
Transport Area Working Group M. Larsen
(tsvwg) TietoEnator
Internet-Draft F. Gont
Intended status: BCP UTN/FRH
Expires: August 19, 2010 February 15, 2010

Transport Protocol Port Randomization Recommendations
draft-ietf-tsvwg-port-randomization-06

Abstract

 Recently, awareness has been raised about a number of "blind" attacks
 that can be performed against the Transmission Control Protocol (TCP)
 and similar protocols. The consequences of these attacks range from
 throughput-reduction to broken connections or data corruption. These
 attacks rely on the attacker's ability to guess or know the five-
 tuple (Protocol, Source Address, Destination Address, Source Port,
 Destination Port) that identifies the transport protocol instance to
 be attacked. This document describes a number of simple and
 efficient methods for the selection of the client port number, such
 that the possibility of an attacker guessing the exact value is
 reduced. While this is not a replacement for cryptographic methods
 for protecting the transport-protocol instance, the described port
 number obfuscation algorithms provide improved security/obfuscation
 with very little effort and without any key management overhead. The
 algorithms described in this document are local policies that may be
 incrementally deployed, and that do not violate the specifications of
 any of the transport protocols that may benefit from them, such as
 TCP, UDP, UDP-lite, SCTP, DCCP, and RTP (provided the RTP application
 explicitly signals the RTP and RTCP port numbers).

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

Larsen & Gont Expires August 19, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft Port Randomization Recommendations February 2010

http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 19, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Larsen & Gont Expires August 19, 2010 [Page 2]

Internet-Draft Port Randomization Recommendations February 2010

Table of Contents

1. Introduction . 5
2. Ephemeral Ports . 7
2.1. Traditional Ephemeral Port Range 7
2.2. Ephemeral port selection 7
2.3. Collision of instance-id's 8

3. Obfuscating the Ephemeral Ports 10
 3.1. Characteristics of a good ephemeral port obfuscation
 algorithm . 10

3.2. Ephemeral port number range 12
3.3. Ephemeral Port Obfuscation Algorithms 12
3.3.1. Algorithm 1: Simple port randomization algorithm . . . 12

 3.3.2. Algorithm 2: Another simple port randomization
 algorithm . 14

3.3.3. Algorithm 3: Simple hash-based algorithm 14
3.3.4. Algorithm 4: Double-hash obfuscation algorithm 17

 3.3.5. Algorithm 5: Random-increments port selection
 algorithm . 18
 3.4. Secret-key considerations for hash-based port
 obfuscation algorithms 20

3.5. Choosing an ephemeral port obfuscation algorithm 21
 4. Port obfuscation and Network Address Port Translation
 (NAPT) . 23

5. Security Considerations 24
6. IANA Considerations . 25
7. Acknowledgements . 26
8. References . 27
8.1. Normative References 27
8.2. Informative References 27

Appendix A. Survey of the algorithms in use by some popular
 implementations 30

A.1. FreeBSD . 30
A.2. Linux . 30
A.3. NetBSD . 30
A.4. OpenBSD . 30
A.5. OpenSolaris . 30

Appendix B. Changes from previous versions of the draft (to
 be removed by the RFC Editor before publication
 of this document as a RFC 31

B.1. Changes from draft-ietf-tsvwg-port-randomization-05 . . . 31
B.2. Changes from draft-ietf-tsvwg-port-randomization-04 . . . 31
B.3. Changes from draft-ietf-tsvwg-port-randomization-03 . . . 31
B.4. Changes from draft-ietf-tsvwg-port-randomization-02 . . . 31
B.5. Changes from draft-ietf-tsvwg-port-randomization-01 . . . 31
B.6. Changes from draft-ietf-tsvwg-port-randomization-00 . . . 31
B.7. Changes from draft-larsen-tsvwg-port-randomization-02 . . 31
B.8. Changes from draft-larsen-tsvwg-port-randomization-01 . . 32

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-05
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-04
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-03
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-02
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-01
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-00
https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomization-02
https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomization-01

Larsen & Gont Expires August 19, 2010 [Page 3]

Internet-Draft Port Randomization Recommendations February 2010

B.9. Changes from draft-larsen-tsvwg-port-randomization-00 . . 32
B.10. Changes from draft-larsen-tsvwg-port-randomisation-00 . . 32

 Authors' Addresses . 33

Larsen & Gont Expires August 19, 2010 [Page 4]

https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomization-00
https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomisation-00

Internet-Draft Port Randomization Recommendations February 2010

1. Introduction

 Recently, awareness has been raised about a number of "blind" attacks
 (i.e., attacks that can be performed without the need to sniff the
 packets that correspond to the transport protocol instance to be
 attacked) that can be performed against the Transmission Control
 Protocol (TCP) [RFC0793] and similar protocols. The consequences of
 these attacks range from throughput-reduction to broken connections
 or data corruption [I-D.ietf-tcpm-icmp-attacks] [RFC4953] [Watson].

 All these attacks rely on the attacker's ability to guess or know the
 five-tuple (Protocol, Source Address, Source port, Destination
 Address, Destination Port) that identifies the transport protocol
 instance to be attacked.

 Services are usually located at fixed, 'well-known' ports [IANA] at
 the host supplying the service (the server). Client applications
 connecting to any such service will contact the server by specifying
 the server IP address and service port number. The IP address and
 port number of the client are normally left unspecified by the client
 application and thus chosen automatically by the client networking
 stack. Ports chosen automatically by the networking stack are known
 as ephemeral ports [Stevens].

 While the server IP address and well-known port and the client IP
 address may be known by an attacker, the ephemeral port of the client
 is usually unknown and must be guessed.

 This document describes a number of algorithms for the selection of
 ephemeral port numbers, such that the possibility of an off-path
 attacker guessing the exact value is reduced. They are not a
 replacement for cryptographic methods of protecting a transport-
 protocol instance such as IPsec [RFC4301], the TCP MD5 signature
 option [RFC2385], or the TCP Authentication Option
 [I-D.ietf-tcpm-tcp-auth-opt]. For example, they do not provide any
 mitigation in those scenarios in which the attacker is able to sniff
 the packets that correspond to the transport protocol instance to be
 attacked. However, the proposed algorithms provide improved
 obfuscation with very little effort and without any key management
 overhead.

