
Network Working Group R. Stewart
Internet-Draft Netflix, Inc.
Intended status: Informational M. Tuexen
Expires: January 17, 2019 Muenster Univ. of Appl. Sciences
 M. Proshin
 Ericsson
 July 16, 2018

RFC 4960 Errata and Issues
draft-ietf-tsvwg-rfc4960-errata-07.txt

Abstract

 This document is a compilation of issues found since the publication
 of RFC4960 in September 2007 based on experience with implementing,
 testing, and using SCTP along with the suggested fixes. This
 document provides deltas to RFC4960 and is organized in a time
 ordered way. The issues are listed in the order they were brought
 up. Because some text is changed several times the last delta in the
 text is the one which should be applied. In addition to the delta a
 description of the problem and the details of the solution are also
 provided.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Stewart, et al. Expires January 17, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft RFC 4960 Errata and Issues July 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions . 4
3. Corrections to RFC 4960 4
3.1. Path Error Counter Threshold Handling 4
3.2. Upper Layer Protocol Shutdown Request Handling 5
3.3. Registration of New Chunk Types 6
3.4. Variable Parameters for INIT Chunks 7
3.5. CRC32c Sample Code on 64-bit Platforms 8
3.6. Endpoint Failure Detection 9
3.7. Data Transmission Rules 10
3.8. T1-Cookie Timer . 11
3.9. Miscellaneous Typos 12
3.10. CRC32c Sample Code 19
3.11. partial_bytes_acked after T3-rtx Expiration 20
3.12. Order of Adjustments of partial_bytes_acked and cwnd . . 21
3.13. HEARTBEAT ACK and the association error counter 21
3.14. Path for Fast Retransmission 23
3.15. Transmittal in Fast Recovery 24
3.16. Initial Value of ssthresh 24
3.17. Automatically Confirmed Addresses 25
3.18. Only One Packet after Retransmission Timeout 26
3.19. INIT ACK Path for INIT in COOKIE-WAIT State 27
3.20. Zero Window Probing and Unreachable Primary Path 28
3.21. Normative Language in Section 10 29

 3.22. Increase of partial_bytes_acked in Congestion Avoidance . 33
3.23. Inconsistency in Notifications Handling 34
3.24. SACK.Delay Not Listed as a Protocol Parameter 38
3.25. Processing of Chunks in an Incoming SCTP Packet 40
3.26. CWND Increase in Congestion Avoidance Phase 41
3.27. Refresh of cwnd and ssthresh after Idle Period 43
3.28. Window Updates After Receiver Window Opens Up 44
3.29. Path of DATA and Reply Chunks 45

 3.30. Outstanding Data, Flightsize and Data In Flight Key Terms 47
3.31. CWND Degradation due to Max.Burst 48
3.32. Reduction of RTO.Initial 49
3.33. Ordering of Bundled SACK and ERROR Chunks 51
3.34. Undefined Parameter Returned by RECEIVE Primitive 51
3.35. DSCP Changes . 52

https://datatracker.ietf.org/doc/html/rfc4960
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 2]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.36. Inconsistent Handling of ICMPv4 and ICMPv6 Messages . . . 54
3.37. Handling of Soft Errors 55
3.38. Honoring CWND . 56
3.39. Zero Window Probing 57
3.40. Updating References Regarding ECN 59
3.41. Host Name Address Parameter Deprecated 60

 3.42. Conflicting Text Regarding the Supported Address Types
 Parameter . 64

3.43. Integration of RFC 6096 65
3.44. Integration of RFC 6335 67
3.45. Integration of RFC 7053 69
3.46. CRC32c Code Improvements 72
3.47. Clarification of Gap Ack Blocks in SACK Chunks 82
3.48. Handling of SSN Wrap Arounds 84
3.49. Update RFC 2119 Boilerplate 85
3.50. Missed Text Removal 85

4. IANA Considerations . 86
5. Security Considerations 86
6. Acknowledgments . 86
7. References . 87
7.1. Normative References 87
7.2. Informative References 87

 Authors' Addresses . 88

1. Introduction

 This document contains a compilation of all defects found up until
 the publication of this document for [RFC4960] specifying the Stream
 Control Transmission Protocol (SCTP). These defects may be of an
 editorial or technical nature. This document may be thought of as a
 companion document to be used in the implementation of SCTP to
 clarify errors in the original SCTP document.

 This document provides a history of the changes that will be compiled
 into a BIS document for [RFC4960]. It is structured similar to
 [RFC4460].

 Each error will be detailed within this document in the form of:

 o The problem description,
 o The text quoted from [RFC4960],
 o The replacement text that should be placed into an upcoming BIS
 document,
 o A description of the solution.

 Note that when reading this document one must use care to assure that
 a field or item is not updated further on within the document. Since
 this document is a historical record of the sequential changes that

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6096
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4460
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 3]

Internet-Draft RFC 4960 Errata and Issues July 2018

 have been found necessary at various inter-op events and through
 discussion on the list, the last delta in the text is the one which
 should be applied.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Corrections to RFC 4960

 [NOTE to RFC-Editor:

 References to obsoleted RFCs are in OLD TEXT sections and have the
 corresponding references to the obsoleting RFCs in the NEW TEXT
 sections. In addition to this, there are some references to the
 obsoleted [RFC2960], which are intended.

]

3.1. Path Error Counter Threshold Handling

3.1.1. Description of the Problem

 The handling of the 'Path.Max.Retrans' parameter is described in
Section 8.2 and Section 8.3 of [RFC4960] in an inconsistent way.

 Whereas Section 8.2 describes that a path is marked inactive when the
 path error counter exceeds the threshold, Section 8.3 says the path
 is marked inactive when the path error counter reaches the threshold.

 This issue was reported as an Errata for [RFC4960] with Errata ID
 1440.

3.1.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 4]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 8.3)

 When the value of this counter reaches the protocol parameter
 'Path.Max.Retrans', the endpoint should mark the corresponding
 destination address as inactive if it is not so marked, and may also
 optionally report to the upper layer the change of reachability of
 this destination address. After this, the endpoint should continue
 HEARTBEAT on this destination address but should stop increasing the
 counter.

 New text: (Section 8.3)

 When the value of this counter exceeds the protocol parameter
 'Path.Max.Retrans', the endpoint SHOULD mark the corresponding
 destination address as inactive if it is not so marked, and MAY also
 optionally report to the upper layer the change of reachability of
 this destination address. After this, the endpoint SHOULD continue
 HEARTBEAT on this destination address but SHOULD stop increasing the
 counter.

3.1.3. Solution Description

 The intended state change should happen when the threshold is
 exceeded.

3.2. Upper Layer Protocol Shutdown Request Handling

3.2.1. Description of the Problem

Section 9.2 of [RFC4960] describes the handling of received SHUTDOWN
 chunks in the SHUTDOWN-RECEIVED state instead of the handling of
 shutdown requests from its upper layer in this state.

 This issue was reported as an Errata for [RFC4960] with Errata ID
 1574.

3.2.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-9.2
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 5]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 9.2)

 Once an endpoint has reached the SHUTDOWN-RECEIVED state, it MUST NOT
 send a SHUTDOWN in response to a ULP request, and should discard
 subsequent SHUTDOWN chunks.

 New text: (Section 9.2)

 Once an endpoint has reached the SHUTDOWN-RECEIVED state, it MUST
 ignore ULP shutdown requests, but MUST continue responding
 to SHUTDOWN chunks from its peer.

3.2.3. Solution Description

 The text never intended the SCTP endpoint to ignore SHUTDOWN chunks
 from its peer. If it did, the endpoints could never gracefully
 terminate associations in some cases.

3.3. Registration of New Chunk Types

3.3.1. Description of the Problem

Section 14.1 of [RFC4960] should deal with new chunk types, however,
 the text refers to parameter types.

 This issue was reported as an Errata for [RFC4960] with Errata ID
 2592.

3.3.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-14.1
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 6]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 14.1)

 The assignment of new chunk parameter type codes is done through an
 IETF Consensus action, as defined in [RFC2434]. Documentation of the
 chunk parameter MUST contain the following information:

 New text: (Section 14.1)

 The assignment of new chunk type codes is done through an
 IETF Consensus action, as defined in [RFC8126]. Documentation of the
 chunk type MUST contain the following information:

3.3.3. Solution Description

 Refer to chunk types as intended and change reference to [RFC8126].

