
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-tsvwg-rfc4960-bis-18

Obsoletes: 4460, 4960, 6096, 7053, 8540

(if approved)

Published: 16 January 2022

Intended Status: Standards Track

Expires: 20 July 2022

Authors: R. R. Stewart

Netflix, Inc.

M. Tüxen

Münster Univ. of Appl. Sciences

K. E. E. Nielsen

Kamstrup A/S

Stream Control Transmission Protocol

Abstract

This document obsoletes RFC 4960, if approved. It describes the

Stream Control Transmission Protocol (SCTP) and incorporates the

specification of the chunk flags registry from RFC 6096 and the

specification of the I bit of DATA chunks from RFC 7053. Therefore,

RFC 6096 and RFC 7053 are also obsoleted by this document, if

approved. In addition to that, the Errata documents RFC 4460 and RFC

8540 are also obsoleted by this document, if approved.

SCTP was originally designed to transport Public Switched Telephone

Network (PSTN) signaling messages over IP networks. It is also

suited to be used for other applications, for example WebRTC.

SCTP is a reliable transport protocol operating on top of a

connectionless packet network such as IP. It offers the following

services to its users:

acknowledged error-free non-duplicated transfer of user data,

data fragmentation to conform to discovered path maximum

transmission unit (PMTU) size,

sequenced delivery of user messages within multiple streams, with

an option for order-of-arrival delivery of individual user

messages,

optional bundling of multiple user messages into a single SCTP

packet, and

network-level fault tolerance through supporting of multi-homing

at either or both ends of an association.

The design of SCTP includes appropriate congestion avoidance

behavior and resistance to flooding and masquerade attacks.

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

https://www.rfc-editor.org/rfc/rfc4460
https://www.rfc-editor.org/rfc/rfc4960
https://www.rfc-editor.org/rfc/rfc6096
https://www.rfc-editor.org/rfc/rfc7053
https://www.rfc-editor.org/rfc/rfc8540

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 July 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Conventions

2. Introduction

2.1. Motivation

2.2. Architectural View of SCTP

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

2.3. Key Terms

2.4. Abbreviations

2.5. Functional View of SCTP

2.5.1. Association Startup and Takedown

2.5.2. Sequenced Delivery within Streams

2.5.3. User Data Fragmentation

2.5.4. Acknowledgement and Congestion Avoidance

2.5.5. Chunk Bundling

2.5.6. Packet Validation

2.5.7. Path Management

2.6. Serial Number Arithmetic

2.7. Changes from RFC 4960

3. SCTP Packet Format

3.1. SCTP Common Header Field Descriptions

3.2. Chunk Field Descriptions

3.2.1. Optional/Variable-Length Parameter Format

3.2.2. Reporting of Unrecognized Parameters

3.3. SCTP Chunk Definitions

3.3.1. Payload Data (DATA) (0)

3.3.2. Initiation (INIT) (1)

3.3.2.1. Optional or Variable-Length Parameters in INIT

chunks

3.3.3. Initiation Acknowledgement (INIT ACK) (2)

3.3.3.1. Optional or Variable-Length Parameters in INIT ACK

chunks

3.3.4. Selective Acknowledgement (SACK) (3)

3.3.5. Heartbeat Request (HEARTBEAT) (4)

3.3.6. Heartbeat Acknowledgement (HEARTBEAT ACK) (5)

3.3.7. Abort Association (ABORT) (6)

3.3.8. Shutdown Association (SHUTDOWN) (7)

3.3.9. Shutdown Acknowledgement (SHUTDOWN ACK) (8)

3.3.10. Operation Error (ERROR) (9)

3.3.10.1. Invalid Stream Identifier (1)

3.3.10.2. Missing Mandatory Parameter (2)

3.3.10.3. Stale Cookie Error (3)

3.3.10.4. Out of Resource (4)

3.3.10.5. Unresolvable Address (5)

3.3.10.6. Unrecognized Chunk Type (6)

3.3.10.7. Invalid Mandatory Parameter (7)

3.3.10.8. Unrecognized Parameters (8)

3.3.10.9. No User Data (9)

3.3.10.10. Cookie Received While Shutting Down (10)

3.3.10.11. Restart of an Association with New Addresses (11)

3.3.10.12. User-Initiated Abort (12)

3.3.10.13. Protocol Violation (13)

3.3.11. Cookie Echo (COOKIE ECHO) (10)

3.3.12. Cookie Acknowledgement (COOKIE ACK) (11)

3.3.13. Shutdown Complete (SHUTDOWN COMPLETE) (14)

4. SCTP Association State Diagram

5. Association Initialization

5.1. Normal Establishment of an Association

5.1.1. Handle Stream Parameters

5.1.2. Handle Address Parameters

5.1.3. Generating State Cookie

5.1.4. State Cookie Processing

5.1.5. State Cookie Authentication

5.1.6. An Example of Normal Association Establishment

5.2. Handle Duplicate or Unexpected INIT, INIT ACK, COOKIE ECHO,

and COOKIE ACK Chunks

5.2.1. INIT Chunk Received in COOKIE-WAIT or COOKIE-ECHOED

State (Item B)

5.2.2. Unexpected INIT Chunk in States Other than CLOSED,

COOKIE-ECHOED, COOKIE-WAIT, and SHUTDOWN-ACK-SENT

5.2.3. Unexpected INIT ACK Chunk

5.2.4. Handle a COOKIE ECHO Chunk when a TCB Exists

5.2.4.1. An Example of a Association Restart

5.2.5. Handle Duplicate COOKIE ACK Chunk

5.2.6. Handle Stale Cookie Error

5.3. Other Initialization Issues

5.3.1. Selection of Tag Value

5.4. Path Verification

6. User Data Transfer

6.1. Transmission of DATA Chunks

6.2. Acknowledgement on Reception of DATA Chunks

6.2.1. Processing a Received SACK Chunk

6.3. Management of Retransmission Timer

6.3.1. RTO Calculation

6.3.2. Retransmission Timer Rules

6.3.3. Handle T3-rtx Expiration

6.4. Multi-Homed SCTP Endpoints

6.4.1. Failover from an Inactive Destination Address

6.5. Stream Identifier and Stream Sequence Number

6.6. Ordered and Unordered Delivery

6.7. Report Gaps in Received DATA TSNs

6.8. CRC32c Checksum Calculation

6.9. Fragmentation and Reassembly

6.10. Bundling

7. Congestion Control

7.1. SCTP Differences from TCP Congestion Control

7.2. SCTP Slow-Start and Congestion Avoidance

7.2.1. Slow-Start

7.2.2. Congestion Avoidance

7.2.3. Congestion Control

7.2.4. Fast Retransmit on Gap Reports

7.2.5. Reinitialization

7.2.5.1. Change of Differentiated Services Code Points

7.2.5.2. Change of Routes

7.3. PMTU Discovery

8. Fault Management

8.1. Endpoint Failure Detection

8.2. Path Failure Detection

8.3. Path Heartbeat

8.4. Handle "Out of the Blue" Packets

8.5. Verification Tag

8.5.1. Exceptions in Verification Tag Rules

9. Termination of Association

9.1. Abort of an Association

9.2. Shutdown of an Association

10. ICMP Handling

11. Interface with Upper Layer

11.1. ULP-to-SCTP

11.1.1. Initialize

11.1.2. Associate

11.1.3. Shutdown

11.1.4. Abort

11.1.5. Send

11.1.6. Set Primary

11.1.7. Receive

11.1.8. Status

11.1.9. Change Heartbeat

11.1.10. Request Heartbeat

11.1.11. Get SRTT Report

11.1.12. Set Failure Threshold

11.1.13. Set Protocol Parameters

11.1.14. Receive Unsent Message

11.1.15. Receive Unacknowledged Message

11.1.16. Destroy SCTP Instance

11.2. SCTP-to-ULP

11.2.1. DATA ARRIVE Notification

11.2.2. SEND FAILURE Notification

11.2.3. NETWORK STATUS CHANGE Notification

11.2.4. COMMUNICATION UP Notification

11.2.5. COMMUNICATION LOST Notification

11.2.6. COMMUNICATION ERROR Notification

11.2.7. RESTART Notification

11.2.8. SHUTDOWN COMPLETE Notification

12. Security Considerations

12.1. Security Objectives

12.2. SCTP Responses to Potential Threats

12.2.1. Countering Insider Attacks

12.2.2. Protecting against Data Corruption in the Network

12.2.3. Protecting Confidentiality

12.2.4. Protecting against Blind Denial-of-Service Attacks

12.2.4.1. Flooding

12.2.4.2. Blind Masquerade

12.2.4.3. Improper Monopolization of Services

12.3. SCTP Interactions with Firewalls

12.4. Protection of Non-SCTP-Capable Hosts

13. Network Management Considerations

14. Recommended Transmission Control Block (TCB) Parameters

14.1. Parameters Necessary for the SCTP Instance

14.2. Parameters Necessary per Association (i.e., the TCB)

14.3. Per Transport Address Data

14.4. General Parameters Needed

15. IANA Considerations

15.1. IETF-Defined Chunk Extension

15.2. IETF Chunk Flags Registration

15.3. IETF-Defined Chunk Parameter Extension

15.4. IETF-Defined Additional Error Causes

15.5. Payload Protocol Identifiers

15.6. Port Numbers Registry

16. Suggested SCTP Protocol Parameter Values

17. Acknowledgements

18. Normative References

19. Informative References

Appendix A. CRC32c Checksum Calculation

Authors' Addresses

1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Introduction

This section explains the reasoning behind the development of the

Stream Control Transmission Protocol (SCTP), the services it offers,

and the basic concepts needed to understand the detailed description

of the protocol.

This document obsoletes [RFC4960], if approved. In addition to that,

it incorporates the specification of the chunk flags registry from

[RFC6096] and the specification of the I bit of DATA chunks from

[RFC7053]. Therefore, [RFC6096] and [RFC7053] are also obsoleted by

this document, if approved.

2.1. Motivation

TCP [RFC0793] has performed immense service as the primary means of

reliable data transfer in IP networks. However, an increasing number

of recent applications have found TCP too limiting, and have

incorporated their own reliable data transfer protocol on top of UDP

¶

¶

¶

[RFC0768]. The limitations that users have wished to bypass include

the following:

TCP provides both reliable data transfer and strict order-of-

transmission delivery of data. Some applications need reliable

transfer without sequence maintenance, while others would be

satisfied with partial ordering of the data. In both of these

cases, the head-of-line blocking offered by TCP causes

unnecessary delay.

The stream-oriented nature of TCP is often an inconvenience.

Applications add their own record marking to delineate their

messages, and make explicit use of the push facility to ensure

that a complete message is transferred in a reasonable time.

The limited scope of TCP sockets complicates the task of

providing highly-available data transfer capability using multi-

homed hosts.

TCP is relatively vulnerable to denial-of-service attacks, such

as SYN attacks.

Transport of PSTN signaling across the IP network is an application

for which all of these limitations of TCP are relevant. While this

application directly motivated the development of SCTP, other

applications might find SCTP a good match to their requirements. One

example of this is the use of datachannels in the WebRTC

infrastructure.

2.2. Architectural View of SCTP

SCTP is viewed as a layer between the SCTP user application ("SCTP

user" for short) and a connectionless packet network service such as

IP. The remainder of this document assumes SCTP runs on top of IP.

The basic service offered by SCTP is the reliable transfer of user

messages between peer SCTP users. It performs this service within

the context of an association between two SCTP endpoints. Section 11

of this document sketches the API that exists at the boundary

between the SCTP and the SCTP upper layers.

SCTP is connection-oriented in nature, but the SCTP association is a

broader concept than the TCP connection. SCTP provides the means for

each SCTP endpoint (Section 2.3) to provide the other endpoint

(during association startup) with a list of transport addresses

(i.e., multiple IP addresses in combination with an SCTP port)

through which that endpoint can be reached and from which it will

originate SCTP packets. The association spans transfers over all of

the possible source/destination combinations that can be generated

from each endpoint's lists.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

Active Destination Transport Address:

Association Maximum DATA Chunk Size (AMDCS):

Bundling Of Chunks:

Bundling Of User Messages:

Chunk:

Congestion Window (cwnd):

Figure 1: An SCTP Association

In addition to encapsulating SCTP packets in IPv4 or IPv6, it is

also possible to encapsulate SCTP packets in UDP as specified in

[RFC6951] or encapsulate them in DTLS as specified in [RFC8261].

2.3. Key Terms

Some of the language used to describe SCTP has been introduced in

the previous sections. This section provides a consolidated list of

the key terms and their definitions.

A transport address on a peer

endpoint that a transmitting endpoint considers available for

receiving user messages.

The smallest Path

Maximum DATA Chunk Size (PMDCS) of all destination addresses.

An optional multiplexing operation, whereby

more than one chunk can be carried in the same SCTP packet.

An optional multiplexing operation,

whereby more than one user message can be carried in the same

SCTP packet. Each user message occupies its own DATA chunk.

A unit of information within an SCTP packet, consisting of a

chunk header and chunk-specific content.

An SCTP variable that limits outstanding

data, in number of bytes, that a sender can send to a particular

destination transport address before receiving an

acknowledgement.

 _____________ _____________

| SCTP User | | SCTP User |

| Application | | Application |

|-------------| |-------------|

| SCTP | | SCTP |

| Transport | | Transport |

| Service | | Service |

|-------------| |-------------|

| |One or more ---- One or more| |

| IP Network |IP address \/ IP address| IP Network |

| Service |appearances /\ appearances| Service |

|_____________| ---- |_____________|

 SCTP Node A |<-------- Network transport ------->| SCTP Node B

¶

¶

¶

¶

¶

¶

¶

¶

Control Chunk:

Cumulative TSN Ack Point:

Flightsize:

Idle Destination Address:

Inactive Destination Transport Address:

Message (or User Message):

Network Byte Order:

Ordered Message:

Outstanding Data (or Data Outstanding or Data In Flight):

Outstanding TSN (at an SCTP Endpoint):

Out Of The Blue (OOTB) Packet:

Path:

A chunk not being used for transmitting user data,

i.e. every chunk which is not a DATA chunk.

The Transmission Sequence Number (TSN) of

the last DATA chunk acknowledged via the Cumulative TSN Ack field

of a SACK chunk.

The number of bytes of outstanding data to a particular

destination transport address at any given time.

An address that has not had user messages

sent to it within some length of time, normally the 'HB.interval'

or greater.

An address that is

considered inactive due to errors and unavailable to transport

user messages.

Data submitted to SCTP by the Upper

Layer Protocol (ULP).

Most significant byte first, a.k.a., big

endian.

A user message that is delivered in order with

respect to all previous user messages sent within the stream on

which the message was sent.

The total

size of the DATA chunks associated with outstanding TSNs. A

retransmitted DATA chunk is counted once in outstanding data. A

DATA chunk that is classified as lost but that has not yet been

retransmitted is not in outstanding data.

A TSN (and the associated

DATA chunk) that has been sent by the endpoint but for which it

has not yet received an acknowledgement.

A correctly formed packet, for which

the receiver can not identify the association it belongs to. See

Section 8.4.

The route taken by the SCTP packets sent by one SCTP endpoint

to a specific destination transport address of its peer SCTP

endpoint. Sending to different destination transport addresses

does not necessarily guarantee getting separate paths. Within

this specification, a path is identified by the destination

transport address, since the routing is assumed to be stable.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Path Maximum DATA Chunk Size (PMDCS):

Path Maximum Transmission Unit (PMTU):

Primary Path:

Receiver Window (rwnd):

SCTP Association:

SCTP Endpoint:

SCTP Packet (or Packet):

This includes in particular the source address being selected

when sending packets to the destination address.

The maximum size (including

the DATA chunk header) of a DATA chunk which fits into an SCTP

packet not exceeding the PMTU of a particular destination

address.

The maximum size (including

the SCTP common header and all chunks including their paddings)

of an SCTP packet which can be sent to a particular destination

address without using IP level fragmentation.

The primary path is the destination and source

address that will be put into a packet outbound to the peer

endpoint by default. The definition includes the source address

since an implementation MAY wish to specify both destination and

source address to better control the return path taken by reply

chunks and on which interface the packet is transmitted when the

data sender is multi-homed.

An SCTP variable a data sender uses to

store the most recently calculated receiver window of its peer,

in number of bytes. This gives the sender an indication of the

space available in the receiver's inbound buffer.

A protocol relationship between SCTP endpoints,

composed of the two SCTP endpoints and protocol state information

including Verification Tags and the currently active set of

Transmission Sequence Numbers (TSNs), etc. An association can be

uniquely identified by the transport addresses used by the

endpoints in the association. Two SCTP endpoints MUST NOT have

more than one SCTP association between them at any given time.

The logical sender/receiver of SCTP packets. On a

multi-homed host, an SCTP endpoint is represented to its peers as

a combination of a set of eligible destination transport

addresses to which SCTP packets can be sent and a set of eligible

source transport addresses from which SCTP packets can be

received. All transport addresses used by an SCTP endpoint MUST

use the same port number, but can use multiple IP addresses. A

transport address used by an SCTP endpoint MUST NOT be used by

another SCTP endpoint. In other words, a transport address is

unique to an SCTP endpoint.

The unit of data delivery across the

interface between SCTP and the connectionless packet network

(e.g., IP). An SCTP packet includes the common SCTP header,

¶

¶

¶

¶

¶

¶

¶

SCTP User Application (or SCTP User):

Slow-Start Threshold (ssthresh):

State Cookie:

Stream:

Stream Sequence Number:

Tie-Tags:

Transmission Control Block (TCB):

Transmission Sequence Number (TSN):

Transport Address:

possible SCTP control chunks, and user data encapsulated within

SCTP DATA chunks.

The logical higher-layer

application entity which uses the services of SCTP, also called

the Upper-Layer Protocol (ULP).

An SCTP variable. This is the

threshold that the endpoint will use to determine whether to

perform slow start or congestion avoidance on a particular

destination transport address. Ssthresh is in number of bytes.

A container of all information needed to establish an

association.

A unidirectional logical channel established from one to

another associated SCTP endpoint, within which all user messages

are delivered in sequence except for those submitted to the

unordered delivery service.

Note: The relationship between stream numbers in opposite

directions is strictly a matter of how the applications use them.

It is the responsibility of the SCTP user to create and manage

these correlations if they are so desired.

A 16-bit sequence number used internally by

SCTP to ensure sequenced delivery of the user messages within a

given stream. One Stream Sequence Number is attached to each

ordered user message.

Two 32-bit random numbers that together make a 64-bit

nonce. These tags are used within a State Cookie and TCB so that

a newly restarting association can be linked to the original

association within the endpoint that did not restart and yet not

reveal the true Verification Tags of an existing association.

An internal data structure

created by an SCTP endpoint for each of its existing SCTP

associations to other SCTP endpoints. TCB contains all the status

and operational information for the endpoint to maintain and

manage the corresponding association.

A 32-bit sequence number used

internally by SCTP. One TSN is attached to each chunk containing

user data to permit the receiving SCTP endpoint to acknowledge

its receipt and detect duplicate deliveries.

A transport address is traditionally defined by

a network-layer address, a transport-layer protocol, and a

transport-layer port number. In the case of SCTP running over IP,

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Unordered Message:

User Message:

Verification Tag:

MAC

RTO

RTT

RTTVAR

SCTP

SRTT

TCB

TLV

TSN

ULP

a transport address is defined by the combination of an IP

address and an SCTP port number (where SCTP is the transport

protocol).

Unordered messages are "unordered" with respect

to any other message; this includes both other unordered messages

as well as other ordered messages. An unordered message might be

delivered prior to or later than ordered messages sent on the

same stream.

The unit of data delivery across the interface

between SCTP and its user.

A 32-bit unsigned integer that is randomly

generated. The Verification Tag provides a key that allows a

receiver to verify that the SCTP packet belongs to the current

association and is not an old or stale packet from a previous

association.

2.4. Abbreviations

Message Authentication Code [RFC2104]

Retransmission Timeout

Round-Trip Time

Round-Trip Time Variation

Stream Control Transmission Protocol

Smoothed RTT

Transmission Control Block

Type-Length-Value coding format

Transmission Sequence Number

Upper-Layer Protocol

2.5. Functional View of SCTP

The SCTP transport service can be decomposed into a number of

functions. These are depicted in Figure 2 and explained in the

remainder of this section.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 2: Functional View of the SCTP Transport Service

2.5.1. Association Startup and Takedown

An association is initiated by a request from the SCTP user (see the

description of the ASSOCIATE (or SEND) primitive in Section 11).

A cookie mechanism, similar to one described by Karn and Simpson in

[RFC2522], is employed during the initialization to provide

protection against synchronization attacks. The cookie mechanism

uses a four-way handshake, the last two legs of which are allowed to

carry user data for fast setup. The startup sequence is described in

Section 5 of this document.

SCTP provides for graceful close (i.e., shutdown) of an active

association on request from the SCTP user. See the description of

the SHUTDOWN primitive in Section 11. SCTP also allows ungraceful

close (i.e., abort), either on request from the user (ABORT

 SCTP User Application

 _____________ ____________________

| | | Sequenced Delivery |

| Association | | within Streams |

| | |____________________|

| Startup |

| | ____________________________

| and | | User Data Fragmentation |

| | |____________________________|

| Takedown |

| | ____________________________

| | | Acknowledgement |

| | | and |

| | | Congestion Avoidance |

| | |____________________________|

| |

| | ____________________________

| | | Chunk Bundling |

| | |____________________________|

| |

| | ________________________________

| | | Packet Validation |

| | |________________________________|

| |

| | ________________________________

| | | Path Management |

|_____________| |________________________________|

¶

¶

primitive) or as a result of an error condition detected within the

SCTP layer. Section 9 describes both the graceful and the ungraceful

close procedures.

SCTP does not support a half-open state (like TCP) wherein one side

continues sending data while the other end is closed. When either

endpoint performs a shutdown, the association on each peer will stop

accepting new data from its user and only deliver data in queue at

the time of the graceful close (see Section 9).

2.5.2. Sequenced Delivery within Streams

The term "stream" is used in SCTP to refer to a sequence of user

messages that are to be delivered to the upper-layer protocol in

order with respect to other messages within the same stream. This is

in contrast to its usage in TCP, where it refers to a sequence of

bytes (in this document, a byte is assumed to be 8 bits).

The SCTP user can specify at association startup time the number of

streams to be supported by the association. This number is

negotiated with the remote end (see Section 5.1.1). User messages

are associated with stream numbers (SEND, RECEIVE primitives,

Section 11). Internally, SCTP assigns a Stream Sequence Number to

each message passed to it by the SCTP user. On the receiving side,

SCTP ensures that messages are delivered to the SCTP user in

sequence within a given stream. However, while one stream might be

blocked waiting for the next in-sequence user message, delivery from

other streams might proceed.

SCTP provides a mechanism for bypassing the sequenced delivery

service. User messages sent using this mechanism are delivered to

the SCTP user as soon as they are received.

2.5.3. User Data Fragmentation

When needed, SCTP fragments user messages to ensure that the size of

the SCTP packet passed to the lower layer does not exceed the PMTU.

Once a user message has been fragmented, this fragmentation cannot

be changed anymore. On receipt, fragments are reassembled into

complete messages before being passed to the SCTP user.

2.5.4. Acknowledgement and Congestion Avoidance

SCTP assigns a Transmission Sequence Number (TSN) to each user data

fragment or unfragmented message. The TSN is independent of any

Stream Sequence Number assigned at the stream level. The receiving

end acknowledges all TSNs received, even if there are gaps in the

sequence. If a user data fragment or unfragmented message needs to

be retransmitted, the TSN assigned to it is used. In this way,

¶

¶

¶

¶

¶

¶

reliable delivery is kept functionally separate from sequenced

stream delivery.

The acknowledgement and congestion avoidance function is responsible

for packet retransmission when timely acknowledgement has not been

received. Packet retransmission is conditioned by congestion

avoidance procedures similar to those used for TCP. See Section 6

and Section 7 for a detailed description of the protocol procedures

associated with this function.

2.5.5. Chunk Bundling

As described in Section 3, the SCTP packet as delivered to the lower

layer consists of a common header followed by one or more chunks.

Each chunk contains either user data or SCTP control information. An

SCTP implementation supporting bundling on the sender side might

delay the sending of user messages to allow the corresponding DATA

chunks to be bundled.

The SCTP user has the option to request that an SCTP implementation

does not delay the sending of a user message just for this purpose.

However, even if the SCTP user has chosen this option, the SCTP

implementation might delay the sending due to other reasons, for

example due to congestion control or flow control, and might also

bundle multiple DATA chunks, if possible.

2.5.6. Packet Validation

A mandatory Verification Tag field and a 32-bit checksum field (see

Appendix A for a description of the CRC32c checksum) are included in

the SCTP common header. The Verification Tag value is chosen by each

end of the association during association startup. Packets received

without the expected Verification Tag value are discarded, as a

protection against blind masquerade attacks and against stale SCTP

packets from a previous association. The CRC32c checksum is set by

the sender of each SCTP packet to provide additional protection

against data corruption in the network. The receiver of an SCTP

packet with an invalid CRC32c checksum silently discards the packet.

2.5.7. Path Management

The sending SCTP user is able to manipulate the set of transport

addresses used as destinations for SCTP packets through the

primitives described in Section 11. The SCTP path management

function monitors reachability through heartbeats when other packet

traffic is inadequate to provide this information and advises the

SCTP user when reachability of any transport address of the peer

endpoint changes. The path management function chooses the

destination transport address for each outgoing SCTP packet based on

the SCTP user's instructions and the currently perceived

¶

¶

¶

¶

¶

reachability status of the eligible destination set. The path

management function is also responsible for reporting the eligible

set of local transport addresses to the peer endpoint during

association startup, and for reporting the transport addresses

returned from the peer endpoint to the SCTP user.

At association startup, a primary path is defined for each SCTP

endpoint, and is used for normal sending of SCTP packets.

On the receiving end, the path management is responsible for

verifying the existence of a valid SCTP association to which the

inbound SCTP packet belongs before passing it for further

processing.

Note: Path Management and Packet Validation are done at the same

time, so although described separately above, in reality they cannot

be performed as separate items.

2.6. Serial Number Arithmetic

It is essential to remember that the actual Transmission Sequence

Number space is finite, though very large. This space ranges from 0

to 2 - 1. Since the space is finite, all arithmetic dealing with

Transmission Sequence Numbers MUST be performed modulo 2 . This

unsigned arithmetic preserves the relationship of sequence numbers

as they cycle from 2 - 1 to 0 again. There are some subtleties to

computer modulo arithmetic, so great care has to be taken in

programming the comparison of such values. When referring to TSNs,

the symbol "<=" means "less than or equal" (modulo 2).

Comparisons and arithmetic on TSNs in this document SHOULD use

Serial Number Arithmetic as defined in [RFC1982] where SERIAL_BITS =

32.

An endpoint SHOULD NOT transmit a DATA chunk with a TSN that is more

than 2 - 1 above the beginning TSN of its current send window.

Doing so will cause problems in comparing TSNs.

Transmission Sequence Numbers wrap around when they reach 2 - 1.

That is, the next TSN a DATA chunk MUST use after transmitting TSN =

2 - 1 is TSN = 0.

Any arithmetic done on Stream Sequence Numbers SHOULD use Serial

Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 16.

All other arithmetic and comparisons in this document use normal

arithmetic.

¶

¶

¶

¶

32

32

32

32 ¶

¶

31

¶

32

32 ¶

¶

2.7. Changes from RFC 4960

SCTP was originally defined in [RFC4960], which this document

obsoletes, if approved. Readers interested in the details of the

various changes that this document incorporates are asked to consult

[RFC8540].

In addition to these and further editorial changes, the following

changes have been incorporated in this document:

Update references.

Improve the language related to requirements levels.

Allow the ASSOCIATE primitive to take multiple remote addresses;

also refer to the Socket API specification.

Refer to the PLPMTUD specification for path MTU discovery.

Move the description of ICMP handling from an Appendix to the

main text.

Remove the Appendix describing ECN handling from the document.

Describe the packet size handling more precisely by introducing

PMTU, PMDCS and AMDCS.

Add the definition of control chunk.

Improve the description of the handling of INIT and INIT ACK

chunks with invalid mandatory parameters.

Allow using L > 1 for Appropriate Byte Counting (ABC) during slow

start.

Explicitly describe the reinitialization of the congestion

controller on route changes.

Improve the terminology to make clear that this specification

does not describe a full mesh architecture.

Improve the description of sequence number generation

(Transmission Sequence Number and Stream Sequence Number).

Improve the description of reneging.

Don't require the change of the cumulative TSN ACK anymore for

increasing the congestion window. This improves the consistency

with the handling in congestion avoidance.

¶

¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

Source Port Number: 16 bits (unsigned integer)

Improve the description of the State Cookie.

3. SCTP Packet Format

An SCTP packet is composed of a common header and chunks. A chunk

contains either control information or user data.

The SCTP packet format is shown below:

INIT, INIT ACK and SHUTDOWN COMPLETE chunks MUST NOT be bundled with

any other chunk into an SCTP packet. All other chunks MAY be bundled

to form an SCTP packet that does not exceed the PMTU. See Section

6.10 for more details on chunk bundling.

If a user data message does not fit into one SCTP packet it can be

fragmented into multiple chunks using the procedure defined in

Section 6.9.

All integer fields in an SCTP packet MUST be transmitted in network

byte order, unless otherwise stated.

3.1. SCTP Common Header Field Descriptions

This is the SCTP sender's port number. It can be used by the

receiver in combination with the source IP address, the SCTP

destination port, and possibly the destination IP address to

* ¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Common Header |

+-+

| Chunk #1 |

+-+

| ... |

+-+

| Chunk #n |

+-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port Number | Destination Port Number |

+-+

| Verification Tag |

+-+

| Checksum |

+-+

¶

Destination Port Number: 16 bits (unsigned integer)

Verification Tag: 32 bits (unsigned integer)

Checksum: 32 bits (unsigned integer)

identify the association to which this packet belongs. The source

port number 0 MUST NOT be used.

This is the SCTP port number to which this packet is destined.

The receiving host will use this port number to de-multiplex the

SCTP packet to the correct receiving endpoint/application. The

destination port number 0 MUST NOT be used.

The receiver of an SCTP packet uses the Verification Tag to

validate the sender of this packet. On transmit, the value of the

Verification Tag MUST be set to the value of the Initiate Tag

received from the peer endpoint during the association

initialization, with the following exceptions:

A packet containing an INIT chunk MUST have a zero

Verification Tag.

A packet containing a SHUTDOWN COMPLETE chunk with the T

bit set MUST have the Verification Tag copied from the

packet with the SHUTDOWN ACK chunk.

A packet containing an ABORT chunk MAY have the

verification tag copied from the packet that caused the

ABORT chunk to be sent. For details see Section 8.4 and

Section 8.5.

This field contains the checksum of the SCTP packet. Its

calculation is discussed in Section 6.8. SCTP uses the CRC32c

algorithm as described in Appendix A for calculating the

checksum.

3.2. Chunk Field Descriptions

The figure below illustrates the field format for the chunks to be

transmitted in the SCTP packet. Each chunk is formatted with a Chunk

Type field, a chunk-specific Flag field, a Chunk Length field, and a

Value field.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Chunk Type | Chunk Flags | Chunk Length |

+-+

\ \

/ Chunk Value /

\ \

+-+

¶

Chunk Type: 8 bits (unsigned integer)

This field identifies the type of information contained in the

Chunk Value field. It takes a value from 0 to 254. The value of

255 is reserved for future use as an extension field.

The values of Chunk Types are defined as follows:

ID Value Chunk Type

0 Payload Data (DATA)

1 Initiation (INIT)

2 Initiation Acknowledgement (INIT ACK)

3 Selective Acknowledgement (SACK)

4 Heartbeat Request (HEARTBEAT)

5 Heartbeat Acknowledgement (HEARTBEAT ACK)

6 Abort (ABORT)

7 Shutdown (SHUTDOWN)

8 Shutdown Acknowledgement (SHUTDOWN ACK)

9 Operation Error (ERROR)

10 State Cookie (COOKIE ECHO)

11 Cookie Acknowledgement (COOKIE ACK)

12
Reserved for Explicit Congestion Notification Echo

(ECNE)

13 Reserved for Congestion Window Reduced (CWR)

14 Shutdown Complete (SHUTDOWN COMPLETE)

15 to 62 available

63 reserved for IETF-defined Chunk Extensions

64 to 126 available

127 reserved for IETF-defined Chunk Extensions

128 to

190
available

191 reserved for IETF-defined Chunk Extensions

192 to

254
available

255 reserved for IETF-defined Chunk Extensions

Table 1: Chunk Types

Note: The ECNE and CWR chunk types are reserved for future use of

Explicit Congestion Notification (ECN).

Chunk Types are encoded such that the highest-order 2 bits

specify the action that is taken if the processing endpoint does

not recognize the Chunk Type.

00
Stop processing this SCTP packet; discard the unrecognized

chunk and all further chunks.

01

Stop processing this SCTP packet, discard the unrecognized

chunk and all further chunks, and report the unrecognized

¶

¶

¶

¶

¶

Chunk Flags: 8 bits

Chunk Length: 16 bits (unsigned integer)

Chunk Value: variable length

chunk in an ERROR chunk using the 'Unrecognized Chunk Type'

error cause.

10 Skip this chunk and continue processing.

11

Skip this chunk and continue processing, but report it in

an ERROR chunk using the 'Unrecognized Chunk Type' error

cause.

Table 2: Processing of Unknown Chunks

The usage of these bits depends on the Chunk type as given by the

Chunk Type field. Unless otherwise specified, they are set to 0

on transmit and are ignored on receipt.

This value represents the size of the chunk in bytes, including

the Chunk Type, Chunk Flags, Chunk Length, and Chunk Value

fields. Therefore, if the Chunk Value field is zero-length, the

Length field will be set to 4. The Chunk Length field does not

count any chunk padding. However, it does include any padding of

variable-length parameters other than the last parameter in the

chunk.

Note: A robust implementation is expected to accept the chunk

whether or not the final padding has been included in the Chunk

Length.