 The mechanisms described in this document are local modifications
 that may be incrementally deployed, and that do not violate the
 specifications of any of the transport protocols that may benefit
 from them, such as TCP [RFC0793], UDP [RFC0768], SCTP [RFC4960], DCCP
 [RFC4340], UDP-lite [RFC3828], and RTP [RFC3550] (provided the RTP
 application explicitly signals the RTP and RTCP port numbers with
 e.g.[RFC3605]).

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3605

Larsen & Gont Expires August 19, 2010 [Page 5]

Internet-Draft Port Randomization Recommendations February 2010

 Since these mechanisms are obfuscation techniques, focus has been on
 a reasonable compromise between the level of obfuscation and the ease
 of implementation. Thus the algorithms must be computationally
 efficient, and not require substantial state.

 We note that while the technique of mitigating "blind" attacks by
 obfuscating the ephemeral port selection is well-known as "port
 randomization", the goal of the algorithms described in this document
 is to reduce the chances of an attacker guessing the ephemeral ports
 selected for new transport protocol instances, rather than to
 actually produce mathematically random sequences of ephemeral ports.

 Throughout this document we will use the term "transport-protocol
 instance" as a general term to refer to an instantiation of a
 transport protocol (e.g, a "connection" in the case of connection-
 oriented transport protocols) and the term "instance-id" as a short-
 handle to refer to the group of values that identify a transport-
 protocol instance (e.g., in the case of TCP, the five-tuple
 {Protocol, IP Source Address, TCP Source Port, IP Destination
 Address, TCP Destination Port}).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Larsen & Gont Expires August 19, 2010 [Page 6]

Internet-Draft Port Randomization Recommendations February 2010

2. Ephemeral Ports

2.1. Traditional Ephemeral Port Range

 The Internet Assigned Numbers Authority (IANA) assigns the unique
 parameters and values used in protocols developed by the Internet
 Engineering Task Force (IETF), including well-known ports [IANA].
 IANA has reserved the following use of the 16-bit port range of TCP
 and UDP:

 o The Well Known Ports, 0 through 1023.

 o The Registered Ports, 1024 through 49151

 o The Dynamic and/or Private Ports, 49152 through 65535

 The dynamic port range defined by IANA consists of the 49152-65535
 range, and is meant for the selection of ephemeral ports.

2.2. Ephemeral port selection

 As each communication instance is identified by the five-tuple
 {protocol, local IP address, local port, remote IP address, remote
 port}, the selection of ephemeral port numbers must result in a
 unique five-tuple.

 Selection of ephemeral ports such that they result in unique
 instance-id's (five-tuples) is handled by some implementations by
 having a per-protocol global 'next_ephemeral' variable that is equal
 to the previously chosen ephemeral port + 1, i.e. the selection
 process is:

Larsen & Gont Expires August 19, 2010 [Page 7]

Internet-Draft Port Randomization Recommendations February 2010

 /* Initialization at system boot time. Could be random */
 next_ephemeral = min_ephemeral;

 /* Ephemeral port selection function */
 count = max_ephemeral - min_ephemeral + 1;

 do {
 port = next_ephemeral;
 if (next_ephemeral == max_ephemeral) {
 next_ephemeral = min_ephemeral;
 } else {
 next_ephemeral++;
 }

 if (five-tuple is unique)
 return port;

 count--;

 } while (count > 0);

 return ERROR;

 Figure 1

 This algorithm works adequately provided that the number of
 transport-protocol instances (for a each transport protocol) that
 have a life-time longer than it takes to exhaust the total ephemeral
 port range is small, so that collisions of instance-id's are rare.

 However, this method has the drawback that the 'next_ephemeral'
 variable and thus the ephemeral port range is shared between all
 transport-protocol instances and the next ports chosen by the client
 are easy to predict. If an attacker operates an "innocent" server to
 which the client connects, it is easy to obtain a reference point for
 the current value of the 'next_ephemeral' variable. Additionally, if
 an attacker could force a client to periodically establish e.g., a
 new TCP connection to an attacker controlled machine (or through an
 attacker observable routing path), the attacker could subtract
 consecutive source port values to obtain the number of outgoing TCP
 connections established globally by the target host within that time
 period (up to wrap-around issues and instance-id collisions, of
 course).

2.3. Collision of instance-id's

 While it is possible for the ephemeral port selection algorithm to
 verify that the selected port number results in a instance-id that is

Larsen & Gont Expires August 19, 2010 [Page 8]

Internet-Draft Port Randomization Recommendations February 2010

 not currently in use by that system, the resulting instance-id may
 still be in use at a remote system. For example, consider a scenario
 in which a client establishes a TCP connection with a remote web
 server, and the web server performs the active close on the
 connection. While the state information for this connection will
 disappear at the client side (that is, the connection will be moved
 to the fictional CLOSED state), the instance-id will remain in the
 TIME-WAIT state at the web server for 2*MSL (Maximum Segment
 Lifetime). If the same client tried to create a new incarnation of
 the previous connection (that is, a connection with the same
 instance-id as the one in the TIME_WAIT state at the server), an
 instance-id "collision" would occur. The effect of these collisions
 range from connection-establishment failures to TIME-WAIT state
 assassination (with the potential of data corruption) [RFC1337]. In
 scenarios in which a specific client establishes TCP connections with
 a specific service at a server, these problems become evident.
 Therefore, an ephemeral port selection algorithm should ideally
 minimize the rate of instance-id collisions.

 A simple approach to minimize the rate of these collisions would be
 to choose port numbers incrementally, so that a given port number
 would not be reused until the rest of the port numbers in ephemeral
 port range have been used for a transport protocol instance.
 However, if a single global variable were used to keep track of the
 last ephemeral port selected, ephemeral port numbers would be
 trivially predictable, thus making it easier for an off-path attacker
 to "guess" the instance-id in use by a target transport-protocol
 instance. Section 3.3.3 and Section 3.3.4 describe algorithms that
 select port numbers incrementally, while still making it difficult
 for an off-path attacker to predict the ephemeral ports used for
 future transport-protocol instances.