3.4. Variable Parameters for INIT Chunks

3.4.1. Description of the Problem

 Newlines in wrong places break the layout of the table of variable
 parameters for the INIT chunk in Section 3.3.2 of [RFC4960].

 This issue was reported as an Errata for [RFC4960] with Errata ID
 3291 and Errata ID 3804.

3.4.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc4960#section-3.3.2
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 7]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 3.3.2)

 Variable Parameters Status Type Value

 IPv4 Address (Note 1) Optional 5 IPv6 Address
 (Note 1) Optional 6 Cookie Preservative
 Optional 9 Reserved for ECN Capable (Note 2) Optional
 32768 (0x8000) Host Name Address (Note 3) Optional
 11 Supported Address Types (Note 4) Optional 12

 New text: (Section 3.3.2)

 Variable Parameters Status Type Value

 IPv4 Address (Note 1) Optional 5
 IPv6 Address (Note 1) Optional 6
 Cookie Preservative Optional 9
 Reserved for ECN Capable (Note 2) Optional 32768 (0x8000)
 Host Name Address (Note 3) Optional 11
 Supported Address Types (Note 4) Optional 12

3.4.3. Solution Description

 Fix the formatting of the table.

3.5. CRC32c Sample Code on 64-bit Platforms

3.5.1. Description of the Problem

 The sample code for computing the CRC32c provided in [RFC4960]
 assumes that a variable of type unsigned long uses 32 bits. This is
 not true on some 64-bit platforms (for example the ones using LP64).

 This issue was reported as an Errata for [RFC4960] with Errata ID
 3423.

3.5.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 8]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Appendix C)

 unsigned long
 generate_crc32c(unsigned char *buffer, unsigned int length)
 {
 unsigned int i;
 unsigned long crc32 = ~0L;

 New text: (Appendix C)

 unsigned long
 generate_crc32c(unsigned char *buffer, unsigned int length)
 {
 unsigned int i;
 unsigned long crc32 = 0xffffffffL;

3.5.3. Solution Description

 Use 0xffffffffL instead of ~0L which gives the same value on
 platforms using 32 bits or 64 bits for variables of type unsigned
 long.

3.6. Endpoint Failure Detection

3.6.1. Description of the Problem

 The handling of the association error counter defined in Section 8.1
 of [RFC4960] can result in an association failure even if the path
 used for data transmission is available, but idle.

 This issue was reported as an Errata for [RFC4960] with Errata ID
 3788.

3.6.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-8.1
https://datatracker.ietf.org/doc/html/rfc4960#section-8.1
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 9]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 8.1)

 An endpoint shall keep a counter on the total number of consecutive
 retransmissions to its peer (this includes retransmissions to all the
 destination transport addresses of the peer if it is multi-homed),
 including unacknowledged HEARTBEAT chunks.

 New text: (Section 8.1)

 An endpoint SHOULD keep a counter on the total number of consecutive
 retransmissions to its peer (this includes data retransmissions
 to all the destination transport addresses of the peer if it is
 multi-homed), including the number of unacknowledged HEARTBEAT
 chunks observed on the path which is currently used for data
 transfer. Unacknowledged HEARTBEAT chunks observed on paths
 different from the path currently used for data transfer SHOULD
 NOT increment the association error counter, as this could lead
 to association closure even if the path which is currently used for
 data transfer is available (but idle).

3.6.3. Solution Description

 A more refined handling for the association error counter is defined.

3.7. Data Transmission Rules

3.7.1. Description of the Problem

 When integrating the changes to Section 6.1 A) of [RFC2960] as
 described in Section 2.15.2 of [RFC4460] some text was duplicated and
 became the final paragraph of Section 6.1 A) of [RFC4960].

 This issue was reported as an Errata for [RFC4960] with Errata ID
 4071.

3.7.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc4460#section-2.15.2
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 10]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 6.1 A))

 The sender MUST also have an algorithm for sending new DATA chunks
 to avoid silly window syndrome (SWS) as described in [RFC0813].
 The algorithm can be similar to the one described in Section

4.2.3.4 of [RFC1122].

 However, regardless of the value of rwnd (including if it is 0),
 the data sender can always have one DATA chunk in flight to the
 receiver if allowed by cwnd (see rule B below). This rule allows
 the sender to probe for a change in rwnd that the sender missed
 due to the SACK having been lost in transit from the data receiver
 to the data sender.

 New text: (Section 6.1 A))

 The sender MUST also have an algorithm for sending new DATA chunks
 to avoid silly window syndrome (SWS) as described in [RFC1122].
 The algorithm can be similar to the one described in Section

4.2.3.4 of [RFC1122].

3.7.3. Solution Description

 Last paragraph of Section 6.1 A) removed as intended in
Section 2.15.2 of [RFC4460].

3.8. T1-Cookie Timer

3.8.1. Description of the Problem

 Figure 4 of [RFC4960] illustrates the SCTP association setup.
 However, it incorrectly shows that the T1-init timer is used in the
 COOKIE-ECHOED state whereas the T1-cookie timer should have been used
 instead.

 This issue was reported as an Errata for [RFC4960] with Errata ID
 4400.

3.8.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc0813
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc4460#section-2.15.2
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 11]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 5.1.6, Figure 4)

 COOKIE ECHO [Cookie_Z] ------\
 (Start T1-init timer) \
 (Enter COOKIE-ECHOED state) \---> (build TCB enter ESTABLISHED
 state)
 /---- COOKIE-ACK
 /
 (Cancel T1-init timer, <-----/
 Enter ESTABLISHED state)

 New text: (Section 5.1.6, Figure 4)

 COOKIE ECHO [Cookie_Z] ------\
 (Start T1-cookie timer) \
 (Enter COOKIE-ECHOED state) \---> (build TCB enter ESTABLISHED
 state)
 /---- COOKIE-ACK
 /
 (Cancel T1-cookie timer, <---/
 Enter ESTABLISHED state)

3.8.3. Solution Description

 Change the figure such that the T1-cookie timer is used instead of
 the T1-init timer.

3.9. Miscellaneous Typos

3.9.1. Description of the Problem

 While processing [RFC4960] some typos were not caught.

 One typo was reported as an Errata for [RFC4960] with Errata ID 5003.

3.9.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 12]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 1.6)

 Transmission Sequence Numbers wrap around when they reach 2**32 - 1.
 That is, the next TSN a DATA chunk MUST use after transmitting TSN =
 2*32 - 1 is TSN = 0.

 New text: (Section 1.6)

 Transmission Sequence Numbers wrap around when they reach 2**32 - 1.
 That is, the next TSN a DATA chunk MUST use after transmitting TSN =
 2**32 - 1 is TSN = 0.

 Old text: (Section 3.3.10.9)

 No User Data: This error cause is returned to the originator of a

 DATA chunk if a received DATA chunk has no user data.

 New text: (Section 3.3.10.9)

 No User Data: This error cause is returned to the originator of a
 DATA chunk if a received DATA chunk has no user data.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 13]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 6.7, Figure 9)

 Endpoint A Endpoint Z {App
 sends 3 messages; strm 0} DATA [TSN=6,Strm=0,Seq=2] ----------
 -----> (ack delayed) (Start T3-rtx timer)

 DATA [TSN=7,Strm=0,Seq=3] --------> X (lost)

 DATA [TSN=8,Strm=0,Seq=4] ---------------> (gap detected,
 immediately send ack)
 /----- SACK [TSN Ack=6,Block=1,
 / Start=2,End=2]
 <-----/ (remove 6 from out-queue,
 and mark 7 as "1" missing report)

 New text: (Section 6.7, Figure 9)

 Endpoint A Endpoint Z
 {App sends 3 messages; strm 0}
 DATA [TSN=6,Strm=0,Seq=2] ---------------> (ack delayed)
 (Start T3-rtx timer)

 DATA [TSN=7,Strm=0,Seq=3] --------> X (lost)

 DATA [TSN=8,Strm=0,Seq=4] ---------------> (gap detected,
 immediately send ack)
 /----- SACK [TSN Ack=6,Block=1,
 / Start=2,End=2]
 <-----/
 (remove 6 from out-queue,
 and mark 7 as "1" missing report)

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 14]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 6.10)

 An endpoint bundles chunks by simply including multiple chunks in one
 outbound SCTP packet. The total size of the resultant IP datagram,

 including the SCTP packet and IP headers, MUST be less that or equal
 to the current Path MTU.