The Chunk Value field contains the actual information to be

transferred in the chunk. The usage and format of this field is

dependent on the Chunk Type.

The total length of a chunk (including Type, Length, and Value

fields) MUST be a multiple of 4 bytes. If the length of the chunk is

not a multiple of 4 bytes, the sender MUST pad the chunk with all

zero bytes, and this padding is not included in the Chunk Length

field. The sender MUST NOT pad with more than 3 bytes. The receiver

MUST ignore the padding bytes.

SCTP-defined chunks are described in detail in Section 3.3. The

guidelines for IETF-defined chunk extensions can be found in Section

15.1 of this document.

3.2.1. Optional/Variable-Length Parameter Format

Chunk values of SCTP control chunks consist of a chunk-type-specific

header of required fields, followed by zero or more parameters. The

optional and variable-length parameters contained in a chunk are

defined in a Type-Length-Value format as shown below.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Parameter Type: 16 bits (unsigned integer)

Parameter Length: 16 bits (unsigned integer)

Parameter Value: variable length

The Type field is a 16-bit identifier of the type of parameter.

It takes a value of 0 to 65534.

The value of 65535 is reserved for IETF-defined extensions.

Values other than those defined in specific SCTP chunk

descriptions are reserved for use by IETF.

The Parameter Length field contains the size of the parameter in

bytes, including the Parameter Type, Parameter Length, and

Parameter Value fields. Thus, a parameter with a zero-length

Parameter Value field would have a Parameter Length field of 4.

The Parameter Length does not include any padding bytes.

The Parameter Value field contains the actual information to be

transferred in the parameter.

The total length of a parameter (including Parameter Type, Parameter

Length, and Parameter Value fields) MUST be a multiple of 4 bytes.

If the length of the parameter is not a multiple of 4 bytes, the

sender pads the parameter at the end (i.e., after the Parameter

Value field) with all zero bytes. The length of the padding is not

included in the Parameter Length field. A sender MUST NOT pad with

more than 3 bytes. The receiver MUST ignore the padding bytes.

The Parameter Types are encoded such that the highest-order 2 bits

specify the action that is taken if the processing endpoint does not

recognize the Parameter Type.

00
Stop processing this parameter; do not process any further

parameters within this chunk.

01

Stop processing this parameter, do not process any further

parameters within this chunk, and report the unrecognized

parameter as described in Section 3.2.2.

10 Skip this parameter and continue processing.

11

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Parameter Type | Parameter Length |

+-+

\ \

/ Parameter Value /

\ \

+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Skip this parameter and continue processing but report the

unrecognized parameter as described in Section 3.2.2.

Table 3: Processing of Unknown Parameters

Please note that, when an INIT or INIT ACK chunk is received, in all

four cases, an INIT ACK or COOKIE ECHO chunk is sent in response,

respectively. In the 00 or 01 case, the processing of the parameters

after the unknown parameter is canceled, but no processing already

done is rolled back.

The actual SCTP parameters are defined in the specific SCTP chunk

sections. The rules for IETF-defined parameter extensions are

defined in Section 15.3. Parameter types MUST be unique across all

chunks. For example, the parameter type '5' is used to represent an

IPv4 address (see Section 3.3.2.1). The value '5' then is reserved

across all chunks to represent an IPv4 address and MUST NOT be

reused with a different meaning in any other chunk.

3.2.2. Reporting of Unrecognized Parameters

If the receiver of an INIT chunk detects unrecognized parameters and

has to report them according to Section 3.2.1, it MUST put the

"Unrecognized Parameter" parameter(s) in the INIT ACK chunk sent in

response to the INIT chunk. Note that if the receiver of the INIT

chunk is not going to establish an association (e.g., due to lack of

resources), an "Unrecognized Parameter" error cause would not be

included with any ABORT chunk being sent to the sender of the INIT

chunk.

If the receiver of any other chunk (e.g., INIT ACK) detects

unrecognized parameters and has to report them according to Section

3.2.1, it SHOULD bundle the ERROR chunk containing the "Unrecognized

Parameters" error cause with the chunk sent in response (e.g.,

COOKIE ECHO). If the receiver of the INIT ACK chunk cannot bundle

the COOKIE ECHO chunk with the ERROR chunk, the ERROR chunk MAY be

sent separately but not before the COOKIE ACK chunk has been

received.

Any time a COOKIE ECHO chunk is sent in a packet, it MUST be the

first chunk.

3.3. SCTP Chunk Definitions

This section defines the format of the different SCTP chunk types.

3.3.1. Payload Data (DATA) (0)

The following format MUST be used for the DATA chunk:

¶

¶

¶

¶

¶

¶

¶

¶

Res: 4 bits

I bit: 1 bit

U bit: 1 bit

B bit: 1 bit

E bit: 1 bit

Length: 16 bits (unsigned integer)

All set to 0 on transmit and ignored on receipt.

The (I)mmediate bit MAY be set by the sender whenever the sender

of a DATA chunk can benefit from the corresponding SACK chunk

being sent back without delay. See Section 4 of [RFC7053] for a

discussion of the benefits.

The (U)nordered bit, if set to 1, indicates that this is an

unordered DATA chunk, and there is no Stream Sequence Number

assigned to this DATA chunk. Therefore, the receiver MUST ignore

the Stream Sequence Number field.

After reassembly (if necessary), unordered DATA chunks MUST be

dispatched to the upper layer by the receiver without any attempt

to reorder.

If an unordered user message is fragmented, each fragment of the

message MUST have its U bit set to 1.

The (B)eginning fragment bit, if set, indicates the first

fragment of a user message.

The (E)nding fragment bit, if set, indicates the last fragment of

a user message.

This field indicates the length of the DATA chunk in bytes from

the beginning of the type field to the end of the User Data field

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 0 | Res |I|U|B|E| Length |

+-+

| TSN |

+-+

| Stream Identifier S | Stream Sequence Number n |

+-+

| Payload Protocol Identifier |

+-+

\ \

/ User Data (seq n of Stream S) /

\ \

+-+

¶

¶

¶

¶

¶

¶

¶

¶

TSN: 32 bits (unsigned integer)

Stream Identifier S: 16 bits (unsigned integer)

Stream Sequence Number n: 16 bits (unsigned integer)

Payload Protocol Identifier: 32 bits (unsigned integer)

User Data: variable length

excluding any padding. A DATA chunk with one byte of user data

will have Length set to 17 (indicating 17 bytes).

A DATA chunk with a User Data field of length L will have the

Length field set to (16 + L) (indicating 16 + L bytes) where L

MUST be greater than 0.

This value represents the TSN for this DATA chunk. The valid

range of TSN is from 0 to 4294967295 (2 - 1). TSN wraps back to

0 after reaching 4294967295.

Identifies the stream to which the following user data belongs.

This value represents the Stream Sequence Number of the following

user data within the stream S. Valid range is 0 to 65535.

When a user message is fragmented by SCTP for transport, the same

Stream Sequence Number MUST be carried in each of the fragments

of the message.

This value represents an application (or upper layer) specified

protocol identifier. This value is passed to SCTP by its upper

layer and sent to its peer. This identifier is not used by SCTP

but can be used by certain network entities, as well as by the

peer application, to identify the type of information being

carried in this DATA chunk. This field MUST be sent even in

fragmented DATA chunks (to make sure it is available for agents

in the middle of the network). Note that this field is not

touched by an SCTP implementation; therefore, its byte order is

not necessarily big endian. The upper layer is responsible for

any byte order conversions to this field.

The value 0 indicates that no application identifier is specified

by the upper layer for this payload data.

This is the payload user data. The implementation MUST pad the

end of the data to a 4-byte boundary with all-zero bytes. Any

padding MUST NOT be included in the Length field. A sender MUST

never add more than 3 bytes of padding.

An unfragmented user message MUST have both the B and E bits set to

1. Setting both B and E bits to 0 indicates a middle fragment of a

multi-fragment user message, as summarized in the following table:

¶

¶

32

¶

¶

¶

¶

¶

¶

¶

¶

B E Description

1 0 First piece of a fragmented user message

0 0 Middle piece of a fragmented user message

0 1 Last piece of a fragmented user message

1 1 Unfragmented message

Table 4: Fragment Description Flags

When a user message is fragmented into multiple chunks, the TSNs are

used by the receiver to reassemble the message. This means that the

TSNs for each fragment of a fragmented user message MUST be strictly

sequential.

The TSNs of DATA chunks sent SHOULD be strictly sequential.

Note: The extension described in [RFC8260] can be used to mitigate

the head of line blocking when transferring large user messages.

3.3.2. Initiation (INIT) (1)

This chunk is used to initiate an SCTP association between two

endpoints. The format of the INIT chunk is shown below:

The following parameters are specified for the INIT chunk. Unless

otherwise noted, each parameter MUST only be included once in the

INIT chunk.

Fixed Length Parameter Status

Initiate Tag Mandatory

Advertised Receiver Window Credit Mandatory

Number of Outbound Streams Mandatory

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 1 | Chunk Flags | Chunk Length |

+-+

| Initiate Tag |

+-+

| Advertised Receiver Window Credit (a_rwnd) |

+-+

| Number of Outbound Streams | Number of Inbound Streams |

+-+

| Initial TSN |

+-+

\ \

/ Optional/Variable-Length Parameters /

\ \

+-+

¶

¶

Initiate Tag: 32 bits (unsigned integer)

Fixed Length Parameter Status

Number of Inbound Streams Mandatory

Initial TSN Mandatory

Table 5: Fixed Length Parameters of INIT

Chunks

Variable Length Parameter Status Type Value

IPv4 Address (Note 1) Optional 5

IPv6 Address (Note 1) Optional 6

Cookie Preservative Optional 9

Reserved for ECN Capable (Note 2) Optional 32768 (0x8000)

Host Name Address (Note 3) Deprecated 11

Supported Address Types (Note 4) Optional 12

Table 6: Variable Length Parameters of INIT Chunks

Note 1: The INIT chunks can contain multiple addresses that can be

IPv4 and/or IPv6 in any combination.

Note 2: The ECN Capable field is reserved for future use of Explicit

Congestion Notification.

Note 3: An INIT chunk MUST NOT contain the Host Name Address

parameter. The receiver of an INIT chunk containing a Host Name

Address parameter MUST send an ABORT chunk and MAY include an

"Unresolvable Address" error cause.

Note 4: This parameter, when present, specifies all the address

types the sending endpoint can support. The absence of this

parameter indicates that the sending endpoint can support any

address type.

If an INIT chunk is received with all mandatory parameters that are

specified for the INIT chunk, then the receiver SHOULD process the

INIT chunk and send back an INIT ACK. The receiver of the INIT chunk

MAY bundle an ERROR chunk with the COOKIE ACK chunk later. However,

restrictive implementations MAY send back an ABORT chunk in response

to the INIT chunk.

The Chunk Flags field in INIT chunks is reserved, and all bits in it

SHOULD be set to 0 by the sender and ignored by the receiver.

The receiver of the INIT chunk (the responding end) records the

value of the Initiate Tag parameter. This value MUST be placed

into the Verification Tag field of every SCTP packet that the

receiver of the INIT chunk transmits within this association.

The Initiate Tag is allowed to have any value except 0. See

Section 5.3.1 for more on the selection of the tag value.

¶

¶

¶

¶

¶

¶

¶

¶

Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned

integer)

Number of Outbound Streams (OS): 16 bits (unsigned integer)

Number of Inbound Streams (MIS): 16 bits (unsigned integer)

Initial TSN (I-TSN): 32 bits (unsigned integer)

If the value of the Initiate Tag in a received INIT chunk is

found to be 0, the receiver MUST silently discard the packet.

This value represents the dedicated buffer space, in number of

bytes, the sender of the INIT chunk has reserved in association

with this window.

The Advertised Receiver Window Credit MUST NOT be smaller than

1500.

A receiver of an INIT chunk with the a_rwnd value set to a value

smaller than 1500 MUST discard the packet, SHOULD send a packet

in response containing an ABORT chunk and using the Initiate Tag

as the Verification Tag, and MUST NOT change the state of any

existing association.

During the life of the association, this buffer space SHOULD NOT

be reduced (i.e., dedicated buffers ought not to be taken away

from this association); however, an endpoint MAY change the value

of a_rwnd it sends in SACK chunks.

Defines the number of outbound streams the sender of this INIT

chunk wishes to create in this association. The value of 0 MUST

NOT be used.

A receiver of an INIT chunk with the OS value set to 0 MUST

discard the packet, SHOULD send a packet in response containing

an ABORT chunk and using the Initiate Tag as the Verification

Tag, and MUST NOT change the state of any existing association.

Defines the maximum number of streams the sender of this INIT

chunk allows the peer end to create in this association. The

value 0 MUST NOT be used.

Note: There is no negotiation of the actual number of streams but

instead the two endpoints will use the min(requested, offered).

See Section 5.1.1 for details.

A receiver of an INIT chunk with the MIS value set to 0 MUST

discard the packet, SHOULD send a packet in response containing

an ABORT chunk and using the Initiate Tag as the Verification

Tag, and MUST NOT change the state of any existing association.

Defines the initial TSN that the sender of the INIT chunk will

use. The valid range is from 0 to 4294967295 and the Initial TSN

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

IPv4 Address: 32 bits (unsigned integer)

IPv6 Address: 128 bits (unsigned integer)

SHOULD be set to a random value in that range. The methods

described in [RFC4086] can be used for the Initiate TSN

randomization.

3.3.2.1. Optional or Variable-Length Parameters in INIT chunks

The following parameters follow the Type-Length-Value format as

defined in Section 3.2.1. Any Type-Length-Value fields MUST be

placed after the fixed-length fields. (The fixed-length fields are

defined in the previous section.)

3.3.2.1.1. IPv4 Address (5)

Contains an IPv4 address of the sending endpoint. It is binary

encoded.

3.3.2.1.2. IPv6 Address (6)

Contains an IPv6 [RFC8200] address of the sending endpoint. It is

binary encoded.

A sender MUST NOT use an IPv4-mapped IPv6 address [RFC4291], but

SHOULD instead use an IPv4 Address parameter for an IPv4 address.

Combined with the Source Port Number in the SCTP common header, the

value passed in an IPv4 or IPv6 Address parameter indicates a

transport address the sender of the INIT chunk will support for the

association being initiated. That is, during the life time of this

association, this IP address can appear in the source address field

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 5 | Length = 8 |

+-+

| IPv4 Address |

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 6 | Length = 20 |

+-+

| |

| IPv6 Address |

| |

| |

+-+

¶

¶

¶

Suggested Cookie Life-Span Increment: 32 bits (unsigned integer)

of an IP datagram sent from the sender of the INIT chunk, and can be

used as a destination address of an IP datagram sent from the

receiver of the INIT chunk.

More than one IP Address parameter can be included in an INIT chunk

when the sender of the INIT chunk is multi-homed. Moreover, a multi-

homed endpoint might have access to different types of network;

thus, more than one address type can be present in one INIT chunk,

i.e., IPv4 and IPv6 addresses are allowed in the same INIT chunk.

If the INIT chunk contains at least one IP Address parameter, then

the source address of the IP datagram containing the INIT chunk and

any additional address(es) provided within the INIT can be used as

destinations by the endpoint receiving the INIT chunk. If the INIT

chunk does not contain any IP Address parameters, the endpoint

receiving the INIT chunk MUST use the source address associated with

the received IP datagram as its sole destination address for the

association.

Note that not using any IP Address parameters in the INIT and INIT

ACK chunk is a way to make an association more likely to work in

combination with Network Address Translation (NAT).

3.3.2.1.3. Cookie Preservative (9)

The sender of the INIT chunk uses this parameter to suggest to the

receiver of the INIT chunk a longer life-span for the State Cookie.

This parameter indicates to the receiver how much increment in

milliseconds the sender wishes the receiver to add to its default

cookie life-span.

This optional parameter MAY be added to the INIT chunk by the

sender when it reattempts establishing an association with a peer

to which its previous attempt of establishing the association

failed due to a stale cookie operation error. The receiver MAY

choose to ignore the suggested cookie life-span increase for its

own security reasons.

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 9 | Length = 8 |

+-+

| Suggested Cookie Life-Span Increment (msec.) |

+-+

¶

¶

¶

Host Name: variable length

Address Type: 16 bits (unsigned integer)

3.3.2.1.4. Host Name Address (11)

The sender of an INIT chunk or INIT ACK chunk MUST NOT include this

parameter. The usage of the Host Name Address parameter is

deprecated. The receiver of an INIT chunk or an INIT ACK containing

a Host Name Address parameter MUST send an ABORT chunk and MAY

include an "Unresolvable Address" error cause.

This field contains a host name in "host name syntax" per Section

2.1 of [RFC1123]. The method for resolving the host name is out

of scope of SCTP.

At least one null terminator is included in the Host Name string

and MUST be included in the length.

3.3.2.1.5. Supported Address Types (12)

The sender of INIT chunk uses this parameter to list all the address

types it can support.

This is filled with the type value of the corresponding address

TLV (e.g., 5 for indicating IPv4, 6 for indicating IPv6). The

value indicating the Host Name Address parameter MUST NOT be used

when sending this parameter and MUST be ignored when receiving

this parameter.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 11 | Length |

+-+

/ Host Name /

\ \

+-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 12 | Length |

+-+

| Address Type #1 | Address Type #2 |

+-+

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+

¶

¶

3.3.3. Initiation Acknowledgement (INIT ACK) (2)

The INIT ACK chunk is used to acknowledge the initiation of an SCTP

association. The format of the INIT ACK chunk is shown below:

The parameter part of INIT ACK is formatted similarly to the INIT

chunk. The following parameters are specified for the INIT ACK

chunk:

Fixed Length Parameter Status

Initiate Tag Mandatory

Advertised Receiver Window Credit Mandatory

Number of Outbound Streams Mandatory

Number of Inbound Streams Mandatory

Initial TSN Mandatory

Table 7: Fixed Length Parameters of INIT ACK

Chunks

It uses two extra variable parameters: The State Cookie and the

Unrecognized Parameter:

Variable Length Parameter Status Type Value

State Cookie Mandatory 7

IPv4 Address (Note 1) Optional 5

IPv6 Address (Note 1) Optional 6

Unrecognized Parameter Optional 8

Reserved for ECN Capable (Note 2) Optional 32768 (0x8000)

Host Name Address (Note 3) Deprecated 11

Table 8: Variable Length Parameters of INIT ACK Chunks

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 2 | Chunk Flags | Chunk Length |

+-+

| Initiate Tag |

+-+

| Advertised Receiver Window Credit |

+-+

| Number of Outbound Streams | Number of Inbound Streams |

+-+

| Initial TSN |

+-+

\ \

/ Optional/Variable-Length Parameters /

\ \

+-+

¶

¶

¶

Initiate Tag: 32 bits (unsigned integer)

Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned

integer)

Note 1: The INIT ACK chunks can contain any number of IP address

parameters that can be IPv4 and/or IPv6 in any combination.

Note 2: The ECN Capable field is reserved for future use of Explicit

Congestion Notification.

Note 3: An INIT ACK chunk MUST NOT contain the Host Name Address

parameter. The receiver of INIT ACK chunks containing a Host Name

Address parameter MUST send an ABORT chunk and MAY include an

"Unresolvable Address" error cause.

The Chunk Flags field in INIT ACK chunks is reserved, and all bits

in it SHOULD be set to 0 by the sender and ignored by the receiver.

The receiver of the INIT ACK chunk records the value of the

Initiate Tag parameter. This value MUST be placed into the

Verification Tag field of every SCTP packet that the receiver of

the INIT ACK chunk transmits within this association.

The Initiate Tag MUST NOT take the value 0. See Section 5.3.1 for

more on the selection of the Initiate Tag value.

If an endpoint in the COOKIE-WAIT state receives an INIT ACK

chunk with the Initiate Tag set to 0, it MUST destroy the TCB and

SHOULD send an ABORT chunk with the T bit set. If such an INIT-

ACK chunk is received in any state other than CLOSED or COOKIE-

WAIT, it SHOULD be discarded silently (see Section 5.2.3).

This value represents the dedicated buffer space, in number of

bytes, the sender of the INIT ACK chunk has reserved in

association with this window.

The Advertised Receiver Window Credit MUST NOT be smaller than

1500.

A receiver of an INIT ACK chunk with the a_rwnd value set to a

value smaller than 1500 MUST discard the packet, SHOULD send a

packet in response containing an ABORT chunk and using the

Initiate Tag as the Verification Tag, and MUST NOT change the

state of any existing association.

During the life of the association, this buffer space SHOULD NOT

be reduced (i.e., dedicated buffers ought not to be taken away

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Number of Outbound Streams (OS): 16 bits (unsigned integer)

Number of Inbound Streams (MIS): 16 bits (unsigned integer)

Initial TSN (I-TSN): 32 bits (unsigned integer)

from this association); however, an endpoint MAY change the value

of a_rwnd it sends in SACK chunks.

Defines the number of outbound streams the sender of this INIT

ACK chunk wishes to create in this association. The value of 0

MUST NOT be used, and the value MUST NOT be greater than the MIS

value sent in the INIT chunk.

If an endpoint in the COOKIE-WAIT state receives an INIT ACK

chunk with the OS value set to 0, it MUST destroy the TCB and

SHOULD send an ABORT chunk. If such an INIT-ACK chunk is received

in any state other than CLOSED or COOKIE-WAIT, it SHOULD be

discarded silently (see Section 5.2.3).

Defines the maximum number of streams the sender of this INIT ACK

chunk allows the peer end to create in this association. The

value 0 MUST NOT be used.

Note: There is no negotiation of the actual number of streams but

instead the two endpoints will use the min(requested, offered).

See Section 5.1.1 for details.

If an endpoint in the COOKIE-WAIT state receives an INIT ACK

chunk with the MIS value set to 0, it MUST destroy the TCB and

SHOULD send an ABORT chunk. If such an INIT-ACK chunk is received

in any state other than CLOSED or COOKIE-WAIT, it SHOULD be

discarded silently (see Section 5.2.3).

Defines the initial TSN that the sender of the INIT ACK chunk

will use. The valid range is from 0 to 4294967295 and the Initial

TSN SHOULD be set to a random value in that range. The methods

described in [RFC4086] can be used for the Initiate TSN

randomization.

Implementation Note: An implementation MUST be prepared to receive

an INIT ACK chunk that is quite large (more than 1500 bytes) due to

the variable size of the State Cookie and the variable address list.

For example if a responder to the INIT chunk has 1000 IPv4 addresses

it wishes to send, it would need at least 8,000 bytes to encode this

in the INIT ACK chunk.

If an INIT ACK chunk is received with all mandatory parameters that

are specified for the INIT ACK chunk, then the receiver SHOULD

process the INIT ACK chunk and send back a COOKIE ECHO chunk. The

receiver of the INIT ACK chunk MAY bundle an ERROR chunk with the

COOKIE ECHO chunk. However, restrictive implementations MAY send

back an ABORT chunk in response to the INIT ACK chunk.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Cookie: variable length

In combination with the Source Port carried in the SCTP common

header, each IP Address parameter in the INIT ACK chunk indicates to

the receiver of the INIT ACK chunk a valid transport address

supported by the sender of the INIT ACK chunk for the life time of

the association being initiated.

If the INIT ACK chunk contains at least one IP Address parameter,

then the source address of the IP datagram containing the INIT ACK

chunk and any additional address(es) provided within the INIT ACK

chunk MAY be used as destinations by the receiver of the INIT ACK

chunk. If the INIT ACK chunk does not contain any IP Address

parameters, the receiver of the INIT ACK chunk MUST use the source

address associated with the received IP datagram as its sole

destination address for the association.

The State Cookie and Unrecognized Parameters use the Type-Length-

Value format as defined in Section 3.2.1 and are described below.

The other fields are defined the same as their counterparts in the

INIT chunk.

3.3.3.1. Optional or Variable-Length Parameters in INIT ACK chunks

The State Cookie and Unrecognized Parameters use the Type-Length-

Value format as defined in Section 3.2.1 and are described below.

The IPv4 Address Parameter is described in Section 3.3.2.1.1, and

the IPv6 Address Parameter is described in Section 3.3.2.1.2. The

Host Name Address Parameter is described in Section 3.3.2.1.4 and

MUST NOT be included in an INIT ACK chunk. Any Type-Length-Value

fields MUST be placed after the fixed-length fields. (The fixed-

length fields are defined in the previous section.)

3.3.3.1.1. State Cookie (7)

This parameter value MUST contain all the necessary state and

parameter information required for the sender of this INIT ACK

chunk to create the association, along with a Message

Authentication Code (MAC). See Section 5.1.3 for details on State

Cookie definition.

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 7 | Length |

+-+

/ Cookie /

\ \

+-+

¶

¶

Unrecognized Parameter: variable length

3.3.3.1.2. Unrecognized Parameter (8)

This parameter is returned to the originator of the INIT chunk when

the INIT chunk contains an unrecognized parameter that has a type

that indicates it SHOULD be reported to the sender.

The parameter value field will contain an unrecognized parameter

copied from the INIT chunk complete with Parameter Type, Length,

and Value fields.

3.3.4. Selective Acknowledgement (SACK) (3)

This chunk is sent to the peer endpoint to acknowledge received DATA

chunks and to inform the peer endpoint of gaps in the received

subsequences of DATA chunks as represented by their TSNs.

The SACK chunk MUST contain the Cumulative TSN Ack, Advertised

Receiver Window Credit (a_rwnd), Number of Gap Ack Blocks, and

Number of Duplicate TSNs fields.

By definition, the value of the Cumulative TSN Ack parameter is the

last TSN received before a break in the sequence of received TSNs

occurs; the next TSN value following this one has not yet been

received at the endpoint sending the SACK chunk. This parameter

therefore acknowledges receipt of all TSNs less than or equal to its

value.

The handling of a_rwnd by the receiver of the SACK chunk is

discussed in detail in Section 6.2.1.

The SACK chunk also contains zero or more Gap Ack Blocks. Each Gap

Ack Block acknowledges a subsequence of TSNs received following a

break in the sequence of received TSNs. The Gap Ack Blocks SHOULD be

isolated. This means that the TSN just before each Gap Ack Block and

the TSN just after each Gap Ack Block have not been received. By

definition, all TSNs acknowledged by Gap Ack Blocks are greater than

the value of the Cumulative TSN Ack.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 8 | Length |

+-+

/ Unrecognized Parameter /

\ \

+-+

¶

¶

¶

¶

¶

¶

¶

Chunk Flags: 8 bits

Cumulative TSN Ack: 32 bits (unsigned integer)

All set to 0 on transmit and ignored on receipt.

The largest TSN, such that all TSNs smaller than or equal to it

have been received and the next one has not been received. In the

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 3 | Chunk Flags | Chunk Length |

+-+

| Cumulative TSN Ack |

+-+

| Advertised Receiver Window Credit (a_rwnd) |

+-+

| Number of Gap Ack Blocks = N | Number of Duplicate TSNs = M |

+-+

| Gap Ack Block #1 Start | Gap Ack Block #1 End |

+-+

/ /

\ ... \

/ /

+-+

| Gap Ack Block #N Start | Gap Ack Block #N End |

+-+

| Duplicate TSN 1 |

+-+

/ /

\ ... \

/ /

+-+

| Duplicate TSN M |

+-+

¶

¶

Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned

integer)

Number of Gap Ack Blocks: 16 bits (unsigned integer)

Number of Duplicate TSNs: 16 bit

Gap Ack Blocks:

Gap Ack Block Start: 16 bits (unsigned integer)

Gap Ack Block End: 16 bits (unsigned integer)

case where no DATA chunk has been received, this value is set to

the peer's Initial TSN minus one.

This field indicates the updated receive buffer space in bytes of

the sender of this SACK chunk; see Section 6.2.1 for details.

Indicates the number of Gap Ack Blocks included in this SACK

chunk.

This field contains the number of duplicate TSNs the endpoint has

received. Each duplicate TSN is listed following the Gap Ack

Block list.

These fields contain the Gap Ack Blocks. They are repeated for

each Gap Ack Block up to the number of Gap Ack Blocks defined in

the Number of Gap Ack Blocks field. All DATA chunks with TSNs

greater than or equal to (Cumulative TSN Ack + Gap Ack Block

Start) and less than or equal to (Cumulative TSN Ack + Gap Ack

Block End) of each Gap Ack Block are assumed to have been

received correctly.

Indicates the Start offset TSN for this Gap Ack Block. To

calculate the actual TSN number the Cumulative TSN Ack is added

to this offset number. This calculated TSN identifies the lowest

TSN in this Gap Ack Block that has been received.

Indicates the End offset TSN for this Gap Ack Block. To calculate

the actual TSN number, the Cumulative TSN Ack is added to this

offset number. This calculated TSN identifies the highest TSN in

this Gap Ack Block that has been received.

For example, assume that the receiver has the following DATA

chunks newly arrived at the time when it decides to send a

Selective ACK,

¶

¶

¶

¶

¶

¶

¶

¶

Duplicate TSN: 32 bits (unsigned integer)

then the parameter part of the SACK chunk MUST be constructed as

follows (assuming the new a_rwnd is set to 4660 by the sender):

Indicates the number of times a TSN was received in duplicate

since the last SACK chunk was sent. Every time a receiver gets a

duplicate TSN (before sending the SACK chunk), it adds it to the

list of duplicates. The duplicate count is reinitialized to zero

after sending each SACK chunk.

For example, if a receiver were to get the TSN 19 three times it

would list 19 twice in the outbound SACK chunk. After sending the

SACK chunk, if it received yet one more TSN 19 it would list 19

as a duplicate once in the next outgoing SACK chunk.

| TSN = 17 |

| | <- still missing

| TSN = 15 |

| TSN = 14 |

| | <- still missing

| TSN = 12 |

| TSN = 11 |

| TSN = 10 |

¶

¶

+-------------------+-------------------+

| Cumulative TSN Ack = 12 |

+-------------------+-------------------+

| a_rwnd = 4660 |

+-------------------+-------------------+

| num of block = 2 | num of dup = 0 |

+-------------------+-------------------+

|block #1 start = 2 | block #1 end = 3 |

+-------------------+-------------------+

|block #2 start = 5 | block #2 end = 5 |

+-------------------+-------------------+

¶

¶

¶

Chunk Flags: 8 bits

Heartbeat Length: 16 bits (unsigned integer)

Heartbeat Information: variable length

3.3.5. Heartbeat Request (HEARTBEAT) (4)

An endpoint SHOULD send a HEARTBEAT (HB) chunk to its peer endpoint

to probe the reachability of a particular destination transport

address defined in the present association.

The parameter field contains the Heartbeat Information, which is a

variable-length opaque data structure understood only by the sender.

Set to 0 on transmit and ignored on receipt.

Set to the size of the chunk in bytes, including the chunk header

and the Heartbeat Information field.

Defined as a variable-length parameter using the format described

in Section 3.2.1, i.e.:

Variable Parameters Status Type Value

Heartbeat Info Mandatory 1

Table 9: Variable Length Parameters of

HEARTBEAT Chunks

The Sender-Specific Heartbeat Info field SHOULD include

information about the sender's current time when this HEARTBEAT

chunk is sent and the destination transport address to which this

HEARTBEAT chunk is sent (see Section 8.3). This information is

simply reflected back by the receiver in the HEARTBEAT ACK chunk

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 4 | Chunk Flags | Heartbeat Length |

+-+

\ \

/ Heartbeat Information TLV (Variable-Length) /

\ \

+-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Heartbeat Info Type = 1 | HB Info Length |

+-+

/ Sender-Specific Heartbeat Info /

\ \

+-+

¶

Chunk Flags: 8 bits

Heartbeat Ack Length: 16 bits (unsigned integer)

Heartbeat Information: variable length

(see Section 3.3.6). Note also that the HEARTBEAT chunk is both

for reachability checking and for path verification (see Section

5.4). When a HEARTBEAT chunk is being used for path verification

purposes, it MUST include a random nonce of length 64-bit or

longer ([RFC4086] provides some information on randomness

guidelines).

3.3.6. Heartbeat Acknowledgement (HEARTBEAT ACK) (5)

An endpoint MUST send this chunk to its peer endpoint as a response

to a HEARTBEAT chunk (see Section 8.3). A packet containing the

HEARTBEAT ACK chunk is always sent to the source IP address of the

IP datagram containing the HEARTBEAT chunk to which this HEARTBEAT

ACK chunk is responding.

The parameter field contains a variable-length opaque data

structure.

Set to 0 on transmit and ignored on receipt.

Set to the size of the chunk in bytes, including the chunk header

and the Heartbeat Information field.

This field MUST contain the Heartbeat Info parameter (as defined

in Section 3.3.5) of the Heartbeat Request to which this

Heartbeat Acknowledgement is responding.

Variable Parameters Status Type Value

Heartbeat Info Mandatory 1

Table 10: Variable Length Parameters of

HEARTBEAT ACK Chunks

3.3.7. Abort Association (ABORT) (6)

The ABORT chunk is sent to the peer of an association to close the

association. The ABORT chunk MAY contain Cause Parameters to inform

the receiver about the reason of the abort. DATA chunks MUST NOT be

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 5 | Chunk Flags | Heartbeat Ack Length |

+-+

\ \

/ Heartbeat Information TLV (Variable-Length) /

\ \

+-+

¶

¶

¶

¶

Chunk Flags: 8 bits

Reserved: 7 bits

T bit: 1 bit

Length: 16 bits (unsigned integer)

bundled with ABORT chunks. Control chunks (except for INIT, INIT

ACK, and SHUTDOWN COMPLETE) MAY be bundled with an ABORT chunk, but

they MUST be placed before the ABORT chunk in the SCTP packet,

otherwise they will be ignored by the receiver.

If an endpoint receives an ABORT chunk with a format error or no TCB

is found, it MUST silently discard it. Moreover, under any

circumstances, an endpoint that receives an ABORT chunk MUST NOT

respond to that ABORT chunk by sending an ABORT chunk of its own.

Set to 0 on transmit and ignored on receipt.

The T bit is set to 0 if the sender filled in the Verification

Tag expected by the peer. If the Verification Tag is

reflected, the T bit MUST be set to 1. Reflecting means that

the sent Verification Tag is the same as the received one.