 A simple but inefficient approach to minimize the rate of collisions
 of instance-id's would be, e.g. in the case of TCP, for both end-
 points of a TCP connection to keep state about recent connections
 (e.g., have both end-points end up in the TIME-WAIT state).

https://datatracker.ietf.org/doc/html/rfc1337

Larsen & Gont Expires August 19, 2010 [Page 9]

Internet-Draft Port Randomization Recommendations February 2010

3. Obfuscating the Ephemeral Ports

3.1. Characteristics of a good ephemeral port obfuscation algorithm

 There are a number of factors to consider when designing an algorithm
 for selecting ephemeral ports, which include:

 o Minimizing the predictability of the ephemeral port numbers used
 for future transport-protocol instances.

 o Minimizing collisions of instance-id's

 o Avoiding conflict with applications that depend on the use of
 specific port numbers.

 Given the goal of improving the transport protocol's resistance to
 attack by obfuscation of the instance-id, it is key to minimize the
 predictability of the ephemeral ports that will be selected for new
 transport-protocol instances. While the obvious approach to address
 this requirement would be to select the ephemeral ports by simply
 picking a random value within the chosen port number range, this
 straightforward policy may lead to collisions of instance-id's, which
 could lead to the interoperability problems (e.g., delays in the
 establishment of new connections, failures in connection-
 establishment, or data corruption) discussed in Section 2.3. As
 discussed in Section 1, it is worth noting that while the technique
 of mitigating "blind" attacks by obfuscating the ephemeral port
 election is well-known as "port randomization", the goal of the
 algorithms described in this document is to reduce the chances of an
 attacker guessing the ephemeral ports selected for new transport-
 protocol instances, rather than to actually produce sequences of
 mathematically random ephemeral port numbers.

 It is also worth noting that, provided adequate algorithms are in
 use, the larger the range from which ephemeral pots are selected, the
 smaller the chances of an attacker are to guess the selected port
 number.

 In scenarios in which a specific client establishes transport-
 protocol instances with a specific service at a server, the problems
 described in Section 2.3 become evident. A good algorithm to
 minimize the collisions of instance-id's would consider the time a
 given five-tuple was last used, and would avoid reusing the last
 recently used five-tuples. A simple approach to minimize the rate of
 collisions would be to choose port numbers incrementally, so that a
 given port number would not be reused until the rest of the port
 numbers in the ephemeral port range have been used for a transport
 protocol instance. However, if a single global variable were used to

Larsen & Gont Expires August 19, 2010 [Page 10]

Internet-Draft Port Randomization Recommendations February 2010

 keep track of the last ephemeral port selected, ephemeral port
 numbers would be trivially predictable.

 It is important to note that a number of applications rely on binding
 specific port numbers that may be within the ephemeral ports range.
 If such an application was run while the corresponding port number
 was in use, the application would fail. Therefore, ephemeral port
 selection algorithms avoid using those port numbers.

 Port numbers that are currently in use by a TCP in the LISTEN state
 should not be allowed for use as ephemeral ports. If this rule is
 not complied with, an attacker could potentially "steal" an incoming
 connection to a local server application by issuing a connection
 request to the victim client at roughly the same time the client
 tries to connect to the victim server application [CPNI-TCP]
 [I-D.gont-tcp-security]. If the SYN segment corresponding to the
 attacker's connection request and the SYN segment corresponding to
 the victim client "cross each other in the network", and provided the
 attacker is able to know or guess the ephemeral port used by the
 client, a TCP simultaneous open scenario would take place, and the
 incoming connection request sent by the client would be matched with
 the attacker's socket rather than with the victim server
 application's socket.

 It should be noted that most applications based on popular
 implementations of the TCP API (such as the Sockets API) perform
 "passive opens" in three steps. Firstly, the application obtains a
 file descriptor to be used for inter-process communication (e.g., by
 issuing a socket() call). Secondly, the application binds the file
 descriptor to a local TCP port number (e.g., by issuing a bind()
 call), thus creating a TCP in the fictional CLOSED state. Thirdly,
 the aforementioned TCP is put in the LISTEN state (e.g., by issuing a
 listen() call). As a result, with such an implementation of the TCP
 API, even if port numbers in use for TCPs in the LISTEN state were
 not allowed for use as ephemeral ports, there is a window of time
 between the second and the third steps in which an attacker could be
 allowed to select a port number that would be later used for
 listening to incoming connections. Therefore, these implementations
 of the TCP API should enforce a stricter requirement for the
 allocation of port numbers: port numbers that are in use by a TCP in
 the LISTEN or CLOSED states should not be allowed for allocation as
 ephemeral ports [CPNI-TCP] [I-D.gont-tcp-security].

 The aforementioned issues do not affect SCTP, since most SCTP
 implementations do not allow a socket to be bound to the same port
 number unless a specific socket option (SCTP_REUSE_PORT) is issued on
 the socket (i.e., this behavior needs to be explititly allowed
 beforehand). An example of a typical SCTP socket API can be found in

Larsen & Gont Expires August 19, 2010 [Page 11]

Internet-Draft Port Randomization Recommendations February 2010

 [I-D.ietf-tsvwg-sctpsocket].

 DCCP is not affected is not affected by the exploitation of
 "simultaneous opens" to ""steal" incoming connections, as the server
 and the client state machines are different [RFC4340]. However, it
 may be affected by the vector involving binding a more specific
 socket. As a result, those tuples {local IP address, local port,
 Service Code} that are in use by a local socket should not be allowed
 for allocation as ephemeral ports.

3.2. Ephemeral port number range

 As mentioned in Section 2.1, the dynamic ports consist of the range
 49152-65535. However, ephemeral port selection algorithms should use
 the whole range 1024-49151.

 Since this range includes ports numbers assigned by IANA, this may
 not always be possible, though. A possible workaround for this
 potential problem would be to maintain a local list of the port
 numbers that should not be allocated as ephemeral ports. Thus,
 before allocating a port number, the ephemeral port selection
 function would check this list, avoiding the allocation of ports that
 may be needed for specific applications.

 Ephemeral port selection algorithms SHOULD use the largest possible
 port range, since this improves obfuscation.

