHOULD add the address and respond with an acknowledgment if

the address is new to the association (following all procedures

defined in [RFC5061]). If the address is already part of the

association, the SCTP endpoint MUST NOT respond with an error, but

instead SHOULD respond with a packet containing an ASCONF ACK chunk

acknowledging the address and take no action (since the address is

already in the association).

Note that it is possible that upon receiving a packet containing an

ASCONF chunk containing the VTags parameter the NAT function will

realize that it has an 'Internal Port Number and Verification Tag

collision'. In such a case the NAT function SHOULD send a packet

containing an ERROR chunk with the error cause code set to 'VTag and

Port Number Collision' (see Section 5.2.1).

If an SCTP endpoint receives a packet containing an ERROR chunk with

'Internal Port Number and Verification Tag collision' as the error

cause and the packet in the Error Chunk contains an ASCONF with the

VTags parameter, careful examination of the association is

necessary. The endpoint does the following:

It MUST validate that the verification tag is reflected by

looking at the VTag that would have been included in the outgoing

packet. If the validation fails, it MUST discard the packet.

It MUST validate that the peer of the SCTP association supports

the dynamic address extension. If the peer does not support this

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

extension, it MUST discard the received packet containing the

ERROR chunk.

If the association is attempting to add an address (i.e.

following the procedures in Section 6.6) then the endpoint MUST

NOT consider the address part of the association and SHOULD make

no further attempt to add the address (i.e. cancel any ASCONF

timers and remove any record of the path), since the NAT function

has a VTag collision and the association cannot easily create a

new VTag (as it would if the error occurred when sending a packet

containing an INIT chunk).

If the endpoint has no other path, i.e. the procedure was

executed due to missing a state in the NAT function, then the

endpoint MUST abort the association. This would occur only if the

local NAT function restarted and accepted a new association

before attempting to repair the missing state (Note that this is

no different than what happens to all TCP connections when a NAT

function looses its state).

6.5. Handling of Fragmented SCTP Packets by NAT Functions

SCTP minimizes the use of IP-level fragmentation. However, it can

happen that using IP-level fragmentation is needed to continue an

SCTP association. For example, if the path MTU is reduced and there

are still some DATA chunk in flight, which require packets larger

than the new path MTU. If IP-level fragmentation can not be used,

the SCTP association will be terminated in a non-graceful way. See

[RFC8900] for more information about IP fragmentation.

Therefore, a NAT function MUST be able to handle IP-level fragmented

SCTP packets. The fragments MAY arrive in any order.

When an SCTP packet can not be forwarded by the NAT function due to

MTU issues and the IP header forbids fragmentation, the NAT MUST

send back a "Fragmentation needed and DF set" ICMPv4 or PTB ICMPv6

message to the internal host. This allows for a faster recovery from

this packet drop.

6.6. Multi Point Traversal Considerations for Endpoints

If a multi-homed SCTP endpoint behind a NAT function connects to a

peer, it MUST first set up the association single-homed with only

one address causing the first NAT function to populate its state.

Then it SHOULD add each IP address using packets containing ASCONF

chunks sent via their respective NAT functions. The address used in

the Add IP address parameter is the wildcard address (0.0.0.0 or ::

0) and the address parameter in the ASCONF chunk SHOULD also contain

the VTags parameter and optionally the Disable Restart parameter.

¶

*

¶

*

¶

¶

¶

¶

¶

7. SCTP NAT YANG Module

This section defines a YANG module for SCTP NAT.

The terminology for describing YANG data models is defined in

[RFC7950]. The meaning of the symbols in tree diagrams is defined

in [RFC8340].

7.1. Tree Structure

This module augments NAT YANG module [RFC8512] with SCTP specifics.

The module supports both classical SCTP NAT (that is, rewrite port

numbers) and SCTP-specific variant where the ports numbers are not

altered. The YANG "feature" is used to indicate whether SCTP-

specific variant is supported.

The tree structure of the SCTP NAT YANG module is provided below:

Concretely, the SCTP NAT YANG module augments the NAT YANG module

(policy, in particular) with the following:

The sctp-timeout is used to control the SCTP inactivity timeout.

That is, the time an SCTP mapping will stay active without SCTP

packets traversing the NAT. This timeout can be set only for

SCTP. Hence, "/nat:nat/nat:instances/nat:instance/nat:policy/

nat:transport-protocols/nat:protocol-id" MUST be set to '132'

(SCTP).

In addition, the SCTP NAT YANG module augments the mapping entry

with the following parameters defined in Section 3. These parameters

apply only for SCTP NAT mapping entries (i.e., "/nat/instances/

instance/mapping-table/mapping-entry/transport-protocol" MUST be set

to '132');

The Internal Verification Tag (Int-VTag)

The Remote Verification Tag (Rem-VTag)

¶

¶

¶

¶

module: ietf-nat-sctp

 augment /nat:nat/nat:instances/nat:instance

 /nat:policy/nat:timers:

 +--rw sctp-timeout? uint32

 augment /nat:nat/nat:instances/nat:instance

 /nat:mapping-table/nat:mapping-entry:

 +--rw int-VTag? uint32 {sctp-nat}?