 New text: (Section 6.10)

 An endpoint bundles chunks by simply including multiple chunks in one
 outbound SCTP packet. The total size of the resultant IP datagram,
 including the SCTP packet and IP headers, MUST be less than or equal
 to the current PMTU.

 Old text: (Section 10.1)

 o Receive Unacknowledged Message

 Format: RECEIVE_UNACKED(data retrieval id, buffer address, buffer
 size, [,stream id] [, stream sequence number] [,partial
 flag] [,payload protocol-id])

 New text: (Section 10.1)

 O) Receive Unacknowledged Message

 Format: RECEIVE_UNACKED(data retrieval id, buffer address, buffer
 size [,stream id] [,stream sequence number] [,partial
 flag] [,payload protocol-id])

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 15]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 10.1)

 M) Set Protocol Parameters

 Format: SETPROTOCOLPARAMETERS(association id,
 [,destination transport address,]
 protocol parameter list)

 New text: (Section 10.1)

 M) Set Protocol Parameters

 Format: SETPROTOCOLPARAMETERS(association id,
 [destination transport address,]
 protocol parameter list)

 Old text: (Appendix C)

 ICMP2) An implementation MAY ignore all ICMPv6 messages where the
 type field is not "Destination Unreachable", "Parameter
 Problem",, or "Packet Too Big".

 New text: (Appendix C)

 ICMP2) An implementation MAY ignore all ICMPv6 messages where the
 type field is not "Destination Unreachable", "Parameter
 Problem", or "Packet Too Big".

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 16]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Appendix C)

 ICMP7) If the ICMP message is either a v6 "Packet Too Big" or a v4
 "Fragmentation Needed", an implementation MAY process this
 information as defined for PATH MTU discovery.

 New text: (Appendix C)

 ICMP7) If the ICMP message is either a v6 "Packet Too Big" or a v4
 "Fragmentation Needed", an implementation MAY process this
 information as defined for PMTU discovery.

 Old text: (Section 5.4)

 2) For the receiver of the COOKIE ECHO, the only CONFIRMED address
 is the one to which the INIT-ACK was sent.

 New text: (Section 5.4)

 2) For the receiver of the COOKIE ECHO, the only CONFIRMED address
 is the one to which the INIT ACK was sent.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 17]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 5.1.6, Figure 4)

 COOKIE ECHO [Cookie_Z] ------\
 (Start T1-init timer) \
 (Enter COOKIE-ECHOED state) \---> (build TCB enter ESTABLISHED
 state)
 /---- COOKIE-ACK
 /
 (Cancel T1-init timer, <-----/
 Enter ESTABLISHED state)

 New text: (Section 5.1.6, Figure 4)

 COOKIE ECHO [Cookie_Z] ------\
 (Start T1-cookie timer) \
 (Enter COOKIE-ECHOED state) \---> (build TCB enter ESTABLISHED
 state)
 /---- COOKIE ACK
 /
 (Cancel T1-cookie timer, <---/
 Enter ESTABLISHED state)

 Old text: (Section 5.2.5)

 5.2.5. Handle Duplicate COOKIE-ACK.

 New text: (Section 5.2.5)

 5.2.5. Handle Duplicate COOKIE ACK.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 18]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 8.3)

 By default, an SCTP endpoint SHOULD monitor the reachability of the
 idle destination transport address(es) of its peer by sending a
 HEARTBEAT chunk periodically to the destination transport
 address(es). HEARTBEAT sending MAY begin upon reaching the
 ESTABLISHED state and is discontinued after sending either SHUTDOWN
 or SHUTDOWN-ACK. A receiver of a HEARTBEAT MUST respond to a
 HEARTBEAT with a HEARTBEAT-ACK after entering the COOKIE-ECHOED state
 (INIT sender) or the ESTABLISHED state (INIT receiver), up until
 reaching the SHUTDOWN-SENT state (SHUTDOWN sender) or the SHUTDOWN-
 ACK-SENT state (SHUTDOWN receiver).

 New text: (Section 8.3)

 By default, an SCTP endpoint SHOULD monitor the reachability of the
 idle destination transport address(es) of its peer by sending a
 HEARTBEAT chunk periodically to the destination transport
 address(es). HEARTBEAT sending MAY begin upon reaching the
 ESTABLISHED state and is discontinued after sending either SHUTDOWN
 or SHUTDOWN ACK. A receiver of a HEARTBEAT MUST respond to a
 HEARTBEAT with a HEARTBEAT ACK after entering the COOKIE-ECHOED state
 (INIT sender) or the ESTABLISHED state (INIT receiver), up until
 reaching the SHUTDOWN-SENT state (SHUTDOWN sender) or the SHUTDOWN-
 ACK-SENT state (SHUTDOWN receiver).

3.9.3. Solution Description

 Typos fixed.

3.10. CRC32c Sample Code

3.10.1. Description of the Problem

 The CRC32c computation is described in Appendix B of [RFC4960].
 However, the corresponding sample code and its explanation appears at
 the end of Appendix C, which deals with ICMP handling.

3.10.2. Text Changes to the Document

 Move all of Appendix C starting with the following sentence to the
 end of Appendix B.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#appendix-B

Stewart, et al. Expires January 17, 2019 [Page 19]

Internet-Draft RFC 4960 Errata and Issues July 2018

 The following non-normative sample code is taken from an open-source
 CRC generator [WILLIAMS93], using the "mirroring" technique and
 yielding a lookup table for SCTP CRC32c with 256 entries, each 32
 bits wide.

3.10.3. Solution Description

 Text moved to the appropriate location.

3.11. partial_bytes_acked after T3-rtx Expiration

3.11.1. Description of the Problem

Section 7.2.3 of [RFC4960] explicitly states that partial_bytes_acked
 should be reset to 0 after packet loss detection from SACK but the
 same is missed for T3-rtx timer expiration.

3.11.2. Text Changes to the Document

 Old text: (Section 7.2.3)

 When the T3-rtx timer expires on an address, SCTP should perform slow
 start by:

 ssthresh = max(cwnd/2, 4*MTU)
 cwnd = 1*MTU

 New text: (Section 7.2.3)

 When the T3-rtx timer expires on an address, SCTP SHOULD perform slow
 start by:

 ssthresh = max(cwnd/2, 4*MTU)
 cwnd = 1*MTU
 partial_bytes_acked = 0

3.11.3. Solution Description

 Specify that partial_bytes_acked should be reset to 0 after T3-rtx
 timer expiration.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.3

Stewart, et al. Expires January 17, 2019 [Page 20]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.12. Order of Adjustments of partial_bytes_acked and cwnd

3.12.1. Description of the Problem

Section 7.2.2 of [RFC4960] likely implies the wrong order of
 adjustments applied to partial_bytes_acked and cwnd in the congestion
 avoidance phase.

3.12.2. Text Changes to the Document

 Old text: (Section 7.2.2)

 o When partial_bytes_acked is equal to or greater than cwnd and
 before the arrival of the SACK the sender had cwnd or more bytes
 of data outstanding (i.e., before arrival of the SACK, flightsize
 was greater than or equal to cwnd), increase cwnd by MTU, and
 reset partial_bytes_acked to (partial_bytes_acked - cwnd).

 New text: (Section 7.2.2)

 o When partial_bytes_acked is equal to or greater than cwnd and
 before the arrival of the SACK the sender had cwnd or more bytes
 of data outstanding (i.e., before arrival of the SACK, flightsize
 was greater than or equal to cwnd), partial_bytes_acked is reset
 to (partial_bytes_acked - cwnd). Next, cwnd is increased by 1*MTU.

3.12.3. Solution Description

 The new text defines the exact order of adjustments of
 partial_bytes_acked and cwnd in the congestion avoidance phase.