Set to the size of the chunk in bytes, including the chunk header

and all the Error Cause fields present.

See Section 3.3.10 for Error Cause definitions.

Note: Special rules apply to this chunk for verification; please see

Section 8.5.1 for details.

3.3.8. Shutdown Association (SHUTDOWN) (7)

An endpoint in an association MUST use this chunk to initiate a

graceful close of the association with its peer. This chunk has the

following format.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 6 | Reserved |T| Length |

+-+

\ \

/ zero or more Error Causes /

\ \

+-+

¶

¶

¶

¶

¶

¶

¶

Chunk Flags: 8 bits

Length: 16 bits (unsigned integer)

Cumulative TSN Ack: 32 bits (unsigned integer)

Chunk Flags: 8 bits

Set to 0 on transmit and ignored on receipt.

Indicates the length of the parameter. Set to 8.

The largest TSN, such that all TSNs smaller than or equal to it

have been received and the next one has not been received.

Note: Since the SHUTDOWN chunk does not contain Gap Ack Blocks, it

cannot be used to acknowledge TSNs received out of order. In a SACK

chunk, lack of Gap Ack Blocks that were previously included

indicates that the data receiver reneged on the associated DATA

chunks.

Since the SHUTDOWN chunk does not contain Gap Ack Blocks, the

receiver of the SHUTDOWN chunk MUST NOT interpret the lack of a Gap

Ack Block as a renege. (See Section 6.2 for information on

reneging.)

The sender of the SHUTDOWN chunk MAY bundle a SACK chunk to indicate

any gaps in the received TSNs.

3.3.9. Shutdown Acknowledgement (SHUTDOWN ACK) (8)

This chunk MUST be used to acknowledge the receipt of the SHUTDOWN

chunk at the completion of the shutdown process; see Section 9.2 for

details.

The SHUTDOWN ACK chunk has no parameters.

Set to 0 on transmit and ignored on receipt.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 7 | Chunk Flags | Length = 8 |

+-+

| Cumulative TSN Ack |

+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 8 | Chunk Flags | Length = 4 |

+-+

¶

¶

Chunk Flags: 8 bits

Length: 16 bits (unsigned integer)

Cause Code: 16 bits (unsigned integer)

3.3.10. Operation Error (ERROR) (9)

An endpoint sends this chunk to its peer endpoint to notify it of

certain error conditions. It contains one or more error causes. An

Operation Error is not considered fatal in and of itself, but the

corresponding error cause MAY be used with an ABORT chunk to report

a fatal condition. An ERROR chunk has the following format:

Set to 0 on transmit and ignored on receipt.

Set to the size of the chunk in bytes, including the chunk header

and all the Error Cause fields present.

Error causes are defined as variable-length parameters using the

format described in Section 3.2.1, that is:

Defines the type of error conditions being reported.

Value Cause Code

1 Invalid Stream Identifier

2 Missing Mandatory Parameter

3 Stale Cookie Error

4 Out of Resource

5 Unresolvable Address

6 Unrecognized Chunk Type

7 Invalid Mandatory Parameter

8 Unrecognized Parameters

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 9 | Chunk Flags | Length |

+-+

\ \

/ one or more Error Causes /

\ \

+-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code | Cause Length |

+-+

/ Cause-Specific Information /

\ \

+-+

¶

¶

Cause Length: 16 bits (unsigned integer)

Cause-Specific Information: variable length

Stream Identifier: 16 bits (unsigned integer)

Reserved: 16 bits

Value Cause Code

9 No User Data

10 Cookie Received While Shutting Down

11 Restart of an Association with New Addresses

12 User Initiated Abort

13 Protocol Violation

Table 11: Cause Code

Set to the size of the parameter in bytes, including the Cause

Code, Cause Length, and Cause-Specific Information fields.

This field carries the details of the error condition.

Section 3.3.10.1 - Section 3.3.10.13 define error causes for SCTP.

Guidelines for the IETF to define new error cause values are

discussed in Section 15.4.

3.3.10.1. Invalid Stream Identifier (1)

Indicates that the endpoint received a DATA chunk sent using a

nonexistent stream.

Contains the Stream Identifier of the DATA chunk received in

error.

This field is reserved. It is set to all 0's on transmit and

ignored on receipt.

3.3.10.2. Missing Mandatory Parameter (2)

Indicates that one or more mandatory TLV parameters are missing in a

received INIT or INIT ACK chunk.

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 1 | Cause Length = 8 |

+-+

| Stream Identifier | (Reserved) |

+-+

¶

¶

¶

¶

Number of Missing params: 32 bits (unsigned integer)

Missing Param Type: 16 bits (unsigned integer)

Measure of Staleness: 32 bits (unsigned integer)

This field contains the number of parameters contained in the

Cause-Specific Information field.

Each field will contain the missing mandatory parameter number.

3.3.10.3. Stale Cookie Error (3)

Indicates the receipt of a valid State Cookie that has expired.

This field contains the difference, rounded up in microseconds,

between the current time and the time the State Cookie expired.

The sender of this error cause MAY choose to report how long past

expiration the State Cookie is by including a non-zero value in

the Measure of Staleness field. If the sender does not wish to

provide the Measure of Staleness, it SHOULD set this field to the

value of zero.

3.3.10.4. Out of Resource (4)

Indicates that the sender is out of resource. This is usually sent

in combination with or within an ABORT chunk.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 2 | Cause Length = 8 + N * 2 |

+-+

| Number of missing params = N |

+-+

| Missing Param Type #1 | Missing Param Type #2 |

+-+

| Missing Param Type #N-1 | Missing Param Type #N |

+-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 3 | Cause Length = 8 |

+-+

| Measure of Staleness (usec.) |

+-+

¶

¶

¶

¶

Unresolvable Address: variable length

Unrecognized Chunk: variable length

3.3.10.5. Unresolvable Address (5)

Indicates that the sender is not able to resolve the specified

address parameter (e.g., type of address is not supported by the

sender). This is usually sent in combination with or within an ABORT

chunk.

The Unresolvable Address field contains the complete Type,

Length, and Value of the address parameter (or Host Name

parameter) that contains the unresolvable address or host name.

3.3.10.6. Unrecognized Chunk Type (6)

This error cause is returned to the originator of the chunk if the

receiver does not understand the chunk and the upper bits of the

'Chunk Type' are set to 01 or 11.

The Unrecognized Chunk field contains the unrecognized chunk from

the SCTP packet complete with Chunk Type, Chunk Flags, and Chunk

Length.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 4 | Cause Length = 4 |

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 5 | Cause Length |

+-+

/ Unresolvable Address /

\ \

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 6 | Cause Length |

+-+

/ Unrecognized Chunk /

\ \

+-+

¶

¶

Unrecognized Parameters: variable length

TSN: 32 bits (unsigned integer)

3.3.10.7. Invalid Mandatory Parameter (7)

This error cause is returned to the originator of an INIT or INIT

ACK chunk when one of the mandatory parameters is set to an invalid

value.

3.3.10.8. Unrecognized Parameters (8)

This error cause is returned to the originator of the INIT ACK chunk

if the receiver does not recognize one or more Optional TLV

parameters in the INIT ACK chunk.

The Unrecognized Parameters field contains the unrecognized

parameters copied from the INIT ACK chunk complete with TLV. This

error cause is normally contained in an ERROR chunk bundled with

the COOKIE ECHO chunk when responding to the INIT ACK chunk, when

the sender of the COOKIE ECHO chunk wishes to report unrecognized

parameters.

3.3.10.9. No User Data (9)

This error cause is returned to the originator of a DATA chunk if a

received DATA chunk has no user data.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 7 | Cause Length = 4 |

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 8 | Cause Length |

+-+

/ Unrecognized Parameters /

\ \

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 9 | Cause Length = 8 |

+-+

| TSN |

+-+

¶

This parameter contains the TSN of the DATA chunk received with

no user data field.

This cause code is normally returned in an ABORT chunk (see Section

6.2).

3.3.10.10. Cookie Received While Shutting Down (10)

A COOKIE ECHO chunk was received while the endpoint was in the

SHUTDOWN-ACK-SENT state. This error is usually returned in an ERROR

chunk bundled with the retransmitted SHUTDOWN ACK chunk.

3.3.10.11. Restart of an Association with New Addresses (11)

An INIT chunk was received on an existing association. But the INIT

chunk added addresses to the association that were previously not

part of the association. The new addresses are listed in the error

cause. This error cause is normally sent as part of an ABORT chunk

refusing the INIT chunk (see Section 5.2).

Note: Each New Address TLV is an exact copy of the TLV that was

found in the INIT chunk that was new, including the Parameter Type

and the Parameter Length.

3.3.10.12. User-Initiated Abort (12)

This error cause MAY be included in ABORT chunks that are sent

because of an upper-layer request. The upper layer can specify an

Upper Layer Abort Reason that is transported by SCTP transparently

and MAY be delivered to the upper-layer protocol at the peer.

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 10 | Cause Length = 4 |

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 11 | Cause Length |

+-+

/ New Address TLVs /

\ \

+-+

¶

¶

¶

Chunk Flags: 8 bits

Length: 16 bits (unsigned integer)

3.3.10.13. Protocol Violation (13)

This error cause MAY be included in ABORT chunks that are sent

because an SCTP endpoint detects a protocol violation of the peer

that is not covered by the error causes described in Section

3.3.10.1 to Section 3.3.10.12. An implementation MAY provide

additional information specifying what kind of protocol violation

has been detected.

3.3.11. Cookie Echo (COOKIE ECHO) (10)

This chunk is used only during the initialization of an association.

It is sent by the initiator of an association to its peer to

complete the initialization process. This chunk MUST precede any

DATA chunk sent within the association, but MAY be bundled with one

or more DATA chunks in the same packet.

Set to 0 on transmit and ignored on receipt.

Set to the size of the chunk in bytes, including the 4 bytes of

the chunk header and the size of the cookie.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 12 | Cause Length |

+-+

/ Upper Layer Abort Reason /

\ \

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cause Code = 13 | Cause Length |

+-+

/ Additional Information /

\ \

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 10 | Chunk Flags | Length |

+-+

/ Cookie /

\ \

+-+

¶

¶

¶

Cookie: variable size

Chunk Flags: 8 bits

Chunk Flags: 8 bits

This field MUST contain the exact cookie received in the State

Cookie parameter from the previous INIT ACK chunk.

An implementation SHOULD make the cookie as small as possible to

ensure interoperability.

Note: A Cookie Echo does not contain a State Cookie parameter;

instead, the data within the State Cookie's Parameter Value

becomes the data within the Cookie Echo's Chunk Value. This

allows an implementation to change only the first 2 bytes of the

State Cookie parameter to become a COOKIE ECHO chunk.

3.3.12. Cookie Acknowledgement (COOKIE ACK) (11)

This chunk is used only during the initialization of an association.

It is used to acknowledge the receipt of a COOKIE ECHO chunk. This

chunk MUST precede any DATA or SACK chunk sent within the

association, but MAY be bundled with one or more DATA chunks or SACK

chunk's in the same SCTP packet.

Set to 0 on transmit and ignored on receipt.

3.3.13. Shutdown Complete (SHUTDOWN COMPLETE) (14)

This chunk MUST be used to acknowledge the receipt of the SHUTDOWN

ACK chunk at the completion of the shutdown process; see Section 9.2

for details.

The SHUTDOWN COMPLETE chunk has no parameters.

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 11 | Chunk Flags | Length = 4 |

+-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 14 | Reserved |T| Length = 4 |

+-+

¶

Reserved: 7 bits

T bit: 1 bit

Set to 0 on transmit and ignored on receipt.

The T bit is set to 0 if the sender filled in the Verification

Tag expected by the peer. If the Verification Tag is

reflected, the T bit MUST be set to 1. Reflecting means that

the sent Verification Tag is the same as the received one.

Note: Special rules apply to this chunk for verification, please see

Section 8.5.1 for details.

4. SCTP Association State Diagram

During the life time of an SCTP association, the SCTP endpoint's

association progresses from one state to another in response to

various events. The events that might potentially advance an

association's state include:

SCTP user primitive calls, e.g., [ASSOCIATE], [SHUTDOWN],

[ABORT],

Reception of INIT, COOKIE ECHO, ABORT, SHUTDOWN, etc., control

chunks, or

Some timeout events.

The state diagram in the figures below illustrates state changes,

together with the causing events and resulting actions. Note that

some of the error conditions are not shown in the state diagram.

Full descriptions of all special cases are found in the text.

Note: Chunk names are given in all capital letters, while parameter

names have the first letter capitalized, e.g., COOKIE ECHO chunk

type vs. State Cookie parameter. If more than one event/message can

occur that causes a state transition, it is labeled (A), (B).

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

¶

 ----- -------- (from any state)

 / \ /receive ABORT [ABORT]

 receive INIT | | |-------------- or ----------

---------------------| v v delete TCB send ABORT

generate State Cookie \ +---------+ delete TCB

 send INIT ACK ---| CLOSED |

 +---------+

 / \

 / \ [ASSOCIATE]

 | |-----------------

 | | create TCB

 | | send INIT

 receive valid | | start T1-init timer

 COOKIE ECHO | v

 (1) -----------------| +-----------+

 create TCB | |COOKIE-WAIT| (2)

 send COOKIE ACK | +-----------+

 | |

 | | receive INIT ACK

 | |-------------------

 | | send COOKIE ECHO

 | | stop T1-init timer

 | | start T1-cookie timer

 | v

 | +-------------+

 | |COOKIE-ECHOED| (3)

 | +-------------+

 | |

 | | receive COOKIE ACK

 | |-------------------

 | | stop T1-cookie timer

 v v

 +---------------+

 | ESTABLISHED |

 +---------------+

 |

 |

 /--------+--------\

 [SHUTDOWN] / \

 -------------------| |

 check outstanding | |

 DATA chunks | |

 v |

 +----------------+ |

 |SHUTDOWN-PENDING| | receive SHUTDOWN

 +----------------+ |------------------

 | check outstanding

 | | DATA chunks

No more outstanding | |

-----------------------| |

send SHUTDOWN | |

start T2-shutdown timer| |

 v v

 +-------------+ +-----------------+

 (4) |SHUTDOWN-SENT| |SHUTDOWN-RECEIVED| (5,6)

 +-------------+ +-----------------+

 | \ |

receive SHUTDOWN ACK | \ |

-----------------------| \ |

stop T2-shutdown timer | \ |

send SHUTDOWN COMPLETE | \ |

delete TCB | \ |

 | \ | No more outstanding

 | \ |--------------------

 | \ | send SHUTDOWN ACK

receive SHUTDOWN -|- \ | start T2-shutdown timer

--------------------/ | \----------\ |

send SHUTDOWN ACK | \ |

start T2-shutdown timer| \ |

 | \ |

 | | |

 | v v

 | +-----------------+

 | |SHUTDOWN-ACK-SENT| (7)

 | +-----------------+

 | | (A)

 | |receive SHUTDOWN COMPLETE

 | |-------------------------

 | | stop T2-shutdown timer

 | | delete TCB

 | |

 | | (B)

 | | receive SHUTDOWN ACK

 | |-----------------------

 | | stop T2-shutdown timer

 | | send SHUTDOWN COMPLETE

 | | delete TCB

 | |

 \ +---------+ /

 \-->| CLOSED |<--/

 +---------+

1)

2)

3)

4)

5)

6)

7)

Figure 3: State Transition Diagram of SCTP

The following applies:

If the State Cookie in the received COOKIE ECHO chunk is

invalid (i.e., failed to pass the integrity check), the

receiver MUST silently discard the packet. Or, if the received

State Cookie is expired (see Section 5.1.5), the receiver MUST

send back an ERROR chunk. In either case, the receiver stays

in the CLOSED state.

If the T1-init timer expires, the endpoint MUST retransmit the

INIT chunk and restart the T1-init timer without changing

state. This MUST be repeated up to 'Max.Init.Retransmits'

times. After that, the endpoint MUST abort the initialization

process and report the error to the SCTP user.

If the T1-cookie timer expires, the endpoint MUST retransmit

COOKIE ECHO chunk and restart the T1-cookie timer without

changing state. This MUST be repeated up to

'Max.Init.Retransmits' times. After that, the endpoint MUST

abort the initialization process and report the error to the

SCTP user.

In the SHUTDOWN-SENT state, the endpoint MUST acknowledge any

received DATA chunks without delay.

In the SHUTDOWN-RECEIVED state, the endpoint MUST NOT accept

any new send requests from its SCTP user.

In the SHUTDOWN-RECEIVED state, the endpoint MUST transmit or

retransmit data and leave this state when all data in queue is

transmitted.

In the SHUTDOWN-ACK-SENT state, the endpoint MUST NOT accept

any new send requests from its SCTP user.

The CLOSED state is used to indicate that an association is not

created (i.e., does not exist).

5. Association Initialization

Before the first data transmission can take place from one SCTP

endpoint ("A") to another SCTP endpoint ("Z"), the two endpoints

MUST complete an initialization process in order to set up an SCTP

association between them.

The SCTP user at an endpoint can use the ASSOCIATE primitive to

initialize an SCTP association to another SCTP endpoint.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A)

B)

C)

Implementation Note: From an SCTP user's point of view, an

association might be implicitly opened, without an ASSOCIATE

primitive (see Section 11.1.2) being invoked, by the initiating

endpoint's sending of the first user data to the destination

endpoint. The initiating SCTP will assume default values for all

mandatory and optional parameters for the INIT/INIT ACK chunk.

Once the association is established, unidirectional streams are open

for data transfer on both ends (see Section 5.1.1).

5.1. Normal Establishment of an Association

The initialization process consists of the following steps (assuming

that SCTP endpoint "A" tries to set up an association with SCTP

endpoint "Z" and "Z" accepts the new association):

"A" first builds a TCB and sends an INIT chunk to "Z". In the

INIT chunk, "A" MUST provide its Verification Tag (Tag_A) in

the Initiate Tag field. Tag_A SHOULD be a random number in the

range of 1 to 4294967295 (see Section 5.3.1 for Tag value

selection). After sending the INIT chunk, "A" starts the T1-

init timer and enters the COOKIE-WAIT state.

"Z" responds immediately with an INIT ACK chunk. The

destination IP address of the INIT ACK chunk MUST be set to

the source IP address of the INIT chunk to which this INIT ACK

chunk is responding. In the response, besides filling in other

parameters, "Z" MUST set the Verification Tag field to Tag_A,

and also provide its own Verification Tag (Tag_Z) in the

Initiate Tag field.

Moreover, "Z" MUST generate and send along with the INIT ACK

chunk a State Cookie. See Section 5.1.3 for State Cookie

generation.

After sending an INIT ACK chunk with the State Cookie

parameter, "Z" MUST NOT allocate any resources or keep any

states for the new association. Otherwise, "Z" will be

vulnerable to resource attacks.

Upon reception of the INIT ACK chunk from "Z", "A" stops the

T1-init timer and leaves the COOKIE-WAIT state. "A" then sends

the State Cookie received in the INIT ACK chunk in a COOKIE

ECHO chunk, starts the T1-cookie timer, and enters the COOKIE-

ECHOED state.

The COOKIE ECHO chunk MAY be bundled with any pending outbound

DATA chunks, but it MUST be the first chunk in the packet and

until the COOKIE ACK chunk is returned the sender MUST NOT

send any other packets to the peer.

¶

¶

¶

¶

¶

¶

¶

¶

¶

D)

E)

Upon reception of the COOKIE ECHO chunk, endpoint "Z" replies

with a COOKIE ACK chunk after building a TCB and moving to the

ESTABLISHED state. A COOKIE ACK chunk MAY be bundled with any

pending DATA chunks (and/or SACK chunks), but the COOKIE ACK

chunk MUST be the first chunk in the packet.

Implementation Note: An implementation can choose to send the

Communication Up notification to the SCTP user upon reception

of a valid COOKIE ECHO chunk.

Upon reception of the COOKIE ACK chunk, endpoint "A" moves

from the COOKIE-ECHOED state to the ESTABLISHED state,

stopping the T1-cookie timer. It can also notify its ULP about

the successful establishment of the association with a

Communication Up notification (see Section 11).

An INIT or INIT ACK chunk MUST NOT be bundled with any other chunk.

They MUST be the only chunks present in the SCTP packets that carry

them.

An endpoint MUST send the INIT ACK chunk to the IP address from

which it received the INIT chunk.

T1-init timer and T1-cookie timer SHOULD follow the same rules given

in Section 6.3. If the application provided multiple IP addresses of

the peer, there SHOULD be a T1-init and T1-cookie timer for each

address of the peer. Retransmissions of INIT chunks and COOKIE ECHO

chunks SHOULD use all addresses of the peer similar to

retransmissions of DATA chunks.

If an endpoint receives an INIT, INIT ACK, or COOKIE ECHO chunk but

decides not to establish the new association due to missing

mandatory parameters in the received INIT or INIT ACK chunk, invalid

parameter values, or lack of local resources, it SHOULD respond with

an ABORT chunk. It SHOULD also specify the cause of abort, such as

the type of the missing mandatory parameters, etc., by including the

error cause parameters with the ABORT chunk. The Verification Tag

field in the common header of the outbound SCTP packet containing

the ABORT chunk MUST be set to the Initiate Tag value of the

received INIT or INIT ACK chunk this ABORT chunk is responding to.

Note that a COOKIE ECHO chunk that does not pass the integrity check

is not considered an 'invalid mandatory parameter' and requires

special handling; see Section 5.1.5.

After the reception of the first DATA chunk in an association the

endpoint MUST immediately respond with a SACK chunk to acknowledge

the DATA chunk. Subsequent acknowledgements SHOULD be done as

described in Section 6.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A)

B)

C)

When the TCB is created, each endpoint MUST set its internal

Cumulative TSN Ack Point to the value of its transmitted Initial TSN

minus one.

Implementation Note: The IP addresses and SCTP port are generally

used as the key to find the TCB within an SCTP instance.

5.1.1. Handle Stream Parameters

In the INIT and INIT ACK chunks, the sender of the chunk MUST

indicate the number of outbound streams (OSs) it wishes to have in

the association, as well as the maximum inbound streams (MISs) it

will accept from the other endpoint.

After receiving the stream configuration information from the other

side, each endpoint MUST perform the following check: If the peer's

MIS is less than the endpoint's OS, meaning that the peer is

incapable of supporting all the outbound streams the endpoint wants

to configure, the endpoint MUST use MIS outbound streams and MAY

report any shortage to the upper layer. The upper layer can then

choose to abort the association if the resource shortage is

unacceptable.

After the association is initialized, the valid outbound stream

identifier range for either endpoint MUST be 0 to min(local OS,

remote MIS) - 1.

5.1.2. Handle Address Parameters

During the association initialization, an endpoint uses the

following rules to discover and collect the destination transport

address(es) of its peer.

If there are no address parameters present in the received

INIT or INIT ACK chunk, the endpoint MUST take the source IP

address from which the chunk arrives and record it, in

combination with the SCTP source port number, as the only

destination transport address for this peer.

If there is a Host Name Address parameter present in the

received INIT or INIT ACK chunk, the endpoint MUST immediately

send an ABORT chunk and MAY include an "Unresolvable Address"

error cause to its peer. The ABORT chunk SHOULD be sent to the

source IP address from which the last peer packet was

received.

If there are only IPv4/IPv6 addresses present in the received

INIT or INIT ACK chunk, the receiver MUST derive and record

all the transport addresses from the received chunk AND the

source IP address that sent the INIT or INIT ACK chunk. The

¶

¶

¶

¶

¶

¶

¶

¶

D)

transport addresses are derived by the combination of SCTP

source port (from the common header) and the IP Address

parameter(s) carried in the INIT or INIT ACK chunk and the

source IP address of the IP datagram. The receiver SHOULD use

only these transport addresses as destination transport

addresses when sending subsequent packets to its peer.

An INIT or INIT ACK chunk MUST be treated as belonging to an

already established association (or one in the process of

being established) if the use of any of the valid address

parameters contained within the chunk would identify an

existing TCB.

Implementation Note: In some cases (e.g., when the implementation

does not control the source IP address that is used for

transmitting), an endpoint might need to include in its INIT or INIT

ACK chunk all possible IP addresses from which packets to the peer

could be transmitted.

After all transport addresses are derived from the INIT or INIT ACK

chunk using the above rules, the endpoint selects one of the

transport addresses as the initial primary path.

The packet containing the INIT ACK chunk MUST be sent to the source

address of the packet containing the INIT chunk.

The sender of INIT chunks MAY include a 'Supported Address Types'

parameter in the INIT chunk to indicate what types of addresses are

acceptable.

Implementation Note: In the case that the receiver of an INIT ACK

chunk fails to resolve the address parameter due to an unsupported

type, it can abort the initiation process and then attempt a

reinitiation by using a 'Supported Address Types' parameter in the

new INIT chunk to indicate what types of address it prefers.

If an SCTP endpoint that only supports either IPv4 or IPv6 receives

IPv4 and IPv6 addresses in an INIT or INIT ACK chunk from its peer,

it MUST use all the addresses belonging to the supported address

family. The other addresses MAY be ignored. The endpoint SHOULD NOT

respond with any kind of error indication.

If an SCTP endpoint lists in the 'Supported Address Types' parameter

either IPv4 or IPv6, but uses the other family for sending the

packet containing the INIT chunk, or if it also lists addresses of

the other family in the INIT chunk, then the address family that is

not listed in the 'Supported Address Types' parameter SHOULD also be

considered as supported by the receiver of the INIT chunk. The

receiver of the INIT chunk SHOULD NOT respond with any kind of error

indication.

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.1.3. Generating State Cookie

When sending an INIT ACK chunk as a response to an INIT chunk, the

sender of INIT ACK chunk creates a State Cookie and sends it in the

State Cookie parameter of the INIT ACK chunk. Inside this State

Cookie, the sender SHOULD include a MAC (see [RFC2104] for an

example), a timestamp on when the State Cookie is created, and the

lifespan of the State Cookie, along with all the information

necessary for it to establish the association including the port

numbers and the verification tags.

The method used to generate the MAC is strictly a private matter for

the receiver of the INIT chunk. The use of a MAC is mandatory to

prevent denial-of-service attacks. MAC algorithms can have different

performance depending on the platform. Choosing a high performance

MAC algorithm increases the resistance against cookie flooding

attacks. A MAC with acceptable security properties SHOULD be used.

The secret key SHOULD be random ([RFC4086] provides some information

on randomness guidelines). The secret keys need to have an

appropriate size. The secret key SHOULD be changed reasonably

frequently (e.g., hourly), and the timestamp in the State Cookie MAY

be used to determine which key is used to verify the MAC.

If the State Cookie is not encrypted, it MUST NOT contain

information which is not being envisioned to be shared.

An implementation SHOULD make the cookie as small as possible to

ensure interoperability.

5.1.4. State Cookie Processing

When an endpoint (in the COOKIE-WAIT state) receives an INIT ACK

chunk with a State Cookie parameter, it MUST immediately send a

COOKIE ECHO chunk to its peer with the received State Cookie. The

sender MAY also add any pending DATA chunks to the packet after the

COOKIE ECHO chunk.

The endpoint MUST also start the T1-cookie timer after sending the

COOKIE ECHO chunk. If the timer expires, the endpoint MUST

retransmit the COOKIE ECHO chunk and restart the T1-cookie timer.

This is repeated until either a COOKIE ACK chunk is received or

'Max.Init.Retransmits' (see Section 16) is reached causing the peer

endpoint to be marked unreachable (and thus the association enters

the CLOSED state).

5.1.5. State Cookie Authentication

When an endpoint receives a COOKIE ECHO chunk from another endpoint

with which it has no association, it takes the following actions:

¶

¶

¶

¶

¶

¶

¶

1)

2)

3)

4)

5)

6)

7)

Compute a MAC using the information carried in the State

Cookie and the secret key. The timestamp in the State Cookie

MAY be used to determine which secret key to use. If secrets

are kept only for a limited amount of time and the secret key

to use is not available anymore, the packet containing the

COOKIE ECHO chunk MUST be silently discarded. [RFC2104] can be

used as a guideline for generating the MAC,

Authenticate the State Cookie as one that it previously

generated by comparing the computed MAC against the one

carried in the State Cookie. If this comparison fails, the

SCTP packet, including the COOKIE ECHO chunk and any DATA

chunks, SHOULD be silently discarded,

Compare the port numbers and the Verification Tag contained

within the COOKIE ECHO chunk to the actual port numbers and

the Verification Tag within the SCTP common header of the

received packet. If these values do not match, the packet MUST

be silently discarded.

Compare the creation timestamp in the State Cookie to the

current local time. If the elapsed time is longer than the

lifespan carried in the State Cookie, then the packet,

including the COOKIE ECHO chunk and any attached DATA chunks,

SHOULD be discarded, and the endpoint MUST transmit an ERROR

chunk with a "Stale Cookie" error cause to the peer endpoint.

If the State Cookie is valid, create an association to the

sender of the COOKIE ECHO chunk with the information in the

State Cookie carried in the COOKIE ECHO chunk and enter the

ESTABLISHED state.

Send a COOKIE ACK chunk to the peer acknowledging receipt of

the COOKIE ECHO chunk. The COOKIE ACK chunk MAY be bundled

with an outbound DATA chunk or SACK chunk; however, the COOKIE

ACK chunk MUST be the first chunk in the SCTP packet.

Immediately acknowledge any DATA chunk bundled with the COOKIE

ECHO chunk with a SACK chunk (subsequent DATA chunk

acknowledgement SHOULD follow the rules defined in Section

6.2). As mentioned in step 6, if the SACK chunk is bundled

with the COOKIE ACK chunk, the COOKIE ACK chunk MUST appear

first in the SCTP packet.

If a COOKIE ECHO chunk is received from an endpoint with which the

receiver of the COOKIE ECHO chunk has an existing association, the

procedures in Section 5.2 SHOULD be followed.

¶

¶

¶

¶

¶

¶

¶

¶

5.1.6. An Example of Normal Association Establishment

In the following example, "A" initiates the association and then

sends a user message to "Z", then "Z" sends two user messages to "A"

later (assuming no bundling or fragmentation occurs):

Figure 4: A Setup Example

¶

Endpoint A Endpoint Z

{app sets association with Z}

(build TCB)

INIT [I-Tag=Tag_A

 & other info] ------\

(Start T1-init timer) \

(Enter COOKIE-WAIT state) \---> (compose Cookie_Z)

 /-- INIT ACK [Veri Tag=Tag_A,

 / I-Tag=Tag_Z,

(Cancel T1-init timer) <------/ Cookie_Z, & other info]

COOKIE ECHO [Cookie_Z] ------\

(Start T1-cookie timer) \

(Enter COOKIE-ECHOED state) \---> (build TCB, enter ESTABLISHED

 state)

 /---- COOKIE ACK

 /

(Cancel T1-cookie timer, <---/

 enter ESTABLISHED state)

{app sends 1st user data; strm 0}

DATA [TSN=init TSN_A

 Strm=0,Seq=0 & user data]--\

(Start T3-rtx timer) \

 \->

 /----- SACK [TSN Ack=init TSN_A,

 Block=0]

(Cancel T3-rtx timer) <------/

 ...

 {app sends 2 messages;strm 0}

 /---- DATA

 / [TSN=init TSN_Z,

 <--/ Strm=0,Seq=0 & user data 1]

SACK [TSN Ack=init TSN_Z, /---- DATA

 Block=0] --------\ / [TSN=init TSN_Z +1,

 \/ Strm=0,Seq=1 & user data 2]

 <------/\

 \

 \------>

A)

B)

C)

D)

E)

If the T1-init timer expires at "A" after the INIT or COOKIE ECHO

chunks are sent, the same INIT or COOKIE ECHO chunk with the same

Initiate Tag (i.e., Tag_A) or State Cookie is retransmitted and the

timer restarted. This is repeated 'Max.Init.Retransmits' times

before "A" considers "Z" unreachable and reports the failure to its

upper layer (and thus the association enters the CLOSED state).

When retransmitting the INIT chunk, the endpoint MUST follow the

rules defined in Section 6.3 to determine the proper timer value.

5.2. Handle Duplicate or Unexpected INIT, INIT ACK, COOKIE ECHO, and

COOKIE ACK Chunks

During the life time of an association (in one of the possible

states), an endpoint can receive from its peer endpoint one of the

setup chunks (INIT, INIT ACK, COOKIE ECHO, and COOKIE ACK). The

receiver treats such a setup chunk as a duplicate and process it as

described in this section.

Note: An endpoint will not receive the chunk unless the chunk was

sent to an SCTP transport address and is from an SCTP transport

address associated with this endpoint. Therefore, the endpoint

processes such a chunk as part of its current association.

The following scenarios can cause duplicated or unexpected chunks:

The peer has crashed without being detected, restarted itself,

and sent a new INIT chunk trying to restore the association,

Both sides are trying to initialize the association at about

the same time,

The chunk is from a stale packet that was used to establish

the present association or a past association that is no

longer in existence,

The chunk is a false packet generated by an attacker, or

The peer never received the COOKIE ACK chunk and is

retransmitting its COOKIE ECHO chunk.

The rules in the following sections are applied in order to identify

and correctly handle these cases.

5.2.1. INIT Chunk Received in COOKIE-WAIT or COOKIE-ECHOED State (Item

B)

This usually indicates an initialization collision, i.e., each

endpoint is attempting, at about the same time, to establish an

association with the other endpoint.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1)

2)

3)

Upon receipt of an INIT chunk in the COOKIE-WAIT state, an endpoint

MUST respond with an INIT ACK chunk using the same parameters it

sent in its original INIT chunk (including its Initiate Tag,

unchanged). When responding, the following rules MUST be applied:

The packet containing the INIT ACK chunk MUST only be sent to

an address passed by the upper layer in the request to

initialize the association.

The packet containing the INIT ACK chunk MUST only be sent to

an address reported in the incoming INIT chunk.

The packet containing the INIT ACK chunk SHOULD be sent to the

source address of the received packet containing the INIT

chunk.