 +--rw rem-VTag? uint32 {sctp-nat}?

¶

¶

*

¶

¶

* ¶

* ¶

7.2. YANG Module

<CODE BEGINS> file "ietf-nat-sctp@2020-11-02.yang"

module ietf-nat-sctp {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-nat-sctp";

 prefix nat-sctp;

 import ietf-nat {

 prefix nat;

 reference

 "RFC 8512: A YANG Module for Network Address Translation

 (NAT) and Network Prefix Translation (NPT)";

 }

 organization

 "IETF TSVWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/tsvwg/>

 WG List: <mailto:tsvwg@ietf.org>

 Author: Mohamed Boucadair

 <mailto:mohamed.boucadair@orange.com>";

 description

 "This module augments NAT YANG module with Stream Control

 Transmission Protocol (SCTP) specifics. The extension supports

 both a classical SCTP NAT (that is, rewrite port numbers)

 and a, SCTP-specific variant where the ports numbers are

 not altered.

 Copyright (c) 2020 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 revision 2019-11-18 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: Stream Control Transmission Protocol (SCTP)

 Network Address Translation Support";

 }

 feature sctp-nat {

 description

 "This feature means that SCTP-specific variant of NAT

 is supported. That is, avoid rewriting port numbers.";

 reference

 "Section 4.3 of RFC XXXX.";

 }

 augment "/nat:nat/nat:instances/nat:instance"

 + "/nat:policy/nat:timers" {

 when "/nat:nat/nat:instances/nat:instance"

 + "/nat:policy/nat:transport-protocols"

 + "/nat:protocol-id = 132";

 description

 "Extends NAT policy with a timeout for SCTP mapping

 entries.";

 leaf sctp-timeout {

 type uint32;

 units "seconds";

 description

 "SCTP inactivity timeout. That is, the time an SCTP

 mapping entry will stay active without packets

 traversing the NAT.";

 }

 }

 augment "/nat:nat/nat:instances/nat:instance"

 + "/nat:mapping-table/nat:mapping-entry" {

 when "nat:transport-protocol = 132";

 if-feature "sctp-nat";

 description

 "Extends the mapping entry with SCTP specifics.";

 leaf int-VTag {

 type uint32;

 description

 "The Internal Verification Tag that the internal

 host has chosen for this communication.";

 }

 leaf rem-VTag {

 type uint32;

 description

 "The Remote Verification Tag that the remote

 peer has chosen for this communication.";

 }

 }

}

<CODE ENDS>

8. Various Examples of NAT Traversals

Please note that this section is informational only.

The addresses being used in the following examples are IPv4

addresses for private-use networks and for documentation as

specified in [RFC6890]. However, the method described here is not

limited to this NAT44 case.

The NAT binding table entries shown in the following examples do not

include the flag indicating whether the restart procedure is

supported or not. This flag is not relevant for these examples.

8.1. Single-homed Client to Single-homed Server

The internal client starts the association with the remote server

via a four-way-handshake. Host A starts by sending a packet

containing an INIT chunk.

A NAT binding tabled entry is created, the source address is

substituted and the packet is sent on:

¶

¶

¶

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 1234]

10.0.0.1:1 ------> 203.0.113.1:2

 Rem-VTtag = 0

¶

¶

Host B receives the packet containing an INIT chunk and sends a

packet containing an INIT ACK chunk with the NAT's Remote-address as

destination address.

The handshake finishes with a COOKIE ECHO acknowledged by a COOKIE

ACK.

 NAT function creates entry:

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 0 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 1234]

 192.0.2.1:1 ------------------------> 203.0.113.1:2

 Rem-VTtag = 0

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

 INIT ACK[Initiate-Tag = 5678]

 192.0.2.1:1 <----------------------- 203.0.113.1:2

 Int-VTag = 1234

NAT function updates entry:

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 5678 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

INIT ACK[Initiate-Tag = 5678]

10.0.0.1:1 <------ 203.0.113.1:2

 Int-VTag = 1234

¶

¶

8.2. Single-homed Client to Multi-homed Server

The internal client is single-homed whereas the remote server is

multi-homed. The client (Host A) sends a packet containing an INIT

chunk like in the single-homed case.