3.3. Ephemeral Port Obfuscation Algorithms

 Ephemeral port selection algorithms SHOULD obfuscate the allocation
 of their ephemeral ports, since this helps to mitigate a number of
 attacks that depend on the attacker's ability to guess or know the
 five-tuple that identifies the transport protocol instance to be
 attacked.

 The following subsections describe a number of algorithms that could
 be implemented in order to obfuscate the selection of ephemeral port
 numbers.

3.3.1. Algorithm 1: Simple port randomization algorithm

 In order to address the security issues discussed in Section 1 and
Section 2.2, a number of systems have implemented simple ephemeral

 port number randomization, as follows:

https://datatracker.ietf.org/doc/html/rfc4340

Larsen & Gont Expires August 19, 2010 [Page 12]

Internet-Draft Port Randomization Recommendations February 2010

 /* Ephemeral port selection function */
 num_ephemeral = max_ephemeral - min_ephemeral + 1;
 next_ephemeral = min_ephemeral + (random() % num_ephemeral);
 count = num_ephemeral;

 do {
 if(resulting five-tuple is unique)
 return next_ephemeral;

 if (next_ephemeral == max_ephemeral) {
 next_ephemeral = min_ephemeral;
 } else {
 next_ephemeral++;
 }

 count--;
 } while (count > 0);

 return ERROR;

 Figure 2

 We will refer to this algorithm as 'Algorithm 1'.

 Note: "random()" is a function that returns a pseudo-random unsigned
 interger number in the range 0-65535 (it may return values larger
 than 65535, as is the case with the "random()" C-language function).

 Since the initially chosen port may already be in use with identical
 IP addresses and server port, the resulting five-tuple might not be
 unique. Therefore, multiple ports may have to be tried and verified
 against all existing transport-protocol instances before a port can
 be chosen.

 Web proxy servers, NAPTs [RFC2663], and other middle-boxes aggregate
 multiple peers into the same port space and thus increase the
 population of used ephemeral ports, and hence the chances of
 collisions of instance-id's. However, [Allman] has shown that at
 least in the network scenarios used for measuring the collision
 properties of the algorithms described in this document, the
 collision rate resulting from the use of the aforementioned middle-
 boxes is nevertheless very low.

 Since this algorithm performs a completely random port selection
 (i.e., without taking into account the port numbers previously
 chosen), it has the potential of reusing port numbers too quickly,
 thus possibly leading to collisions of instance-id's. Even if a
 given five-tuple is verified to be unique by the port selection

https://datatracker.ietf.org/doc/html/rfc2663

Larsen & Gont Expires August 19, 2010 [Page 13]

Internet-Draft Port Randomization Recommendations February 2010

 algorithm, the five-tuple might still be in use at the remote system.
 In such a scenario, a connection request could possibly fail
 ([Silbersack] describes this problem for the TCP case).

 This algorithm selects ephemeral port numbers randomly and thus
 reduces the chances of an attacker of guessing the ephemeral port
 selected for a target transport-protocol instance. Additionally, it
 prevents attackers from obtaining the number of outgoing transport-
 protocol instances (e.g., TCP connections) established by the client
 in some period of time.

3.3.2. Algorithm 2: Another simple port randomization algorithm

 The following pseudo-code illustrates another algorithm for selecting
 a random port number, in which in the event a local instance-id
 collision is detected, another port number is selected randomly:

 /* Ephemeral port selection function */
 num_ephemeral = max_ephemeral - min_ephemeral + 1;
 next_ephemeral = min_ephemeral + (random() % num_ephemeral);
 count = num_ephemeral;

 do {
 if(resulting five-tuple is unique)
 return next_ephemeral;

 next_ephemeral = min_ephemeral + (random() % num_ephemeral);
 count--;
 } while (count > 0);

 return ERROR;

 Figure 3

 We will refer to this algorithm as 'Algorithm 2'. This algorithm
 might be unable to select an ephemeral port (i.e., return "ERROR")
 even if there are port numbers that would result in unique five-
 tuples, when there are a large number of port numbers already in use.
 However, the results in [Allman] have shown that in common scenarios,
 one port choice is enough, and in most cases where more than one
 choice is needed two choices suffice. Therefore, in those scenarios
 this would not be problem.

3.3.3. Algorithm 3: Simple hash-based algorithm

 We would like to achieve the port reuse properties of the traditional
 BSD port selection algorithm (described in Section 2.2), while at the

Larsen & Gont Expires August 19, 2010 [Page 14]

Internet-Draft Port Randomization Recommendations February 2010

 same time achieve the obfuscation properties of Algorithm 1 and
 Algorithm 2.

 Ideally, we would like a 'next_ephemeral' value for each set of
 (local IP address, remote IP addresses, remote port), so that the
 port reuse frequency is the lowest possible. Each of these
 'next_ephemeral' variables should be initialized with random values
 within the ephemeral port range and would thus separate the ephemeral
 port space of the transport-protocol instances on a "per destination
 end-point" basis (this "separation of the ephemeral port space" means
 that transport-protocol instances with different remote end-points
 will not have different sequences of port numbers; i.e., wil not be
 part of the same ephemeral port sequence as in the case of the
 traditional BSD ephemeral port selection algorithm). Since we do not
 want to maintain in memory all these 'next_ephemeral' values, we
 propose an offset function F(), that can be computed from the local
 IP address, remote IP address, remote port and a secret key. F()
 will yield (practically) different values for each set of arguments,
 i.e.:

 /* Initialization at system boot time. Could be random. */
 next_ephemeral = 0;

 /* Ephemeral port selection function */
 num_ephemeral = max_ephemeral - min_ephemeral + 1;
 offset = F(local_IP, remote_IP, remote_port, secret_key);
 count = num_ephemeral;

 do {
 port = min_ephemeral +
 (next_ephemeral + offset) % num_ephemeral;

 next_ephemeral++;

 if(resulting five-tuple is unique)
 return port;

 count--;

 } while (count > 0);

 return ERROR;

 Figure 4

 We will refer to this algorithm as 'Algorithm 3'.