Upon receipt of an INIT chunk in the COOKIE-ECHOED state, an

endpoint MUST respond with an INIT ACK chunk using the same

parameters it sent in its original INIT chunk (including its

Initiate Tag, unchanged), provided that no NEW address has been

added to the forming association. If the INIT chunk indicates that a

new address has been added to the association, then the entire INIT

chunk MUST be discarded, and the state of the existing association

SHOULD NOT be changed. An ABORT chunk SHOULD be sent in response

that MAY include the error 'Restart of an association with new

addresses'. The error SHOULD list the addresses that were added to

the restarting association.

When responding in either state (COOKIE-WAIT or COOKIE-ECHOED) with

an INIT ACK chunk, the original parameters are combined with those

from the newly received INIT chunk. The endpoint MUST also generate

a State Cookie with the INIT ACK chunk. The endpoint uses the

parameters sent in its INIT chunk to calculate the State Cookie.

After that, the endpoint MUST NOT change its state, the T1-init

timer MUST be left running, and the corresponding TCB MUST NOT be

destroyed. The normal procedures for handling State Cookies when a

TCB exists will resolve the duplicate INIT chunks to a single

association.

For an endpoint that is in the COOKIE-ECHOED state, it MUST populate

its Tie-Tags within both the association TCB and inside the State

Cookie (see Section 5.2.2 for a description of the Tie-Tags).

5.2.2. Unexpected INIT Chunk in States Other than CLOSED, COOKIE-

ECHOED, COOKIE-WAIT, and SHUTDOWN-ACK-SENT

Unless otherwise stated, upon receipt of an unexpected INIT chunk

for this association, the endpoint MUST generate an INIT ACK chunk

with a State Cookie. Before responding, the endpoint MUST check to

¶

¶

¶

¶

¶

¶

¶

¶

see if the unexpected INIT chunk adds new addresses to the

association. If new addresses are added to the association, the

endpoint MUST respond with an ABORT chunk, copying the 'Initiate

Tag' of the unexpected INIT chunk into the 'Verification Tag' of the

outbound packet carrying the ABORT chunk. In the ABORT chunk, the

error cause MAY be set to 'restart of an association with new

addresses'. The error SHOULD list the addresses that were added to

the restarting association. If no new addresses are added, when

responding to the INIT chunk in the outbound INIT ACK chunk, the

endpoint MUST copy its current Tie-Tags to a reserved place within

the State Cookie and the association's TCB. We refer to these

locations inside the cookie as the Peer's-Tie-Tag and the Local-Tie-

Tag. We will refer to the copy within an association's TCB as the

Local Tag and Peer's Tag. The outbound SCTP packet containing this

INIT ACK chunk MUST carry a Verification Tag value equal to the

Initiate Tag found in the unexpected INIT chunk. And the INIT ACK

chunk MUST contain a new Initiate Tag (randomly generated; see

Section 5.3.1). Other parameters for the endpoint SHOULD be copied

from the existing parameters of the association (e.g., number of

outbound streams) into the INIT ACK chunk and cookie.

After sending the INIT ACK or ABORT chunk, the endpoint MUST take no

further actions; i.e., the existing association, including its

current state, and the corresponding TCB MUST NOT be changed.

Only when a TCB exists and the association is not in a COOKIE-WAIT

or SHUTDOWN-ACK-SENT state are the Tie-Tags populated with a random

value other than 0. For a normal association INIT chunk (i.e., the

endpoint is in the CLOSED state), the Tie-Tags MUST be set to 0

(indicating that no previous TCB existed).

5.2.3. Unexpected INIT ACK Chunk

If an INIT ACK chunk is received by an endpoint in any state other

than the COOKIE-WAIT or CLOSED state, the endpoint SHOULD discard

the INIT ACK chunk. An unexpected INIT ACK chunk usually indicates

the processing of an old or duplicated INIT chunk.

5.2.4. Handle a COOKIE ECHO Chunk when a TCB Exists

When a COOKIE ECHO chunk is received by an endpoint in any state for

an existing association (i.e., not in the CLOSED state) the

following rules are applied:

¶

¶

¶

¶

¶

1)

2)

3)

4)

5)

X -

M -

0 -

A -

A)

Compute a MAC as described in step 1 of Section 5.1.5,

Authenticate the State Cookie as described in step 2 of

Section 5.1.5 (this is case C or D above).

Compare the timestamp in the State Cookie to the current time.

If the State Cookie is older than the lifespan carried in the

State Cookie and the Verification Tags contained in the State

Cookie do not match the current association's Verification

Tags, the packet, including the COOKIE ECHO chunk and any DATA

chunks, SHOULD be discarded. The endpoint also MUST transmit

an ERROR chunk with a "Stale Cookie" error cause to the peer

endpoint (this is case C or D in Section 5.2).

If both Verification Tags in the State Cookie match the

Verification Tags of the current association, consider the

State Cookie valid (this is case E in Section 5.2) even if the

lifespan is exceeded.

If the State Cookie proves to be valid, unpack the TCB into a

temporary TCB.

Refer to Table 12 to determine the correct action to be taken.

Local Tag Peer's Tag Local-Tie-Tag Peer's-Tie-Tag Action

X X M M (A)

M X A A (B)

M 0 A A (B)

X M 0 0 (C)

M M A A (D)

Table 12: Handling of a COOKIE ECHO Chunk when a TCB Exists

Legend:

Tag does not match the existing TCB.

Tag matches the existing TCB.

Tag unknown (Peer's Tag not known yet / No tie-tag in cookie).

All cases, i.e., M, X, or 0.

For any case not shown in Table 12, the cookie SHOULD be silently

discarded.

Action

In this case, the peer might have restarted. When the endpoint

recognizes this potential 'restart', the existing session is

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

B)

C)

D)

treated the same as if it received an ABORT chunk followed by

a new COOKIE ECHO chunk with the following exceptions:

Any SCTP DATA chunks MAY be retained (this is an

implementation-specific option).

A notification of RESTART SHOULD be sent to the ULP

instead of a "COMMUNICATION LOST" notification.

All the congestion control parameters (e.g., cwnd, ssthresh)

related to this peer MUST be reset to their initial values

(see Section 6.2.1).

After this, the endpoint enters the ESTABLISHED state.

If the endpoint is in the SHUTDOWN-ACK-SENT state and

recognizes that the peer has restarted (Action A), it MUST NOT

set up a new association but instead resend the SHUTDOWN ACK

chunk and send an ERROR chunk with a "Cookie Received While

Shutting Down" error cause to its peer.

In this case, both sides might be attempting to start an

association at about the same time, but the peer endpoint sent

its INIT chunk after responding to the local endpoint's INIT

chunk. Thus, it might have picked a new Verification Tag, not

being aware of the previous tag it had sent this endpoint. The

endpoint SHOULD stay in or enter the ESTABLISHED state, but it

MUST update its peer's Verification Tag from the State Cookie,

stop any T1-init or T1-cookie timers that might be running,

and send a COOKIE ACK chunk.

In this case, the local endpoint's cookie has arrived late.

Before it arrived, the local endpoint sent an INIT chunk and

received an INIT ACK chunk and finally sent a COOKIE ECHO

chunk with the peer's same tag but a new tag of its own. The

cookie SHOULD be silently discarded. The endpoint SHOULD NOT

change states and SHOULD leave any timers running.

When both local and remote tags match, the endpoint SHOULD

enter the ESTABLISHED state, if it is in the COOKIE-ECHOED

state. It SHOULD stop any T1-cookie timer that is running and

send a COOKIE ACK chunk.

Note: The "peer's Verification Tag" is the tag received in the

Initiate Tag field of the INIT or INIT ACK chunk.

5.2.4.1. An Example of a Association Restart

In the following example, "A" initiates the association after a

restart has occurred. Endpoint "Z" had no knowledge of the restart

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

until the exchange (i.e., Heartbeats had not yet detected the

failure of "A") (assuming no bundling or fragmentation occurs):

Figure 5: A Restart Example

¶

Endpoint A Endpoint Z

<-------------- Association is established---------------------->

Tag=Tag_A Tag=Tag_Z

<--->

{A crashes and restarts}

{app sets up a association with Z}

(build TCB)

INIT [I-Tag=Tag_A'

 & other info] --------\

(Start T1-init timer) \

(Enter COOKIE-WAIT state) \---> (find an existing TCB,

 populate TieTags if needed,

 compose Cookie_Z with Tie-Tags

 and other info)

 /--- INIT ACK [Veri Tag=Tag_A',

 / I-Tag=Tag_Z',

(Cancel T1-init timer) <------/ Cookie_Z]

 (leave original TCB in place)

COOKIE ECHO [Veri=Tag_Z',

 Cookie_Z]-------\

(Start T1-init timer) \

(Enter COOKIE-ECHOED state) \---> (Find existing association,

 Tie-Tags in Cookie_Z match

 Tie-Tags in TCB,

 Tags do not match, i.e.,

 case X X M M above,

 Announce Restart to ULP

 and reset association).

 /---- COOKIE ACK

(Cancel T1-init timer, <------/

 Enter ESTABLISHED state)

{app sends 1st user data; strm 0}

DATA [TSN=initial TSN_A

 Strm=0,Seq=0 & user data]--\

(Start T3-rtx timer) \

 \->

 /--- SACK [TSN Ack=init TSN_A,Block=0]

(Cancel T3-rtx timer) <------/

A)

B)

C)

1)

2)

3)

5.2.5. Handle Duplicate COOKIE ACK Chunk

At any state other than COOKIE-ECHOED, an endpoint SHOULD silently

discard a received COOKIE ACK chunk.

5.2.6. Handle Stale Cookie Error

Receipt of an ERROR chunk with a "Stale Cookie" error cause

indicates one of a number of possible events:

The association failed to completely setup before the State

Cookie issued by the sender was processed.

An old State Cookie was processed after setup completed.

An old State Cookie is received from someone that the receiver

is not interested in having an association with and the ABORT

chunk was lost.

When processing an ERROR chunk with a "Stale Cookie" error cause an

endpoint SHOULD first examine if an association is in the process of

being set up, i.e., the association is in the COOKIE-ECHOED state.

In all cases, if the association is not in the COOKIE-ECHOED state,

the ERROR chunk SHOULD be silently discarded.

If the association is in the COOKIE-ECHOED state, the endpoint MAY

elect one of the following three alternatives.

Send a new INIT chunk to the endpoint to generate a new State

Cookie and reattempt the setup procedure.

Discard the TCB and report to the upper layer the inability to

set up the association.

Send a new INIT chunk to the endpoint, adding a Cookie

Preservative parameter requesting an extension to the life

time of the State Cookie. When calculating the time extension,

an implementation SHOULD use the RTT information measured

based on the previous COOKIE ECHO / ERROR chunk exchange, and

SHOULD add no more than 1 second beyond the measured RTT, due

to long State Cookie life times making the endpoint more

subject to a replay attack.

5.3. Other Initialization Issues

5.3.1. Selection of Tag Value

Initiate Tag values SHOULD be selected from the range of 1 to 2 -

1. It is very important that the Initiate Tag value be randomized to

help protect against "man in the middle" and "sequence number"

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

32

1)

2)

3)

attacks. The methods described in [RFC4086] can be used for the

Initiate Tag randomization. Careful selection of Initiate Tags is

also necessary to prevent old duplicate packets from previous

associations being mistakenly processed as belonging to the current

association.

Moreover, the Verification Tag value used by either endpoint in a

given association MUST NOT change during the life time of an

association. A new Verification Tag value MUST be used each time the

endpoint tears down and then reestablishes an association to the

same peer.

5.4. Path Verification

During association establishment, the two peers exchange a list of

addresses. In the predominant case, these lists accurately represent

the addresses owned by each peer. However, a misbehaving peer might

supply addresses that it does not own. To prevent this, the

following rules are applied to all addresses of the new association:

Any addresses passed to the sender of the INIT chunk by its

upper layer in the request to initialize an association are

automatically considered to be CONFIRMED.

For the receiver of the COOKIE ECHO chunk, the only CONFIRMED

address is the address to which the packet containing the INIT

ACK chunk was sent.

All other addresses not covered by rules 1 and 2 are

considered UNCONFIRMED and are subject to probing for

verification.

To probe an address for verification, an endpoint will send

HEARTBEAT chunks including a 64-bit random nonce and a path

indicator (to identify the address that the HEARTBEAT chunk is sent

to) within the Heartbeat Info parameter.

Upon receipt of the HEARTBEAT ACK chunk, a verification is made that

the nonce included in the Heartbeat Info parameter is the one sent

to the address indicated inside the Heartbeat Info parameter. When

this match occurs, the address that the original HEARTBEAT was sent

to is now considered CONFIRMED and available for normal data

transfer.

These probing procedures are started when an association moves to

the ESTABLISHED state and are ended when all paths are confirmed.

In each RTO, a probe MAY be sent on an active UNCONFIRMED path in an

attempt to move it to the CONFIRMED state. If during this probing

the path becomes inactive, this rate is lowered to the normal

¶

¶

¶

¶

¶

¶

¶

¶

¶

HEARTBEAT rate. At the expiration of the RTO timer, the error

counter of any path that was probed but not CONFIRMED is incremented

by one and subjected to path failure detection, as defined in

Section 8.2. When probing UNCONFIRMED addresses, however, the

association overall error count is not incremented.

The number of packets containing HEARTBEAT chunks sent at each RTO

SHOULD be limited by the 'HB.Max.Burst' parameter. It is an

implementation decision as to how to distribute packets containing

HEARTBEAT chunks to the peer's addresses for path verification.

Whenever a path is confirmed, an indication MAY be given to the

upper layer.

An endpoint MUST NOT send any chunks to an UNCONFIRMED address, with

the following exceptions:

A HEARTBEAT chunk including a nonce MAY be sent to an UNCONFIRMED

address.

A HEARTBEAT ACK chunk MAY be sent to an UNCONFIRMED address.

A COOKIE ACK chunk MAY be sent to an UNCONFIRMED address, but it

MUST be bundled with a HEARTBEAT chunk including a nonce. An

implementation that does not support bundling MUST NOT send a

COOKIE ACK chunk to an UNCONFIRMED address.

A COOKIE ECHO chunk MAY be sent to an UNCONFIRMED address, but it

MUST be bundled with a HEARTBEAT chunk including a nonce, and the

size of the SCTP packet MUST NOT exceed the PMTU. If the

implementation does not support bundling or if the bundled COOKIE

ECHO chunk plus HEARTBEAT chunk (including nonce) would result in

an SCTP packet larger than the PMTU, then the implementation MUST

NOT send a COOKIE ECHO chunk to an UNCONFIRMED address.

6. User Data Transfer

Data transmission MUST only happen in the ESTABLISHED, SHUTDOWN-

PENDING, and SHUTDOWN-RECEIVED states. The only exception to this is

that DATA chunks are allowed to be bundled with an outbound COOKIE

ECHO chunk when in the COOKIE-WAIT state.

DATA chunks MUST only be received according to the rules below in

ESTABLISHED, SHUTDOWN-PENDING, and SHUTDOWN-SENT states. A DATA

chunk received in CLOSED is out of the blue and SHOULD be handled

per Section 8.4. A DATA chunk received in any other state SHOULD be

discarded.

A SACK chunk MUST be processed in ESTABLISHED, SHUTDOWN-PENDING, and

SHUTDOWN-RECEIVED states. An incoming SACK chunk MAY be processed in

¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

1)

2)

COOKIE-ECHOED. A SACK chunk in the CLOSED state is out of the blue

and SHOULD be processed according to the rules in Section 8.4. A

SACK chunk received in any other state SHOULD be discarded.

For transmission efficiency, SCTP defines mechanisms for bundling of

small user messages and fragmentation of large user messages. The

following diagram depicts the flow of user messages through SCTP.

In this section, the term "data sender" refers to the endpoint that

transmits a DATA chunk and the term "data receiver" refers to the

endpoint that receives a DATA chunk. A data receiver will transmit

SACK chunks.

Figure 6: Illustration of User Data Transfer

The following applies:

When converting user messages into DATA chunks, an endpoint

MUST fragment large user messages into multiple DATA chunks.

The size of each DATA chunk SHOULD be smaller than or equal to

the Association Maximum DATA Chunk Size (AMDCS). The data

receiver will normally reassemble the fragmented message from

DATA chunks before delivery to the user (see Section 6.9 for

details).

Multiple DATA and control chunks MAY be bundled by the sender

into a single SCTP packet for transmission, as long as the

final size of the SCTP packet does not exceed the current

¶

¶

¶

 +-------------------------+

 | User Messages |

 +-------------------------+

 SCTP user ^ |

==================|==|=======================================

 | v (1)

 +------------------+ +---------------------+

 | SCTP DATA Chunks | | SCTP Control Chunks |

 +------------------+ +---------------------+

 ^ | ^ |

 | v (2) | v (2)

 +--------------------------+

 | SCTP packets |

 +--------------------------+

 SCTP ^ |

===========================|==|===========================

 | v

 Connectionless Packet Transfer Service (e.g., IP)

¶

¶

A)

PMTU. The receiver will unbundle the packet back into the

original chunks. Control chunks MUST come before DATA chunks

in the packet.

The fragmentation and bundling mechanisms, as detailed in Section

6.9 and Section 6.10, are OPTIONAL to implement by the data sender,

but they MUST be implemented by the data receiver, i.e., an endpoint

MUST properly receive and process bundled or fragmented data.

6.1. Transmission of DATA Chunks

This section specifies the rules for sending DATA chunks. In

particular, it defines zero window probing, which is required to

avoid the indefinite stalling of an association in case of a loss of

packets containing SACK chunks performing window updates.

This document is specified as if there is a single retransmission

timer per destination transport address, but implementations MAY

have a retransmission timer for each DATA chunk.

The following general rules MUST be applied by the data sender for

transmission and/or retransmission of outbound DATA chunks:

At any given time, the data sender MUST NOT transmit new data

to any destination transport address if its peer's rwnd

indicates that the peer has no buffer space (i.e., rwnd is

smaller than the size of the next DATA chunk; see Section

6.2.1), except for zero window probes.

A zero window probe is a DATA chunk sent when the receiver has

no buffer space. This rule allows the sender to probe for a

change in rwnd that the sender missed due to the SACK chunks

having been lost in transit from the data receiver to the data

sender. A zero window probe MUST only be sent when the cwnd

allows (see Rule B below). A zero window probe SHOULD only be

sent when all outstanding DATA chunks have been cumulatively

acknowledged and no DATA chunks are in flight. Senders MUST

support zero window probing.

If the sender continues to receive SACK chunks from the peer

while doing zero window probing, the unacknowledged window

probes SHOULD NOT increment the error counter for the

association or any destination transport address. This is

because the receiver could keep its window closed for an

indefinite time. Section 6.2 describes the receiver behavior

when it advertises a zero window. The sender SHOULD send the

first zero window probe after 1 RTO when it detects that the

receiver has closed its window and SHOULD increase the probe

interval exponentially afterwards. Also note that the cwnd

¶

¶

¶

¶

¶

¶

¶

B)

C)

D)

E)

SHOULD be adjusted according to Section 7.2.1. Zero window

probing does not affect the calculation of cwnd.

The sender MUST also have an algorithm for sending new DATA

chunks to avoid silly window syndrome (SWS) as described in

[RFC1122]. The algorithm can be similar to the one described

in Section 4.2.3.4 of [RFC1122].

At any given time, the sender MUST NOT transmit new data to a

given transport address if it has cwnd + (PMDCS - 1) or more

bytes of data outstanding to that transport address. If data

is available, the sender SHOULD exceed cwnd by up to (PMDCS -

1) bytes on a new data transmission if the flightsize does not

currently reach cwnd. The breach of cwnd MUST constitute one

packet only.

When the time comes for the sender to transmit, before sending

new DATA chunks, the sender MUST first transmit any DATA

chunks that are marked for retransmission (limited by the

current cwnd).

When the time comes for the sender to transmit new DATA

chunks, the protocol parameter 'Max.Burst' SHOULD be used to

limit the number of packets sent. The limit MAY be applied by

adjusting cwnd temporarily, as follows:

if ((flightsize + Max.Burst * PMDCS) < cwnd)

 cwnd = flightsize + Max.Burst * PMDCS;

Or, it MAY be applied by strictly limiting the number of

packets emitted by the output routine. When calculating the

number of packets to transmit, and particularly when using the

formula above, cwnd SHOULD NOT be changed permanently.

Then, the sender can send as many new DATA chunks as rule A

and rule B allow.

Multiple DATA chunks committed for transmission MAY be bundled in a

single packet. Furthermore, DATA chunks being retransmitted MAY be

bundled with new DATA chunks, as long as the resulting SCTP packet

size does not exceed the PMTU. A ULP can request that no bundling is

performed, but this only turns off any delays that an SCTP

implementation might be using to increase bundling efficiency. It

does not in itself stop all bundling from occurring (i.e., in case

of congestion or retransmission).

Before an endpoint transmits a DATA chunk, if any received DATA

chunks have not been acknowledged (e.g., due to delayed ack), the

¶

¶

¶

¶

¶

¶

¶

¶

¶

sender SHOULD create a SACK chunk and bundle it with the outbound

DATA chunk, as long as the size of the final SCTP packet does not

exceed the current PMTU. See Section 6.2.

When the window is full (i.e., transmission is disallowed by rule A

and/or rule B), the sender MAY still accept send requests from its

upper layer, but MUST transmit no more DATA chunks until some or all

of the outstanding DATA chunks are acknowledged and transmission is

allowed by rule A and rule B again.

Whenever a transmission or retransmission is made to any address, if

the T3-rtx timer of that address is not currently running, the

sender MUST start that timer. If the timer for that address is

already running, the sender MUST restart the timer if the earliest

(i.e., lowest TSN) outstanding DATA chunk sent to that address is

being retransmitted. Otherwise, the data sender MUST NOT restart the

timer.

When starting or restarting the T3-rtx timer, the timer value SHOULD

be adjusted according to the timer rules defined in Section 6.3.2

and Section 6.3.3.

The data sender MUST NOT use a TSN that is more than 2 - 1 above

the beginning TSN of the current send window.

For each stream, the data sender MUST NOT have more than 2 - 1

ordered user messages in the current send window.

Whenever the sender of a DATA chunk can benefit from the

corresponding SACK chunk being sent back without delay, the sender

MAY set the I bit in the DATA chunk header. Please note that why the

sender has set the I bit is irrelevant to the receiver.

Reasons for setting the I bit include, but are not limited to, the

following (see Section 4 of [RFC7053] for a discussion of the

benefits):

The application requests that the I bit of the last DATA chunk of

a user message be set when providing the user message to the SCTP

implementation (see Section 11.1).

The sender is in the SHUTDOWN-PENDING state.

The sending of a DATA chunk fills the congestion or receiver

window.

¶

¶

¶

¶

31

¶

16

¶

¶

¶

*

¶

* ¶

*

¶

6.2. Acknowledgement on Reception of DATA Chunks

The SCTP endpoint MUST always acknowledge the reception of each

valid DATA chunk when the DATA chunk received is inside its receive

window.

When the receiver's advertised window is 0, the receiver MUST drop

any new incoming DATA chunk with a TSN larger than the largest TSN

received so far. Also, if the new incoming DATA chunk holds a TSN

value less than the largest TSN received so far, then the receiver

SHOULD drop the largest TSN held for reordering and accept the new

incoming DATA chunk. In either case, if such a DATA chunk is

dropped, the receiver MUST immediately send back a SACK chunk with

the current receive window showing only DATA chunks received and

accepted so far. The dropped DATA chunk(s) MUST NOT be included in

the SACK chunk, as they were not accepted. The receiver MUST also

have an algorithm for advertising its receive window to avoid

receiver silly window syndrome (SWS), as described in [RFC1122]. The

algorithm can be similar to the one described in Section 4.2.3.3 of

[RFC1122].

The guidelines on delayed acknowledgement algorithm specified in

Section 4.2 of [RFC5681] SHOULD be followed. Specifically, an

acknowledgement SHOULD be generated for at least every second packet

(not every second DATA chunk) received, and SHOULD be generated

within 200 ms of the arrival of any unacknowledged DATA chunk. In

some situations, it might be beneficial for an SCTP transmitter to

be more conservative than the algorithms detailed in this document

allow. However, an SCTP transmitter MUST NOT be more aggressive in

sending SACK chunks than the following algorithms allow.

An SCTP receiver MUST NOT generate more than one SACK chunk for

every incoming packet, other than to update the offered window as

the receiving application consumes new data. When the window opens

up, an SCTP receiver SHOULD send additional SACK chunks to update

the window even if no new data is received. The receiver MUST avoid

sending a large number of window updates -- in particular, large

bursts of them. One way to achieve this is to send a window update

only if the window can be increased by at least a quarter of the

receive buffer size of the association.

Implementation Note: The maximum delay for generating an

acknowledgement MAY be configured by the SCTP administrator, either

statically or dynamically, in order to meet the specific timing

requirement of the protocol being carried.

An implementation MUST NOT allow the maximum delay (protocol

parameter 'SACK.Delay') to be configured to be more than 500 ms. In

¶

¶

¶

¶

¶

A)

other words, an implementation MAY lower the value of 'SACK.Delay'

below 500 ms but MUST NOT raise it above 500 ms.

Acknowledgements MUST be sent in SACK chunks unless shutdown was

requested by the ULP, in which case an endpoint MAY send an

acknowledgement in the SHUTDOWN chunk. A SACK chunk can acknowledge

the reception of multiple DATA chunks. See Section 3.3.4 for SACK

chunk format. In particular, the SCTP endpoint MUST fill in the

Cumulative TSN Ack field to indicate the latest sequential TSN (of a

valid DATA chunk) it has received. Any received DATA chunks with TSN

greater than the value in the Cumulative TSN Ack field are reported

in the Gap Ack Block fields. The SCTP endpoint MUST report as many

Gap Ack Blocks as can fit in a single SACK chunk such that the size

of the SCTP packet does not exceed the current PMTU.

The SHUTDOWN chunk does not contain Gap Ack Block fields. Therefore,

the endpoint SHOULD use a SACK chunk instead of the SHUTDOWN chunk

to acknowledge DATA chunks received out of order.

Upon receipt of an SCTP packet containing a DATA chunk with the I

bit set, the receiver SHOULD NOT delay the sending of the

corresponding SACK chunk, i.e., the receiver SHOULD immediately

respond with the corresponding SACK chunk.

When a packet arrives with duplicate DATA chunk(s) and with no new

DATA chunk(s), the endpoint MUST immediately send a SACK chunk with

no delay. If a packet arrives with duplicate DATA chunk(s) bundled

with new DATA chunks, the endpoint MAY immediately send a SACK

chunk. Normally, receipt of duplicate DATA chunks will occur when

the original SACK chunk was lost and the peer's RTO has expired. The

duplicate TSN number(s) SHOULD be reported in the SACK chunk as

duplicate.

When an endpoint receives a SACK chunk, it MAY use the duplicate TSN

information to determine if SACK chunk loss is occurring. Further

use of this data is for future study.

The data receiver is responsible for maintaining its receive

buffers. The data receiver SHOULD notify the data sender in a timely

manner of changes in its ability to receive data. How an

implementation manages its receive buffers is dependent on many

factors (e.g., operating system, memory management system, amount of

memory, etc.). However, the data sender strategy defined in Section

6.2.1 is based on the assumption of receiver operation similar to

the following:

At initialization of the association, the endpoint tells the

peer how much receive buffer space it has allocated to the

¶

¶

¶

¶

¶

¶

¶

B)

C)

D)

association in the INIT or INIT ACK chunk. The endpoint sets

a_rwnd to this value.

As DATA chunks are received and buffered, decrement a_rwnd by

the number of bytes received and buffered. This is, in effect,

closing rwnd at the data sender and restricting the amount of

data it can transmit.

As DATA chunks are delivered to the ULP and released from the

receive buffers, increment a_rwnd by the number of bytes

delivered to the upper layer. This is, in effect, opening up

rwnd on the data sender and allowing it to send more data. The

data receiver SHOULD NOT increment a_rwnd unless it has

released bytes from its receive buffer. For example, if the

receiver is holding fragmented DATA chunks in a reassembly

queue, it SHOULD NOT increment a_rwnd.

When sending a SACK chunk, the data receiver SHOULD place the

current value of a_rwnd into the a_rwnd field. The data

receiver SHOULD take into account that the data sender will

not retransmit DATA chunks that are acked via the Cumulative

TSN Ack (i.e., will drop from its retransmit queue).

Under certain circumstances, the data receiver MAY drop DATA chunks

that it has received but has not released from its receive buffers

(i.e., delivered to the ULP). These DATA chunks might have been

acked in Gap Ack Blocks. For example, the data receiver might be

holding data in its receive buffers while reassembling a fragmented

user message from its peer when it runs out of receive buffer space.

It MAY drop these DATA chunks even though it has acknowledged them

in Gap Ack Blocks. If a data receiver drops DATA chunks, it MUST NOT

include them in Gap Ack Blocks in subsequent SACK chunks until they

are received again via retransmission. In addition, the endpoint

SHOULD take into account the dropped data when calculating its

a_rwnd.

An endpoint SHOULD NOT revoke a SACK chunk and discard data. Only in

extreme circumstances might an endpoint use this procedure (such as

out of buffer space). The data receiver SHOULD take into account

that dropping data that has been acked in Gap Ack Blocks can result

in suboptimal retransmission strategies in the data sender and thus

in suboptimal performance.

The following example illustrates the use of delayed

acknowledgements:

¶

¶

¶

¶

¶

¶

¶

Figure 7: Delayed Acknowledgement Example

If an endpoint receives a DATA chunk with no user data (i.e., the

Length field is set to 16), it SHOULD send an ABORT chunk with a "No

User Data" error cause.

An endpoint SHOULD NOT send a DATA chunk with no user data part.

This avoids the need to be able to return a zero-length user message

in the API, especially in the socket API as specified in [RFC6458]

for details.

6.2.1. Processing a Received SACK Chunk

Each SACK chunk an endpoint receives contains an a_rwnd value. This

value represents the amount of buffer space the data receiver, at

the time of transmitting the SACK chunk, has left of its total

receive buffer space (as specified in the INIT/INIT ACK chunk).

Using a_rwnd, Cumulative TSN Ack, and Gap Ack Blocks, the data

sender can develop a representation of the peer's receive buffer

space.

One of the problems the data sender takes into account when

processing a SACK chunk is that a SACK chunk can be received out of

order. That is, a SACK chunk sent by the data receiver can pass an

earlier SACK chunk and be received first by the data sender. If a

Endpoint A Endpoint Z

{App sends 3 messages; strm 0}

DATA [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)

(Start T3-rtx timer)

DATA [TSN=8,Strm=0,Seq=4] ------------> (send ack)

 /------- SACK [TSN Ack=8,block=0]

(cancel T3-rtx timer) <-----/

DATA [TSN=9,Strm=0,Seq=5] ------------> (ack delayed)

(Start T3-rtx timer)

 ...

 {App sends 1 message; strm 1}

 (bundle SACK with DATA)

 /----- SACK [TSN Ack=9,block=0] \

 / DATA [TSN=6,Strm=1,Seq=2]

(cancel T3-rtx timer) <------/ (Start T3-rtx timer)

(ack delayed)

(send ack)

SACK [TSN Ack=6,block=0] -------------> (cancel T3-rtx timer)

¶

¶

¶

A)

B)

C)

D)

i)

ii)

iii)

iv)

SACK chunk is received out of order, the data sender can develop an

incorrect view of the peer's receive buffer space.

Since there is no explicit identifier that can be used to detect

out-of-order SACK chunks, the data sender uses heuristics to

determine if a SACK chunk is new.

An endpoint SHOULD use the following rules to calculate the rwnd,

using the a_rwnd value, the Cumulative TSN Ack, and Gap Ack Blocks

in a received SACK chunk.

At the establishment of the association, the endpoint

initializes the rwnd to the Advertised Receiver Window Credit

(a_rwnd) the peer specified in the INIT or INIT ACK chunk.

Any time a DATA chunk is transmitted (or retransmitted) to a

peer, the endpoint subtracts the data size of the chunk from

the rwnd of that peer.

Any time a DATA chunk is marked for retransmission, either via

T3-rtx timer expiration (Section 6.3.3) or via Fast Retransmit

(Section 7.2.4), add the data size of those chunks to the

rwnd.

Any time a SACK chunk arrives, the endpoint performs the

following:

If Cumulative TSN Ack is less than the Cumulative TSN

Ack Point, then drop the SACK chunk. Since Cumulative

TSN Ack is monotonically increasing, a SACK chunk whose

Cumulative TSN Ack is less than the Cumulative TSN Ack

Point indicates an out-of-order SACK chunk.

Set rwnd equal to the newly received a_rwnd minus the

number of bytes still outstanding after processing the

Cumulative TSN Ack and the Gap Ack Blocks.

If the SACK chunk is missing a TSN that was previously

acknowledged via a Gap Ack Block (e.g., the data

receiver reneged on the data), then consider the

corresponding DATA that might be possibly missing: Count

one miss indication towards Fast Retransmit as described

in Section 7.2.4, and if no retransmit timer is running

for the destination address to which the DATA chunk was

originally transmitted, then T3-rtx is started for that

destination address.

If the Cumulative TSN Ack matches or exceeds the Fast

Recovery exitpoint (Section 7.2.4), Fast Recovery is

exited.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

C1)

C2)

C3)

6.3. Management of Retransmission Timer

An SCTP endpoint uses a retransmission timer T3-rtx to ensure data

delivery in the absence of any feedback from its peer. The duration

of this timer is referred to as RTO (retransmission timeout).

When an endpoint's peer is multi-homed, the endpoint will calculate

a separate RTO for each different destination transport address of

its peer endpoint.

The computation and management of RTO in SCTP follow closely how TCP

manages its retransmission timer. To compute the current RTO, an

endpoint maintains two state variables per destination transport

address: SRTT (smoothed round-trip time) and RTTVAR (round-trip time

variation).

6.3.1. RTO Calculation

The rules governing the computation of SRTT, RTTVAR, and RTO are as

follows:

Until an RTT measurement has been made for a packet sent to

the given destination transport address, set RTO to the

protocol parameter 'RTO.Initial'.