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <------> | NAT | <------> | Network | <------> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\---/

 COOKIE ECHO

10.0.0.1:1 ------> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ECHO

 192.0.2.1:1 -----------------------> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ACK

 192.0.2.1:1 <----------------------- 203.0.113.1:2

 Int-VTag = 1234

 COOKIE ACK

10.0.0.1:1 <------ 203.0.113.1:2

 Int-VTag = 1234

¶

¶

 +--------+

 /--\/--\ /-|Router 1| \

+------+ +-----+ / \ / +--------+ \ +------+

| Host | <-----> | NAT | <-> | Network | == =| Host |

| A | +-----+ \ / \ +--------+ / | B |

+------+ \--/\--/ \-|Router 2|-/ +------+

 +--------+

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 1234]

10.0.0.1:1 ---> 203.0.113.1:2

 Rem-VTag = 0

¶

NAT function creates entry:

The server (Host B) includes its two addresses in the INIT ACK

chunk.

The NAT function does not need to change the NAT binding table for

the second address:

¶

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 0 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 1234]

 192.0.2.1:1 --------------------------> 203.0.113.1:2

 Rem-VTag = 0

¶

¶

 +--------+

 /--\/--\ /-|Router 1| \

+------+ +-----+ / \ / +--------+ \ +------+

| Host | <-----> | NAT | <-> | Network | == =| Host |

| A | +-----+ \ / \ +--------+ / | B |

+------+ \--/\--/ \-|Router 2|-/ +------+

 +--------+

 INIT ACK[Initiate-tag = 5678, IP-Addr = 203.0.113.129]

 192.0.2.1:1 <-------------------------- 203.0.113.1:2

 Int-VTag = 1234

¶

¶

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 5678 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

INIT ACK[Initiate-Tag = 5678]

10.0.0.1:1 <--- 203.0.113.1:2

 Int-VTag = 1234

¶

The handshake finishes with a COOKIE ECHO acknowledged by a COOKIE

ACK.

8.3. Multihomed Client and Server

The client (Host A) sends a packet containing an INIT chunk to the

server (Host B), but does not include the second address.

¶

 +--------+

 /--\/--\ /-|Router 1| \

+------+ +-----+ / \ / +--------+ \ +------+

| Host | <-----> | NAT | <-> | Network | == =| Host |

| A | +-----+ \ / \ +--------+ / | B |

+------+ \--/\--/ \-|Router 2|-/ +------+

 +--------+

 COOKIE ECHO

10.0.0.1:1 ---> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ECHO

 192.0.2.1:1 --------------------------> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ACK

 192.0.2.1:1 <-------------------------- 203.0.113.1:2

 Int-VTag = 1234

 COOKIE ACK

10.0.0.1:1 <--- 203.0.113.1:2

 Int-VTag = 1234

¶

¶

NAT function 1 creates entry:

Host B includes its second address in the INIT ACK.

 +-------+

 /--| NAT 1 |--\ /--\/--\

+------+ / +-------+ \ / \ +--------+

| Host |=== ====| Network |====| Host B |

| A | \ +-------+ / \ / +--------+

+------+ \--| NAT 2 |--/ \--/\--/

 +-------+

 +---------+--------+----------+--------+-----------+

NAT 1 | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 1234]

10.0.0.1:1 --------> 203.0.113.1:2

 Rem-VTag = 0

¶

¶

 +---------+--------+----------+--------+-----------+

NAT 1 | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 0 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 1234]

 192.0.2.1:1 ---------------------> 203.0.113.1:2

 Rem-VTag = 0

¶

¶

 +-------+

 /--------| NAT 1 |--------\ /--\/--\

+------+ / +-------+ \ / \ +--------+

| Host |=== ====| Network |===| Host B |

| A | \ +-------+ / \ / +--------+

+------+ \--------| NAT 2 |--------/ \--/\--/

 +-------+

 INIT ACK[Initiate-Tag = 5678, IP-Addr = 203.0.113.129]

 192.0.2.1:1 <----------------------- 203.0.113.1:2

 Int-VTag = 1234

¶

NAT function 1 does not need to update the NAT binding table for the

second address:

The handshake finishes with a COOKIE ECHO acknowledged by a COOKIE

ACK.

Host A announces its second address in an ASCONF chunk. The address

parameter contains a wildcard address (0.0.0.0 or ::0) to indicate

that the source address has to be be added. The address parameter

¶

 +---------+--------+----------+--------+-----------+

NAT 1 | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 5678 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT ACK[Initiate-Tag = 5678]

10.0.0.1:1 <-------- 203.0.113.1:2

 Int-VTag = 1234

¶

¶

 +-------+

 /--------| NAT 1 |--------\ /--\/--\

+------+ / +-------+ \ / \ +--------+

| Host |=== ====| Network |===| Host B |

| A | \ +-------+ / \ / +--------+

+------+ \--------| NAT 2 |--------/ \--/\--/

 +-------+

 COOKIE ECHO

10.0.0.1:1 --------> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ECHO

 192.0.2.1:1 ------------------> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ACK

 192.0.2.1:1 <------------------ 203.0.113.1:2

 Int-VTag = 1234

 COOKIE ACK

10.0.0.1:1 <------- 203.0.113.1:2

 Int-VTag = 1234

¶

within the ASCONF chunk will also contain the pair of VTags (remote

and internal) so that the NAT function can populate its NAT binding

table entry completely with this single packet.