3.13. HEARTBEAT ACK and the association error counter

3.13.1. Description of the Problem

Section 8.1 and Section 8.3 of [RFC4960] prescribe that the receiver
 of a HEARTBEAT ACK must reset the association overall error counter.
 In some circumstances, e.g. when a router discards DATA chunks but
 not HEARTBEAT chunks due to the larger size of the DATA chunk, it
 might be better to not clear the association error counter on
 reception of the HEARTBEAT ACK and reset it only on reception of the
 SACK to avoid stalling the association.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.2
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3

Stewart, et al. Expires January 17, 2019 [Page 21]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.13.2. Text Changes to the Document

 Old text: (Section 8.1)

 The counter shall be reset each time a DATA chunk sent to that peer
 endpoint is acknowledged (by the reception of a SACK) or a HEARTBEAT
 ACK is received from the peer endpoint.

 New text: (Section 8.1)

 The counter MUST be reset each time a DATA chunk sent to that peer
 endpoint is acknowledged (by the reception of a SACK). When a
 HEARTBEAT ACK is received from the peer endpoint, the counter SHOULD
 also be reset. The receiver of the HEARTBEAT ACK MAY choose not to
 clear the counter if there is outstanding data on the association.
 This allows for handling the possible difference in reachability
 based on DATA chunks and HEARTBEAT chunks.

 Old text: (Section 8.3)

 Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
 should clear the error counter of the destination transport address
 to which the HEARTBEAT was sent, and mark the destination transport
 address as active if it is not so marked. The endpoint may
 optionally report to the upper layer when an inactive destination
 address is marked as active due to the reception of the latest
 HEARTBEAT ACK. The receiver of the HEARTBEAT ACK must also clear the
 association overall error count as well (as defined in Section 8.1).

 New text: (Section 8.3)

 Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
 MUST clear the error counter of the destination transport address
 to which the HEARTBEAT was sent, and mark the destination transport
 address as active if it is not so marked. The endpoint MAY
 optionally report to the upper layer when an inactive destination
 address is marked as active due to the reception of the latest
 HEARTBEAT ACK. The receiver of the HEARTBEAT ACK SHOULD also clear
 the association overall error counter (as defined in Section 8.1).

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 22]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.13.3. Solution Description

 The new text provides a possibility to not reset the association
 overall error counter when a HEARTBEAT ACK is received if there are
 valid reasons for it.

3.14. Path for Fast Retransmission

3.14.1. Description of the Problem

 [RFC4960] clearly describes where to retransmit data that is timed
 out when the peer is multi-homed but the same is not stated for fast
 retransmissions.

3.14.2. Text Changes to the Document

 Old text: (Section 6.4)

 Furthermore, when its peer is multi-homed, an endpoint SHOULD try to
 retransmit a chunk that timed out to an active destination transport
 address that is different from the last destination address to which
 the DATA chunk was sent.

 New text: (Section 6.4)

 Furthermore, when its peer is multi-homed, an endpoint SHOULD try to
 retransmit a chunk that timed out to an active destination transport
 address that is different from the last destination address to which
 the DATA chunk was sent.

 When its peer is multi-homed, an endpoint SHOULD send fast
 retransmissions to the same destination transport address where the
 original data was sent to. If the primary path has been changed and the
 original data was sent to the old primary path before the fast
 retransmit, the implementation MAY send it to the new primary path.

3.14.3. Solution Description

 The new text clarifies where to send fast retransmissions.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 23]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.15. Transmittal in Fast Recovery

3.15.1. Description of the Problem

 The Fast Retransmit on Gap Reports algorithm intends that only the
 very first packet may be sent regardless of cwnd in the Fast Recovery
 phase but rule 3) of [RFC4960], Section 7.2.4, misses this
 clarification.

3.15.2. Text Changes to the Document

 Old text: (Section 7.2.4)

 3) Determine how many of the earliest (i.e., lowest TSN) DATA chunks
 marked for retransmission will fit into a single packet, subject
 to constraint of the path MTU of the destination transport
 address to which the packet is being sent. Call this value K.
 Retransmit those K DATA chunks in a single packet. When a Fast
 Retransmit is being performed, the sender SHOULD ignore the value
 of cwnd and SHOULD NOT delay retransmission for this single
 packet.

 New text: (Section 7.2.4)

 3) If not in Fast Recovery, determine how many of the earliest
 (i.e., lowest TSN) DATA chunks marked for retransmission will fit
 into a single packet, subject to constraint of the PMTU of
 the destination transport address to which the packet is being
 sent. Call this value K. Retransmit those K DATA chunks in a
 single packet. When a Fast Retransmit is being performed, the
 sender SHOULD ignore the value of cwnd and SHOULD NOT delay
 retransmission for this single packet.

3.15.3. Solution Description

 The new text explicitly specifies to send only the first packet in
 the Fast Recovery phase disregarding cwnd limitations.

3.16. Initial Value of ssthresh

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.4

Stewart, et al. Expires January 17, 2019 [Page 24]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.16.1. Description of the Problem

 The initial value of ssthresh should be set arbitrarily high. Using
 the advertised receiver window of the peer is inappropriate if the
 peer increases its window after the handshake. Furthermore, use a
 higher requirements level, since not following the advice may result
 in performance problems.

3.16.2. Text Changes to the Document

 Old text: (Section 7.2.1)

 o The initial value of ssthresh MAY be arbitrarily high (for
 example, implementations MAY use the size of the receiver
 advertised window).

 New text: (Section 7.2.1)

 o The initial value of ssthresh SHOULD be arbitrarily high (e.g.,
 the size of the largest possible advertised window).

3.16.3. Solution Description

 Use the same value as suggested in [RFC5681], Section 3.1, as an
 appropriate initial value. Furthermore, use the same requirements
 level.

3.17. Automatically Confirmed Addresses

3.17.1. Description of the Problem

 The Path Verification procedure of [RFC4960] prescribes that any
 address passed to the sender of the INIT by its upper layer is
 automatically CONFIRMED. This, however, is unclear if only addresses
 in the request to initiate association establishment are considered
 or any addresses provided by the upper layer in any requests (e.g. in
 'Set Primary').

3.17.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5681#section-3.1
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 25]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 5.4)

 1) Any address passed to the sender of the INIT by its upper layer
 is automatically considered to be CONFIRMED.

 New text: (Section 5.4)

 1) Any addresses passed to the sender of the INIT by its upper
 layer in the request to initialize an association are
 automatically considered to be CONFIRMED.

3.17.3. Solution Description

 The new text clarifies that only addresses provided by the upper
 layer in the request to initialize an association are automatically
 confirmed.

3.18. Only One Packet after Retransmission Timeout

3.18.1. Description of the Problem

 [RFC4960] is not completely clear when it describes data transmission
 after T3-rtx timer expiration. Section 7.2.1 does not specify how
 many packets are allowed to be sent after T3-rtx timer expiration if
 more than one packet fit into cwnd. At the same time, Section 7.2.3
 has the text without normative language saying that SCTP should
 ensure that no more than one packet will be in flight after T3-rtx
 timer expiration until successful acknowledgment. It makes the text
 inconsistent.

3.18.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 26]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 7.2.1)

 o The initial cwnd after a retransmission timeout MUST be no more
 than 1*MTU.

 New text: (Section 7.2.1)

 o The initial cwnd after a retransmission timeout MUST be no more
 than 1*MTU and only one packet is allowed to be in flight
 until successful acknowledgement.

3.18.3. Solution Description

 The new text clearly specifies that only one packet is allowed to be
 sent after T3-rtx timer expiration until successful acknowledgement.

3.19. INIT ACK Path for INIT in COOKIE-WAIT State

3.19.1. Description of the Problem

 In case of an INIT received in the COOKIE-WAIT state [RFC4960]
 prescribes to send an INIT ACK to the same destination address to
 which the original INIT has been sent. This text does not address
 the possibility of the upper layer to provide multiple remote IP
 addresses while requesting the association establishment. If the
 upper layer has provided multiple IP addresses and only a subset of
 these addresses are supported by the peer then the destination
 address of the original INIT may be absent in the incoming INIT and
 sending INIT ACK to that address is useless.