When the first RTT measurement R is made, perform

SRTT = R;

RTTVAR = R/2;

RTO = SRTT + 4 * RTTVAR;

When a new RTT measurement R' is made, perform:

RTTVAR = (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|;

SRTT = (1 - RTO.Alpha) * SRTT + RTO.Alpha * R';

Note: The value of SRTT used in the update to RTTVAR is its

value before updating SRTT itself using the second assignment.

After the computation, update

RTO = SRTT + 4 * RTTVAR;

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

C4)

C5)

C6)

C7)

G1)

When data is in flight and when allowed by rule C5 below, a

new RTT measurement MUST be made each round trip. Furthermore,

new RTT measurements SHOULD be made no more than once per

round trip for a given destination transport address. There

are two reasons for this recommendation: First, it appears

that measuring more frequently often does not in practice

yield any significant benefit [ALLMAN99]; second, if

measurements are made more often, then the values of

'RTO.Alpha' and 'RTO.Beta' in rule C3 above SHOULD be adjusted

so that SRTT and RTTVAR still adjust to changes at roughly the

same rate (in terms of how many round trips it takes them to

reflect new values) as they would if making only one

measurement per round-trip and using 'RTO.Alpha' and

'RTO.Beta' as given in rule C3. However, the exact nature of

these adjustments remains a research issue.

Karn's algorithm: RTT measurements MUST NOT be made using

chunks that were retransmitted (and thus for which it is

ambiguous whether the reply was for the first instance of the

chunk or for a later instance).

RTT measurements SHOULD only be made using a DATA chunk with

TSN r, if no DATA chunk with TSN less than or equal to r was

retransmitted since the DATA chunk with TSN r was sent first.

Whenever RTO is computed, if it is less than 'RTO.Min' seconds

then it is rounded up to 'RTO.Min' seconds. The reason for

this rule is that RTOs that do not have a high minimum value

are susceptible to unnecessary timeouts [ALLMAN99].

A maximum value MAY be placed on RTO provided it is at least

'RTO.max' seconds.

There is no requirement for the clock granularity G used for

computing RTT measurements and the different state variables, other

than:

Whenever RTTVAR is computed, if RTTVAR == 0, then adjust

RTTVAR = G.

Experience [ALLMAN99] has shown that finer clock granularities (less

than 100 msec) perform somewhat better than more coarse

granularities.

See Section 16 for suggested parameter values.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

R1)

R2)

R3)

R4)

6.3.2. Retransmission Timer Rules

The rules for managing the retransmission timer are as follows:

Every time a DATA chunk is sent to any address (including a

retransmission), if the T3-rtx timer of that address is not

running, start it running so that it will expire after the RTO

of that address. The RTO used here is that obtained after any

doubling due to previous T3-rtx timer expirations on the

corresponding destination address as discussed in rule E2

below.

Whenever all outstanding data sent to an address have been

acknowledged, turn off the T3-rtx timer of that address.

Whenever a SACK chunk is received that acknowledges the DATA

chunk with the earliest outstanding TSN for that address,

restart the T3-rtx timer for that address with its current RTO

(if there is still outstanding data on that address).

Whenever a SACK chunk is received missing a TSN that was

previously acknowledged via a Gap Ack Block, start the T3-rtx

for the destination address to which the DATA chunk was

originally transmitted if it is not already running.

The following example shows the use of various timer rules (assuming

that the receiver uses delayed acks).

¶

¶

¶

¶

¶

¶

Endpoint A Endpoint Z

{App begins to send}

Data [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)

(Start T3-rtx timer)

 {App sends 1 message; strm 1}

 (bundle ack with data)

DATA [TSN=8,Strm=0,Seq=4] ----\ /-- SACK [TSN Ack=7,Block=0]

 \ / DATA [TSN=6,Strm=1,Seq=2]

 \ / (Start T3-rtx timer)

 \

 / \

(Restart T3-rtx timer) <------/ \--> (ack delayed)

(ack delayed)

{send ack}

SACK [TSN Ack=6,Block=0] --------------> (Cancel T3-rtx timer)

 ..

 (send ack)

(Cancel T3-rtx timer) <-------------- SACK [TSN Ack=8,Block=0]

E1)

E2)

E3)

E4)

F1)

Figure 8: Timer Rule Examples

6.3.3. Handle T3-rtx Expiration

Whenever the retransmission timer T3-rtx expires for a destination

address, do the following:

For the destination address for which the timer expires,

adjust its ssthresh with rules defined in Section 7.2.3 and

set the cwnd = PMDCS.

For the destination address for which the timer expires, set

RTO = RTO * 2 ("back off the timer"). The maximum value

discussed in rule C7 above ('RTO.max') MAY be used to provide

an upper bound to this doubling operation.

Determine how many of the earliest (i.e., lowest TSN)

outstanding DATA chunks for the address for which the T3-rtx

has expired will fit into a single SCTP packet, subject to the

PMTU corresponding to the destination transport address to

which the retransmission is being sent (this might be

different from the address for which the timer expires; see

Section 6.4). Call this value K. Bundle and retransmit those K

DATA chunks in a single packet to the destination endpoint.

Start the retransmission timer T3-rtx on the destination

address to which the retransmission is sent, if rule R1 above

indicates to do so. The RTO to be used for starting T3-rtx

SHOULD be the one for the destination address to which the

retransmission is sent, which, when the receiver is multi-

homed, might be different from the destination address for

which the timer expired (see Section 6.4 below).

After retransmitting, once a new RTT measurement is obtained (which

can happen only when new data has been sent and acknowledged, per

rule C5, or for a measurement made from a HEARTBEAT chunk; see

Section 8.3), the computation in rule C3 is performed, including the

computation of RTO, which might result in "collapsing" RTO back down

after it has been subject to doubling (rule E2).

Any DATA chunks that were sent to the address for which the T3-rtx

timer expired but did not fit in an SCTP packet of size smaller than

or equal to the PMTU (rule E3 above) SHOULD be marked for

retransmission and sent as soon as cwnd allows (normally, when a

SACK chunk arrives).

The final rule for managing the retransmission timer concerns

failover (see Section 6.4.1):

¶

¶

¶

¶

¶

¶

¶

¶

Whenever an endpoint switches from the current destination

transport address to a different one, the current

retransmission timers are left running. As soon as the

endpoint transmits a packet containing DATA chunk(s) to the

new transport address, start the timer on that transport

address, using the RTO value of the destination address to

which the data is being sent, if rule R1 indicates to do so.

6.4. Multi-Homed SCTP Endpoints

An SCTP endpoint is considered multi-homed if there is more than one

transport address that can be used as a destination address to reach

that endpoint.

Moreover, the ULP of an endpoint selects one of the multiple

destination addresses of a multi-homed peer endpoint as the primary

path (see Section 5.1.2 and Section 11.1 for details).

By default, an endpoint SHOULD always transmit to the primary path,

unless the SCTP user explicitly specifies the destination transport

address (and possibly source transport address) to use.

An endpoint SHOULD transmit reply chunks (e.g., INIT ACK, COOKIE

ACK, HEARTBEAT ACK) in response to control chunks to the same

destination transport address from which it received the control

chunk to which it is replying.

The selection of the destination transport address for packets

containing SACK chunks is implementation dependent. However, an

endpoint SHOULD NOT vary the destination transport address of a SACK

chunk when it receives DATA chunks coming from the same source

address.

When acknowledging multiple DATA chunks received in packets from

different source addresses in a single SACK chunk, the SACK chunk

MAY be transmitted to one of the destination transport addresses

from which the DATA or control chunks being acknowledged were

received.

When a receiver of a duplicate DATA chunk sends a SACK chunk to a

multi-homed endpoint, it MAY be beneficial to vary the destination

address and not use the source address of the DATA chunk. The reason

is that receiving a duplicate from a multi-homed endpoint might

indicate that the return path (as specified in the source address of

the DATA chunk) for the SACK chunk is broken.

Furthermore, when its peer is multi-homed, an endpoint SHOULD try to

retransmit a chunk that timed out to an active destination transport

address that is different from the last destination address to which

the chunk was sent.

¶

¶

¶

¶

¶

¶

¶

¶

¶

When its peer is multi-homed, an endpoint SHOULD send fast

retransmissions to the same destination transport address to which

the original data was sent. If the primary path has been changed and

the original data was sent to the old primary path before the Fast

Retransmit, the implementation MAY send it to the new primary path.

Retransmissions do not affect the total outstanding data count.

However, if the DATA chunk is retransmitted onto a different

destination address, both the outstanding data counts on the new

destination address and the old destination address to which the

data chunk was last sent is adjusted accordingly.

6.4.1. Failover from an Inactive Destination Address

Some of the transport addresses of a multi-homed SCTP endpoint might

become inactive due to either the occurrence of certain error

conditions (see Section 8.2) or adjustments from the SCTP user.

When there is outbound data to send and the primary path becomes

inactive (e.g., due to failures), or where the SCTP user explicitly

requests to send data to an inactive destination transport address,

before reporting an error to its ULP, the SCTP endpoint SHOULD try

to send the data to an alternate active destination transport

address if one exists.

When retransmitting data that timed out, if the endpoint is multi-

homed, it needs to consider each source-destination address pair in

its retransmission selection policy. When retransmitting timed-out

data, the endpoint SHOULD attempt to pick the most divergent source-

destination pair from the original source-destination pair to which

the packet was transmitted.

Note: Rules for picking the most divergent source-destination pair

are an implementation decision and are not specified within this

document.

6.5. Stream Identifier and Stream Sequence Number

Every DATA chunk MUST carry a valid stream identifier. If an

endpoint receives a DATA chunk with an invalid stream identifier, it

SHOULD acknowledge the reception of the DATA chunk following the

normal procedure, immediately send an ERROR chunk with cause set to

"Invalid Stream Identifier" (see Section 3.3.10), and discard the

DATA chunk. The endpoint MAY bundle the ERROR chunk and the SACK

chunk in the same packet.

The Stream Sequence Number in all the outgoing streams MUST start

from 0 when the association is established. The Stream Sequence

Number of an outgoing stream MUST be incremented by 1 for each

ordered user message sent on that outgoing stream. In particular,

¶

¶

¶

¶

¶

¶

¶

when the Stream Sequence Number reaches the value 65535 the next

Stream Sequence Number MUST be set to 0. For unordered user messages

the Stream Sequence Number MUST NOT be changed.

6.6. Ordered and Unordered Delivery

Within a stream, an endpoint MUST deliver DATA chunks received with

the U flag set to 0 to the upper layer according to the order of

their Stream Sequence Number. If DATA chunks arrive out of order of

their Stream Sequence Number, the endpoint MUST hold the received

DATA chunks from delivery to the ULP until they are reordered.

However, an SCTP endpoint can indicate that no ordered delivery is

required for a particular DATA chunk transmitted within the stream

by setting the U flag of the DATA chunk to 1.

When an endpoint receives a DATA chunk with the U flag set to 1, it

bypasses the ordering mechanism and immediately deliver the data to

the upper layer (after reassembly if the user data is fragmented by

the data sender).

This provides an effective way of transmitting "out-of-band" data in

a given stream. Also, a stream can be used as an "unordered" stream

by simply setting the U flag to 1 in all DATA chunks sent through

that stream.

Implementation Note: When sending an unordered DATA chunk, an

implementation MAY choose to place the DATA chunk in an outbound

packet that is at the head of the outbound transmission queue if

possible.

The 'Stream Sequence Number' field in a DATA chunk with U flag set

to 1 has no significance. The sender can fill the 'Stream Sequence

Number' with arbitrary value, but the receiver MUST ignore the

field.

Note: When transmitting ordered and unordered data, an endpoint does

not increment its Stream Sequence Number when transmitting a DATA

chunk with U flag set to 1.

6.7. Report Gaps in Received DATA TSNs

Upon the reception of a new DATA chunk, an endpoint examines the

continuity of the TSNs received. If the endpoint detects a gap in

the received DATA chunk sequence, it SHOULD send a SACK chunk with

Gap Ack Blocks immediately. The data receiver continues sending a

SACK chunk after receipt of each SCTP packet that does not fill the

gap.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Based on the Gap Ack Block from the received SACK chunk, the

endpoint can calculate the missing DATA chunks and make decisions on

whether to retransmit them (see Section 6.2.1 for details).

Multiple gaps can be reported in one single SACK chunk (see Section

3.3.4).

When its peer is multi-homed, the SCTP endpoint SHOULD always try to

send the SACK chunk to the same destination address from which the

last DATA chunk was received.

Upon the reception of a SACK chunk, the endpoint MUST remove all

DATA chunks that have been acknowledged by the SACK chunk's

Cumulative TSN Ack from its transmit queue. All DATA chunks with

TSNs not included in the Gap Ack Blocks that are smaller than the

highest acknowledged TSN reported in the SACK chunk MUST be treated

as "missing" by the sending endpoint. The number of "missing"

reports for each outstanding DATA chunk MUST be recorded by the data

sender to make retransmission decisions. See Section 7.2.4 for

details.

The following example shows the use of SACK chunk to report a gap.

Figure 9: Reporting a Gap using SACK Chunk

The maximum number of Gap Ack Blocks that can be reported within a

single SACK chunk is limited by the current PMTU. When a single SACK

chunk cannot cover all the Gap Ack Blocks needed to be reported due

to the PMTU limitation, the endpoint MUST send only one SACK chunk.

This single SACK chunk MUST report the Gap Ack Blocks from the

lowest to highest TSNs, within the size limit set by the PMTU, and

leave the remaining highest TSN numbers unacknowledged.

¶

¶

¶

¶

¶

Endpoint A Endpoint Z

{App sends 3 messages; strm 0}

DATA [TSN=6,Strm=0,Seq=2] ---------------> (ack delayed)

(Start T3-rtx timer)

DATA [TSN=7,Strm=0,Seq=3] --------> X (lost)

DATA [TSN=8,Strm=0,Seq=4] ---------------> (gap detected,

 immediately send ack)

 /----- SACK [TSN Ack=6,Block=1,

 / Start=2,End=2]

 <-----/

(remove 6 from out-queue,

 and mark 7 as "1" missing report)

¶

1)

2)

3)

1)

2)

3)

6.8. CRC32c Checksum Calculation

When sending an SCTP packet, the endpoint MUST strengthen the data

integrity of the transmission by including the CRC32c checksum value

calculated on the packet, as described below.

After the packet is constructed (containing the SCTP common header

and one or more control or DATA chunks), the transmitter MUST

fill in the proper Verification Tag in the SCTP common header

and initialize the checksum field to 0,

calculate the CRC32c checksum of the whole packet, including

the SCTP common header and all the chunks (refer to Appendix A

for details of the CRC32c algorithm); and

put the resultant value into the checksum field in the common

header, and leave the rest of the bits unchanged.

When an SCTP packet is received, the receiver MUST first check the

CRC32c checksum as follows:

Store the received CRC32c checksum value aside.

Replace the 32 bits of the checksum field in the received SCTP

packet with 0 and calculate a CRC32c checksum value of the

whole received packet.

Verify that the calculated CRC32c checksum is the same as the

received CRC32c checksum. If it is not, the receiver MUST

treat the packet as an invalid SCTP packet.

The default procedure for handling invalid SCTP packets is to

silently discard them.

Any hardware implementation SHOULD permit alternative verification

of the CRC in software.

6.9. Fragmentation and Reassembly

An endpoint MAY support fragmentation when sending DATA chunks, but

it MUST support reassembly when receiving DATA chunks. If an

endpoint supports fragmentation, it MUST fragment a user message if

the size of the user message to be sent causes the outbound SCTP

packet size to exceed the current PMTU. An endpoint that does not

support fragmentation and is requested to send a user message such

that the outbound SCTP packet size would exceed the current PMTU

MUST return an error to its upper layer and MUST NOT attempt to send

the user message.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1)

2)

3)

An SCTP implementation MAY provide a mechanism to the upper layer

that disables fragmentation when sending DATA chunks. When

fragmentation of DATA chunks is disabeled, the SCTP implementation

MUST behave in the same way an implementation that does not support

fragmentation, i.e., it rejects calls that would result in sending

SCTP packets that exceed the current PMTU.

Implementation Note: In this error case, the SEND primitive

discussed in Section 11.1 would need to return an error to the upper

layer.

If its peer is multi-homed, the endpoint SHOULD choose a DATA chunk

size smaller than or equal to the AMDCS.

Once a user message is fragmented, it cannot be re-fragmented.

Instead, if the PMTU has been reduced, then IP fragmentation MUST be

used. Therefore, an SCTP association can fail if IP fragmentation is

not working on any path. Please see Section 7.3 for details of PMTU

discovery.

When determining when to fragment, the SCTP implementation MUST take

into account the SCTP packet header as well as the DATA chunk

header(s). The implementation MUST also take into account the space

required for a SACK chunk if bundling a SACK chunk with the DATA

chunk.

Fragmentation takes the following steps:

The data sender MUST break the user message into a series of

DATA chunks. The sender SHOULD choose a size of DATA chunks

that is smaller than or equal to the AMDCS.

The transmitter MUST then assign, in sequence, a separate TSN

to each of the DATA chunks in the series. The transmitter

assigns the same Stream Sequence Number to each of the DATA

chunks. If the user indicates that the user message is to be

delivered using unordered delivery, then the U flag of each

DATA chunk of the user message MUST be set to 1.

The transmitter MUST also set the B/E bits of the first DATA

chunk in the series to '10', the B/E bits of the last DATA

chunk in the series to '01', and the B/E bits of all other

DATA chunks in the series to '00'.

An endpoint MUST recognize fragmented DATA chunks by examining the

B/E bits in each of the received DATA chunks, and queue the

fragmented DATA chunks for reassembly. Once the user message is

reassembled, SCTP passes the reassembled user message to the

specific stream for possible reordering and final dispatching.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the data receiver runs out of buffer space while still waiting

for more fragments to complete the reassembly of the message, it

SHOULD dispatch part of its inbound message through a partial

delivery API (see Section 11), freeing some of its receive buffer

space so that the rest of the message can be received.

6.10. Bundling

An endpoint bundles chunks by simply including multiple chunks in

one outbound SCTP packet. The total size of the resultant SCTP

packet MUST be less that or equal to the current PMTU.

If its peer endpoint is multi-homed, the sending endpoint SHOULD

choose a size no larger than the PMTU of the current primary path.

When bundling control chunks with DATA chunks, an endpoint MUST

place control chunks first in the outbound SCTP packet. The

transmitter MUST transmit DATA chunks within an SCTP packet in

increasing order of TSN.

Note: Since control chunks are placed first in a packet and since

DATA chunks are transmitted before SHUTDOWN or SHUTDOWN ACK chunks,

DATA chunks cannot be bundled with SHUTDOWN or SHUTDOWN ACK chunks.

Partial chunks MUST NOT be placed in an SCTP packet. A partial chunk

is a chunk that is not completely contained in the SCTP packet;

i.e., the SCTP packet is too short to contain all the bytes of the

chunk as indicated by the chunk length.

An endpoint MUST process received chunks in their order in the

packet. The receiver uses the Chunk Length field to determine the

end of a chunk and beginning of the next chunk taking account of the

fact that all chunks end on a 4-byte boundary. If the receiver

detects a partial chunk, it MUST drop the chunk.

An endpoint MUST NOT bundle INIT, INIT ACK, or SHUTDOWN COMPLETE

chunks with any other chunks.

7. Congestion Control

Congestion control is one of the basic functions in SCTP. To manage

congestion, the mechanisms and algorithms in this section are to be

employed.

Implementation Note: As far as its specific performance requirements

are met, an implementation is always allowed to adopt a more

conservative congestion control algorithm than the one defined

below.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The congestion control algorithms used by SCTP are based on

[RFC5681]. This section describes how the algorithms defined in

[RFC5681] are adapted for use in SCTP. We first list differences in

protocol designs between TCP and SCTP, and then describe SCTP's

congestion control scheme. The description will use the same

terminology as in TCP congestion control whenever appropriate.

SCTP congestion control is always applied to the entire association,

and not to individual streams.

7.1. SCTP Differences from TCP Congestion Control

Gap Ack Blocks in the SCTP SACK chunk carry the same semantic

meaning as the TCP SACK. TCP considers the information carried in

the SACK as advisory information only. SCTP considers the

information carried in the Gap Ack Blocks in the SACK chunk as

advisory. In SCTP, any DATA chunk that has been acknowledged by a

SACK chunk, including DATA that arrived at the receiving end out of

order, is not considered fully delivered until the Cumulative TSN

Ack Point passes the TSN of the DATA chunk (i.e., the DATA chunk has

been acknowledged by the Cumulative TSN Ack field in the SACK

chunk). Consequently, the value of cwnd controls the amount of

outstanding data, rather than (as in the case of non-SACK TCP) the

upper bound between the highest acknowledged sequence number and the

latest DATA chunk that can be sent within the congestion window.

SCTP SACK leads to different implementations of Fast Retransmit and

Fast Recovery than non-SACK TCP. As an example, see [FALL96].

The biggest difference between SCTP and TCP, however, is multi-

homing. SCTP is designed to establish robust communication

associations between two endpoints each of which might be reachable

by more than one transport address. Potentially different addresses

might lead to different data paths between the two endpoints; thus,

ideally one needs a separate set of congestion control parameters

for each of the paths. The treatment here of congestion control for

multi-homed receivers is new with SCTP and might require refinement

in the future. The current algorithms make the following

assumptions:

The sender usually uses the same destination address until being

instructed by the upper layer to do otherwise; however, SCTP MAY

change to an alternate destination in the event an address is

marked inactive (see Section 8.2). Also, SCTP MAY retransmit to a

different transport address than the original transmission.

The sender keeps a separate congestion control parameter set for

each of the destination addresses it can send to (not each

source-destination pair but for each destination). The parameters

SHOULD decay if the address is not used for a long enough time

¶

¶

¶

¶

*

¶

*

period. [RFC5681] specifies this period of time as a

retransmission timeout.

For each of the destination addresses, an endpoint does slow

start upon the first transmission to that address.

Note: TCP guarantees in-sequence delivery of data to its upper-layer

protocol within a single TCP session. This means that when TCP

notices a gap in the received sequence number, it waits until the

gap is filled before delivering the data that was received with

sequence numbers higher than that of the missing data. On the other

hand, SCTP can deliver data to its upper-layer protocol even if

there is a gap in TSN if the Stream Sequence Numbers are in sequence

for a particular stream (i.e., the missing DATA chunks are for a

different stream) or if unordered delivery is indicated. Although

this does not affect cwnd, it might affect rwnd calculation.

7.2. SCTP Slow-Start and Congestion Avoidance

The slow-start and congestion avoidance algorithms MUST be used by

an endpoint to control the amount of data being injected into the

network. The congestion control in SCTP is employed in regard to the

association, not to an individual stream. In some situations, it

might be beneficial for an SCTP sender to be more conservative than

the algorithms allow; however, an SCTP sender MUST NOT be more

aggressive than the following algorithms allow.

Like TCP, an SCTP endpoint uses the following three control

variables to regulate its transmission rate.

Receiver advertised window size (rwnd, in bytes), which is set by

the receiver based on its available buffer space for incoming

packets.

Note: This variable is kept on the entire association.

Congestion control window (cwnd, in bytes), which is adjusted by

the sender based on observed network conditions.

Note: This variable is maintained on a per-destination-address

basis.

Slow-start threshold (ssthresh, in bytes), which is used by the

sender to distinguish slow-start and congestion avoidance phases.

Note: This variable is maintained on a per-destination-address

basis.

¶

*

¶

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

¶

SCTP also requires one additional control variable,

partial_bytes_acked, which is used during congestion avoidance phase

to facilitate cwnd adjustment.

Unlike TCP, an SCTP sender MUST keep a set of these control

variables cwnd, ssthresh, and partial_bytes_acked for EACH

destination address of its peer (when its peer is multi-homed). When

calculating one of these variables, the length of the DATA chunk

including the padding SHOULD be used.

Only one rwnd is kept for the whole association (no matter if the

peer is multi-homed or has a single address).

7.2.1. Slow-Start

Beginning data transmission into a network with unknown conditions

or after a sufficiently long idle period requires SCTP to probe the

network to determine the available capacity. The slow-start

algorithm is used for this purpose at the beginning of a transfer,

or after repairing loss detected by the retransmission timer.

The initial cwnd before data transmission MUST be set to min(4 *

PMDCS, max(2 * PMDCS, 4404)) bytes if the peer address is an IPv4

address and to min(4 * PMDCS, max(2 * PMDCS, 4344)) bytes if the

peer address is an IPv6 address.

The initial cwnd after a retransmission timeout MUST be no more

than PMDCS, and only one packet is allowed to be in flight until

successful acknowledgement.

The initial value of ssthresh SHOULD be arbitrarily high (e.g.,

the size of the largest possible advertised window).

Whenever cwnd is greater than zero, the endpoint is allowed to

have cwnd bytes of data outstanding on that transport address. A

limited overbooking as described in Section 6.1 B) SHOULD be

supported.

When cwnd is less than or equal to ssthresh, an SCTP endpoint

MUST use the slow-start algorithm to increase cwnd only if the

current congestion window is being fully utilized, and the data

sender is not in Fast Recovery. Only when these two conditions

are met can the cwnd be increased; otherwise, the cwnd MUST NOT

be increased. If these conditions are met, then cwnd MUST be

increased by, at most, the lesser of

the total size of the previously outstanding DATA chunk(s)

acknowledged, and

L times the destination's PMDCS.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

1.

¶

2. ¶

The first upper bound protects against the ACK-Splitting attack

outlined in [SAVAGE99]. The positive integer L SHOULD be 1, and

MAY be larger than 1. See [RFC3465] for details of choosing L.

In instances where its peer endpoint is multi-homed, if an

endpoint receives a SACK chunk that results in updating the cwnd,

then it SHOULD update its cwnd (or cwnds) apportioned to the

destination addresses to which it transmitted the acknowledged

data.

While the endpoint does not transmit data on a given transport

address, the cwnd of the transport address SHOULD be adjusted to

max(cwnd / 2, 4 * PMDCS) once per RTO. Before the first cwnd

adjustment, the ssthresh of the transport address SHOULD be set

to the cwnd.

7.2.2. Congestion Avoidance

When cwnd is greater than ssthresh, cwnd SHOULD be incremented by

PMDCS per RTT if the sender has cwnd or more bytes of data

outstanding for the corresponding transport address. The basic

recommendations for incrementing cwnd during congestion avoidance

are as follows:

SCTP MAY increment cwnd by PMDCS.

SCTP SHOULD increment cwnd by PMDCS once per RTT when the sender

has cwnd or more bytes of data outstanding for the corresponding

transport address.

SCTP MUST NOT increment cwnd by more than PMDCS per RTT.

In practice, an implementation can achieve this goal in the

following way:

partial_bytes_acked is initialized to 0.

Whenever cwnd is greater than ssthresh, upon each SACK chunk

arrival, increase partial_bytes_acked by the total number of

bytes (including the chunk header and the padding) of all new

DATA chunks acknowledged in that SACK chunk, including chunks

acknowledged by the new Cumulative TSN Ack, by Gap Ack Blocks,

and by the number of bytes of duplicated chunks reported in

Duplicate TSNs.

When (1) partial_bytes_acked is greater than cwnd and (2) before

the arrival of the SACK chunk the sender had less than cwnd bytes

of data outstanding (i.e., before the arrival of the SACK chunk,

flightsize was less than cwnd), reset partial_bytes_acked to

cwnd.

¶

¶

*

¶

¶

* ¶

*

¶

* ¶

¶

* ¶

*

¶

*

¶

When (1) partial_bytes_acked is equal to or greater than cwnd and

(2) before the arrival of the SACK chunk the sender had cwnd or

more bytes of data outstanding (i.e., before the arrival of the

SACK chunk, flightsize was greater than or equal to cwnd),

partial_bytes_acked is reset to (partial_bytes_acked - cwnd).

Next, cwnd is increased by PMDCS.

Same as in the slow start, when the sender does not transmit DATA

chunks on a given transport address, the cwnd of the transport

address SHOULD be adjusted to max(cwnd / 2, 4 * PMDCS) per RTO.

When all of the data transmitted by the sender has been

acknowledged by the receiver, partial_bytes_acked is initialized

to 0.

7.2.3. Congestion Control

Upon detection of packet losses from SACK chunks (see Section

7.2.4), an endpoint SHOULD do the following:

ssthresh = max(cwnd / 2, 4 * PMDCS)

cwnd = ssthresh

partial_bytes_acked = 0

Basically, a packet loss causes cwnd to be cut in half.

When the T3-rtx timer expires on an address, SCTP SHOULD perform

slow start by:

ssthresh = max(cwnd / 2, 4 * PMDCS)

cwnd = PMDCS

partial_bytes_acked = 0

and ensure that no more than one SCTP packet will be in flight for

that address until the endpoint receives acknowledgement for

successful delivery of data to that address.

7.2.4. Fast Retransmit on Gap Reports

In the absence of data loss, an endpoint performs delayed

acknowledgement. However, whenever an endpoint notices a hole in the

arriving TSN sequence, it SHOULD start sending a SACK chunk back

every time a packet arrives carrying data until the hole is filled.

Whenever an endpoint receives a SACK chunk that indicates that some

TSNs are missing, it SHOULD wait for two further miss indications

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

1)

2)

3)

4)

5)

6)

(via subsequent SACK chunks for a total of three missing reports) on

the same TSNs before taking action with regard to Fast Retransmit.

Miss indications SHOULD follow the HTNA (Highest TSN Newly

Acknowledged) algorithm. For each incoming SACK chunk, miss

indications are incremented only for missing TSNs prior to the

highest TSN newly acknowledged in the SACK chunk. A newly

acknowledged DATA chunk is one not previously acknowledged in a SACK

chunk. If an endpoint is in Fast Recovery and a SACK chunks arrives

that advances the Cumulative TSN Ack Point, the miss indications are

incremented for all TSNs reported missing in the SACK chunk.

When the third consecutive miss indication is received for a TSN(s),

the data sender does the following:

Mark the DATA chunk(s) with three miss indications for

retransmission.

If not in Fast Recovery, adjust the ssthresh and cwnd of the

destination address(es) to which the missing DATA chunks were

last sent, according to the formula described in Section

7.2.3.

If not in Fast Recovery, determine how many of the earliest

(i.e., lowest TSN) DATA chunks marked for retransmission will

fit into a single packet, subject to constraint of the PMTU of

the destination transport address to which the packet is being

sent. Call this value K. Retransmit those K DATA chunks in a

single packet. When a Fast Retransmit is being performed, the

sender SHOULD ignore the value of cwnd and SHOULD NOT delay

retransmission for this single packet.

Restart the T3-rtx timer only if the last SACK chunk

acknowledged the lowest outstanding TSN number sent to that

address, or the endpoint is retransmitting the first

outstanding DATA chunk sent to that address.

Mark the DATA chunk(s) as being fast retransmitted and thus

ineligible for a subsequent Fast Retransmit. Those TSNs marked

for retransmission due to the Fast-Retransmit algorithm that

did not fit in the sent datagram carrying K other TSNs are

also marked as ineligible for a subsequent Fast Retransmit.

However, as they are marked for retransmission they will be

retransmitted later on as soon as cwnd allows.

If not in Fast Recovery, enter Fast Recovery and mark the

highest outstanding TSN as the Fast Recovery exit point. When

a SACK chunk acknowledges all TSNs up to and including this

exit point, Fast Recovery is exited. While in Fast Recovery,

the ssthresh and cwnd SHOULD NOT change for any destinations

¶

¶

¶

¶

¶

¶

¶

¶

1)

due to a subsequent Fast Recovery event (i.e., one SHOULD NOT

reduce the cwnd further due to a subsequent Fast Retransmit).

Note: Before the above adjustments, if the received SACK chunk also

acknowledges new DATA chunks and advances the Cumulative TSN Ack

Point, the cwnd adjustment rules defined in Section 7.2.1 and

Section 7.2.2 MUST be applied first.

7.2.5. Reinitialization

During the lifetime of an SCTP association events can happen, which

result in using the network under unknown new conditions. When

detected by an SCTP implementation, the congestion control MUST be

reinitialized.

7.2.5.1. Change of Differentiated Services Code Points

SCTP implementations MAY allow an application to configure the

Differentiated Services Code Point (DSCP) used for sending packets.

If a DSCP change might result in outgoing packets being queued in

different queues, the congestion control parameters for all affected

destination addresses MUST be reset to their initial values.

7.2.5.2. Change of Routes

SCTP implementations MAY be aware of routing changes affecting

packets sent to a destination address. In particular, this includes

the selection of a different source address used for sending packets

to a destination address. If such a routing change happens, the

congestion control parameters for the affected destination addresses

MUST be reset to their initial values.

7.3. PMTU Discovery

[RFC8899], [RFC8201], and [RFC1191] specify "Packetization Layer

Path MTU Discovery", whereby an endpoint maintains an estimate of

PMTU along a given Internet path and refrains from sending packets

along that path that exceed the PMTU, other than occasional attempts

to probe for a change in the PMTU. [RFC8899] is thorough in its

discussion of the PMTU discovery mechanism and strategies for

determining the current end-to-end PMTU setting as well as detecting

changes in this value.

An endpoint SHOULD apply these techniques, and SHOULD do so on a

per-destination-address basis.

There are two important SCTP-specific points regarding PMTU

discovery:

¶

¶

¶

¶

¶

¶

¶

¶

2)

SCTP associations can span multiple addresses. An endpoint

MUST maintain separate PMTU estimates for each destination

address of its peer.

The sender SHOULD track an AMDCS that will be the smallest

PMDCS discovered for all of the peer's destination addresses.

When fragmenting messages into multiple parts this AMDCS

SHOULD be used to calculate the size of each DATA chunk. This

will allow retransmissions to be seamlessly sent to an

alternate address without encountering IP fragmentation.

8. Fault Management

8.1. Endpoint Failure Detection

An endpoint SHOULD keep a counter on the total number of consecutive

retransmissions to its peer (this includes data retransmissions to

all the destination transport addresses of the peer if it is multi-

homed), including the number of unacknowledged HEARTBEAT chunks

observed on the path that is currently used for data transfer.