NAT function 2 creates a complete entry:

8.4. NAT Function Loses Its State

Association is already established between Host A and Host B, when

the NAT function loses its state and obtains a new external address.

Host A sends a DATA chunk to Host B.

¶

 +-------+

 /--------| NAT 1 |--------\ /--\/--\

+------+ / +-------+ \ / \ +--------+

| Host |=== ====| Network |===| Host B |

| A | \ +-------+ / \ / +--------+

+------+ \--------| NAT 2 |--------/ \--/\--/

 +-------+

ASCONF [ADD-IP=0.0.0.0, INT-VTag=1234, Rem-VTag = 5678]

10.1.0.1:1 --------> 203.0.113.129:2

 Rem-VTag = 5678

¶

¶

 +---------+--------+----------+--------+-----------+

NAT 2 | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 5678 | 2 | 10.1.0.1 |

 +---------+--------+----------+--------+-----------+

 ASCONF [ADD-IP, Int-VTag=1234, Rem-VTag = 5678]

 192.0.2.129:1 -------------------> 203.0.113.129:2

 Rem-VTag = 5678

 ASCONF ACK

 192.0.2.129:1 <------------------- 203.0.113.129:2

 Int-VTag = 1234

 ASCONF ACK

10.1.0.1:1 <----- 203.0.113.129:2

 Int-VTag = 1234

¶

¶

The NAT function cannot find an entry in the NAT binding table for

the association. It sends a packet containing an ERROR chunk with

the M bit set and the cause "NAT state missing".

On reception of the packet containing the ERROR chunk, Host A sends

a packet containing an ASCONF chunk indicating that the former

information has to be deleted and the source address of the actual

packet added.

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <----------> | NAT | <----> | Network | <----> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\--/

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 DATA

10.0.0.1:1 ----------> 203.0.113.1:2

 Rem-VTag = 5678

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <----------> | NAT | <----> | Network | <----> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\--/

 ERROR [M bit, NAT state missing]

10.0.0.1:1 <---------- 203.0.113.1:2

 Rem-VTag = 5678

¶

¶

Host B adds the new source address to this association and deletes

all other addresses from this association.

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <----------> | NAT | <----> | Network | <----> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\--/

ASCONF [ADD-IP, DELETE-IP, Int-VTag=1234, Rem-VTag = 5678]

10.0.0.1:1 ----------> 203.0.113.129:2

 Rem-VTag = 5678

 +---------+--------+----------+--------+-----------+

NAT | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 5678 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

 ASCONF [ADD-IP, DELETE-IP, Int-VTag=1234, Rem-VTag = 5678]

 192.0.2.2:1 -----------------> 203.0.113.129:2

 Rem-VTag = 5678

¶

¶

 /--\/--\

+--------+ +-----+ / \ +--------+

| Host A | <----------> | NAT | <----> | Network | <----> | Host B |

+--------+ +-----+ \ / +--------+

 \--/\--/

 ASCONF ACK

 192.0.2.2:1 <----------------- 203.0.113.129:2

 Int-VTag = 1234

 ASCONF ACK

10.1.0.1:1 <---------- 203.0.113.129:2

 Int-VTag = 1234

 DATA

10.0.0.1:1 ----------> 203.0.113.1:2

 Rem-VTag = 5678

 DATA

 192.0.2.2:1 -----------------> 203.0.113.129:2

 Rem-VTag = 5678

¶

8.5. Peer-to-Peer Communications

If two hosts, each of them behind a NAT function, want to

communicate with each other, they have to get knowledge of the

peer's external address. This can be achieved with a so-called

rendezvous server. Afterwards the destination addresses are

external, and the association is set up with the help of the INIT

collision. The NAT functions create their entries according to their

internal peer's point of view. Therefore, NAT function A's Internal-

VTag and Internal-Port are NAT function B's Remote-VTag and Remote-

Port, respectively. The naming (internal/remote) of the verification

tag in the packet flow is done from the sending host's point of

view.

NAT function A creates entry:

¶

 Internal | External External | Internal

 | |

 | /--\/---\ |

+--------+ +-------+ / \ +-------+ +--------+

| Host A |<--->| NAT A |<-->| Network |<-->| NAT B |<--->| Host B |

+--------+ +-------+ \ / +-------+ +--------+

 | \--/\---/ |

NAT Binding Tables

 +---------+--------+----------+--------+-----------+

NAT A | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 +---------+--------+----------+--------+-----------+

NAT B | Int | Int | Rem | Rem | Int |

 | v-tag | port | v-tag | port | Addr |

 +---------+--------+----------+--------+-----------+

INIT[Initiate-Tag = 1234]

10.0.0.1:1 --> 203.0.113.1:2

 Rem-VTag = 0

¶

¶

NAT function B processes the packet containing the INIT chunk, but

cannot find an entry. The SCTP packet is silently discarded and

leaves the NAT binding table of NAT function B unchanged.