3.19.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 27]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 5.2.1)

 Upon receipt of an INIT in the COOKIE-WAIT state, an endpoint MUST
 respond with an INIT ACK using the same parameters it sent in its
 original INIT chunk (including its Initiate Tag, unchanged). When
 responding, the endpoint MUST send the INIT ACK back to the same
 address that the original INIT (sent by this endpoint) was sent.

 New text: (Section 5.2.1)

 Upon receipt of an INIT in the COOKIE-WAIT state, an endpoint MUST
 respond with an INIT ACK using the same parameters it sent in its
 original INIT chunk (including its Initiate Tag, unchanged). When
 responding, the following rules MUST be applied:

 1) The INIT ACK MUST only be sent to an address passed by the upper
 layer in the request to initialize the association.

 2) The INIT ACK MUST only be sent to an address reported in the
 incoming INIT.

 3) The INIT ACK SHOULD be sent to the source address of the
 received INIT.

3.19.3. Solution Description

 The new text requires sending INIT ACK to a destination address that
 is passed by the upper layer and reported in the incoming INIT. If
 the source address of the INIT meets these conditions, sending the
 INIT ACK to the source address of the INIT is the preferred behavior.

3.20. Zero Window Probing and Unreachable Primary Path

3.20.1. Description of the Problem

Section 6.1 of [RFC4960] states that when sending zero window probes,
 SCTP should neither increment the association counter nor increment
 the destination address error counter if it continues to receive new
 packets from the peer. However, the reception of new packets from
 the peer does not guarantee the peer's reachability and, if the
 destination address becomes unreachable during zero window probing,
 SCTP cannot get an updated rwnd until it switches the destination
 address for probes.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-6.1

Stewart, et al. Expires January 17, 2019 [Page 28]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.20.2. Text Changes to the Document

 Old text: (Section 6.1)

 If the sender continues to receive new packets from the receiver
 while doing zero window probing, the unacknowledged window probes
 should not increment the error counter for the association or any
 destination transport address. This is because the receiver MAY
 keep its window closed for an indefinite time. Refer to Section

6.2 on the receiver behavior when it advertises a zero window.

 New text: (Section 6.1)

 If the sender continues to receive SACKs from the peer
 while doing zero window probing, the unacknowledged window probes
 SHOULD NOT increment the error counter for the association or any
 destination transport address. This is because the receiver could
 keep its window closed for an indefinite time. Section 6.2 describes
 the receiver behavior when it advertises a zero window.

3.20.3. Solution Description

 The new text clarifies that if the receiver continues to send SACKs,
 the sender of probes should not increment the error counter of the
 association and the destination address even if the SACKs do not
 acknowledge the probes.

3.21. Normative Language in Section 10

3.21.1. Description of the Problem

Section 10 of [RFC4960] is informative and, therefore, normative
 language such as MUST and MAY cannot be used there. However, there
 are several places in Section 10 where MUST and MAY are used.

3.21.2. Text Changes to the Document

 Old text: (Section 10.1)

 E) Send

 Format: SEND(association id, buffer address, byte count [,context]

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-10

Stewart, et al. Expires January 17, 2019 [Page 29]

Internet-Draft RFC 4960 Errata and Issues July 2018

 [,stream id] [,life time] [,destination transport address]
 [,unordered flag] [,no-bundle flag] [,payload protocol-id])
 -> result

 ...

 o no-bundle flag - instructs SCTP not to bundle this user data with
 other outbound DATA chunks. SCTP MAY still bundle even when this
 flag is present, when faced with network congestion.

 New text: (Section 10.1)

 E) Send

 Format: SEND(association id, buffer address, byte count [,context]
 [,stream id] [,life time] [,destination transport address]
 [,unordered flag] [,no-bundle flag] [,payload protocol-id])
 -> result

 ...

 o no-bundle flag - instructs SCTP not to bundle this user data with
 other outbound DATA chunks. SCTP may still bundle even when this
 flag is present, when faced with network congestion.

 Old text: (Section 10.1)

 G) Receive

 Format: RECEIVE(association id, buffer address, buffer size
 [,stream id])
 -> byte count [,transport address] [,stream id] [,stream sequence
 number] [,partial flag] [,delivery number] [,payload protocol-id]

 ...

 o Stream Sequence Number - the Stream Sequence Number assigned by
 the sending SCTP peer.

 o partial flag - if this returned flag is set to 1, then this
 Receive contains a partial delivery of the whole message. When
 this flag is set, the stream id and Stream Sequence Number MUST
 accompany this receive. When this flag is set to 0, it indicates
 that no more deliveries will be received for this Stream Sequence

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 30]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Number.

 New text: (Section 10.1)

 G) Receive

 Format: RECEIVE(association id, buffer address, buffer size
 [,stream id])
 -> byte count [,transport address] [,stream id] [,stream sequence
 number] [,partial flag] [,delivery number] [,payload protocol-id]

 ...

 o stream sequence number - the Stream Sequence Number assigned by
 the sending SCTP peer.

 o partial flag - if this returned flag is set to 1, then this
 primitive contains a partial delivery of the whole message. When
 this flag is set, the stream id and stream sequence number must
 accompany this primitive. When this flag is set to 0, it indicates
 that no more deliveries will be received for this stream sequence
 number.

 Old text: (Section 10.1)

 N) Receive Unsent Message

 Format: RECEIVE_UNSENT(data retrieval id, buffer address, buffer
 size [,stream id] [, stream sequence number] [,partial
 flag] [,payload protocol-id])

 ...

 o Stream Sequence Number - this value is returned indicating the
 Stream Sequence Number that was associated with the message.

 o partial flag - if this returned flag is set to 1, then this
 message is a partial delivery of the whole message. When this
 flag is set, the stream id and Stream Sequence Number MUST
 accompany this receive. When this flag is set to 0, it indicates
 that no more deliveries will be received for this Stream Sequence
 Number.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 31]

Internet-Draft RFC 4960 Errata and Issues July 2018

 New text: (Section 10.1)

 N) Receive Unsent Message

 Format: RECEIVE_UNSENT(data retrieval id, buffer address, buffer
 size [,stream id] [, stream sequence number] [,partial
 flag] [,payload protocol-id])

 ...

 o stream sequence number - this value is returned indicating the
 Stream Sequence Number that was associated with the message.

 o partial flag - if this returned flag is set to 1, then this
 message is a partial delivery of the whole message. When this
 flag is set, the stream id and stream sequence number must
 accompany this primitive. When this flag is set to 0, it indicates
 that no more deliveries will be received for this stream sequence
 number.

 Old text: (Section 10.1)

 O) Receive Unacknowledged Message

 Format: RECEIVE_UNACKED(data retrieval id, buffer address, buffer
 size [,stream id] [,stream sequence number] [,partial
 flag] [,payload protocol-id])

 ...

 o Stream Sequence Number - this value is returned indicating the
 Stream Sequence Number that was associated with the message.

 o partial flag - if this returned flag is set to 1, then this
 message is a partial delivery of the whole message. When this
 flag is set, the stream id and Stream Sequence Number MUST
 accompany this receive. When this flag is set to 0, it indicates
 that no more deliveries will be received for this Stream Sequence
 Number.

 New text: (Section 10.1)

 O) Receive Unacknowledged Message

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 32]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Format: RECEIVE_UNACKED(data retrieval id, buffer address, buffer
 size [,stream id] [,stream sequence number] [,partial
 flag] [,payload protocol-id])

 ...

 o stream sequence number - this value is returned indicating the
 Stream Sequence Number that was associated with the message.

 o partial flag - if this returned flag is set to 1, then this
 message is a partial delivery of the whole message. When this
 flag is set, the stream id and stream sequence number must
 accompany this primitive. When this flag is set to 0, it indicates
 that no more deliveries will be received for this stream sequence
 number.

3.21.3. Solution Description

 The normative language is removed from Section 10. In addition, the
 consistency of the text has been improved.