Larsen & Gont Expires August 19, 2010 [Page 15]

Internet-Draft Port Randomization Recommendations February 2010

 In other words, the function F() provides a "per destination end-
 point" fixed offset within the global ephemeral port range. Both the
 'offset' and 'next_ephemeral' variables may take any value within the
 storage type range since we are restricting the resulting port in a
 similar way as in the Algorithm 1 (described in Section 3.3.1). This
 allows us to simply increment the 'next_ephemeral' variable and rely
 on the unsigned integer to simply wrap-around.

 The function F() should be a cryptographic hash function like MD5
 [RFC1321]. The function should use both IP addresses, the remote
 port and a secret key value to compute the offset. The remote IP
 address is the primary separator and must be included in the offset
 calculation. The local IP address and remote port may in some cases
 be constant and not improve the ephemeral port space separation,
 however, they should also be included in the offset calculation.

 Cryptographic algorithms stronger than e.g. MD5 should not be
 necessary, given that Algorithm #3 is simply an obfuscation
 technique. The secret should be chosen as random as possible, see
 [RFC4086] for recommendations on choosing secrets.

 Note that on multiuser systems, the function F() could include user
 specific information, thereby providing protection not only on a host
 to host basis, but on a user to service basis. In fact, any
 identifier of the remote entity could be used, depending on
 availability an the granularity requested. With SCTP both hostnames
 and alternative IP addresses may be included in the association
 negotiation and either of these could be used in the offset function
 F().

 When multiple unique identifiers are available, any of these can be
 chosen as input to the offset function F() since they all uniquely
 identify the remote entity. However, in cases like SCTP where the
 ephemeral port must be unique across all IP address permutations, we
 should ideally always use the same IP address to get a single
 starting offset for each association negotiation from a given remote
 entity to minimize the possibility of collisions. A simple numerical
 sorting of the IP addresses and always using the numerically lowest
 could achieve this. However, since most protocols most likely will
 report the same IP addresses in the same order in each association
 setup, this sorting is most likely not necessary and the 'first one'
 can simply be used.

 The ability of hostnames to uniquely define hosts can be discussed,
 and since SCTP always includes at least one IP address, we recommend
 to use this as input to the offset function F() and ignore hostnames
 chunks when searching for ephemeral ports.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc4086

Larsen & Gont Expires August 19, 2010 [Page 16]

Internet-Draft Port Randomization Recommendations February 2010

 It should be noted that, as this algorithm uses a global counter
 ("next_ephemeral") for selecting ephemeral ports, if an attacker
 could e.g., force a client to periodically establish a new TCP
 connections to an attacker controlled machine (or through an attacker
 observable routing path), the attacker could subtract consecutive
 source port values to obtain the number of outgoing TCP connections
 established globally by the target host within that time period (up
 to wrap-around issues and 5-tuple collisions, of course).

3.3.4. Algorithm 4: Double-hash obfuscation algorithm

 A tradeoff between maintaining a single global 'next_ephemeral'
 variable and maintaining 2**N 'next_ephemeral' variables (where N is
 the width of the result of F()) could be achieved as follows. The
 system would keep an array of TABLE_LENGTH short integers, which
 would provide a separation of the increment of the 'next_ephemeral'
 variable. This improvement could be incorporated into Algorithm 3 as
 follows:

 /* Initialization at system boot time */
 for(i = 0; i < TABLE_LENGTH; i++)
 table[i] = random() % 65536;

 /* Ephemeral port selection function */
 num_ephemeral = max_ephemeral - min_ephemeral + 1;
 offset = F(local_IP, remote_IP, remote_port, secret_key1);
 index = G(local_IP, remote_IP, remote_port, secret_key2);
 count = num_ephemeral;

 do {
 port = min_ephemeral + (offset + table[index]) % num_ephemeral;
 table[index]++;

 if(resulting five-tuple is unique)
 return port;

 count--;

 } while (count > 0);

 return ERROR;

 Figure 5

 We will refer to this algorithm as 'Algorithm 4'.

Larsen & Gont Expires August 19, 2010 [Page 17]

Internet-Draft Port Randomization Recommendations February 2010

 'table[]' could be initialized with mathematically random values, as
 indicated by the initialization code in pseudo-code above. The
 function G() should be a cryptographic hash function like MD5
 [RFC1321]. It should use both IP addresses, the remote port and a
 secret key value to compute a value between 0 and (TABLE_LENGTH-1).
 Alternatively, G() could take as "offset" as input, and perform the
 exclusive-or (xor) operation between all the bytes in 'offset'.

 The array 'table[]' assures that successive transport-protocol
 instances with the same remote end-point will use increasing
 ephemeral port numbers. However, incrementation of the port numbers
 is separated into TABLE_LENGTH different spaces, and thus the port
 reuse frequency will be (probabilistically) lower than that of
 Algorithm 3. That is, a new tranport-protocol instance with some
 remote end-point will not necessarily cause the 'next_ephemeral'
 variable corresponding to other end-points to be incremented.

 It is interesting to note that the size of 'table[]' does not limit
 the number of different port sequences, but rather separates the
 increments into TABLE_LENGTH different spaces. The port sequence
 will result from adding the corresponding entry of 'table[]' to the
 variable 'offset', which selects the actual port sequence (as in
 Algorithm 3). [Allman] has found that a TABLE_LENGTH of 10 can
 result in an improvement over Algorithm 3. Further increasing the
 TABLE_LENGTH will increase the obfuscation, and possibly further
 decrease the collision rate.

 An attacker can perform traffic analysis for any "increment space"
 into which the attacker has "visibility", namely that the attacker
 can force the client to establish a transport-protocol instance whose
 G(offset) identifies the target "increment space". However, the
 attacker's ability to perform traffic analysis is very reduced when
 compared to the traditional BSD algorithm (described in Section 2.2)
 and Algorithm 3. Additionally, an implementation can further limit
 the attacker's ability to perform traffic analysis by further
 separating the increment space (that is, using a larger value for
 TABLE_LENGTH).