Now Host B sends a packet containing an INIT chunk, which is

processed by NAT function B. Its parameters are used to create an

entry.

 +---------+--------+----------+--------+-----------+

NAT A | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 0 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 1234]

 192.0.2.1:1 ----------------> 203.0.113.1:2

 Rem-VTag = 0

¶

¶

 +---------+--------+----------+--------+-----------+

NAT B | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

¶

¶

 Internal | External External | Internal

 | |

 | /--\/---\ |

+--------+ +-------+ / \ +-------+ +--------+

| Host A |<--->| NAT A |<-->| Network |<-->| NAT B |<--->| Host B |

+--------+ +-------+ \ / +-------+ +--------+

 | \--/\---/ |

 INIT[Initiate-Tag = 5678]

 192.0.2.1:1 <-- 10.1.0.1:2

 Rem-VTag = 0

 +---------+--------+----------+--------+-----------+

NAT B | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 5678 | 2 | 0 | 1 | 10.1.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-Tag = 5678]

 192.0.2.1:1 <--------------- 203.0.113.1:2

 Rem-VTag = 0

¶

NAT function A processes the packet containing the INIT chunk. As

the outgoing packet containing an INIT chunk of Host A has already

created an entry, the entry is found and updated:

Host A sends a packet containing an INIT ACK chunk, which can pass

through NAT function B:

¶

 Internal | External External | Internal

 | |

 | /--\/---\ |

+--------+ +-------+ / \ +-------+ +--------+

| Host A |<--->| NAT A |<-->| Network |<-->| NAT B |<--->| Host B |

+--------+ +-------+ \ / +-------+ +--------+

 | \--/\---/ |

 VTag != Int-VTag, but Rem-VTag == 0, find entry.

 +---------+--------+----------+--------+-----------+

NAT A | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 1234 | 1 | 5678 | 2 | 10.0.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT[Initiate-tag = 5678]

10.0.0.1:1 <-- 203.0.113.1:2

 Rem-VTag = 0

¶

¶

The lookup for COOKIE ECHO and COOKIE ACK is successful.

 Internal | External External | Internal

 | |

 | /--\/---\ |

+--------+ +-------+ / \ +-------+ +--------+

| Host A |<--->| NAT A |<-->| Network |<-->| NAT B |<--->| Host B |

+--------+ +-------+ \ / +-------+ +--------+

 | \--/\---/ |

INIT ACK[Initiate-Tag = 1234]

10.0.0.1:1 --> 203.0.113.1:2

 Rem-VTag = 5678

 INIT ACK[Initiate-Tag = 1234]

 192.0.2.1:1 ----------------> 203.0.113.1:2

 Rem-VTag = 5678

 NAT function B updates entry:

 +---------+--------+----------+--------+-----------+

NAT B | Int | Int | Rem | Rem | Int |

 | VTag | Port | VTag | Port | Addr |

 +---------+--------+----------+--------+-----------+

 | 5678 | 2 | 1234 | 1 | 10.1.0.1 |

 +---------+--------+----------+--------+-----------+

 INIT ACK[Initiate-Tag = 1234]

 192.0.2.1:1 --> 10.1.0.1:2

 Rem-VTag = 5678

¶

¶

9. Socket API Considerations

This section describes how the socket API defined in [RFC6458] is

extended to provide a way for the application to control NAT

friendliness.

Please note that this section is informational only.

A socket API implementation based on [RFC6458] is extended by

supporting one new read/write socket option.

9.1. Get or Set the NAT Friendliness (SCTP_NAT_FRIENDLY)

This socket option uses the option_level IPPROTO_SCTP and the

option_name SCTP_NAT_FRIENDLY. It can be used to enable/disable the

 Internal | External External | Internal

 | |

 | /--\/---\ |

+--------+ +-------+ / \ +-------+ +--------+

| Host A |<--->| NAT A |<-->| Network |<-->| NAT B |<--->| Host B |

+--------+ +-------+ \ / +-------+ +--------+

 | \--/\---/ |

 COOKIE ECHO

 192.0.2.1:1 <-- 10.1.0.1:2

 Rem-VTag = 1234

 COOKIE ECHO

 192.0.2.1:1 <------------- 203.0.113.1:2

 Rem-VTag = 1234

 COOKIE ECHO

10.0.0.1:1 <-- 203.0.113.1:2

 Rem-VTag = 1234

 COOKIE ACK

10.0.0.1:1 --> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ACK

 192.0.2.1:1 ----------------> 203.0.113.1:2

 Rem-VTag = 5678

 COOKIE ACK

 192.0.2.1:1 --> 10.1.0.1:2

 Rem-VTag = 5678

¶

¶

¶

¶

assoc_id

assoc_value

NAT friendliness for future associations and retrieve the value for

future and specific ones.