3.22. Increase of partial_bytes_acked in Congestion Avoidance

3.22.1. Description of the Problem

 Two issues have been discovered with the partial_bytes_acked handling
 described in Section 7.2.2 of [RFC4960]:

 o If the Cumulative TSN Ack Point is not advanced but the SACK chunk
 acknowledges new TSNs in the Gap Ack Blocks, these newly
 acknowledged TSNs are not considered for partial_bytes_acked
 although these TSNs were successfully received by the peer.
 o Duplicate TSNs are not considered in partial_bytes_acked although
 they confirm that the DATA chunks were successfully received by
 the peer.

3.22.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.2

Stewart, et al. Expires January 17, 2019 [Page 33]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 7.2.2)

 o Whenever cwnd is greater than ssthresh, upon each SACK arrival
 that advances the Cumulative TSN Ack Point, increase
 partial_bytes_acked by the total number of bytes of all new chunks
 acknowledged in that SACK including chunks acknowledged by the new
 Cumulative TSN Ack and by Gap Ack Blocks.

 New text: (Section 7.2.2)

 o Whenever cwnd is greater than ssthresh, upon each SACK arrival,
 increase partial_bytes_acked by the total number of bytes of all
 new chunks acknowledged in that SACK including chunks acknowledged
 by the new Cumulative TSN Ack, by Gap Ack Blocks and by the number
 of bytes of duplicated chunks reported in Duplicate TSNs.

3.22.3. Solution Description

 Now partial_bytes_acked is increased by TSNs reported as duplicated
 as well as TSNs newly acknowledged in Gap Ack Blocks even if the
 Cumulative TSN Ack Point is not advanced.

3.23. Inconsistency in Notifications Handling

3.23.1. Description of the Problem

 [RFC4960] uses inconsistent normative and non-normative language when
 describing rules for sending notifications to the upper layer. E.g.

Section 8.2 of [RFC4960] says that when a destination address becomes
 inactive due to an unacknowledged DATA chunk or HEARTBEAT chunk, SCTP
 SHOULD send a notification to the upper layer while Section 8.3 of
 [RFC4960] says that when a destination address becomes inactive due
 to an unacknowledged HEARTBEAT chunk, SCTP may send a notification to
 the upper layer.

 This makes the text inconsistent.

3.23.2. Text Changes to the Document

 The following change is based on the change described in Section 3.6.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-8.2
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3

Stewart, et al. Expires January 17, 2019 [Page 34]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 8.1)

 An endpoint shall keep a counter on the total number of consecutive
 retransmissions to its peer (this includes data retransmissions
 to all the destination transport addresses of the peer if it is
 multi-homed), including the number of unacknowledged HEARTBEAT
 chunks observed on the path which currently is used for data
 transfer. Unacknowledged HEARTBEAT chunks observed on paths
 different from the path currently used for data transfer shall
 not increment the association error counter, as this could lead
 to association closure even if the path which currently is used for
 data transfer is available (but idle). If the value of this
 counter exceeds the limit indicated in the protocol parameter
 'Association.Max.Retrans', the endpoint shall consider the peer
 endpoint unreachable and shall stop transmitting any more data to it
 (and thus the association enters the CLOSED state). In addition, the
 endpoint MAY report the failure to the upper layer and optionally
 report back all outstanding user data remaining in its outbound
 queue. The association is automatically closed when the peer
 endpoint becomes unreachable.

 New text: (Section 8.1)

 An endpoint SHOULD keep a counter on the total number of consecutive
 retransmissions to its peer (this includes data retransmissions
 to all the destination transport addresses of the peer if it is
 multi-homed), including the number of unacknowledged HEARTBEAT
 chunks observed on the path which currently is used for data
 transfer. Unacknowledged HEARTBEAT chunks observed on paths
 different from the path currently used for data transfer SHOULD
 NOT increment the association error counter, as this could lead
 to association closure even if the path which currently is used for
 data transfer is available (but idle). If the value of this
 counter exceeds the limit indicated in the protocol parameter
 'Association.Max.Retrans', the endpoint SHOULD consider the peer
 endpoint unreachable and SHALL stop transmitting any more data to it
 (and thus the association enters the CLOSED state). In addition, the
 endpoint SHOULD report the failure to the upper layer and optionally
 report back all outstanding user data remaining in its outbound
 queue. The association is automatically closed when the peer
 endpoint becomes unreachable.

 The following changes are based on [RFC4960].

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 35]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 8.2)

 When an outstanding TSN is acknowledged or a HEARTBEAT sent to that
 address is acknowledged with a HEARTBEAT ACK, the endpoint shall
 clear the error counter of the destination transport address to which
 the DATA chunk was last sent (or HEARTBEAT was sent). When the peer
 endpoint is multi-homed and the last chunk sent to it was a
 retransmission to an alternate address, there exists an ambiguity as
 to whether or not the acknowledgement should be credited to the
 address of the last chunk sent. However, this ambiguity does not
 seem to bear any significant consequence to SCTP behavior. If this
 ambiguity is undesirable, the transmitter may choose not to clear the
 error counter if the last chunk sent was a retransmission.

 New text: (Section 8.2)

 When an outstanding TSN is acknowledged or a HEARTBEAT sent to that
 address is acknowledged with a HEARTBEAT ACK, the endpoint SHOULD
 clear the error counter of the destination transport address to which
 the DATA chunk was last sent (or HEARTBEAT was sent), and SHOULD
 also report to the upper layer when an inactive destination address
 is marked as active. When the peer endpoint is multi-homed and the
 last chunk sent to it was a retransmission to an alternate address,
 there exists an ambiguity as to whether or not the acknowledgement
 could be credited to the address of the last chunk sent. However,
 this ambiguity does not seem to bear any significant consequence to
 SCTP behavior. If this ambiguity is undesirable, the transmitter MAY
 choose not to clear the error counter if the last chunk sent was a
 retransmission.

 Old text: (Section 8.3)

 When the value of this counter reaches the protocol parameter
 'Path.Max.Retrans', the endpoint should mark the corresponding
 destination address as inactive if it is not so marked, and may also
 optionally report to the upper layer the change of reachability of
 this destination address. After this, the endpoint should continue
 HEARTBEAT on this destination address but should stop increasing the
 counter.

 New text: (Section 8.3)

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 36]

Internet-Draft RFC 4960 Errata and Issues July 2018

 When the value of this counter exceeds the protocol parameter
 'Path.Max.Retrans', the endpoint SHOULD mark the corresponding
 destination address as inactive if it is not so marked, and SHOULD
 also report to the upper layer the change of reachability of this
 destination address. After this, the endpoint SHOULD continue
 HEARTBEAT on this destination address but SHOULD stop increasing the
 counter.

 Old text: (Section 8.3)

 Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
 should clear the error counter of the destination transport address
 to which the HEARTBEAT was sent, and mark the destination transport
 address as active if it is not so marked. The endpoint may
 optionally report to the upper layer when an inactive destination
 address is marked as active due to the reception of the latest
 HEARTBEAT ACK. The receiver of the HEARTBEAT ACK must also clear the
 association overall error count as well (as defined in Section 8.1).

 New text: (Section 8.3)

 Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
 SHOULD clear the error counter of the destination transport address
 to which the HEARTBEAT was sent, and mark the destination transport
 address as active if it is not so marked. The endpoint SHOULD
 report to the upper layer when an inactive destination address
 is marked as active due to the reception of the latest
 HEARTBEAT ACK. The receiver of the HEARTBEAT ACK SHOULD also clear
 the association overall error counter (as defined in Section 8.1).

 Old text: (Section 9.2)

 An endpoint should limit the number of retransmissions of the
 SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'.
 If this threshold is exceeded, the endpoint should destroy the TCB
 and MUST report the peer endpoint unreachable to the upper layer (and
 thus the association enters the CLOSED state).

 New text: (Section 9.2)

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 37]

Internet-Draft RFC 4960 Errata and Issues July 2018

 An endpoint SHOULD limit the number of retransmissions of the
 SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'.
 If this threshold is exceeded, the endpoint SHOULD destroy the TCB
 and SHOULD report the peer endpoint unreachable to the upper layer
 (and thus the association enters the CLOSED state).

 Old text: (Section 9.2)

 The sender of the SHUTDOWN ACK should limit the number of
 retransmissions of the SHUTDOWN ACK chunk to the protocol parameter
 'Association.Max.Retrans'. If this threshold is exceeded, the
 endpoint should destroy the TCB and may report the peer endpoint
 unreachable to the upper layer (and thus the association enters the
 CLOSED state).