Unacknowledged HEARTBEAT chunks observed on paths different from the

path currently used for data transfer SHOULD NOT increment the

association error counter, as this could lead to association closure

even if the path that is currently used for data transfer is

available (but idle). If the value of this counter exceeds the limit

indicated in the protocol parameter 'Association.Max.Retrans', the

endpoint SHOULD consider the peer endpoint unreachable and SHALL

stop transmitting any more data to it (and thus the association

enters the CLOSED state). In addition, the endpoint SHOULD report

the failure to the upper layer and optionally report back all

outstanding user data remaining in its outbound queue. The

association is automatically closed when the peer endpoint becomes

unreachable.

The counter used for endpoint failure detection MUST be reset each

time a DATA chunk sent to that peer endpoint is acknowledged (by the

reception of a SACK chunk). When a HEARTBEAT ACK chunk is received

from the peer endpoint, the counter SHOULD also be reset. The

receiver of the HEARTBEAT ACK chunk MAY choose not to clear the

counter if there is outstanding data on the association. This allows

for handling the possible difference in reachability based on DATA

chunks and HEARTBEAT chunks.

8.2. Path Failure Detection

When its peer endpoint is multi-homed, an endpoint SHOULD keep an

error counter for each of the destination transport addresses of the

peer endpoint.

¶

¶

¶

¶

¶

Each time the T3-rtx timer expires on any address, or when a

HEARTBEAT chunk sent to an idle address is not acknowledged within

an RTO, the error counter of that destination address will be

incremented. When the value in the error counter exceeds the

protocol parameter 'Path.Max.Retrans' of that destination address,

the endpoint SHOULD mark the destination transport address as

inactive, and a notification SHOULD be sent to the upper layer.

When an outstanding TSN is acknowledged or a HEARTBEAT chunk sent to

that address is acknowledged with a HEARTBEAT ACK chunk, the

endpoint SHOULD clear the error counter of the destination transport

address to which the DATA chunk was last sent (or HEARTBEAT chunk

was sent) and SHOULD also report to the upper layer when an inactive

destination address is marked as active. When the peer endpoint is

multi-homed and the last chunk sent to it was a retransmission to an

alternate address, there exists an ambiguity as to whether or not

the acknowledgement could be credited to the address of the last

chunk sent. However, this ambiguity does not seem to have

significant consequences for SCTP behavior. If this ambiguity is

undesirable, the transmitter MAY choose not to clear the error

counter if the last chunk sent was a retransmission.

Note: When configuring the SCTP endpoint, the user ought to avoid

having the value of 'Association.Max.Retrans' larger than the

summation of the 'Path.Max.Retrans' of all the destination addresses

for the remote endpoint. Otherwise, all the destination addresses

might become inactive while the endpoint still considers the peer

endpoint reachable. When this condition occurs, how SCTP chooses to

function is implementation specific.

When the primary path is marked inactive (due to excessive

retransmissions, for instance), the sender MAY automatically

transmit new packets to an alternate destination address if one

exists and is active. If more than one alternate address is active

when the primary path is marked inactive, only ONE transport address

SHOULD be chosen and used as the new destination transport address.

8.3. Path Heartbeat

By default, an SCTP endpoint SHOULD monitor the reachability of the

idle destination transport address(es) of its peer by sending a

HEARTBEAT chunk periodically to the destination transport

address(es). The sending of HEARTBEAT chunks MAY begin upon reaching

the ESTABLISHED state and is discontinued after sending either a

SHUTDOWN chunk or SHUTDOWN ACK chunk. A receiver of a HEARTBEAT

chunks MUST respond to a HEARTBEAT chunk with a HEARTBEAT ACK chunk

after entering the COOKIE-ECHOED state (sender of the INIT chunk) or

the ESTABLISHED state (receiver of the INIT chunk), up until

¶

¶

¶

¶

A)

B)

C)

D)

reaching the SHUTDOWN-SENT state (sender of the SHUTDOWN chunk) or

the SHUTDOWN-ACK-SENT state (receiver of the SHUTDOWN chunk).

A destination transport address is considered "idle" if no new chunk

that can be used for updating path RTT (usually including first

transmission DATA, INIT, COOKIE ECHO, or HEARTBEAT chunks, etc.) and

no HEARTBEAT chunk has been sent to it within the current heartbeat

period of that address. This applies to both active and inactive

destination addresses.

The upper layer can optionally initiate the following functions:

Disable heartbeat on a specific destination transport address

of a given association,

Change the 'HB.interval',

Re-enable heartbeat on a specific destination transport

address of a given association, and

Request the sending of an on-demand HEARTBEAT chunk on a

specific destination transport address of a given association.

The endpoint SHOULD increment the respective error counter of the

destination transport address each time a HEARTBEAT chunk is sent to

that address and not acknowledged within one RTO.

When the value of this counter exceeds the protocol parameter

'Path.Max.Retrans', the endpoint SHOULD mark the corresponding

destination address as inactive if it is not so marked and SHOULD

also report to the upper layer the change in reachability of this

destination address. After this, the endpoint SHOULD continue

sending HEARTBEAT chunks on this destination address but SHOULD stop

increasing the counter.

The sender of the HEARTBEAT chunk SHOULD include in the Heartbeat

Information field of the chunk the current time when the packet is

sent and the destination address to which the packet is sent.

Implementation Note: An alternative implementation of the heartbeat

mechanism that can be used is to increment the error counter

variable every time a HEARTBEAT chunk is sent to a destination.

Whenever a HEARTBEAT ACK chunk arrives, the sender SHOULD clear the

error counter of the destination that the HEARTBEAT chunk was sent

to. This in effect would clear the previously stroked error (and any

other error counts as well).

The receiver of the HEARTBEAT chunk SHOULD immediately respond with

a HEARTBEAT ACK chunk that contains the Heartbeat Information TLV,

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

together with any other received TLVs, copied unchanged from the

received HEARTBEAT chunk.

Upon the receipt of the HEARTBEAT ACK chunk, the sender of the

HEARTBEAT chunk SHOULD clear the error counter of the destination

transport address to which the HEARTBEAT chunk was sent and mark the

destination transport address as active if it is not so marked. The

endpoint SHOULD report to the upper layer when an inactive

destination address is marked as active due to the reception of the

latest HEARTBEAT ACK chunk. The receiver of the HEARTBEAT ACK chunk

SHOULD also clear the association overall error count (as defined in

Section 8.1).

The receiver of the HEARTBEAT ACK chunk SHOULD also perform an RTT

measurement for that destination transport address using the time

value carried in the HEARTBEAT ACK chunk.

On an idle destination address that is allowed to heartbeat, it is

RECOMMENDED that a HEARTBEAT chunk is sent once per RTO of that

destination address plus the protocol parameter 'HB.interval', with

jittering of +/- 50% of the RTO value, and exponential backoff of

the RTO if the previous HEARTBEAT chunk is unanswered.

A primitive is provided for the SCTP user to change the

'HB.interval' and turn on or off the heartbeat on a given

destination address. The 'HB.interval' set by the SCTP user is added

to the RTO of that destination (including any exponential backoff).

Only one heartbeat SHOULD be sent each time the heartbeat timer

expires (if multiple destinations are idle). It is an implementation

decision on how to choose which of the candidate idle destinations

to heartbeat to (if more than one destination is idle).

When tuning the 'HB.interval', there is a side effect that SHOULD be

taken into account. When this value is increased, i.e., the time

between the sending of HEARTBEAT chunks is longer, the detection of

lost ABORT chunks takes longer as well. If a peer endpoint sends an

ABORT chunk for any reason and the ABORT chunk is lost, the local

endpoint will only discover the lost ABORT chunk by sending a DATA

chunk or HEARTBEAT chunk (thus causing the peer to send another

ABORT chunk). This is to be considered when tuning the heartbeat

timer. If the sending of HEARTBEAT chunks is disabled, only sending

DATA chunks to the association will discover a lost ABORT chunk from

the peer.

8.4. Handle "Out of the Blue" Packets

An SCTP packet is called an "out of the blue" (OOTB) packet if it is

correctly formed (i.e., passed the receiver's CRC32c check; see

¶

¶

¶

¶

¶

¶

1)

2)

3)

4)

5)

6)

7)

8)

Section 6.8), but the receiver is not able to identify the

association to which this packet belongs.

The receiver of an OOTB packet does the following:

If the OOTB packet is to or from a non-unicast address, a

receiver SHOULD silently discard the packet. Otherwise,

If the OOTB packet contains an ABORT chunk, the receiver MUST

silently discard the OOTB packet and take no further action.

Otherwise,

If the packet contains an INIT chunk with a Verification Tag

set to 0, it SHOULD be processed as described in Section 5.1.

If, for whatever reason, the INIT chunk cannot be processed

normally and an ABORT chunk has to be sent in response, the

Verification Tag of the packet containing the ABORT chunk MUST

be the Initiate Tag of the received INIT chunk, and the T bit

of the ABORT chunk has to be set to 0, indicating that the

Verification Tag is not reflected. Otherwise,

If the packet contains a COOKIE ECHO chunk as the first chunk,

it MUST be processed as described in Section 5.1. Otherwise,

If the packet contains a SHUTDOWN ACK chunk, the receiver

SHOULD respond to the sender of the OOTB packet with a

SHUTDOWN COMPLETE chunk. When sending the SHUTDOWN COMPLETE

chunk, the receiver of the OOTB packet MUST fill in the

Verification Tag field of the outbound packet with the

Verification Tag received in the SHUTDOWN ACK chunk and set

the T bit in the Chunk Flags to indicate that the Verification

Tag is reflected. Otherwise,

If the packet contains a SHUTDOWN COMPLETE chunk, the receiver

SHOULD silently discard the packet and take no further action.

Otherwise,

If the packet contains a ERROR chunk with the "Stale Cookie"

error cause or a COOKIE ACK chunk, the SCTP packet SHOULD be

silently discarded. Otherwise,

The receiver SHOULD respond to the sender of the OOTB packet

with an ABORT chunk. When sending the ABORT chunk, the

receiver of the OOTB packet MUST fill in the Verification Tag

field of the outbound packet with the value found in the

Verification Tag field of the OOTB packet and set the T bit in

the Chunk Flags to indicate that the Verification Tag is

reflected. After sending this ABORT chunk, the receiver of the

OOTB packet MUST discard the OOTB packet and MUST NOT take any

further action.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A) Rules for packets carrying an INIT chunk:

B) Rules for packets carrying an ABORT chunk:

8.5. Verification Tag

The Verification Tag rules defined in this section apply when

sending or receiving SCTP packets that do not contain an INIT,

SHUTDOWN COMPLETE, COOKIE ECHO (see Section 5.1), ABORT, or SHUTDOWN

ACK chunk. The rules for sending and receiving SCTP packets

containing one of these chunk types are discussed separately in

Section 8.5.1.

When sending an SCTP packet, the endpoint MUST fill in the

Verification Tag field of the outbound packet with the tag value in

the Initiate Tag parameter of the INIT or INIT ACK chunk received

from its peer.

When receiving an SCTP packet, the endpoint MUST ensure that the

value in the Verification Tag field of the received SCTP packet

matches its own tag. If the received Verification Tag value does not

match the receiver's own tag value, the receiver MUST silently

discard the packet and MUST NOT process it any further except for

those cases listed in Section 8.5.1 below.

8.5.1. Exceptions in Verification Tag Rules

The sender MUST set the Verification Tag of the packet to

0.

When an endpoint receives an SCTP packet with the

Verification Tag set to 0, it SHOULD verify that the packet

contains only an INIT chunk. Otherwise, the receiver MUST

silently discard the packet.

The endpoint MUST always fill in the Verification Tag field

of the outbound packet with the destination endpoint's tag

value, if it is known.

If the ABORT chunk is sent in response to an OOTB packet,

the endpoint MUST follow the procedure described in Section

8.4.

The receiver of an ABORT chunk MUST accept the packet if

the Verification Tag field of the packet matches its own

tag and the T bit is not set OR if it is set to its peer's

tag and the T bit is set in the Chunk Flags. Otherwise, the

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

C) Rules for packets carrying a SHUTDOWN COMPLETE chunk:

D) Rules for packets carrying a COOKIE ECHO chunk:

E) Rules for packets carrying a SHUTDOWN ACK chunk:

receiver MUST silently discard the packet and take no

further action.

When sending a SHUTDOWN COMPLETE chunk, if the receiver of

the SHUTDOWN ACK chunk has a TCB, then the destination

endpoint's tag MUST be used, and the T bit MUST NOT be set.

Only where no TCB exists SHOULD the sender use the

Verification Tag from the SHUTDOWN ACK chunk, and MUST set

the T bit.

The receiver of a SHUTDOWN COMPLETE chunk accepts the

packet if the Verification Tag field of the packet matches

its own tag and the T bit is not set OR if it is set to its

peer's tag and the T bit is set in the Chunk Flags.

Otherwise, the receiver MUST silently discard the packet

and take no further action. An endpoint MUST ignore the

SHUTDOWN COMPLETE chunk if it is not in the SHUTDOWN-ACK-

SENT state.

When sending a COOKIE ECHO chunk, the endpoint MUST use the

value of the Initiate Tag received in the INIT ACK chunk.

The receiver of a COOKIE ECHO chunk follows the procedures

in Section 5.

If the receiver is in COOKIE-ECHOED or COOKIE-WAIT state

the procedures in Section 8.4 SHOULD be followed; in other

words, it is treated as an OOTB packet.

9. Termination of Association

An endpoint SHOULD terminate its association when it exits from

service. An association can be terminated by either abort or

shutdown. An abort of an association is abortive by definition in

that any data pending on either end of the association is discarded

and not delivered to the peer. A shutdown of an association is

considered a graceful close where all data in queue by either

endpoint is delivered to the respective peers. However, in the case

of a shutdown, SCTP does not support a half-open state (like TCP)

wherein one side might continue sending data while the other end is

closed. When either endpoint performs a shutdown, the association on

each peer will stop accepting new data from its user and only

deliver data in queue at the time of sending or receiving the

SHUTDOWN chunk.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

9.1. Abort of an Association

When an endpoint decides to abort an existing association, it MUST

send an ABORT chunk to its peer endpoint. The sender MUST fill in

the peer's Verification Tag in the outbound packet and MUST NOT

bundle any DATA chunk with the ABORT chunk. If the association is

aborted on request of the upper layer, a "User-Initiated Abort"

error cause (see Section 3.3.10.12) SHOULD be present in the ABORT

chunk.

An endpoint MUST NOT respond to any received packet that contains an

ABORT chunk (also see Section 8.4).

An endpoint receiving an ABORT chunk MUST apply the special

Verification Tag check rules described in Section 8.5.1.

After checking the Verification Tag, the receiving endpoint MUST

remove the association from its record and SHOULD report the

termination to its upper layer. If a "User-Initiated Abort" error

cause is present in the ABORT chunk, the Upper Layer Abort Reason

SHOULD be made available to the upper layer.

9.2. Shutdown of an Association

Using the SHUTDOWN primitive (see Section 11.1), the upper layer of

an endpoint in an association can gracefully close the association.

This will allow all outstanding DATA chunks from the peer of the

shutdown initiator to be delivered before the association

terminates.

Upon receipt of the SHUTDOWN primitive from its upper layer, the

endpoint enters the SHUTDOWN-PENDING state and remains there until

all outstanding data has been acknowledged by its peer. The endpoint

accepts no new data from its upper layer, but retransmits data to

the peer endpoint if necessary to fill gaps.

Once all its outstanding data has been acknowledged, the endpoint

sends a SHUTDOWN chunk to its peer including in the Cumulative TSN

Ack field the last sequential TSN it has received from the peer. It

SHOULD then start the T2-shutdown timer and enter the SHUTDOWN-SENT

state. If the timer expires, the endpoint MUST resend the SHUTDOWN

chunk with the updated last sequential TSN received from its peer.

The rules in Section 6.3 MUST be followed to determine the proper

timer value for T2-shutdown. To indicate any gaps in TSN, the

endpoint MAY also bundle a SACK chunk with the SHUTDOWN chunk in the

same SCTP packet.

An endpoint SHOULD limit the number of retransmissions of the

SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'.

¶

¶

¶

¶

¶

¶

¶

¶

If this threshold is exceeded, the endpoint SHOULD destroy the TCB

and SHOULD report the peer endpoint unreachable to the upper layer

(and thus the association enters the CLOSED state). The reception of

any packet from its peer (i.e., as the peer sends all of its queued

DATA chunks) SHOULD clear the endpoint's retransmission count and

restart the T2-shutdown timer, giving its peer ample opportunity to

transmit all of its queued DATA chunks that have not yet been sent.

Upon reception of the SHUTDOWN chunk, the peer endpoint does the

following:

enter the SHUTDOWN-RECEIVED state,

stop accepting new data from its SCTP user, and

verify, by checking the Cumulative TSN Ack field of the chunk,

that all its outstanding DATA chunks have been received by the

SHUTDOWN chunk sender.

Once an endpoint has reached the SHUTDOWN-RECEIVED state, it MUST

ignore ULP shutdown requests but MUST continue responding to

SHUTDOWN chunks from its peer.

If there are still outstanding DATA chunks left, the SHUTDOWN chunk

receiver MUST continue to follow normal data transmission procedures

defined in Section 6, until all outstanding DATA chunks are

acknowledged; however, the SHUTDOWN chunk receiver MUST NOT accept

new data from its SCTP user.

While in the SHUTDOWN-SENT state, the SHUTDOWN chunk sender MUST

immediately respond to each received packet containing one or more

DATA chunks with a SHUTDOWN chunk and restart the T2-shutdown timer.

If a SHUTDOWN chunk by itself cannot acknowledge all of the received

DATA chunks (i.e., there are TSNs that can be acknowledged that are

larger than the cumulative TSN, and thus gaps exist in the TSN

sequence), or if duplicate TSNs have been received, then a SACK

chunk MUST also be sent.

The sender of the SHUTDOWN chunk MAY also start an overall guard

timer T5-shutdown-guard to bound the overall time for the shutdown

sequence. At the expiration of this timer, the sender SHOULD abort

the association by sending an ABORT chunk. If the T5-shutdown-guard

timer is used, it SHOULD be set to the RECOMMENDED value of 5 times

'RTO.Max'.

If the receiver of the SHUTDOWN chunk has no more outstanding DATA

chunks, the SHUTDOWN chunk receiver MUST send a SHUTDOWN ACK chunk

and start a T2-shutdown timer of its own, entering the SHUTDOWN-ACK-

SENT state. If the timer expires, the endpoint MUST resend the

SHUTDOWN ACK chunk.

¶

¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

¶

The sender of the SHUTDOWN ACK chunk SHOULD limit the number of

retransmissions of the SHUTDOWN ACK chunk to the protocol parameter

'Association.Max.Retrans'. If this threshold is exceeded, the

endpoint SHOULD destroy the TCB and SHOULD report the peer endpoint

unreachable to the upper layer (and thus the association enters the

CLOSED state).

Upon the receipt of the SHUTDOWN ACK chunk, the sender of the

SHUTDOWN chunk MUST stop the T2-shutdown timer, send a SHUTDOWN

COMPLETE chunk to its peer, and remove all record of the

association.

Upon reception of the SHUTDOWN COMPLETE chunk, the endpoint verifies

that it is in the SHUTDOWN-ACK-SENT state; if it is not, the chunk

SHOULD be discarded. If the endpoint is in the SHUTDOWN-ACK-SENT

state, the endpoint SHOULD stop the T2-shutdown timer and remove all

knowledge of the association (and thus the association enters the

CLOSED state).

An endpoint SHOULD ensure that all its outstanding DATA chunks have

been acknowledged before initiating the shutdown procedure.

An endpoint SHOULD reject any new data request from its upper layer

if it is in the SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED,

or SHUTDOWN-ACK-SENT state.

If an endpoint is in the SHUTDOWN-ACK-SENT state and receives an

INIT chunk (e.g., if the SHUTDOWN COMPLETE chunk was lost) with

source and destination transport addresses (either in the IP

addresses or in the INIT chunk) that belong to this association, it

SHOULD discard the INIT chunk and retransmit the SHUTDOWN ACK chunk.

Note: Receipt of a packet containing an INIT chunk with the same

source and destination IP addresses as used in transport addresses

assigned to an endpoint but with a different port number indicates

the initialization of a separate association.

The sender of the INIT or COOKIE ECHO chunk SHOULD respond to the

receipt of a SHUTDOWN ACK chunk with a stand-alone SHUTDOWN COMPLETE

chunk in an SCTP packet with the Verification Tag field of its

common header set to the same tag that was received in the packet

containing the SHUTDOWN ACK chunk. This is considered an OOTB packet

as defined in Section 8.4. The sender of the INIT chunk lets T1-init

continue running and remains in the COOKIE-WAIT or COOKIE-ECHOED

state. Normal T1-init timer expiration will cause the INIT or COOKIE

chunk to be retransmitted and thus start a new association.

If a SHUTDOWN chunk is received in the COOKIE-WAIT or COOKIE ECHOED

state, the SHUTDOWN chunk SHOULD be silently discarded.

¶

¶

¶

¶

¶

¶

¶

¶

¶

ICMP1)

ICMP2)

ICMP3)

ICMP4)

ICMP5)

ICMP6)

ICMP7)

If an endpoint is in the SHUTDOWN-SENT state and receives a SHUTDOWN

chunk from its peer, the endpoint SHOULD respond immediately with a

SHUTDOWN ACK chunk to its peer, and move into the SHUTDOWN-ACK-SENT

state restarting its T2-shutdown timer.

If an endpoint is in the SHUTDOWN-ACK-SENT state and receives a

SHUTDOWN ACK, it MUST stop the T2-shutdown timer, send a SHUTDOWN

COMPLETE chunk to its peer, and remove all record of the

association.

10. ICMP Handling

Whenever an ICMP message is received by an SCTP endpoint, the

following procedures MUST be followed to ensure proper utilization

of the information being provided by layer 3.

An implementation MAY ignore all ICMPv4 messages where the

type field is not set to "Destination Unreachable".

An implementation MAY ignore all ICMPv6 messages where the

type field is not "Destination Unreachable", "Parameter

Problem", or "Packet Too Big".

An implementation SHOULD ignore any ICMP messages where the

code indicates "Port Unreachable".

An implementation MAY ignore all ICMPv6 messages of type

"Parameter Problem" if the code is not "Unrecognized Next

Header Type Encountered".

An implementation MUST use the payload of the ICMP message

(v4 or v6) to locate the association that sent the message to

which ICMP is responding. If the association cannot be found,

an implementation SHOULD ignore the ICMP message.

An implementation MUST validate that the Verification Tag

contained in the ICMP message matches the Verification Tag of

the peer. If the Verification Tag is not 0 and does not match,

discard the ICMP message. If it is 0 and the ICMP message

contains enough bytes to verify that the chunk type is an INIT

chunk and that the Initiate Tag matches the tag of the peer,

continue with ICMP7. If the ICMP message is too short or the

chunk type or the Initiate Tag does not match, silently

discard the packet.

If the ICMP message is either an ICMPv6 message of type

"Packet Too Big" or an ICMPv4 message of type "Destination

Unreachable" and code "Fragmentation Needed", an

implementation SHOULD process this information as defined for

PMTU discovery.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ICMP8)

ICMP9)

If the ICMP code is an "Unrecognized Next Header Type

Encountered" or a "Protocol Unreachable", an implementation

MUST treat this message as an abort with the T bit set if it

does not contain an INIT chunk. If it does contain an INIT

chunk and the association is in the COOKIE-WAIT state, handle

the ICMP message like an ABORT chunk.

If the ICMP type is "Destination Unreachable", the

implementation MAY move the destination to the unreachable

state or, alternatively, increment the path error counter.

SCTP MAY provide information to the upper layer indicating the

reception of ICMP messages when reporting a network status

change.

These procedures differ from [RFC1122] and from its requirements for

processing of port-unreachable messages and the requirements that an

implementation MUST abort associations in response to a "protocol

unreachable" message. Port-unreachable messages are not processed,

since an implementation will send an ABORT chunk, not a port

unreachable. The stricter handling of the "protocol unreachable"

message is due to security concerns for hosts that do not support

SCTP.

11. Interface with Upper Layer

The Upper Layer Protocols (ULPs) request services by passing

primitives to SCTP and receive notifications from SCTP for various

events.

The primitives and notifications described in this section can be

used as a guideline for implementing SCTP. The following functional

description of ULP interface primitives is shown for illustrative

purposes. Different SCTP implementations can have different ULP

interfaces. However, all SCTP implementations are expected to

provide a certain minimum set of services to guarantee that all SCTP

implementations can support the same protocol hierarchy.

Please note that this section is informational only.

[RFC6458] and the Socket API Considerations section of [RFC7053]

define an extension of the socket API for SCTP as described in this

document.

11.1. ULP-to-SCTP

The following sections functionally characterize a ULP/SCTP

interface. The notation used is similar to most procedure or

function calls in high-level languages.

¶

¶

¶

¶

¶

¶

¶

¶

Mandatory attributes:

Optional attributes:

local port:

local eligible address list:

The ULP primitives described below specify the basic functions that

SCTP performs to support inter-process communication. Individual

implementations define their own exact format, and provide

combinations or subsets of the basic functions in single calls.

11.1.1. Initialize

INITIALIZE ([local port],[local eligible address list])

-> local SCTP instance name

This primitive allows SCTP to initialize its internal data

structures and allocate necessary resources for setting up its

operation environment. Once SCTP is initialized, ULP can communicate

directly with other endpoints without re-invoking this primitive.

SCTP will return a local SCTP instance name to the ULP.

None.

SCTP port number, if ULP wants it to be specified.

an address list that the local SCTP

endpoint binds. By default, if an address list is not

included, all IP addresses assigned to the host are used by

the local endpoint.

Implementation Note: If this optional attribute is supported by an

implementation, it will be the responsibility of the implementation

to enforce that the IP source address field of any SCTP packets sent

by this endpoint contains one of the IP addresses indicated in the

local eligible address list.

11.1.2. Associate

ASSOCIATE(local SCTP instance name,

initial destination transport addr list, outbound stream count)

-> association id [,destination transport addr list]

[,outbound stream count]

This primitive allows the upper layer to initiate an association to

a specific peer endpoint.

The peer endpoint is specified by one or more of the transport

addresses that defines the endpoint (see Section 2.3). If the local

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Mandatory attributes:

local SCTP instance name:

initial destination transport addr list:

outbound stream count:

Optional attributes:

SCTP instance has not been initialized, the ASSOCIATE is considered

an error.

An association id, which is a local handle to the SCTP association,

will be returned on successful establishment of the association. If

SCTP is not able to open an SCTP association with the peer endpoint,

an error is returned.

Other association parameters can be returned, including the complete

destination transport addresses of the peer as well as the outbound

stream count of the local endpoint. One of the transport addresses

from the returned destination addresses will be selected by the

local endpoint as default primary path for sending SCTP packets to

this peer. The returned "destination transport addr list" can be

used by the ULP to change the default primary path or to force

sending a packet to a specific transport address.

Implementation Note: If ASSOCIATE primitive is implemented as a

blocking function call, the ASSOCIATE primitive can return

association parameters in addition to the association id upon

successful establishment. If ASSOCIATE primitive is implemented as a

non-blocking call, only the association id is returned and

association parameters are passed using the COMMUNICATION UP

notification.

obtained from the INITIALIZE

operation.

a non-empty list of

transport addresses of the peer endpoint with which the

association is to be established.

the number of outbound streams the ULP

would like to open towards this peer endpoint.

None.

11.1.3. Shutdown

SHUTDOWN(association id) -> result

Gracefully closes an association. Any locally queued user data will

be delivered to the peer. The association will be terminated only

after the peer acknowledges all the SCTP packets sent. A success

code will be returned on successful termination of the association.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Mandatory attributes:

association id:

Optional attributes:

Mandatory attributes:

association id:

Optional attributes:

Upper Layer Abort Reason:

Mandatory attributes:

association id:

buffer address:

byte count:

Optional attributes:

context:

If attempting to terminate the association results in a failure, an

error code is returned.

local handle to the SCTP association.

None.

11.1.4. Abort

ABORT(association id [, Upper Layer Abort Reason]) -> result

Ungracefully closes an association. Any locally queued user data

will be discarded, and an ABORT chunk is sent to the peer. A success

code will be returned on successful abort of the association. If

attempting to abort the association results in a failure, an error

code is returned.

local handle to the SCTP association.

reason of the abort to be passed to

the peer.

11.1.5. Send

SEND(association id, buffer address, byte count [,context]

[,stream id] [,life time] [,destination transport address]

[,unordered flag] [,no-bundle flag] [,payload protocol-id]

[,sack-immediately flag]) -> result

This is the main method to send user data via SCTP.

local handle to the SCTP association.

the location where the user message to be

transmitted is stored.

the size of the user data in number of bytes.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

stream id:

life time:

destination transport address:

unordered flag:

no-bundle flag:

payload protocol-id:

sack-immediately flag:

an optional information provided that will be carried in the

sending failure notification to the ULP if the transportation

of this user message fails.

to indicate which stream to send the data on. If not

specified, stream 0 will be used.

specifies the life time of the user data. The user

data will not be sent by SCTP after the life time expires.

This parameter can be used to avoid efforts to transmit stale

user messages. SCTP notifies the ULP if the data cannot be

initiated to transport (i.e., sent to the destination via

SCTP's SEND primitive) within the life time variable. However,

the user data will be transmitted if SCTP has attempted to

transmit a chunk before the life time expired.

Implementation Note: In order to better support the data life

time option, the transmitter can hold back the assigning of

the TSN number to an outbound DATA chunk to the last moment.

And, for implementation simplicity, once a TSN number has been

assigned the sender considers the send of this DATA chunk as

committed, overriding any life time option attached to the

DATA chunk.

specified as one of the

destination transport addresses of the peer endpoint to which

this packet is sent. Whenever possible, SCTP uses this

destination transport address for sending the packets, instead

of the current primary path.

this flag, if present, indicates that the user

would like the data delivered in an unordered fashion to the

peer (i.e., the U flag is set to 1 on all DATA chunks carrying

this message).

instructs SCTP not to delay the sending of DATA

chunks for this user data just to allow it to be bundled with

other outbound DATA chunks. When faced with network

congestion, SCTP might still bundle the data, even when this

flag is present.

a 32-bit unsigned integer that is to be

passed to the peer indicating the type of payload protocol

data being transmitted. This value is passed as opaque data by

SCTP.

set the I bit on the last DATA chunk used

for the user message to be transmitted.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Mandatory attributes:

association id:

destination transport address:

Optional attributes:

source transport address:

11.1.6. Set Primary

SETPRIMARY(association id, destination transport address,

[source transport address]) -> result

Instructs the local SCTP to use the specified destination transport

address as the primary path for sending packets.

The result of attempting this operation is returned. If the

specified destination transport address is not present in the

"destination transport address list" returned earlier in an

associate command or communication up notification, an error is

returned.

local handle to the SCTP association.

specified as one of the transport

addresses of the peer endpoint, which is used as the primary

address for sending packets. This overrides the current

primary address information maintained by the local SCTP

endpoint.

optionally, some implementations can

allow you to set the default source address placed in all

outgoing IP datagrams.

11.1.7. Receive

RECEIVE(association id, buffer address, buffer size [,stream id])

-> byte count [,transport address] [,stream id]

[,stream sequence number] [,partial flag] [,payload protocol-id]

This primitive reads the first user message in the SCTP in-queue

into the buffer specified by ULP, if there is one available. The

size of the message read, in bytes, will be returned. It might,

depending on the specific implementation, also return other

information such as the sender's address, the stream id on which it

is received, whether there are more messages available for

retrieval, etc. For ordered messages, their Stream Sequence Number

might also be returned.

Depending upon the implementation, if this primitive is invoked when

no message is available the implementation returns an indication of

¶

¶

¶

¶

¶

¶

¶

¶

Mandatory attributes:

association id:

buffer address:

buffer size:

Optional attributes:

stream id:

stream sequence number:

partial flag:

payload protocol-id:

this condition or blocks the invoking process until data does become

available.

local handle to the SCTP association

the memory location indicated by the ULP to

store the received message.

the maximum size of data to be received, in bytes.

to indicate which stream to receive the data on.

the Stream Sequence Number assigned by

the sending SCTP peer.

if this returned flag is set to 1, then this

primitive contains a partial delivery of the whole message.

When this flag is set, the stream id and stream sequence

number accompanies this primitive. When this flag is set to 0,

it indicates that no more deliveries will be received for this

stream sequence number.

a 32-bit unsigned integer that is received

from the peer indicating the type of payload protocol of the

received data. This value is passed as opaque data by SCTP.

11.1.8. Status

STATUS(association id) -> status data

This primitive returns a data block containing the following

information:

association connection state,

destination transport address list,

destination transport address reachability states,

current receiver window size,

current congestion window sizes,

number of unacknowledged DATA chunks,

number of DATA chunks pending receipt,

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Mandatory attributes:

association id:

Optional attributes:

Mandatory attributes:

association id:

destination transport address:

new state:

Optional attributes:

interval:

primary path,

most recent SRTT on primary path,

RTO on primary path,

SRTT and RTO on other destination addresses, etc.

local handle to the SCTP association.

None.

11.1.9. Change Heartbeat

CHANGE HEARTBEAT(association id, destination transport address,

new state [,interval]) -> result

Instructs the local endpoint to enable or disable heartbeat on the

specified destination transport address.

The result of attempting this operation is returned.

Note: Even when enabled, heartbeat will not take place if the

destination transport address is not idle.

local handle to the SCTP association.

specified as one of the transport

addresses of the peer endpoint.

the new state of heartbeat for this destination

transport address (either enabled or disabled).

if present, indicates the frequency of the heartbeat

if this is to enable heartbeat on a destination transport

address. This value is added to the RTO of the destination

transport address. This value, if present, affects all

destinations.