This parameter is ignored for one-to-one style sockets. For one-

to-many style sockets the application can fill in an association

identifier or SCTP_FUTURE_ASSOC for this query. It is an error to

use SCTP_{CURRENT|ALL}_ASSOC in assoc_id.

A non-zero value indicates a NAT-friendly mode.

10. IANA Considerations

[NOTE to RFC-Editor: "RFCXXXX" is to be replaced by the RFC number

you assign this document.]

[NOTE to RFC-Editor: The requested values for the chunk type and the

chunk parameter types are tentative and to be confirmed by IANA.]

This document (RFCXXXX) is the reference for all registrations

described in this section. The requested changes are described

below.

10.1. New Chunk Flags for Two Existing Chunk Types

As defined in [RFC6096] two chunk flags have to be assigned by IANA

for the ERROR chunk. The requested value for the T bit is 0x01 and

for the M bit is 0x02.

This requires an update of the "ERROR Chunk Flags" registry for

SCTP:

ERROR Chunk Flags

Chunk Flag Value Chunk Flag Name Reference

0x01 T bit [RFCXXXX]

0x02 M bit [RFCXXXX]

0x04 Unassigned

0x08 Unassigned

0x10 Unassigned

0x20 Unassigned

0x40 Unassigned

0x80 Unassigned

¶

struct sctp_assoc_value {

 sctp_assoc_t assoc_id;

 uint32_t assoc_value;

};

¶

¶

¶

¶

¶

¶

¶

¶

¶

Table 2

As defined in [RFC6096] one chunk flag has to be assigned by IANA

for the ABORT chunk. The requested value of the M bit is 0x02.

This requires an update of the "ABORT Chunk Flags" registry for

SCTP:

ABORT Chunk Flags

Chunk Flag Value Chunk Flag Name Reference

0x01 T bit [RFC4960]

0x02 M bit [RFCXXXX]

0x04 Unassigned

0x08 Unassigned

0x10 Unassigned

0x20 Unassigned

0x40 Unassigned

0x80 Unassigned

Table 3

10.2. Three New Error Causes

Three error causes have to be assigned by IANA. It is requested to

use the values given below.

This requires three additional lines in the "Error Cause Codes"

registry for SCTP:

Error Cause Codes

Value Cause Code Reference

176 VTag and Port Number Collision [RFCXXXX]

177 Missing State [RFCXXXX]

178 Port Number Collision [RFCXXXX]

Table 4

10.3. Two New Chunk Parameter Types

Two chunk parameter types have to be assigned by IANA. IANA is

requested to assign these values from the pool of parameters with

the upper two bits set to '11' and to use the values given below.

This requires two additional lines in the "Chunk Parameter Types"

registry for SCTP:

Chunk Parameter Types

¶

¶

¶

¶

¶

¶

¶

¶

¶

ID Value Chunk Parameter Type Reference

49159 Disable Restart (0xC007) [RFCXXXX]

49160 VTags (0xC008) [RFCXXXX]

Table 5

10.4. One New URI

An URI in the "ns" subregistry within the "IETF XML" registry has to

be assigned by IANA ([RFC3688]):

10.5. One New YANG Module

An YANG module in the "YANG Module Names" subregistry within the

"YANG Parameters" registry has to be assigned by IANA ([RFC6020]):

11. Security Considerations

State maintenance within a NAT function is always a subject of

possible Denial Of Service attacks. This document recommends that at

a minimum a NAT function runs a timer on any SCTP state so that old

association state can be cleaned up.

Generic issues related to address sharing are discussed in [RFC6269]

and apply to SCTP as well.

For SCTP endpoints not disabling the restart procedure, this

document does not add any additional security considerations to the

ones given in [RFC4960], [RFC4895], and [RFC5061].

SCTP endpoints disabling the restart procedure, need to monitor the

status of all associations to mitigate resource exhaustion attacks

by establishing a lot of associations sharing the same IP addresses

and port numbers.

In any case, SCTP is protected by the verification tags and the

usage of [RFC4895] against off-path attackers.

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-nat-sctp

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

¶

¶

 Name: ietf-nat-sctp

 Namespace: urn:ietf:params:xml:ns:yang:ietf-nat-sctp

 Maintained by IANA: N

 Prefix: nat-sctp

 Reference: RFCXXXX

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3688]

[RFC4895]

[RFC4960]

[RFC5061]

For IP-level fragmentation and reassembly related issues see

[RFC4963].