 New text: (Section 9.2)

 The sender of the SHUTDOWN ACK SHOULD limit the number of
 retransmissions of the SHUTDOWN ACK chunk to the protocol parameter
 'Association.Max.Retrans'. If this threshold is exceeded, the
 endpoint SHOULD destroy the TCB and SHOULD report the peer endpoint
 unreachable to the upper layer (and thus the association enters the
 CLOSED state).

3.23.3. Solution Description

 The inconsistencies are removed by using consistently SHOULD.

3.24. SACK.Delay Not Listed as a Protocol Parameter

3.24.1. Description of the Problem

 SCTP as specified in [RFC4960] supports delaying SACKs. The timer
 value for this is a parameter and Section 6.2 of [RFC4960] specifies
 a default and maximum value for it. However, defining a name for
 this parameter and listing it in the table of protocol parameters in

Section 15 of [RFC4960] is missing.

 This issue was reported as an Errata for [RFC4960] with Errata ID
 4656.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-6.2
https://datatracker.ietf.org/doc/html/rfc4960#section-15
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 38]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.24.2. Text Changes to the Document

 Old text: (Section 6.2)

 An implementation MUST NOT allow the maximum delay to be configured
 to be more than 500 ms. In other words, an implementation MAY lower
 this value below 500 ms but MUST NOT raise it above 500 ms.

 New text: (Section 6.2)

 An implementation MUST NOT allow the maximum delay (protocol
 parameter 'SACK.Delay') to be configured to be more than 500 ms.
 In other words, an implementation MAY lower the value of
 SACK.Delay below 500 ms but MUST NOT raise it above 500 ms.

 Old text: (Section 15)

 The following protocol parameters are RECOMMENDED:

 RTO.Initial - 3 seconds
 RTO.Min - 1 second
 RTO.Max - 60 seconds
 Max.Burst - 4
 RTO.Alpha - 1/8
 RTO.Beta - 1/4
 Valid.Cookie.Life - 60 seconds
 Association.Max.Retrans - 10 attempts
 Path.Max.Retrans - 5 attempts (per destination address)
 Max.Init.Retransmits - 8 attempts
 HB.interval - 30 seconds
 HB.Max.Burst - 1

 New text: (Section 15)

 The following protocol parameters are RECOMMENDED:

 RTO.Initial - 3 seconds
 RTO.Min - 1 second
 RTO.Max - 60 seconds
 Max.Burst - 4

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 39]

Internet-Draft RFC 4960 Errata and Issues July 2018

 RTO.Alpha - 1/8
 RTO.Beta - 1/4
 Valid.Cookie.Life - 60 seconds
 Association.Max.Retrans - 10 attempts
 Path.Max.Retrans - 5 attempts (per destination address)
 Max.Init.Retransmits - 8 attempts
 HB.interval - 30 seconds
 HB.Max.Burst - 1
 SACK.Delay - 200 milliseconds

3.24.3. Solution Description

 The parameter was given a name and added to the list of protocol
 parameters.

3.25. Processing of Chunks in an Incoming SCTP Packet

3.25.1. Description of the Problem

 There are a few places in [RFC4960] where the receiver of a packet
 must discard it while processing the chunks of the packet. It is
 unclear whether the receiver has to rollback state changes already
 performed while processing the packet or not.

 The intention of [RFC4960] is to process an incoming packet chunk by
 chunk and not to perform any prescreening of chunks in the received
 packet. Thus, by discarding one chunk the receiver also causes
 discarding of all further chunks.

3.25.2. Text Changes to the Document

 Old text: (Section 3.2)

 00 - Stop processing this SCTP packet and discard it, do not
 process any further chunks within it.

 01 - Stop processing this SCTP packet and discard it, do not
 process any further chunks within it, and report the
 unrecognized chunk in an 'Unrecognized Chunk Type'.

 New text: (Section 3.2)

 00 - Stop processing this SCTP packet, discard the unrecognized
 chunk and all further chunks.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 40]

Internet-Draft RFC 4960 Errata and Issues July 2018

 01 - Stop processing this SCTP packet, discard the unrecognized
 chunk and all further chunks, and report the unrecognized
 chunk in an 'Unrecognized Chunk Type'.

 Old text: (Section 11.3)

 It is helpful for some firewalls if they can inspect just the first
 fragment of a fragmented SCTP packet and unambiguously determine
 whether it corresponds to an INIT chunk (for further information,
 please refer to [RFC1858]). Accordingly, we stress the requirements,
 stated in Section 3.1, that (1) an INIT chunk MUST NOT be bundled
 with any other chunk in a packet, and (2) a packet containing an INIT
 chunk MUST have a zero Verification Tag. Furthermore, we require
 that the receiver of an INIT chunk MUST enforce these rules by
 silently discarding an arriving packet with an INIT chunk that is
 bundled with other chunks or has a non-zero verification tag and
 contains an INIT-chunk.

 New text: (Section 11.3)

 It is helpful for some firewalls if they can inspect just the first
 fragment of a fragmented SCTP packet and unambiguously determine
 whether it corresponds to an INIT chunk (for further information,
 please refer to [RFC1858]). Accordingly, we stress the requirements,
 stated in Section 3.1, that (1) an INIT chunk MUST NOT be bundled
 with any other chunk in a packet, and (2) a packet containing an INIT
 chunk MUST have a zero Verification Tag.
 The receiver of an INIT chunk MUST silently discard the INIT chunk and
 all further chunks if the INIT chunk is bundled with other chunks or
 the packet has a non-zero verification tag.

3.25.3. Solution Description

 The new text makes it clear that chunks can be processed from the
 beginning to the end and no rollback or pre-screening is required.

3.26. CWND Increase in Congestion Avoidance Phase

3.26.1. Description of the Problem

 [RFC4960] in Section 7.2.2 prescribes to increase cwnd by 1*MTU per
 RTT if the sender has cwnd or more bytes of data outstanding to the
 corresponding address in the Congestion Avoidance phase. However,
 this is described without normative language. Moreover,

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc1858

Stewart, et al. Expires January 17, 2019 [Page 41]

Internet-Draft RFC 4960 Errata and Issues July 2018

Section 7.2.2 includes an algorithm how an implementation can achieve
 this but this algorithm is underspecified and actually allows
 increasing cwnd by more than 1*MTU per RTT.

3.26.2. Text Changes to the Document

 Old text: (Section 7.2.2)

 When cwnd is greater than ssthresh, cwnd should be incremented by
 1*MTU per RTT if the sender has cwnd or more bytes of data
 outstanding for the corresponding transport address.

 New text: (Section 7.2.2)

 When cwnd is greater than ssthresh, cwnd SHOULD be incremented by
 1*MTU per RTT if the sender has cwnd or more bytes of data
 outstanding for the corresponding transport address. The basic
 guidelines for incrementing cwnd during congestion avoidance are:

 o SCTP MAY increment cwnd by 1*MTU.

 o SCTP SHOULD increment cwnd by one 1*MTU once per RTT when
 the sender has cwnd or more bytes of data outstanding for
 the corresponding transport address.

 o SCTP MUST NOT increment cwnd by more than 1*MTU per RTT.

 Old text: (Section 7.2.2)

 o Whenever cwnd is greater than ssthresh, upon each SACK arrival
 that advances the Cumulative TSN Ack Point, increase
 partial_bytes_acked by the total number of bytes of all new chunks
 acknowledged in that SACK including chunks acknowledged by the new
 Cumulative TSN Ack and by Gap Ack Blocks.

 o When partial_bytes_acked is equal to or greater than cwnd and
 before the arrival of the SACK the sender had cwnd or more bytes
 of data outstanding (i.e., before arrival of the SACK, flightsize
 was greater than or equal to cwnd), increase cwnd by MTU, and
 reset partial_bytes_acked to (partial_bytes_acked - cwnd).