11.1.10. Request Heartbeat

REQUESTHEARTBEAT(association id, destination transport address)

-> result

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Mandatory attributes:

association id:

destination transport address:

Optional attributes:

Mandatory attributes:

association id:

destination transport address:

Optional attributes:

Mandatory attributes:

Instructs the local endpoint to perform a heartbeat on the specified

destination transport address of the given association. The returned

result indicates whether the transmission of the HEARTBEAT chunk

chunk to the destination address is successful.

local handle to the SCTP association.

the transport address of the

association on which a heartbeat is issued.

None.

11.1.11. Get SRTT Report

GETSRTTREPORT(association id, destination transport address)

-> srtt result

Instructs the local SCTP to report the current SRTT measurement on

the specified destination transport address of the given

association. The returned result can be an integer containing the

most recent SRTT in milliseconds.

local handle to the SCTP association.

the transport address of the

association on which the SRTT measurement is to be reported.

None.

11.1.12. Set Failure Threshold

SETFAILURETHRESHOLD(association id, destination transport address,

failure threshold) -> result

This primitive allows the local SCTP to customize the reachability

failure detection threshold 'Path.Max.Retrans' for the specified

destination address. Note that this can also be done using the

SETPROTOCOLPARAMETERS primitive (Section 11.1.13).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

association id:

destination transport address:

failure threshold:

Optional attributes:

Mandatory attributes:

association id:

protocol parameter list:

Optional attributes:

destination transport address:

Mandatory attributes:

data retrieval id:

local handle to the SCTP association.

the transport address of the

association on which the failure detection threshold is to be

set.

the new value of 'Path.Max.Retrans' for the

destination address.

None.

11.1.13. Set Protocol Parameters

SETPROTOCOLPARAMETERS(association id,

[destination transport address,] protocol parameter list)

-> result

This primitive allows the local SCTP to customize the protocol

parameters.

local handle to the SCTP association.

the specific names and values of the

protocol parameters (e.g., 'Association.Max.Retrans' (see

Section 16), or other parameters like the DSCP) that the SCTP

user wishes to customize.

some of the protocol parameters

might be set on a per destination transport address basis.

11.1.14. Receive Unsent Message

RECEIVE_UNSENT(data retrieval id, buffer address, buffer size

[,stream id] [, stream sequence number] [,partial flag]

[,payload protocol-id])

This primitive reads a user message, which has never been sent, into

the buffer specified by ULP.

the identification passed to the ULP in the

failure notification.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

buffer address:

buffer size:

Optional attributes:

stream id:

stream sequence number:

partial flag:

payload protocol-id:

Mandatory attributes:

data retrieval id:

buffer address:

buffer size:

Optional attributes:

stream id:

stream sequence number:

the memory location indicated by the ULP to

store the received message.

the maximum size of data to be received, in bytes.

this is a return value that is set to indicate which

stream the data was sent to.

this value is returned indicating the

Stream Sequence Number that was associated with the message.

if this returned flag is set to 1, then this

message is a partial delivery of the whole message. When this

flag is set, the stream id and stream sequence number

accompanies this primitive. When this flag is set to 0, it

indicates that no more deliveries will be received for this

stream sequence number.

The 32 bit unsigned integer that was set to

be sent to the peer indicating the type of payload protocol of

the received data.

11.1.15. Receive Unacknowledged Message

RECEIVE_UNACKED(data retrieval id, buffer address, buffer size,

[,stream id] [,stream sequence number] [,partial flag]

[,payload protocol-id])

This primitive reads a user message, which has been sent and has not

been acknowledged by the peer, into the buffer specified by ULP.

the identification passed to the ULP in the

failure notification.

the memory location indicated by the ULP to

store the received message.

the maximum size of data to be received, in bytes.

this is a return value that is set to indicate which

stream the data was sent to.

this value is returned indicating the

Stream Sequence Number that was associated with the message.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

partial flag:

payload protocol-id:

Mandatory attributes:

local SCTP instance name:

Optional attributes:

association id:

stream id:

if this returned flag is set to 1, then this

message is a partial delivery of the whole message. When this

flag is set, the stream id and stream sequence number

accompanies this primitive. When this flag is set to 0, it

indicates that no more deliveries will be received for this

stream sequence number.

the 32-bit unsigned integer that was sent

to the peer indicating the type of payload protocol of the

received data.

11.1.16. Destroy SCTP Instance

DESTROY(local SCTP instance name)

this is the value that was passed to

the application in the initialize primitive and it indicates

which SCTP instance is to be destroyed.

None.

11.2. SCTP-to-ULP

It is assumed that the operating system or application environment

provides a means for the SCTP to asynchronously signal the ULP

process. When SCTP does signal a ULP process, certain information is

passed to the ULP.

Implementation Note: In some cases, this might be done through a

separate socket or error channel.

11.2.1. DATA ARRIVE Notification

SCTP invokes this notification on the ULP when a user message is

successfully received and ready for retrieval.

The following might optionally be passed with the notification:

local handle to the SCTP association.

to indicate which stream the data is received on.

11.2.2. SEND FAILURE Notification

If a message cannot be delivered, SCTP invokes this notification on

the ULP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

association id:

data retrieval id:

mode:

cause code:

context:

association id:

destination transport address:

new-status:

association id:

status:

The following might optionally be passed with the notification:

local handle to the SCTP association.

an identification used to retrieve unsent and

unacknowledged data.

Indicate whether no part of the message never has been sent

or if at least part of it has been sent but it is not completely

acknowledged.

indicating the reason of the failure, e.g., size too

large, message life time expiration, etc.

optional information associated with this message (see

Section 11.1.5).

11.2.3. NETWORK STATUS CHANGE Notification

When a destination transport address is marked inactive (e.g., when

SCTP detects a failure) or marked active (e.g., when SCTP detects a

recovery), SCTP invokes this notification on the ULP.

The following is passed with the notification:

local handle to the SCTP association.

this indicates the destination

transport address of the peer endpoint affected by the change.

this indicates the new status.

11.2.4. COMMUNICATION UP Notification

This notification is used when SCTP becomes ready to send or receive

user messages, or when a lost communication to an endpoint is

restored.

Implementation Note: If the ASSOCIATE primitive is implemented as a

blocking function call, the association parameters are returned as a

result of the ASSOCIATE primitive itself. In that case,

COMMUNICATION UP notification is optional at the association

initiator's side.

The following is passed with the notification:

local handle to the SCTP association.

This indicates what type of event has occurred.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

destination transport address list:

outbound stream count:

inbound stream count:

association id:

status:

last-acked:

last-sent:

Upper Layer Abort Reason:

association id:

error info:

the complete set of transport

addresses of the peer.

the maximum number of streams allowed to be

used in this association by the ULP.

the number of streams the peer endpoint has

requested with this association (this might not be the same

number as 'outbound stream count').

11.2.5. COMMUNICATION LOST Notification

When SCTP loses communication to an endpoint completely (e.g., via

Heartbeats) or detects that the endpoint has performed an abort

operation, it invokes this notification on the ULP.

The following is passed with the notification:

local handle to the SCTP association.

this indicates what type of event has occurred; the status

might indicate that a failure OR a normal termination event

occurred in response to a shutdown or abort request.

The following might be passed with the notification:

the TSN last acked by that peer endpoint.

the TSN last sent to that peer endpoint.

the abort reason specified in case of a

user-initiated abort.

11.2.6. COMMUNICATION ERROR Notification

When SCTP receives an ERROR chunk from its peer and decides to

notify its ULP, it can invoke this notification on the ULP.

The following can be passed with the notification:

local handle to the SCTP association.

this indicates the type of error and optionally some

additional information received through the ERROR chunk.

11.2.7. RESTART Notification

When SCTP detects that the peer has restarted, it might send this

notification to its ULP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

association id:

association id:

The following can be passed with the notification:

local handle to the SCTP association.

11.2.8. SHUTDOWN COMPLETE Notification

When SCTP completes the shutdown procedures (Section 9.2), this

notification is passed to the upper layer.

The following can be passed with the notification:

local handle to the SCTP association.

12. Security Considerations

12.1. Security Objectives

As a common transport protocol designed to reliably carry time-

sensitive user messages, such as billing or signaling messages for

telephony services, between two networked endpoints, SCTP has the

following security objectives.

availability of reliable and timely data transport services

integrity of the user-to-user information carried by SCTP

12.2. SCTP Responses to Potential Threats

SCTP could potentially be used in a wide variety of risk situations.

It is important for operators of systems running SCTP to analyze

their particular situations and decide on the appropriate counter-

measures.

Operators of systems running SCTP might consult [RFC2196] for

guidance in securing their site.

12.2.1. Countering Insider Attacks

The principles of [RFC2196] might be applied to minimize the risk of

theft of information or sabotage by insiders. Such procedures

include publication of security policies, control of access at the

physical, software, and network levels, and separation of services.

12.2.2. Protecting against Data Corruption in the Network

Where the risk of undetected errors in datagrams delivered by the

lower-layer transport services is considered to be too great,

additional integrity protection is required. If this additional

protection were provided in the application layer, the SCTP header

would remain vulnerable to deliberate integrity attacks. While the

¶

¶

¶

¶

¶

¶

* ¶

* ¶

¶

¶

¶

existing SCTP mechanisms for detection of packet replays are

considered sufficient for normal operation, stronger protections are

needed to protect SCTP when the operating environment contains

significant risk of deliberate attacks from a sophisticated

adversary.

The SCTP Authentication extension SCTP-AUTH [RFC4895] MAY be used

when the threat environment requires stronger integrity protections,

but does not require confidentiality.

12.2.3. Protecting Confidentiality

In most cases, the risk of breach of confidentiality applies to the

signaling data payload, not to the SCTP or lower-layer protocol

overheads. If that is true, encryption of the SCTP user data only

might be considered. As with the supplementary checksum service,

user data encryption MAY be performed by the SCTP user application.

[RFC6083] MAY be used for this. Alternately, the user application

MAY use an implementation-specific API to request that the IP

Encapsulating Security Payload (ESP) [RFC4303] be used to provide

confidentiality and integrity.

Particularly for mobile users, the requirement for confidentiality

might include the masking of IP addresses and ports. In this case,

ESP SHOULD be used instead of application-level confidentiality. If

ESP is used to protect confidentiality of SCTP traffic, an ESP

cryptographic transform that includes cryptographic integrity

protection MUST be used, because if there is a confidentiality

threat there will also be a strong integrity threat.

Regardless of where confidentiality is provided, the Internet Key

Exchange Protocol version 2 (IKEv2) [RFC7296] SHOULD be used for key

management of ESP.

Operators might consult [RFC4301] for more information on the

security services available at and immediately above the Internet

Protocol layer.

12.2.4. Protecting against Blind Denial-of-Service Attacks

A blind attack is one where the attacker is unable to intercept or

otherwise see the content of data flows passing to and from the

target SCTP node. Blind denial-of-service attacks can take the form

of flooding, masquerade, or improper monopolization of services.

12.2.4.1. Flooding

The objective of flooding is to cause loss of service and incorrect

behavior at target systems through resource exhaustion, interference

with legitimate transactions, and exploitation of buffer-related

¶

¶

¶

¶

¶

¶

¶

software bugs. Flooding can be directed either at the SCTP node or

at resources in the intervening IP Access Links or the Internet.

Where the latter entities are the target, flooding will manifest

itself as loss of network services, including potentially the breach

of any firewalls in place.

In general, protection against flooding begins at the equipment

design level, where it includes measures such as:

avoiding commitment of limited resources before determining that

the request for service is legitimate.

giving priority to completion of processing in progress over the

acceptance of new work.

identification and removal of duplicate or stale queued requests

for service.

not responding to unexpected packets sent to non-unicast

addresses.

Network equipment is expected to be capable of generating an alarm

and log if a suspicious increase in traffic occurs. The log provides

information such as the identity of the incoming link and source

address(es) used, which will help the network or SCTP system

operator to take protective measures. Procedures are expected to be

in place for the operator to act on such alarms if a clear pattern

of abuse emerges.

The design of SCTP is resistant to flooding attacks, particularly in

its use of a four-way startup handshake, its use of a cookie to

defer commitment of resources at the responding SCTP node until the

handshake is completed, and its use of a Verification Tag to prevent

insertion of extraneous packets into the flow of an established

association.

ESP might be useful in reducing the risk of certain kinds of denial-

of-service attacks.

Support for the Host Name Address parameter has been removed from

the protocol. Endpoints receiving INIT or INIT ACK chunks containing

the Host Name Address parameter MUST send an ABORT chunk in response

and MAY include an "Unresolvable Address" error cause.

12.2.4.2. Blind Masquerade

Masquerade can be used to deny service in several ways:

by tying up resources at the target SCTP node to which the

impersonated node has limited access. For example, the target

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

*

node can by policy permit a maximum of one SCTP association with

the impersonated SCTP node. The masquerading attacker can attempt

to establish an association purporting to come from the

impersonated node so that the latter cannot do so when it

requires it.

by deliberately allowing the impersonation to be detected,

thereby provoking counter-measures that cause the impersonated

node to be locked out of the target SCTP node.

by interfering with an established association by inserting

extraneous content such as a SHUTDOWN chunk.

SCTP reduces the risk of blind masquerade attacks through IP

spoofing by use of the four-way startup handshake. Because the

initial exchange is memory-less, no lockout mechanism is triggered

by blind masquerade attacks. In addition, the packet containing the

INIT ACK chunk with the State Cookie is transmitted back to the IP

address from which it received the packet containing the INIT chunk.

Thus, the attacker would not receive the INIT ACK chunk containing

the State Cookie. SCTP protects against insertion of extraneous

packets into the flow of an established association by use of the

Verification Tag.

Logging of received INIT chunks and abnormalities such as unexpected

INIT ACK chunks might be considered as a way to detect patterns of

hostile activity. However, the potential usefulness of such logging

has to be weighed against the increased SCTP startup processing it

implies, rendering the SCTP node more vulnerable to flooding

attacks. Logging is pointless without the establishment of operating

procedures to review and analyze the logs on a routine basis.

12.2.4.3. Improper Monopolization of Services

Attacks under this heading are performed openly and legitimately by

the attacker. They are directed against fellow users of the target

SCTP node or of the shared resources between the attacker and the

target node. Possible attacks include the opening of a large number

of associations between the attacker's node and the target, or

transfer of large volumes of information within a legitimately

established association.

Policy limits are expected to be placed on the number of

associations per adjoining SCTP node. SCTP user applications are

expected to be capable of detecting large volumes of illegitimate or

"no-op" messages within a given association and either logging or

terminating the association as a result, based on local policy.

¶

*

¶

*

¶

¶

¶

¶

¶

12.3. SCTP Interactions with Firewalls

It is helpful for some firewalls if they can inspect just the first

fragment of a fragmented SCTP packet and unambiguously determine

whether it corresponds to an INIT chunk (for further information,

please refer to [RFC1858]). Accordingly, we stress the requirements,

as stated in Section 3.1, that (1) an INIT chunk MUST NOT be bundled

with any other chunk in a packet and (2) a packet containing an INIT

chunk MUST have a zero Verification Tag. The receiver of an INIT

chunk MUST silently discard the INIT chunk and all further chunks if

the INIT chunk is bundled with other chunks or the packet has a non-

zero Verification Tag.

12.4. Protection of Non-SCTP-Capable Hosts

To provide a non-SCTP-capable host with the same level of protection

against attacks as for SCTP-capable ones, all SCTP implementations

MUST implement the ICMP handling described in Section 10.

When an SCTP implementation receives a packet containing multiple

control or DATA chunks and the processing of the packet would result

in sending multiple chunks in response, the sender of the response

chunk(s) MUST NOT send more than one packet containing chunks other

than DATA chunks. This requirement protects the network for

triggering a packet burst in response to a single packet. If

bundling is supported, multiple response chunks that fit into a

single packet MAY be bundled together into one single response

packet. If bundling is not supported, then the sender MUST NOT send

more than one response chunk and MUST discard all other responses.

Note that this rule does not apply to a SACK chunk, since a SACK

chunk is, in itself, a response to DATA chunks and a SACK chunk does

not require a response of more DATA chunks.

An SCTP implementation SHOULD abort the association if it receives a

SACK chunk acknowledging a TSN that has not been sent.

An SCTP implementation that receives an INIT chunk that would

require a large packet in response, due to the inclusion of multiple

"Unrecognized Parameter" parameters, MAY (at its discretion) elect

to omit some or all of the "Unrecognized Parameter" parameters to

reduce the size of the INIT ACK chunk. Due to a combination of the

size of the State Cookie parameter and the number of addresses a

receiver of an INIT chunk indicates to a peer, it is always possible

that the INIT ACK chunk will be larger than the original INIT chunk.

An SCTP implementation SHOULD attempt to make the INIT ACK chunk as

small as possible to reduce the possibility of byte amplification

attacks.

¶

¶

¶

¶

¶

Associations:

Secret Key:

Address List:

SCTP Port:

Peer Verification Tag:

My Verification Tag:

State:

13. Network Management Considerations

The MIB module for SCTP defined in [RFC3873] applies for the version

of the protocol specified in this document.

14. Recommended Transmission Control Block (TCB) Parameters

This section details a set of parameters that are expected to be

contained within the TCB for an implementation. This section is for

illustrative purposes and is not considered to be requirements on an

implementation or as an exhaustive list of all parameters inside an

SCTP TCB. Each implementation might need its own additional

parameters for optimization.

14.1. Parameters Necessary for the SCTP Instance

A list of current associations and mappings to the

data consumers for each association. This might be in the form of

a hash table or other implementation-dependent structure. The

data consumers might be process identification information such

as file descriptors, named pipe pointer, or table pointers

dependent on how SCTP is implemented.

A secret key used by this endpoint to compute the MAC.

This SHOULD be a cryptographic quality random number with a

sufficient length. Discussion in [RFC4086] can be helpful in

selection of the key.

The list of IP addresses that this instance has

bound. This information is passed to one's peer(s) in INIT and

INIT ACK chunks.

The local SCTP port number to which the endpoint is

bound.

14.2. Parameters Necessary per Association (i.e., the TCB)

Tag value to be sent in every packet and is

received in the INIT or INIT ACK chunk.

Tag expected in every inbound packet and sent

in the INIT or INIT ACK chunk.

COOKIE-WAIT, COOKIE-ECHOED, ESTABLISHED, SHUTDOWN-PENDING,

SHUTDOWN-SENT, SHUTDOWN-RECEIVED, SHUTDOWN-ACK-SENT.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Peer Transport Address List:

Primary Path:

Overall Error Count:

Overall Error Threshold:

Peer Rwnd:

Next TSN:

Last Rcvd TSN:

Mapping Array:

Ack State:

Note: No "CLOSED" state is illustrated since if a association is

"CLOSED" its TCB SHOULD be removed.

A list of SCTP transport addresses to

which the peer is bound. This information is derived from the

INIT or INIT ACK chunk and is used to associate an inbound packet

with a given association. Normally, this information is hashed or

keyed for quick lookup and access of the TCB.

This is the current primary destination transport

address of the peer endpoint. It might also specify a source

transport address on this endpoint.

The overall association error count.

The threshold for this association that if

the Overall Error Count reaches will cause this association to be

torn down.

Current calculated value of the peer's rwnd.

The next TSN number to be assigned to a new DATA chunk.

This is sent in the INIT or INIT ACK chunk to the peer and

incremented each time a DATA chunk is assigned a TSN (normally

just prior to transmit or during fragmentation).

This is the last TSN received in sequence. This

value is set initially by taking the peer's initial TSN, received

in the INIT or INIT ACK chunk, and subtracting one from it.

An array of bits or bytes indicating which out-of-

order TSNs have been received (relative to the Last Rcvd TSN). If

no gaps exist, i.e., no out-of-order packets have been received,

this array will be set to all zero. This structure might be in

the form of a circular buffer or bit array.

This flag indicates if the next received packet is to be

responded to with a SACK chunk. This is initialized to 0. When a

packet is received it is incremented. If this value reaches 2 or

more, a SACK chunk is sent and the value is reset to 0. Note:

This is used only when no DATA chunks are received out of order.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inbound Streams:

Outbound Streams:

Reasm Queue:

Receive Buffer:

Local Transport Address List:

Association Maximum DATA Chunk Size:

Error Count:

Error Threshold:

cwnd:

ssthresh:

RTO:

SRTT:

RTTVAR:

partial bytes acked:

state:

When DATA chunks are out of order, SACK chunks are not delayed

(see Section 6).

An array of structures to track the inbound

streams, normally including the next sequence number expected and

possibly the stream number.

An array of structures to track the outbound

streams, normally including the next sequence number to be sent

on the stream.

A reassembly queue.

A buffer to store received user data which has not

been delivered to the upper layer.

The list of local IP addresses bound

in to this association.

The smallest Path Maximum DATA

Chunk Size of all destination addresses.

14.3. Per Transport Address Data

For each destination transport address in the peer's address list

derived from the INIT or INIT ACK chunk, a number of data elements

need to be maintained including:

The current error count for this destination.

Current error threshold for this destination,

i.e., what value marks the destination down if error count

reaches this value.

The current congestion window.

The current ssthresh value.

The current retransmission timeout value.

The current smoothed round-trip time.

The current RTT variation.

The tracking method for increase of cwnd when

in congestion avoidance mode (see Section 7.2.2).

The current state of this destination, i.e., DOWN, UP,

ALLOW-HEARTBEAT, NO-HEARTBEAT, etc.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

PMTU:

PMDCS:

Per Destination Timer:

RTO-Pending:

last-time:

Out Queue:

In Queue:

The current known PMTU.

The current known PMDCS.

A timer used by each destination.

A flag used to track if one of the DATA chunks sent to

this address is currently being used to compute an RTT. If this

flag is 0, the next DATA chunk sent to this destination is

expected to be used to compute an RTT and this flag is expected

to be set. Every time the RTT calculation completes (i.e., the

DATA chunk is acknowledged), clear this flag.

The time to which this destination was last sent. This

can used be to determine if the sending of a HEARTBEAT chunk is

needed.

14.4. General Parameters Needed

A queue of outbound DATA chunks.

A queue of inbound DATA chunks.

15. IANA Considerations

This document defines five registries that IANA maintains:

through definition of additional chunk types,

through definition of additional chunk flags,

through definition of additional parameter types,

through definition of additional cause codes within ERROR chunks,

or

through definition of additional payload protocol identifiers.

IANA is requested to perform the following updates for the above

five registries:

In the Chunk Types Registry replace in the Reference section the

reference to [RFC4960] and [RFC6096] by a reference to this

document.

Replace in the Notes section the reference to Section 3.2 of

[RFC6096] by a reference to Section 15.2 of this document.

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

¶

*

¶

¶

Finally replace each reference to [RFC4960] by a reference to

this document for the following chunk types:

Payload Data (DATA)

Initiation (INIT)

Initiation Acknowledgement (INIT ACK)

Selective Acknowledgement (SACK)

Heartbeat Request (HEARTBEAT)

Heartbeat Acknowledgement (HEARTBEAT ACK)

Abort (ABORT)

Shutdown (SHUTDOWN)

Shutdown Acknowledgement (SHUTDOWN ACK)

Operation Error (ERROR)

State Cookie (COOKIE ECHO)

Cookie Acknowledgement (COOKIE ACK)

Reserved for Explicit Congestion Notification Echo (ECNE)

Reserved for Congestion Window Reduced (CWR)

Shutdown Complete (SHUTDOWN COMPLETE)

Reserved for IETF-defined Chunk Extensions

In the Chunk Parameter Types Registry replace in the Reference

section the reference to [RFC4960] by a reference to this

document.

Replace each reference to [RFC4960] by a reference to this

document for the following chunk parameter types:

Heartbeat Info

IPv4 Address

IPv6 Address

State Cookie

Unrecognized Parameters

¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

*

¶

¶

- ¶

- ¶

- ¶

- ¶

- ¶

Cookie Preservative

Host Name Address

Supported Address Types

Add a reference to this document for the following chunk

parameter type:

Reserved for ECN Capable (0x8000)

In the Chunk Flags Registry replace in the Reference section the

reference to [RFC6096] by a reference to this document.

Replace each reference to [RFC4960] by a reference to this

document for the following DATA chunk flags:

E bit

B bit

U bit

Replace each reference to [RFC4960] by a reference to this

document for the following ABORT chunk flags:

T bit

Replace each reference to [RFC4960] by a reference to this

document for the following SHUTDOWN COMPLETE chunk flags:

T bit

In the Error Cause Codes Registry replace in the Reference

section the reference to [RFC6096] by a reference to this

document.

Replace each reference to [RFC4960] by a reference to this

document for the following cause codes:

Invalid Stream Identifier

Missing Mandatory Parameter

Stale Cookie Error

Out of Resource

Unresolvable Address

Unrecognized Chunk Type

- ¶

- ¶

- ¶

¶

- ¶

*

¶

¶

- ¶

- ¶

- ¶

¶

- ¶

¶

- ¶

*

¶

¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

Invalid Mandatory Parameter

Unrecognized Parameters

No User Data

Cookie Received While Shutting Down

Restart of an Association with New Addressess

Replace each reference to [RFC4460] by a reference to this

document for the following cause codes:

User Initiated Abort

Protocol Violation

In the SCTP Payload Protocol Identifiers Registry replace in the

Reference section the reference to [RFC6096] by a reference to

this document.

Replace each reference to [RFC4960] by a reference to this

document for the following SCTP payload protocol identifiers:

Reserved by SCTP

SCTP requires that the IANA Port Numbers registry be opened for SCTP

port registrations, Section 15.6 describes how. An IESG-appointed

Expert Reviewer supports IANA in evaluating SCTP port allocation

requests.

IANA is requested to perform the following update for the Port

Number registry. Replace each reference to [RFC4960] by a reference

to this document for the following SCTP port numbers:

9 (discard)

20 (ftp-data)

21 (ftp)

22 (ssh)

80 (http)

179 (bgp)

443 (https)

- ¶

- ¶

- ¶

- ¶

- ¶

¶

- ¶

- ¶

*

¶

¶

- ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

a)

b)

c)

d)

Furthermore, IANA is requested to replace in the HTTP Digest

Algorithm Values registry the reference to Appendix B of [RFC4960]

to Appendix A of this document.

IANA is also requested to replace in the ONC RPC Netids registry,

each of the reference to [RFC4960] by a reference to this document

for the following netids:

sctp

sctp6

IANA is finally requested to replace in the IPFIX Information

Elements registry, each of the reference to [RFC4960] by a reference

to this document for the following elements with the name:

sourceTransportPort

destinationTransportPort

collectorTransportPort

exporterTransportPort

postNAPTSourceTransportPort

postNAPTDestinationTransportPort

15.1. IETF-Defined Chunk Extension

The assignment of new chunk type codes is done through an IETF

Review action, as defined in [RFC8126]. Documentation for a new

chunk MUST contain the following information:

A long and short name for the new chunk type.

A detailed description of the structure of the chunk, which

MUST conform to the basic structure defined in Section 3.2.

A detailed definition and description of intended use of each

field within the chunk, including the chunk flags if any.

Defined chunk flags will be used as initial entries in the

chunk flags table for the new chunk type.

A detailed procedural description of the use of the new chunk

type within the operation of the protocol.

The last chunk type (255) is reserved for future extension if

necessary.

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

a)

b)

a)

b)

c)

d)

e)

a)

For each new chunk type, IANA creates a registration table for the

chunk flags of that type. The procedure for registering particular

chunk flags is described in Section 15.2.

15.2. IETF Chunk Flags Registration

The assignment of new chunk flags is done through an RFC Required

action, as defined in [RFC8126]. Documentation for the chunk flags

MUST contain the following information:

A name for the new chunk flag.

A detailed procedural description of the use of the new chunk

flag within the operation of the protocol. It MUST be

considered that implementations not supporting the flag will

send 0 on transmit and just ignore it on receipt.

IANA selects a chunk flags value. This MUST be one of 0x01, 0x02,

0x04, 0x08, 0x10, 0x20, 0x40, or 0x80, which MUST be unique within

the chunk flag values for the specific chunk type.

15.3. IETF-Defined Chunk Parameter Extension

The assignment of new chunk parameter type codes is done through an

IETF Review action as defined in [RFC8126]. Documentation of the

chunk parameter MUST contain the following information:

Name of the parameter type.

Detailed description of the structure of the parameter field.

This structure MUST conform to the general Type-Length-Value

format described in Section 3.2.1.

Detailed definition of each component of the parameter value.

Detailed description of the intended use of this parameter

type, and an indication of whether and under what

circumstances multiple instances of this parameter type can be

found within the same chunk.

Each parameter type MUST be unique across all chunks.

15.4. IETF-Defined Additional Error Causes

Additional cause codes can be allocated in the range 11 to 65535

through a Specification Required action as defined in [RFC8126].

Provided documentation MUST include the following information:

Name of the error condition.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

b)

c)

d)

RTO.Initial:

RTO.Min:

Detailed description of the conditions under which an SCTP

endpoint issues an ERROR (or ABORT) chunk with this cause

code.

Expected action by the SCTP endpoint that receives an ERROR

(or ABORT) chunk containing this cause code.

Detailed description of the structure and content of data

fields that accompany this cause code.

The initial word (32 bits) of a cause code parameter MUST conform to

the format shown in Section 3.3.10, i.e.:

first 2 bytes contain the cause code value

last 2 bytes contain the length of the cause parameter.

15.5. Payload Protocol Identifiers

The assignment of payload protocol identifier is done using the

First Come First Served policy as defined in [RFC8126].

Except for value 0, which is reserved to indicate an unspecified

payload protocol identifier in a DATA chunk, an SCTP implementation

will not be responsible for standardizing or verifying any payload

protocol identifiers; An SCTP implementation simply receives the

identifier from the upper layer and carries it with the

corresponding payload data.

The upper layer, i.e., the SCTP user, SHOULD standardize any

specific protocol identifier with IANA if it is so desired. The use

of any specific payload protocol identifier is out of the scope of

this specification.

15.6. Port Numbers Registry

SCTP services can use contact port numbers to provide service to

unknown callers, as in TCP and UDP. An IESG-appointed expert

reviewer supports IANA in evaluating SCTP port allocation requests,

according to the procedure defined in [RFC8126]. The details of this

process are defined in [RFC6335].

16. Suggested SCTP Protocol Parameter Values

The following protocol parameters are RECOMMENDED:

1 second

1 second

¶

¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

RTO.Max:

Max.Burst:

RTO.Alpha:

RTO.Beta:

Valid.Cookie.Life:

Association.Max.Retrans:

Path.Max.Retrans:

Max.Init.Retransmits:

HB.interval:

HB.Max.Burst:

SACK.Delay:

60 seconds

4

1/8

1/4

60 seconds

10 attempts

5 attempts (per destination address)

8 attempts

30 seconds

1

200 milliseconds

Implementation Note: The SCTP implementation can allow ULP to

customize some of these protocol parameters (see Section 11).

'RTO.Min' SHOULD be set as described above in this section.

17. Acknowledgements

An undertaking represented by this updated document is not a small

feat and represents the summation of the initial co-authors of

[RFC2960]: Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T.

Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson.

Add to that, the comments from everyone who contributed to

[RFC2960]: Mark Allman, R. J. Atkinson, Richard Band, Scott Bradner,

Steve Bellovin, Peter Butler, Ram Dantu, R. Ezhirpavai, Mike Fisk,

Sally Floyd, Atsushi Fukumoto, Matt Holdrege, Henry Houh, Christian

Huitema, Gary Lehecka, Jonathan Lee, David Lehmann, John Loughney,

Daniel Luan, Barry Nagelberg, Thomas Narten, Erik Nordmark, Lyndon

Ong, Shyamal Prasad, Kelvin Porter, Heinz Prantner, Jarno Rajahalme,

Raymond E. Reeves, Renee Revis, Ivan Arias Rodriguez, A. Sankar,

Greg Sidebottom, Brian Wyld, La Monte Yarroll, and many others for

their invaluable comments.

Then, add the co-authors of [RFC4460]: I. Arias-Rodriguez, K. Poon,

and A. Caro.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[ITU.V42.1994]

Then add to these the efforts of all the subsequent seven SCTP

interoperability tests and those who commented on [RFC4460] as shown

in its acknowledgements: Barry Zuckerman, La Monte Yarroll, Qiaobing

Xie, Wang Xiaopeng, Jonathan Wood, Jeff Waskow, Mike Turner, John

Townsend, Sabina Torrente, Cliff Thomas, Yuji Suzuki, Manoj Solanki,

Sverre Slotte, Keyur Shah, Jan Rovins, Ben Robinson, Renee Revis,

Ian Periam, RC Monee, Sanjay Rao, Sujith Radhakrishnan, Heinz

Prantner, Biren Patel, Nathalie Mouellic, Mitch Miers, Bernward

Meyknecht, Stan McClellan, Oliver Mayor, Tomas Orti Martin, Sandeep

Mahajan, David Lehmann, Jonathan Lee, Philippe Langlois, Karl

Knutson, Joe Keller, Gareth Keily, Andreas Jungmaier, Janardhan

Iyengar, Mutsuya Irie, John Hebert, Kausar Hassan, Fred Hasle, Dan

Harrison, Jon Grim, Laurent Glaude, Steven Furniss, Atsushi

Fukumoto, Ken Fujita, Steve Dimig, Thomas Curran, Serkan Cil,

Melissa Campbell, Peter Butler, Rob Brennan, Harsh Bhondwe, Brian

Bidulock, Caitlin Bestler, Jon Berger, Robby Benedyk, Stephen

Baucke, Sandeep Balani, and Ronnie Sellar.

A special thanks to Mark Allman, who should actually be a co-author

for his work on the max-burst, but managed to wiggle out due to a

technicality.

Also, we would like to acknowledge Lyndon Ong and Phil Conrad for

their valuable input and many contributions.

Furthermore, you have [RFC4960], and those who have commented upon

that including Alfred Hönes and Ronnie Sellars.

Then, add the co-author of [RFC8540]: Maksim Proshin.

And people who have commented on [RFC8540]: Pontus Andersson, Eric

W. Biederman, Cedric Bonnet, Spencer Dawkins, Gorry Fairhurst,

Benjamin Kaduk, Mirja Kühlewind, Peter Lei, Gyula Marosi, Lionel

Morand, Jeff Morriss, Tom Petch, Kacheong Poon, Julien Pourtet,

Irene Rüngeler, Michael Welzl, and Qiaobing Xie.