The YANG module specified in this document defines a schema for data

that is designed to be accessed via network management protocols

such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF or

RESTCONF users to a preconfigured subset of all available NETCONF or

RESTCONF protocol operations and content.

All data nodes defined in the YANG module that can be created,

modified, and deleted (i.e., config true, which is the default) are

considered sensitive. Write operations (e.g., edit-config) applied

to these data nodes without proper protection can negatively affect

network operations. An attacker who is able to access the SCTP NAT

function can undertake various attacks, such as:

Setting a low timeout for SCTP mapping entries to cause failures

to deliver incoming SCTP packets.

Instantiating mapping entries to cause NAT collision.

12. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,

"Authenticated Chunks for the Stream Control Transmission

Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August

2007, <https://www.rfc-editor.org/info/rfc4895>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/info/rfc4960>.

Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.

Kozuka, "Stream Control Transmission Protocol (SCTP)

¶

¶

¶

¶

*

¶

* ¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4895
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960

[RFC6020]

[RFC6096]

[RFC8174]

[RFC8512]

[DOI_10.1145_1496091.1496095]

[RFC0793]

[RFC3022]

[RFC4787]

[RFC4963]

Dynamic Address Reconfiguration", RFC 5061, DOI 10.17487/

RFC5061, September 2007, <https://www.rfc-editor.org/

info/rfc5061>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Tuexen, M. and R. Stewart, "Stream Control Transmission

Protocol (SCTP) Chunk Flags Registration", RFC 6096, DOI

10.17487/RFC6096, January 2011, <https://www.rfc-

editor.org/info/rfc6096>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Boucadair, M., Ed., Sivakumar, S., Jacquenet, C.,

Vinapamula, S., and Q. Wu, "A YANG Module for Network

Address Translation (NAT) and Network Prefix Translation

(NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019,

<https://www.rfc-editor.org/info/rfc8512>.

13. Informative References

Hayes, D., But, J., and G. Armitage,

"Issues with network address translation for SCTP", ACM

SIGCOMM Computer Communication Review Vol. 39, pp. 23-33,

DOI 10.1145/1496091.1496095, December 2008, <https://

doi.org/10.1145/1496091.1496095>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Srisuresh, P. and K. Egevang, "Traditional IP Network

Address Translator (Traditional NAT)", RFC 3022, DOI

10.17487/RFC3022, January 2001, <https://www.rfc-

editor.org/info/rfc3022>.

Audet, F., Ed. and C. Jennings, "Network Address

Translation (NAT) Behavioral Requirements for Unicast

UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January

2007, <https://www.rfc-editor.org/info/rfc4787>.

Heffner, J., Mathis, M., and B. Chandler, "IPv4

Reassembly Errors at High Data Rates", RFC 4963, DOI

10.17487/RFC4963, July 2007, <https://www.rfc-editor.org/

info/rfc4963>.

https://www.rfc-editor.org/info/rfc5061
https://www.rfc-editor.org/info/rfc5061
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6096
https://www.rfc-editor.org/info/rfc6096
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8512
https://doi.org/10.1145/1496091.1496095
https://doi.org/10.1145/1496091.1496095
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc3022
https://www.rfc-editor.org/info/rfc3022
https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc4963

[RFC5382]

[RFC5508]

[RFC6056]

[RFC6146]

[RFC6241]

[RFC6242]

[RFC6269]

[RFC6333]

[RFC6458]

[RFC6890]

Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and

P. Srisuresh, "NAT Behavioral Requirements for TCP", BCP

142, RFC 5382, DOI 10.17487/RFC5382, October 2008,

<https://www.rfc-editor.org/info/rfc5382>.

Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT

Behavioral Requirements for ICMP", BCP 148, RFC 5508, DOI

10.17487/RFC5508, April 2009, <https://www.rfc-

editor.org/info/rfc5508>.

Larsen, M. and F. Gont, "Recommendations for Transport-

Protocol Port Randomization", BCP 156, RFC 6056, DOI

10.17487/RFC6056, January 2011, <https://www.rfc-

editor.org/info/rfc6056>.

Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful

NAT64: Network Address and Protocol Translation from IPv6

Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,

April 2011, <https://www.rfc-editor.org/info/rfc6146>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and

P. Roberts, "Issues with IP Address Sharing", RFC 6269,

DOI 10.17487/RFC6269, June 2011, <https://www.rfc-

editor.org/info/rfc6269>.

Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-

Stack Lite Broadband Deployments Following IPv4

Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011,

<https://www.rfc-editor.org/info/rfc6333>.

Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.

Yasevich, "Sockets API Extensions for the Stream Control

Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011, <https://www.rfc-editor.org/info/

rfc6458>.

Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,

"Special-Purpose IP Address Registries", BCP 153, RFC

6890, DOI 10.17487/RFC6890, April 2013, <https://www.rfc-

editor.org/info/rfc6890>.

https://www.rfc-editor.org/info/rfc5382
https://www.rfc-editor.org/info/rfc5508
https://www.rfc-editor.org/info/rfc5508
https://www.rfc-editor.org/info/rfc6056
https://www.rfc-editor.org/info/rfc6056
https://www.rfc-editor.org/info/rfc6146
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6269
https://www.rfc-editor.org/info/rfc6269
https://www.rfc-editor.org/info/rfc6333
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6890
https://www.rfc-editor.org/info/rfc6890

[RFC6951]

[RFC7950]

[RFC7857]

[RFC8040]

[RFC8340]

[RFC8341]

[RFC8446]

[RFC8900]

Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream

Control Transmission Protocol (SCTP) Packets for End-Host

to End-Host Communication", RFC 6951, DOI 10.17487/

RFC6951, May 2013, <https://www.rfc-editor.org/info/

rfc6951>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Penno, R., Perreault, S., Boucadair, M., Ed., Sivakumar,

S., and K. Naito, "Updates to Network Address Translation

(NAT) Behavioral Requirements", BCP 127, RFC 7857, DOI

10.17487/RFC7857, April 2016, <https://www.rfc-

editor.org/info/rfc7857>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,

and F. Gont, "IP Fragmentation Considered Fragile", BCP

230, RFC 8900, DOI 10.17487/RFC8900, September 2020,

<https://www.rfc-editor.org/info/rfc8900>.

Acknowledgments

The authors wish to thank Mohamed Boucadair, Gorry Fairhurst, Bryan

Ford, David Hayes, Alfred Hines, Karen E. E. Nielsen, Henning

Peters, Maksim Proshin, Timo Völker, Dan Wing, and Qiaobing Xie for

their invaluable comments.

In addition, the authors wish to thank David Hayes, Jason But, and

Grenville Armitage, the authors of [DOI_10.1145_1496091.1496095],

for their suggestions.

¶

¶

https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7857
https://www.rfc-editor.org/info/rfc7857
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8900

The authors also wish to thank Mohamed Boucadair for contributing

the text related to the YANG module.

Authors' Addresses

Randall R. Stewart

Netflix, Inc.

Chapin, SC 29036

United States of America

Email: randall@lakerest.net

Michael Tüxen

Münster University of Applied Sciences

Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: tuexen@fh-muenster.de

Irene Rüngeler

Münster University of Applied Sciences

Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: i.ruengeler@fh-muenster.de

¶

mailto:randall@lakerest.net
mailto:tuexen@fh-muenster.de
mailto:i.ruengeler@fh-muenster.de

	Stream Control Transmission Protocol (SCTP) Network Address Translation Support
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Terminology
	4. Motivation and Overview
	4.1. SCTP NAT Traversal Scenarios
	4.1.1. Single Point Traversal
	4.1.2. Multipoint Traversal

	4.2. Limitations of Classical NAPT for SCTP
	4.3. The SCTP-Specific Variant of NAT

	5. Data Formats
	5.1. Modified Chunks
	5.1.1. Extended ABORT Chunk
	5.1.2. Extended ERROR Chunk

	5.2. New Error Causes
	5.2.1. VTag and Port Number Collision Error Cause
	5.2.2. Missing State Error Cause
	5.2.3. Port Number Collision Error Cause

	5.3. New Parameters
	5.3.1. Disable Restart Parameter
	5.3.2. VTags Parameter

	6. Procedures for SCTP Endpoints and NAT Functions
	6.1. Association Setup Considerations for Endpoints
	6.2. Handling of Internal Port Number and Verification Tag Collisions
	6.2.1. NAT Function Considerations
	6.2.2. Endpoint Considerations

	6.3. Handling of Internal Port Number Collisions
	6.3.1. NAT Function Considerations
	6.3.2. Endpoint Considerations

	6.4. Handling of Missing State
	6.4.1. NAT Function Considerations
	6.4.2. Endpoint Considerations

	6.5. Handling of Fragmented SCTP Packets by NAT Functions
	6.6. Multi Point Traversal Considerations for Endpoints

	7. SCTP NAT YANG Module
	7.1. Tree Structure
	7.2. YANG Module

	8. Various Examples of NAT Traversals
	8.1. Single-homed Client to Single-homed Server
	8.2. Single-homed Client to Multi-homed Server
	8.3. Multihomed Client and Server
	8.4. NAT Function Loses Its State
	8.5. Peer-to-Peer Communications

	9. Socket API Considerations
	9.1. Get or Set the NAT Friendliness (SCTP_NAT_FRIENDLY)

	10. IANA Considerations
	10.1. New Chunk Flags for Two Existing Chunk Types
	10.2. Three New Error Causes
	10.3. Two New Chunk Parameter Types
	10.4. One New URI
	10.5. One New YANG Module

	11. Security Considerations
	12. Normative References
	13. Informative References
	Acknowledgments
	Authors' Addresses