3.3.5. Algorithm 5: Random-increments port selection algorithm

 [Allman] introduced another port obfuscation algorithm, which offers
 a middle ground between the algorithms that select ephemeral ports
 randomly (such as those described in Section 3.3.1 and

Section 3.3.2), and those that offer obfuscation but no randomization
 (such as those described in Section 3.3.3 and Section 3.3.4). We
 will refer to this algorithm as 'Algorithm 5'.

https://datatracker.ietf.org/doc/html/rfc1321

Larsen & Gont Expires August 19, 2010 [Page 18]

Internet-Draft Port Randomization Recommendations February 2010

 /* Initialization code at system boot time. */
 next_ephemeral = random() % 65536; /* Initialization value */
 N = 500; /* Determines the tradeoff */

 /* Ephemeral port selection function */
 num_ephemeral = max_ephemeral - min_ephemeral + 1;

 count = num_ephemeral;

 do {
 next_ephemeral = next_ephemeral + (random() % N) + 1;
 port = min_ephemeral + (next_ephemeral % num_ephemeral);

 if(resulting five-tuple is unique)
 return port;

 count--;
 } while (count > 0);

 return ERROR;

 Figure 6

 This algorithm aims at at producing a monotonically-increasing
 sequence to prevent the collision of instance-id's, while avoiding
 the use of fixed increments, which would lead to trivially-
 predictable sequences. The value "N" allows for direct control of
 the tradeoff between the level of obfuscation and the port reuse
 frequency. The smaller the value of "N", the more linear the more
 similar this algorithm is to the traditional BSD port selection
 algorithm (described in Section 2.2. The larger the value of "N",
 the more similar this algorithm is to the algorithm described in

Section 3.3.1 of this document.

 When the port numbers wrap, there is the risk of collisions of
 instance-id's. Therefore, "N" should be selecting according to the
 following criteria:

 o It should maximize the wrapping time of the ephemeral port space

 o It should minimize collisions of instance-id's

 o It should maximize obfuscation

 Clearly, these are competing goals, and the decision of which value
 of "N" to use is a tradeoff. Therefore, the value of "N" should be
 configurable so that system administrators can make the tradeoff for
 themselves.

Larsen & Gont Expires August 19, 2010 [Page 19]

Internet-Draft Port Randomization Recommendations February 2010

3.4. Secret-key considerations for hash-based port obfuscation
 algorithms

 Every complex manipulation (like MD5) is no more secure than the
 input values, and in the case of ephemeral ports, the secret key. If
 an attacker is aware of which cryptographic hash function is being
 used by the victim (which we should expect), and the attacker can
 obtain enough material (e.g. ephemeral ports chosen by the victim),
 the attacker may simply search the entire secret key space to find
 matches.

 To protect against this, the secret key should be of a reasonable
 length. Key lengths of 32 bits should be adequate, since a 32-bit
 secret would result in approximately 65k possible secrets if the
 attacker is able to obtain a single ephemeral port (assuming a good
 hash function). If the attacker is able to obtain more ephemeral
 ports, key lengths of 64 bits or more should be used.

 Another possible mechanism for protecting the secret key is to change
 it after some time. If the host platform is capable of producing
 reasonable good random data, the secret key can be changed
 automatically.

 Changing the secret will cause abrupt shifts in the chosen ephemeral
 ports, and consequently collisions may occur. That is, upon changing
 the secret, the "offset" value (see Section 3.3.3 and Section 3.3.4)
 used for each destination end-point will be different from that
 computed with the previous secret, thus leading to the selection of a
 port number recently used for connecting to the same end-point.

 Thus the change in secret key should be done with consideration and
 could be performed whenever one of the following events occur:

 o The system is being bootstrapped.

 o Some predefined/random time has expired.

 o The secret has been used N times (i.e. we consider it insecure).

 o There are few active transport protocol instances (i.e.,
 possibility of collision is low).

 o There is little traffic (the performance overhead of collisions is
 tolerated).

 o There is enough random data available to change the secret key
 (pseudo-random changes should not be done).

Larsen & Gont Expires August 19, 2010 [Page 20]

Internet-Draft Port Randomization Recommendations February 2010

3.5. Choosing an ephemeral port obfuscation algorithm

 [Allman] is an empirical study of the properties of the algorithms
 described in this document, which has found that all the algorithms
 described in this document offer low collision rates -- at most 0.3%.
 That is, in those network scenarios assessed by [Allman] all of the
 algorithms described in this document perform well in terms of
 collisions of instance-id's. However, these results may vary
 depending on the characteristics of network traffic and the specific
 network setup.

 The algorithm described in Section 2.2 is the traditional ephemeral
 port selection algorithm implemented in BSD-derived systems. It
 generates a global sequence of ephemeral port numbers, which makes it
 trivial for an attacker to predict the port number that will be used
 for a future transport protocol instance. However, it is very
 simple, and leads to a low port reuse frequency.

 Algorithm 1 and Algorithm 2 have the advantage that they provide
 actual randomization of the ephemeral ports. However, they may
 increase the chances of port number collisions, which could lead to
 the failure of a connection establishment attempt. [Allman] found
 that these two algorithms show the largest collision rates (among all
 the algorithms described in this document).

 Algorithm 3 provides complete separation in local and remote IP
 addresses and remote port space, and only limited separation in other
 dimensions (see Section 3.4). However, implementations should
 consider the performance impact of computing the cryptographic hash
 used for the offset.

 Algorithm 4 improves Algorithm 3, usually leading to a lower port
 reuse frequency, at the expense of more processor cycles used for
 computing G(), and additional kernel memory for storing the array
 'table[]'.

 Algorithm 5 offers middle ground between the simple randomization
 algorithms (Algorithm 1 and Algorithm 2) and the hash-based
 algorithms (Algorithm 3 and Algorithm 4). The upper limit on the
 random increments (the value "N" in the pseudo-code included in

Section 3.3.5 controls the trade-off between randomization and port-
 reuse frequency.

 Finally, a special case that may preclude the utilization of
 Algorithm 3 and Algorithm 4 should be analyzed. There exist some
 applications that contain the following code sequence:

Larsen & Gont Expires August 19, 2010 [Page 21]

Internet-Draft Port Randomization Recommendations February 2010

 s = socket();
 bind(s, IP_address, port = *);

 Figure 7

 In some BSD-derived systems, the call to bind() will result in the
 selection of an ephemeral port number. However, as neither the
 remote IP address nor the remote port will be available to the
 ephemeral port selection function, the hash function F() used in
 Algorithm 3 and Algorithm 4 will not have all the required arguments,
 and thus the result of the hash function will be impossible to
 compute. Transport protocols implementing Algorithm 3 or Algorithm 4
 should consider using Algorithm 2 when facing the scenario just
 described.