And finally the people who have provided comments for this document

including Gorry Fairhurst, Martin Duke, Tero Kivinen, Eliot Lear,

Marcelo Ricardo Leitner, David Mandelberg, John Mattsson, Claudio

Porfiri, Maksim Proshin, Ines Robles, Timo Völker, Magnus

Westerlund, and Zhouming.

Our thanks cannot be adequately expressed to all of you who have

participated in the coding, testing, and updating process of this

document. All we can say is, Thank You!

18. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

[RFC1122]

[RFC1123]

[RFC1191]

[RFC1982]

[RFC2119]

[RFC4291]

[RFC4303]

[RFC4895]

[RFC5681]

[RFC6335]

International Telecommunications Union, "Error-correcting

Procedures for DCEs Using Asynchronous-to-Synchronous

Conversion", ITU-T Recommendation V.42, 1994.

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Braden, R., Ed., "Requirements for Internet Hosts -

Application and Support", STD 3, RFC 1123, DOI 10.17487/

RFC1123, October 1989, <https://www.rfc-editor.org/info/

rfc1123>.

Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,

DOI 10.17487/RFC1191, November 1990, <https://www.rfc-

editor.org/info/rfc1191>.

Elz, R. and R. Bush, "Serial Number Arithmetic", RFC

1982, DOI 10.17487/RFC1982, August 1996, <https://

www.rfc-editor.org/info/rfc1982>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Hinden, R. and S. Deering, "IP Version 6 Addressing

Architecture", RFC 4291, DOI 10.17487/RFC4291, February

2006, <https://www.rfc-editor.org/info/rfc4291>.

Kent, S., "IP Encapsulating Security Payload (ESP)", RFC

4303, DOI 10.17487/RFC4303, December 2005, <https://

www.rfc-editor.org/info/rfc4303>.

Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,

"Authenticated Chunks for the Stream Control Transmission

Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August

2007, <https://www.rfc-editor.org/info/rfc4895>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.

Cheshire, "Internet Assigned Numbers Authority (IANA)

Procedures for the Management of the Service Name and

Transport Protocol Port Number Registry", BCP 165, RFC

6335, DOI 10.17487/RFC6335, August 2011, <https://

www.rfc-editor.org/info/rfc6335>.

https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1982
https://www.rfc-editor.org/info/rfc1982
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4895
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc6335
https://www.rfc-editor.org/info/rfc6335

[RFC6083]

[RFC7296]

[RFC8126]

[RFC8174]

[RFC8200]

[RFC8201]

[RFC8899]

[FALL96]

[SAVAGE99]

[ALLMAN99]

Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram

Transport Layer Security (DTLS) for Stream Control

Transmission Protocol (SCTP)", RFC 6083, DOI 10.17487/

RFC6083, January 2011, <https://www.rfc-editor.org/info/

rfc6083>.

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.

Kivinen, "Internet Key Exchange Protocol Version 2

(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October

2014, <https://www.rfc-editor.org/info/rfc7296>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,

"Path MTU Discovery for IP version 6", STD 87, RFC 8201,

DOI 10.17487/RFC8201, July 2017, <https://www.rfc-

editor.org/info/rfc8201>.

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,

September 2020, <https://www.rfc-editor.org/info/

rfc8899>.

19. Informative References

Fall, K. and S. Floyd, "Simulation-based Comparisons of

Tahoe, Reno, and SACK TCP", SIGCOM 99, V. 26, N. 3, pp

5-21, July 1996.

Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,

"TCP Congestion Control with a Misbehaving Receiver", ACM

Computer Communications Review 29(5), October 1999.

Allman, M. and V. Paxson, "On Estimating End-to-End

Network Path Properties", SIGCOM 99, 1999.

https://www.rfc-editor.org/info/rfc6083
https://www.rfc-editor.org/info/rfc6083
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8899

[WILLIAMS93]

[RFC0768]

[RFC0793]

[RFC1858]

[RFC2104]

[RFC2196]

[RFC2522]

[RFC2960]

[RFC3465]

[RFC3873]

[RFC4086]

Williams, R., "A PAINLESS GUIDE TO CRC ERROR DETECTION

ALGORITHMS", SIGCOM 99, August 1993, <http://

www.geocities.com/SiliconValley/Pines/8659/crc.htm>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Ziemba, G., Reed, D., and P. Traina, "Security

Considerations for IP Fragment Filtering", RFC 1858, DOI

10.17487/RFC1858, October 1995, <https://www.rfc-

editor.org/info/rfc1858>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Fraser, B., "Site Security Handbook", FYI 8, RFC 2196,

DOI 10.17487/RFC2196, September 1997, <https://www.rfc-

editor.org/info/rfc2196>.

Karn, P. and W. Simpson, "Photuris: Session-Key

Management Protocol", RFC 2522, DOI 10.17487/RFC2522,

March 1999, <https://www.rfc-editor.org/info/rfc2522>.

Stewart, R., Xie, Q., Morneault, K., Sharp, C.,

Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,

Zhang, L., and V. Paxson, "Stream Control Transmission

Protocol", RFC 2960, DOI 10.17487/RFC2960, October 2000,

<https://www.rfc-editor.org/info/rfc2960>.

Allman, M., "TCP Congestion Control with Appropriate Byte

Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February

2003, <https://www.rfc-editor.org/info/rfc3465>.

Pastor, J. and M. Belinchon, "Stream Control Transmission

Protocol (SCTP) Management Information Base (MIB)", RFC

3873, DOI 10.17487/RFC3873, September 2004, <https://

www.rfc-editor.org/info/rfc3873>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

http://www.geocities.com/SiliconValley/Pines/8659/crc.htm
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1858
https://www.rfc-editor.org/info/rfc1858
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2196
https://www.rfc-editor.org/info/rfc2196
https://www.rfc-editor.org/info/rfc2522
https://www.rfc-editor.org/info/rfc2960
https://www.rfc-editor.org/info/rfc3465
https://www.rfc-editor.org/info/rfc3873
https://www.rfc-editor.org/info/rfc3873

[RFC4301]

[RFC4460]

[RFC4960]

[RFC6096]

[RFC6458]

[RFC6951]

[RFC7053]

[RFC8260]

[RFC8261]

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/info/rfc4086>.

Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,

December 2005, <https://www.rfc-editor.org/info/rfc4301>.

Stewart, R., Arias-Rodriguez, I., Poon, K., Caro, A.,

and M. Tuexen, "Stream Control Transmission Protocol

(SCTP) Specification Errata and Issues", RFC 4460, DOI

10.17487/RFC4460, April 2006, <https://www.rfc-

editor.org/info/rfc4460>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/info/rfc4960>.

Tuexen, M. and R. Stewart, "Stream Control Transmission

Protocol (SCTP) Chunk Flags Registration", RFC 6096, DOI

10.17487/RFC6096, January 2011, <https://www.rfc-

editor.org/info/rfc6096>.

Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.

Yasevich, "Sockets API Extensions for the Stream Control

Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011, <https://www.rfc-editor.org/info/

rfc6458>.

Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream

Control Transmission Protocol (SCTP) Packets for End-Host

to End-Host Communication", RFC 6951, DOI 10.17487/

RFC6951, May 2013, <https://www.rfc-editor.org/info/

rfc6951>.

Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-

IMMEDIATELY Extension for the Stream Control Transmission

Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,

<https://www.rfc-editor.org/info/rfc7053>.

Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,

"Stream Schedulers and User Message Interleaving for the

Stream Control Transmission Protocol", RFC 8260, DOI

10.17487/RFC8260, November 2017, <https://www.rfc-

editor.org/info/rfc8260>.

Tuexen, M., Stewart, R., Jesup, R., and S. Loreto,

"Datagram Transport Layer Security (DTLS) Encapsulation

of SCTP Packets", RFC 8261, DOI 10.17487/RFC8261,

November 2017, <https://www.rfc-editor.org/info/rfc8261>.

https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4460
https://www.rfc-editor.org/info/rfc4460
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc6096
https://www.rfc-editor.org/info/rfc6096
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc7053
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8261

[RFC8540]
Stewart, R., Tuexen, M., and M. Proshin, "Stream Control

Transmission Protocol: Errata and Issues in RFC 4960",

RFC 8540, DOI 10.17487/RFC8540, February 2019, <https://

www.rfc-editor.org/info/rfc8540>.

Appendix A. CRC32c Checksum Calculation

We define a 'reflected value' as one that is the opposite of the

normal bit order of the machine. The 32-bit CRC (Cyclic Redundancy

Check) is calculated as described for CRC32c and uses the polynomial

code 0x11EDC6F41 (Castagnoli93) or

x^32+x^28+x^27+x^26+x^25+x^23+x^22+x^20+x^19+x^18+

x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0. The CRC is computed using a

procedure similar to ETHERNET CRC [ITU.V42.1994], modified to

reflect transport-level usage.

CRC computation uses polynomial division. A message bit-string M is

transformed to a polynomial, M(X), and the CRC is calculated from

M(X) using polynomial arithmetic.

When CRCs are used at the link layer, the polynomial is derived from

on-the-wire bit ordering: the first bit 'on the wire' is the high-

order coefficient. Since SCTP is a transport-level protocol, it

cannot know the actual serial-media bit ordering. Moreover,

different links in the path between SCTP endpoints can use different

link-level bit orders.

A convention therefore is established for mapping SCTP transport

messages to polynomials for purposes of CRC computation. The bit-

ordering for mapping SCTP messages to polynomials is that bytes are

taken most-significant first, but within each byte, bits are taken

least-significant first. The first byte of the message provides the

eight highest coefficients. Within each byte, the least-significant

SCTP bit gives the most-significant polynomial coefficient within

that byte, and the most-significant SCTP bit is the least-

significant polynomial coefficient in that byte. (This bit ordering

is sometimes called 'mirrored' or 'reflected' [WILLIAMS93].) CRC

polynomials are to be transformed back into SCTP transport-level

byte values, using a consistent mapping.

The SCTP transport-level CRC value can be calculated as follows:

CRC input data are assigned to a byte stream, numbered from 0 to

N-1.

The transport-level byte stream is mapped to a polynomial value.

An N-byte PDU with j bytes numbered 0 to N-1 is considered as

coefficients of a polynomial M(x) of order 8N-1, with bit 0 of

¶

¶

¶

¶

¶

*

¶

*

https://www.rfc-editor.org/info/rfc8540
https://www.rfc-editor.org/info/rfc8540

byte j being coefficient x^(8(N-j)-8), and bit 7 of byte j being

coefficient x^(8(N-j)-1).

The CRC remainder register is initialized with all 1s and the CRC

is computed with an algorithm that simultaneously multiplies by

x^32 and divides by the CRC polynomial.

The polynomial is multiplied by x^32 and divided by G(x), the

generator polynomial, producing a remainder R(x) of degree less

than or equal to 31.

The coefficients of R(x) are considered a 32-bit sequence.

The bit sequence is complemented. The result is the CRC

polynomial.

The CRC polynomial is mapped back into SCTP transport-level

bytes. The coefficient of x^31 gives the value of bit 7 of SCTP

byte 0, and the coefficient of x^24 gives the value of bit 0 of

byte 0. The coefficient of x^7 gives bit 7 of byte 3, and the

coefficient of x^0 gives bit 0 of byte 3. The resulting 4-byte

transport-level sequence is the 32-bit SCTP checksum value.

Implementation Note: Standards documents, textbooks, and vendor

literature on CRCs often follow an alternative formulation, in which

the register used to hold the remainder of the long-division

algorithm is initialized to zero rather than all-1s, and instead the

first 32 bits of the message are complemented. The long-division

algorithm used in our formulation is specified such that the initial

multiplication by 2^32 and the long-division are combined into one

simultaneous operation. For such algorithms, and for messages longer

than 64 bits, the two specifications are precisely equivalent. That

equivalence is the intent of this document.

Implementors of SCTP are warned that both specifications are to be

found in the literature, sometimes with no restriction on the long-

division algorithm. The choice of formulation in this document is to

permit non-SCTP usage, where the same CRC algorithm can be used to

protect messages shorter than 64 bits.

There can be a computational advantage in validating the association

against the Verification Tag, prior to performing a checksum, as

invalid tags will result in the same action as a bad checksum in

most cases. The exceptions for this technique would be packets

containing INIT chunks and some SHUTDOWN-COMPLETE chunks, as well as

a stale COOKIE ECHO chunks. These special-case exchanges represent

small packets and will minimize the effect of the checksum

calculation.

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

¶

The following non-normative sample code is taken from an open-source

CRC generator [WILLIAMS93], using the "mirroring" technique and

yielding a lookup table for SCTP CRC32c with 256 entries, each 32

bits wide. While neither especially slow nor especially fast, as

software table-lookup CRCs go, it has the advantage of working on

both big-endian and little-endian CPUs, using the same (host-order)

lookup tables, and using only the predefined ntohl() and htonl()

operations. The code is somewhat modified from [WILLIAMS93], to

ensure portability between big-endian and little-endian

architectures, use fixed sized types to allow portability between

32-bit and 64-bit platforms, and general C code improvements. (Note

that if the byte endian-ness of the target architecture is known to

be little-endian, the final bit-reversal and byte-reversal steps can

be folded into a single operation.)¶

<CODE BEGINS>

/**/

/* Note: The definitions for Ross Williams's table generator */

/* would be TB_WIDTH=4, TB_POLY=0x1EDC6F41, TB_REVER=TRUE. */

/* For Mr. Williams's direct calculation code, use the settings */

/* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF, */

/* cm_refin=TRUE, cm_refot=TRUE, cm_xorot=0x00000000. */

/**/

/* Example of the crc table file */

#ifndef __crc32cr_h__

#define __crc32cr_h__

#define CRC32C_POLY 0x1EDC6F41UL

#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

uint32_t crc_c[256] = {

 0x00000000UL, 0xF26B8303UL, 0xE13B70F7UL, 0x1350F3F4UL,

 0xC79A971FUL, 0x35F1141CUL, 0x26A1E7E8UL, 0xD4CA64EBUL,

 0x8AD958CFUL, 0x78B2DBCCUL, 0x6BE22838UL, 0x9989AB3BUL,

 0x4D43CFD0UL, 0xBF284CD3UL, 0xAC78BF27UL, 0x5E133C24UL,

 0x105EC76FUL, 0xE235446CUL, 0xF165B798UL, 0x030E349BUL,

 0xD7C45070UL, 0x25AFD373UL, 0x36FF2087UL, 0xC494A384UL,

 0x9A879FA0UL, 0x68EC1CA3UL, 0x7BBCEF57UL, 0x89D76C54UL,

 0x5D1D08BFUL, 0xAF768BBCUL, 0xBC267848UL, 0x4E4DFB4BUL,

 0x20BD8EDEUL, 0xD2D60DDDUL, 0xC186FE29UL, 0x33ED7D2AUL,

 0xE72719C1UL, 0x154C9AC2UL, 0x061C6936UL, 0xF477EA35UL,

 0xAA64D611UL, 0x580F5512UL, 0x4B5FA6E6UL, 0xB93425E5UL,

 0x6DFE410EUL, 0x9F95C20DUL, 0x8CC531F9UL, 0x7EAEB2FAUL,

 0x30E349B1UL, 0xC288CAB2UL, 0xD1D83946UL, 0x23B3BA45UL,

 0xF779DEAEUL, 0x05125DADUL, 0x1642AE59UL, 0xE4292D5AUL,

 0xBA3A117EUL, 0x4851927DUL, 0x5B016189UL, 0xA96AE28AUL,

 0x7DA08661UL, 0x8FCB0562UL, 0x9C9BF696UL, 0x6EF07595UL,

 0x417B1DBCUL, 0xB3109EBFUL, 0xA0406D4BUL, 0x522BEE48UL,

 0x86E18AA3UL, 0x748A09A0UL, 0x67DAFA54UL, 0x95B17957UL,

 0xCBA24573UL, 0x39C9C670UL, 0x2A993584UL, 0xD8F2B687UL,

 0x0C38D26CUL, 0xFE53516FUL, 0xED03A29BUL, 0x1F682198UL,

 0x5125DAD3UL, 0xA34E59D0UL, 0xB01EAA24UL, 0x42752927UL,

 0x96BF4DCCUL, 0x64D4CECFUL, 0x77843D3BUL, 0x85EFBE38UL,

 0xDBFC821CUL, 0x2997011FUL, 0x3AC7F2EBUL, 0xC8AC71E8UL,

 0x1C661503UL, 0xEE0D9600UL, 0xFD5D65F4UL, 0x0F36E6F7UL,

 0x61C69362UL, 0x93AD1061UL, 0x80FDE395UL, 0x72966096UL,

 0xA65C047DUL, 0x5437877EUL, 0x4767748AUL, 0xB50CF789UL,

 0xEB1FCBADUL, 0x197448AEUL, 0x0A24BB5AUL, 0xF84F3859UL,

 0x2C855CB2UL, 0xDEEEDFB1UL, 0xCDBE2C45UL, 0x3FD5AF46UL,

 0x7198540DUL, 0x83F3D70EUL, 0x90A324FAUL, 0x62C8A7F9UL,

 0xB602C312UL, 0x44694011UL, 0x5739B3E5UL, 0xA55230E6UL,

 0xFB410CC2UL, 0x092A8FC1UL, 0x1A7A7C35UL, 0xE811FF36UL,

 0x3CDB9BDDUL, 0xCEB018DEUL, 0xDDE0EB2AUL, 0x2F8B6829UL,

 0x82F63B78UL, 0x709DB87BUL, 0x63CD4B8FUL, 0x91A6C88CUL,

 0x456CAC67UL, 0xB7072F64UL, 0xA457DC90UL, 0x563C5F93UL,

 0x082F63B7UL, 0xFA44E0B4UL, 0xE9141340UL, 0x1B7F9043UL,

 0xCFB5F4A8UL, 0x3DDE77ABUL, 0x2E8E845FUL, 0xDCE5075CUL,

 0x92A8FC17UL, 0x60C37F14UL, 0x73938CE0UL, 0x81F80FE3UL,

 0x55326B08UL, 0xA759E80BUL, 0xB4091BFFUL, 0x466298FCUL,

 0x1871A4D8UL, 0xEA1A27DBUL, 0xF94AD42FUL, 0x0B21572CUL,

 0xDFEB33C7UL, 0x2D80B0C4UL, 0x3ED04330UL, 0xCCBBC033UL,

 0xA24BB5A6UL, 0x502036A5UL, 0x4370C551UL, 0xB11B4652UL,

 0x65D122B9UL, 0x97BAA1BAUL, 0x84EA524EUL, 0x7681D14DUL,

 0x2892ED69UL, 0xDAF96E6AUL, 0xC9A99D9EUL, 0x3BC21E9DUL,

 0xEF087A76UL, 0x1D63F975UL, 0x0E330A81UL, 0xFC588982UL,

 0xB21572C9UL, 0x407EF1CAUL, 0x532E023EUL, 0xA145813DUL,

 0x758FE5D6UL, 0x87E466D5UL, 0x94B49521UL, 0x66DF1622UL,

 0x38CC2A06UL, 0xCAA7A905UL, 0xD9F75AF1UL, 0x2B9CD9F2UL,

 0xFF56BD19UL, 0x0D3D3E1AUL, 0x1E6DCDEEUL, 0xEC064EEDUL,

 0xC38D26C4UL, 0x31E6A5C7UL, 0x22B65633UL, 0xD0DDD530UL,

 0x0417B1DBUL, 0xF67C32D8UL, 0xE52CC12CUL, 0x1747422FUL,

 0x49547E0BUL, 0xBB3FFD08UL, 0xA86F0EFCUL, 0x5A048DFFUL,

 0x8ECEE914UL, 0x7CA56A17UL, 0x6FF599E3UL, 0x9D9E1AE0UL,

 0xD3D3E1ABUL, 0x21B862A8UL, 0x32E8915CUL, 0xC083125FUL,

 0x144976B4UL, 0xE622F5B7UL, 0xF5720643UL, 0x07198540UL,

 0x590AB964UL, 0xAB613A67UL, 0xB831C993UL, 0x4A5A4A90UL,

 0x9E902E7BUL, 0x6CFBAD78UL, 0x7FAB5E8CUL, 0x8DC0DD8FUL,

 0xE330A81AUL, 0x115B2B19UL, 0x020BD8EDUL, 0xF0605BEEUL,

 0x24AA3F05UL, 0xD6C1BC06UL, 0xC5914FF2UL, 0x37FACCF1UL,

 0x69E9F0D5UL, 0x9B8273D6UL, 0x88D28022UL, 0x7AB90321UL,

 0xAE7367CAUL, 0x5C18E4C9UL, 0x4F48173DUL, 0xBD23943EUL,

 0xF36E6F75UL, 0x0105EC76UL, 0x12551F82UL, 0xE03E9C81UL,

 0x34F4F86AUL, 0xC69F7B69UL, 0xD5CF889DUL, 0x27A40B9EUL,

 0x79B737BAUL, 0x8BDCB4B9UL, 0x988C474DUL, 0x6AE7C44EUL,

 0xBE2DA0A5UL, 0x4C4623A6UL, 0x5F16D052UL, 0xAD7D5351UL,

};

#endif

/* Example of table build routine */

#include <stdio.h>

#include <stdlib.h>

#define OUTPUT_FILE "crc32cr.h"

#define CRC32C_POLY 0x1EDC6F41UL

static FILE *tf;

static uint32_t

reflect_32(uint32_t b)

{

 int i;

 uint32_t rw = 0UL;

 for (i = 0; i < 32; i++) {

 if (b & 1)

 rw |= 1UL << (31 - i);

 b >>= 1;

 }

 return (rw);

}

static uint32_t

build_crc_table (int index)

{

 int i;

 uint32_t rb;

 rb = reflect_32(index);

 for (i = 0; i < 8; i++) {

 if (rb & 0x80000000UL)

 rb = (rb << 1) ^ (uint32_t)CRC32C_POLY;

 else

 rb <<= 1;

 }

 return (reflect_32(rb));

}

int

main (void)

{

 int i;

 printf("\nGenerating CRC32c table file <%s>.\n",

 OUTPUT_FILE);

 if ((tf = fopen(OUTPUT_FILE, "w")) == NULL) {

 printf("Unable to open %s.\n", OUTPUT_FILE);

 exit (1);

 }

 fprintf(tf, "#ifndef __crc32cr_h__\n");

 fprintf(tf, "#define __crc32cr_h__\n\n");

 fprintf(tf, "#define CRC32C_POLY 0x%08XUL\n",

 (uint32_t)CRC32C_POLY);

 fprintf(tf,

 "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");

 fprintf(tf, "\nuint32_t crc_c[256] =\n{\n");

 for (i = 0; i < 256; i++) {

 fprintf(tf, "0x%08XUL,", build_crc_table (i));

 if ((i & 3) == 3)

 fprintf(tf, "\n");

 else

 fprintf(tf, " ");

 }

 fprintf(tf, "};\n\n#endif\n");

 if (fclose(tf) != 0)

 printf("Unable to close <%s>.\n", OUTPUT_FILE);

 else

 printf("\nThe CRC32c table has been written to <%s>.\n",

 OUTPUT_FILE);

 return (0);

}

/* Example of crc insertion */

#include "crc32cr.h"

uint32_t

generate_crc32c(unsigned char *buffer, unsigned int length)

{

 unsigned int i;

 uint32_t crc32 = 0xffffffffUL;

 uint32_t result;

 uint8_t byte0, byte1, byte2, byte3;

 for (i = 0; i < length; i++) {

 CRC32C(crc32, buffer[i]);

 }

 result = ~crc32;

 /* result now holds the negated polynomial remainder,

 * since the table and algorithm are "reflected" [williams95].

 * That is, result has the same value as if we mapped the message

 * to a polynomial, computed the host-bit-order polynomial

 * remainder, performed final negation, and then did an

 * end-for-end bit-reversal.

 * Note that a 32-bit bit-reversal is identical to four in-place

 * 8-bit bit-reversals followed by an end-for-end byteswap.

 * In other words, the bits of each byte are in the right order,

 * but the bytes have been byteswapped. So, we now do an explicit

 * byteswap. On a little-endian machine, this byteswap and

 * the final ntohl cancel out and could be elided.

 */

 byte0 = result & 0xff;

 byte1 = (result>>8) & 0xff;

 byte2 = (result>>16) & 0xff;

 byte3 = (result>>24) & 0xff;

 crc32 = ((byte0 << 24) |

 (byte1 << 16) |

 (byte2 << 8) |

 byte3);

 return (crc32);

}

int

insert_crc32(unsigned char *buffer, unsigned int length)

{

 SCTP_message *message;

 uint32_t crc32;

 message = (SCTP_message *)buffer;

 message->common_header.checksum = 0UL;

 crc32 = generate_crc32c(buffer,length);

 /* and insert it into the message */

 message->common_header.checksum = htonl(crc32);

 return (1);

}

int

validate_crc32(unsigned char *buffer, unsigned int length)

{

 SCTP_message *message;

 unsigned int i;

 uint32_t original_crc32;

 uint32_t crc32;

 /* save and zero checksum */

 message = (SCTP_message *)buffer;

 original_crc32 = ntohl(message->common_header.checksum);

 message->common_header.checksum = 0L;

 crc32 = generate_crc32c(buffer, length);

 return ((original_crc32 == crc32) ? 1 : -1);

}

<CODE ENDS>

¶

Authors' Addresses

Randall R. Stewart

Netflix, Inc.

2455 Heritage Green Ave

Davenport, FL 33837

United States

Email: randall@lakerest.net

Michael Tüxen

Münster University of Applied Sciences

Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: tuexen@fh-muenster.de

Karen E. E. Nielsen

Kamstrup A/S

Industrivej 28

DK-8660 Skanderborg

Denmark

Email: kee@kamstrup.com

mailto:randall@lakerest.net
mailto:tuexen@fh-muenster.de
mailto:kee@kamstrup.com

	Stream Control Transmission Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Conventions
	2. Introduction
	2.1. Motivation
	2.2. Architectural View of SCTP
	2.3. Key Terms
	2.4. Abbreviations
	2.5. Functional View of SCTP
	2.5.1. Association Startup and Takedown
	2.5.2. Sequenced Delivery within Streams
	2.5.3. User Data Fragmentation
	2.5.4. Acknowledgement and Congestion Avoidance
	2.5.5. Chunk Bundling
	2.5.6. Packet Validation
	2.5.7. Path Management

	2.6. Serial Number Arithmetic
	2.7. Changes from RFC 4960

	3. SCTP Packet Format
	3.1. SCTP Common Header Field Descriptions
	3.2. Chunk Field Descriptions
	3.2.1. Optional/Variable-Length Parameter Format
	3.2.2. Reporting of Unrecognized Parameters

	3.3. SCTP Chunk Definitions
	3.3.1. Payload Data (DATA) (0)
	3.3.2. Initiation (INIT) (1)
	3.3.2.1. Optional or Variable-Length Parameters in INIT chunks
	3.3.2.1.1. IPv4 Address (5)
	3.3.2.1.2. IPv6 Address (6)
	3.3.2.1.3. Cookie Preservative (9)
	3.3.2.1.4. Host Name Address (11)
	3.3.2.1.5. Supported Address Types (12)

	3.3.3. Initiation Acknowledgement (INIT ACK) (2)
	3.3.3.1. Optional or Variable-Length Parameters in INIT ACK chunks
	3.3.3.1.1. State Cookie (7)
	3.3.3.1.2. Unrecognized Parameter (8)

	3.3.4. Selective Acknowledgement (SACK) (3)
	3.3.5. Heartbeat Request (HEARTBEAT) (4)
	3.3.6. Heartbeat Acknowledgement (HEARTBEAT ACK) (5)
	3.3.7. Abort Association (ABORT) (6)
	3.3.8. Shutdown Association (SHUTDOWN) (7)
	3.3.9. Shutdown Acknowledgement (SHUTDOWN ACK) (8)
	3.3.10. Operation Error (ERROR) (9)
	3.3.10.1. Invalid Stream Identifier (1)
	3.3.10.2. Missing Mandatory Parameter (2)
	3.3.10.3. Stale Cookie Error (3)
	3.3.10.4. Out of Resource (4)
	3.3.10.5. Unresolvable Address (5)
	3.3.10.6. Unrecognized Chunk Type (6)
	3.3.10.7. Invalid Mandatory Parameter (7)
	3.3.10.8. Unrecognized Parameters (8)
	3.3.10.9. No User Data (9)
	3.3.10.10. Cookie Received While Shutting Down (10)
	3.3.10.11. Restart of an Association with New Addresses (11)
	3.3.10.12. User-Initiated Abort (12)
	3.3.10.13. Protocol Violation (13)

	3.3.11. Cookie Echo (COOKIE ECHO) (10)
	3.3.12. Cookie Acknowledgement (COOKIE ACK) (11)
	3.3.13. Shutdown Complete (SHUTDOWN COMPLETE) (14)

	4. SCTP Association State Diagram
	5. Association Initialization
	5.1. Normal Establishment of an Association
	5.1.1. Handle Stream Parameters
	5.1.2. Handle Address Parameters
	5.1.3. Generating State Cookie
	5.1.4. State Cookie Processing
	5.1.5. State Cookie Authentication
	5.1.6. An Example of Normal Association Establishment

	5.2. Handle Duplicate or Unexpected INIT, INIT ACK, COOKIE ECHO, and COOKIE ACK Chunks
	5.2.1. INIT Chunk Received in COOKIE-WAIT or COOKIE-ECHOED State (Item B)
	5.2.2. Unexpected INIT Chunk in States Other than CLOSED, COOKIE-ECHOED, COOKIE-WAIT, and SHUTDOWN-ACK-SENT
	5.2.3. Unexpected INIT ACK Chunk
	5.2.4. Handle a COOKIE ECHO Chunk when a TCB Exists
	5.2.4.1. An Example of a Association Restart

	5.2.5. Handle Duplicate COOKIE ACK Chunk
	5.2.6. Handle Stale Cookie Error

	5.3. Other Initialization Issues
	5.3.1. Selection of Tag Value

	5.4. Path Verification

	6. User Data Transfer
	6.1. Transmission of DATA Chunks
	6.2. Acknowledgement on Reception of DATA Chunks
	6.2.1. Processing a Received SACK Chunk

	6.3. Management of Retransmission Timer
	6.3.1. RTO Calculation
	6.3.2. Retransmission Timer Rules
	6.3.3. Handle T3-rtx Expiration

	6.4. Multi-Homed SCTP Endpoints
	6.4.1. Failover from an Inactive Destination Address

	6.5. Stream Identifier and Stream Sequence Number
	6.6. Ordered and Unordered Delivery
	6.7. Report Gaps in Received DATA TSNs
	6.8. CRC32c Checksum Calculation
	6.9. Fragmentation and Reassembly
	6.10. Bundling

	7. Congestion Control
	7.1. SCTP Differences from TCP Congestion Control
	7.2. SCTP Slow-Start and Congestion Avoidance
	7.2.1. Slow-Start
	7.2.2. Congestion Avoidance
	7.2.3. Congestion Control
	7.2.4. Fast Retransmit on Gap Reports
	7.2.5. Reinitialization
	7.2.5.1. Change of Differentiated Services Code Points
	7.2.5.2. Change of Routes

	7.3. PMTU Discovery

	8. Fault Management
	8.1. Endpoint Failure Detection
	8.2. Path Failure Detection
	8.3. Path Heartbeat
	8.4. Handle "Out of the Blue" Packets
	8.5. Verification Tag
	8.5.1. Exceptions in Verification Tag Rules

	9. Termination of Association
	9.1. Abort of an Association
	9.2. Shutdown of an Association

	10. ICMP Handling
	11. Interface with Upper Layer
	11.1. ULP-to-SCTP
	11.1.1. Initialize
	11.1.2. Associate
	11.1.3. Shutdown
	11.1.4. Abort
	11.1.5. Send
	11.1.6. Set Primary
	11.1.7. Receive
	11.1.8. Status
	11.1.9. Change Heartbeat
	11.1.10. Request Heartbeat
	11.1.11. Get SRTT Report
	11.1.12. Set Failure Threshold
	11.1.13. Set Protocol Parameters
	11.1.14. Receive Unsent Message
	11.1.15. Receive Unacknowledged Message
	11.1.16. Destroy SCTP Instance

	11.2. SCTP-to-ULP
	11.2.1. DATA ARRIVE Notification
	11.2.2. SEND FAILURE Notification
	11.2.3. NETWORK STATUS CHANGE Notification
	11.2.4. COMMUNICATION UP Notification
	11.2.5. COMMUNICATION LOST Notification
	11.2.6. COMMUNICATION ERROR Notification
	11.2.7. RESTART Notification
	11.2.8. SHUTDOWN COMPLETE Notification

	12. Security Considerations
	12.1. Security Objectives
	12.2. SCTP Responses to Potential Threats
	12.2.1. Countering Insider Attacks
	12.2.2. Protecting against Data Corruption in the Network
	12.2.3. Protecting Confidentiality
	12.2.4. Protecting against Blind Denial-of-Service Attacks
	12.2.4.1. Flooding
	12.2.4.2. Blind Masquerade
	12.2.4.3. Improper Monopolization of Services

	12.3. SCTP Interactions with Firewalls
	12.4. Protection of Non-SCTP-Capable Hosts

	13. Network Management Considerations
	14. Recommended Transmission Control Block (TCB) Parameters
	14.1. Parameters Necessary for the SCTP Instance
	14.2. Parameters Necessary per Association (i.e., the TCB)
	14.3. Per Transport Address Data
	14.4. General Parameters Needed

	15. IANA Considerations
	15.1. IETF-Defined Chunk Extension
	15.2. IETF Chunk Flags Registration
	15.3. IETF-Defined Chunk Parameter Extension
	15.4. IETF-Defined Additional Error Causes
	15.5. Payload Protocol Identifiers
	15.6. Port Numbers Registry

	16. Suggested SCTP Protocol Parameter Values
	17. Acknowledgements
	18. Normative References
	19. Informative References
	Appendix A. CRC32c Checksum Calculation
	Authors' Addresses