 An alternative to this behavior would be to implement "lazy binding"
 in response to the bind() call. That is, selection of an ephemeral
 port would be delayed until, e.g., connect() or send() are called.
 Thus, at that point the ephemeral port is actually selected, all the
 necessary arguments for the hash function F() would be available, and
 thus Algorithm 3 and Algorithm 4 could still be used in this
 scenario. This algorithm has been implemented by Linux [Linux].

Larsen & Gont Expires August 19, 2010 [Page 22]

Internet-Draft Port Randomization Recommendations February 2010

4. Port obfuscation and Network Address Port Translation (NAPT)

 Network Address Port Translation (NAPT) translate both the network
 address and transport-protocol port number, thus allowing the
 transport identifiers of a number of private hosts to be multiplexed
 into the transport identifiers of a single external address.
 [RFC2663]

 In those scenarios in which a NAPT is present between the two end-
 points of transport-protocol instance, the obfuscation of the
 ephemeral ports (from the point of view of the external network) will
 depend on the ephemeral port selection function at the NAPT.
 Therefore, NAPTs should consider obfuscating the ephemeral ports by
 means of any of the algorithms discussed in this document. It should
 be noted that in some network scenarios, a NAPT may naturally obscure
 ephemeral port selections simply due to the vast range of services
 with which it establishes connections and to the overall rate of the
 traffic [Allman].

Section 3.5 provides guidance in choosing a port obfuscation
 algorithm.

https://datatracker.ietf.org/doc/html/rfc2663

Larsen & Gont Expires August 19, 2010 [Page 23]

Internet-Draft Port Randomization Recommendations February 2010

5. Security Considerations

 Obfuscating ephemeral ports is no replacement for cryptographic
 mechanisms, such as IPsec [RFC4301], in terms of protecting
 transport-protocol instances against blind attacks.

 An eavesdropper, which can monitor the packets that correspond to the
 transport-protocol instance to be attacked could learn the IP
 addresses and port numbers in use (and also sequence numbers etc.)
 and easily perform an attack. Ephemeral port obfuscation does not
 provide any additional protection against this kind of attacks. In
 such situations, proper authentication mechanisms such as those
 described in [RFC4301] should be used.

 If the local offset function F() results in identical offsets for
 different inputs, the port-offset mechanism proposed in this document
 has no or reduced effect.

 If random numbers are used as the only source of the secret key, they
 must be chosen in accordance with the recommendations given in
 [RFC4086].

 If an attacker uses dynamically assigned IP addresses, the current
 ephemeral port offset (Algorithm 3 and Algorithm 4) for a given five-
 tuple can be sampled and subsequently used to attack an innocent peer
 reusing this address. However, this is only possible until a re-
 keying happens as described above. Also, since ephemeral ports are
 only used on the client side (e.g. the one initiating the transport-
 protocol communication), both the attacker and the new peer need to
 act as servers in the scenario just described. While servers using
 dynamic IP addresses exist, they are not very common and with an
 appropriate re-keying mechanism the effect of this attack is limited.

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4086

Larsen & Gont Expires August 19, 2010 [Page 24]

Internet-Draft Port Randomization Recommendations February 2010

6. IANA Considerations

 There are no IANA registries within this document. The RFC-Editor
 can remove this section before publication of this document as an
 RFC.

Larsen & Gont Expires August 19, 2010 [Page 25]

Internet-Draft Port Randomization Recommendations February 2010

7. Acknowledgements

 The offset function was inspired by the mechanism proposed by Steven
 Bellovin in [RFC1948] for defending against TCP sequence number
 attacks.

 The authors would like to thank (in alphabetical order) Mark Allman,
 Matthias Bethke, Stephane Bortzmeyer, Brian Carpenter, Vincent
 Deffontaines, Lars Eggert, Gorry Fairhurst, Guillermo Gont, Alfred
 Hoenes, Amit Klein, Carlos Pignataro, Kacheong Poon, Pasi Sarolahti,
 Randall Stewart, Joe Touch, Michael Tuexen, and Dan Wing for their
 valuable feedback on earlier versions of this document.

 The authors would like to thank FreeBSD's Mike Silbersack for a very
 fruitful discussion about ephemeral port selection techniques.

 Fernando Gont would like to thank Carolina Suarez for her love and
 support.

https://datatracker.ietf.org/doc/html/rfc1948

Larsen & Gont Expires August 19, 2010 [Page 26]

Internet-Draft Port Randomization Recommendations February 2010

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
 in Session Description Protocol (SDP)", RFC 3605,
 October 2003.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

8.2. Informative References

 [FreeBSD] The FreeBSD Project, "http://www.freebsd.org".

 [IANA] "IANA Port Numbers",

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3605
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960

Larsen & Gont Expires August 19, 2010 [Page 27]

Internet-Draft Port Randomization Recommendations February 2010

 <http://www.iana.org/assignments/port-numbers>.

 [I-D.ietf-tcpm-icmp-attacks]
 Gont, F., "ICMP attacks against TCP",

draft-ietf-tcpm-icmp-attacks-10 (work in progress),
 January 2010.

 [RFC1337] Braden, B., "TIME-WAIT Assassination Hazards in TCP",
RFC 1337, May 1992.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
RFC 1948, May 1996.

 [RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations",

RFC 2663, August 1999.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
RFC 4953, July 2007.

 [I-D.ietf-tsvwg-sctpsocket]
 Stewart, R., Poon, K., Tuexen, M., Yasevich, V., and P.
 Lei, "Sockets API Extensions for Stream Control
 Transmission Protocol (SCTP)",

draft-ietf-tsvwg-sctpsocket-21 (work in progress),
 February 2010.

 [Allman] Allman, M., "Comments On Selecting Ephemeral Ports", ACM
 Computer Communication Review, 39(2), 2009.

 [CPNI-TCP]
 Gont, F., "CPNI Technical Note 3/2009: Security Assessment
 of the Transmission Control Protocol (TCP)", UK Centre
 for the Protection of National Infrastructure, 2009.

 [I-D.gont-tcp-security]
 Gont, F., "Security Assessment of the Transmission Control
 Protocol (TCP)", draft-gont-tcp-security-00 (work in
 progress), February 2009.

 [Linux] The Linux Project, "http://www.kernel.org".

 [NetBSD] The NetBSD Project, "http://www.netbsd.org".

 [OpenBSD] The OpenBSD Project, "http://www.openbsd.org".

 [OpenSolaris]
 OpenSolaris, "http://www.opensolaris.org".

http://www.iana.org/assignments/port-numbers
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-10
https://datatracker.ietf.org/doc/html/rfc1337
https://datatracker.ietf.org/doc/html/rfc1948
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctpsocket-21
https://datatracker.ietf.org/doc/html/draft-gont-tcp-security-00

Larsen & Gont Expires August 19, 2010 [Page 28]

Internet-Draft Port Randomization Recommendations February 2010

 [Silbersack]
 Silbersack, M., "Improving TCP/IP security through
 randomization without sacrificing interoperability.",
 EuroBSDCon 2005 Conference .

 [Stevens] Stevens, W., "Unix Network Programming, Volume 1:
 Networking APIs: Socket and XTI", Prentice Hall , 1998.

 [I-D.ietf-tcpm-tcp-auth-opt]
 Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", draft-ietf-tcpm-tcp-auth-opt-10
 (work in progress), January 2010.

 [Watson] Watson, P., "Slipping in the Window: TCP Reset Attacks",
 CanSecWest 2004 Conference .

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-auth-opt-10

Larsen & Gont Expires August 19, 2010 [Page 29]

Internet-Draft Port Randomization Recommendations February 2010

Appendix A. Survey of the algorithms in use by some popular
 implementations

A.1. FreeBSD

 FreeBSD 8.0 implements Algorithm 1, and in response to this document
 now uses a 'min_port' of 10000 and a 'max_port' of 65535. [FreeBSD]

A.2. Linux

 Linux 2.6.15-53-386 implements Algorithm 3. If the algorithm is
 faced with the corner-case scenario described in Section 3.5,
 Algorithm 1 is used instead [Linux].

A.3. NetBSD

 NetBSD 5.0.1 does not obfuscate its ephemeral port numbers. It
 selects ephemeral port numbers from the range 49152-65535, starting
 from port 65535, and decreasing the port number for each ephemeral
 port number selected [NetBSD].

A.4. OpenBSD

 OpenBSD 4.2 implements Algorithm 1, with a 'min_port' of 1024 and a
 'max_port' of 49151. [OpenBSD]

A.5. OpenSolaris

 OpenSolaris 2009.06 implements Algorithm 1, with a 'min_port' of
 32768 and a 'max_port' of 65535. [OpenSolaris]

Larsen & Gont Expires August 19, 2010 [Page 30]

Internet-Draft Port Randomization Recommendations February 2010

Appendix B. Changes from previous versions of the draft (to be removed
 by the RFC Editor before publication of this document as a
 RFC

B.1. Changes from draft-ietf-tsvwg-port-randomization-05

 o Addresses AD review feedback from Lars Eggert.

B.2. Changes from draft-ietf-tsvwg-port-randomization-04

 o Fixes nits.

B.3. Changes from draft-ietf-tsvwg-port-randomization-03

 o Addresses WGLC comments from Mark Allman. See:
http://www.ietf.org/mail-archive/web/tsvwg/current/msg09149.html

B.4. Changes from draft-ietf-tsvwg-port-randomization-02

 o Added clarification of what we mean by "port randomization".

 o Addresses feedback sent on-list and off-list by Mark Allman.

 o Added references to [Allman] and [CPNI-TCP].

B.5. Changes from draft-ietf-tsvwg-port-randomization-01

 o Added Section 2.3.

 o Added discussion of "lazy binding in Section 3.5.

 o Added discussion of obtaining the number of outgoing connections.

 o Miscellaneous editorial changes

B.6. Changes from draft-ietf-tsvwg-port-randomization-00

 o Added Section 3.1.

 o Changed Intended Status from "Standards Track" to "BCP".

 o Miscellaneous editorial changes.

B.7. Changes from draft-larsen-tsvwg-port-randomization-02

 o Draft resubmitted as draft-ietf.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-05
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-04
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-03
http://www.ietf.org/mail-archive/web/tsvwg/current/msg09149.html
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-02
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-01
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-00
https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomization-02
https://datatracker.ietf.org/doc/html/draft-ietf

Larsen & Gont Expires August 19, 2010 [Page 31]

Internet-Draft Port Randomization Recommendations February 2010

 o Included references and text on protocols other than TCP.

 o Added the second variant of the simple port randomization
 algorithm

 o Reorganized the algorithms into different sections

 o Miscellaneous editorial changes.

B.8. Changes from draft-larsen-tsvwg-port-randomization-01

 o No changes. Draft resubmitted after expiration.

B.9. Changes from draft-larsen-tsvwg-port-randomization-00

 o Fixed a bug in expressions used to calculate number of ephemeral
 ports

 o Added a survey of the algorithms in use by popular TCP
 implementations

 o The whole document was reorganized

 o Miscellaneous editorial changes

B.10. Changes from draft-larsen-tsvwg-port-randomisation-00

 o Document resubmitted after original document by M. Larsen expired
 in 2004

 o References were included to current WG documents of the TCPM WG

 o The document was made more general, to apply to all transport
 protocols

 o Miscellaneous editorial changes

https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomization-01
https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomization-00
https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomisation-00

Larsen & Gont Expires August 19, 2010 [Page 32]

Internet-Draft Port Randomization Recommendations February 2010

Authors' Addresses

 Michael Vittrup Larsen
 TietoEnator
 Skanderborgvej 232
 Aarhus DK-8260
 Denmark

 Phone: +45 8938 5100
 Email: michael.larsen@tietoenator.com

 Fernando Gont
 Universidad Tecnologica Nacional / Facultad Regional Haedo
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fernando@gont.com.ar

Larsen & Gont Expires August 19, 2010 [Page 33]