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 42]

Internet-Draft RFC 4960 Errata and Issues July 2018

 New text: (Section 7.2.2)

 o Whenever cwnd is greater than ssthresh, upon each SACK arrival,
 increase partial_bytes_acked by the total number of bytes of all
 new chunks acknowledged in that SACK including chunks acknowledged
 by the new Cumulative TSN Ack, by Gap Ack Blocks and by the number
 of bytes of duplicated chunks reported in Duplicate TSNs.

 o When partial_bytes_acked is greater than cwnd and before the
 arrival of the SACK the sender had less than cwnd bytes of data
 outstanding (i.e., before arrival of the SACK, flightsize was less
 than cwnd), reset partial_bytes_acked to cwnd.

 o When partial_bytes_acked is equal to or greater than cwnd and
 before the arrival of the SACK the sender had cwnd or more bytes
 of data outstanding (i.e., before arrival of the SACK, flightsize
 was greater than or equal to cwnd), partial_bytes_acked is reset
 to (partial_bytes_acked - cwnd). Next, cwnd is increased by 1*MTU.

3.26.3. Solution Description

 The basic guidelines for incrementing cwnd during the congestion
 avoidance phase are added into Section 7.2.2. The guidelines include
 the normative language and are aligned with [RFC5681].

 The algorithm from Section 7.2.2 is improved to not allow increasing
 cwnd by more than 1*MTU per RTT.

3.27. Refresh of cwnd and ssthresh after Idle Period

3.27.1. Description of the Problem

 [RFC4960] prescribes to adjust cwnd per RTO if the endpoint does not
 transmit data on a given transport address. In addition to that, it
 prescribes to set cwnd to the initial value after a sufficiently long
 idle period. The latter is excessive. Moreover, it is unclear what
 is a sufficiently long idle period.

 [RFC4960] doesn't specify the handling of ssthresh in the idle case.
 If ssthresh is reduced due to a packet loss, ssthresh is never
 recovered. So traffic can end up in Congestion Avoidance all the
 time, resulting in a low sending rate and bad performance. The
 problem is even more serious for SCTP because in a multi-homed SCTP
 association traffic that switches back to the previously failed
 primary path will also lead to the situation where traffic ends up in
 Congestion Avoidance.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5681

Stewart, et al. Expires January 17, 2019 [Page 43]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.27.2. Text Changes to the Document

 Old text: (Section 7.2.1)

 o The initial cwnd before DATA transmission or after a sufficiently
 long idle period MUST be set to min(4*MTU, max (2*MTU, 4380
 bytes)).

 New text: (Section 7.2.1)

 o The initial cwnd before DATA transmission MUST be set to
 min(4*MTU, max (2*MTU, 4380 bytes)).

 Old text: (Section 7.2.1)

 o When the endpoint does not transmit data on a given transport
 address, the cwnd of the transport address should be adjusted to
 max(cwnd/2, 4*MTU) per RTO.

 New text: (Section 7.2.1)

 o While the endpoint does not transmit data on a given transport
 address, the cwnd of the transport address SHOULD be adjusted to
 max(cwnd/2, 4*MTU) once per RTO. Before the first cwnd adjustment,
 the ssthresh of the transport address SHOULD be set to the cwnd.

3.27.3. Solution Description

 A rule about cwnd adjustment after a sufficiently long idle period is
 removed.

 The text is updated to describe the ssthresh handling. When the idle
 period is detected, the cwnd value is stored to the ssthresh value.

3.28. Window Updates After Receiver Window Opens Up

3.28.1. Description of the Problem

 The sending of SACK chunks for window updates is only indirectly
 referenced in [RFC4960], Section 6.2, where it is stated that an SCTP

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-6.2

Stewart, et al. Expires January 17, 2019 [Page 44]

Internet-Draft RFC 4960 Errata and Issues July 2018

 receiver must not generate more than one SACK for every incoming
 packet, other than to update the offered window.

 However, the sending of window updates when the receiver window opens
 up is necessary to avoid performance problems.

3.28.2. Text Changes to the Document

 Old text: (Section 6.2)

 An SCTP receiver MUST NOT generate more than one SACK for every
 incoming packet, other than to update the offered window as the
 receiving application consumes new data.

 New text: (Section 6.2)

 An SCTP receiver MUST NOT generate more than one SACK for every
 incoming packet, other than to update the offered window as the
 receiving application consumes new data. When the window opens
 up, an SCTP receiver SHOULD send additional SACK chunks to update
 the window even if no new data is received.
 The receiver MUST avoid sending a large number of window updates,
 in particular large bursts of them.
 One way to achieve this is to send a window update only if the
 window can be increased by at least a quarter of the receive
 buffer size.

3.28.3. Solution Description

 The new text makes clear that additional SACK chunks for window
 updates should be sent as long as excessive bursts are avoided.

3.29. Path of DATA and Reply Chunks

3.29.1. Description of the Problem

Section 6.4 of [RFC4960] describes the transmission policy for multi-
 homed SCTP endpoints. However, there are the following issues with
 it:

 o It states that a SACK should be sent to the source address of an
 incoming DATA. However, it is known that other SACK policies
 (e.g. sending SACKs always to the primary path) may be more
 beneficial in some situations.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-6.4

Stewart, et al. Expires January 17, 2019 [Page 45]

Internet-Draft RFC 4960 Errata and Issues July 2018

 o Initially it states that an endpoint should always transmit DATA
 chunks to the primary path. Then it states that the rule for
 transmittal of reply chunks should also be followed if the
 endpoint is bundling DATA chunks together with the reply chunk
 which contradicts with the first statement to always transmit DATA
 chunks to the primary path. Some implementations were having
 problems with it and sent DATA chunks bundled with reply chunks to
 a different destination address than the primary path that caused
 many gaps.

3.29.2. Text Changes to the Document

Old text: (Section 6.4)

An endpoint SHOULD transmit reply chunks (e.g., SACK, HEARTBEAT ACK,
etc.) to the same destination transport address from which it
received the DATA or control chunk to which it is replying. This
rule should also be followed if the endpoint is bundling DATA chunks
together with the reply chunk.

However, when acknowledging multiple DATA chunks received in packets
from different source addresses in a single SACK, the SACK chunk may
be transmitted to one of the destination transport addresses from
which the DATA or control chunks being acknowledged were received.

New text: (Section 6.4)

An endpoint SHOULD transmit reply chunks (e.g., INIT ACK, COOKIE ACK,
HEARTBEAT ACK, etc.) in response to control chunks to the same
destination transport address from which it received the control
chunk to which it is replying.

The selection of the destination transport address for packets
containing SACK chunks is implementation dependent. However, an endpoint
SHOULD NOT vary the destination transport address of a SACK when it
receives DATA chunks coming from the same source address.

When acknowledging multiple DATA chunks received in packets
from different source addresses in a single SACK, the SACK chunk MAY
be transmitted to one of the destination transport addresses from
which the DATA or control chunks being acknowledged were received.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 46]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.29.3. Solution Description

 The SACK transmission policy is left implementation dependent but it
 is specified to not vary the destination address of a packet
 containing a SACK chunk unless there are reasons for it as it may
 negatively impact RTT measurement.

 A confusing statement that prescribes to follow the rule for
 transmittal of reply chunks when the endpoint is bundling DATA chunks
 together with the reply chunk is removed.

3.30. Outstanding Data, Flightsize and Data In Flight Key Terms

3.30.1. Description of the Problem

 [RFC4960] uses outstanding data, flightsize and data in flight key
 terms in formulas and statements but their definitions are not
 provided in Section 1.3. Furthermore, outstanding data does not
 include DATA chunks which are classified as lost but which have not
 been retransmitted yet and there is a paragraph in Section 6.1 of
 [RFC4960] where this statement is broken.

3.30.2. Text Changes to the Document

 Old text: (Section 1.3)

 o Congestion window (cwnd): An SCTP variable that limits the data,
 in number of bytes, a sender can send to a particular destination
 transport address before receiving an acknowledgement.

 ...

 o Outstanding TSN (at an SCTP endpoint): A TSN (and the associated
 DATA chunk) that has been sent by the endpoint but for which it
 has not yet received an acknowledgement.

 New text: (Section 1.3)

 o Outstanding TSN (at an SCTP endpoint): A TSN (and the associated
 DATA chunk) that has been sent by the endpoint but for which it
 has not yet received an acknowledgement.

 o Outstanding data (or Data outstanding or Data in flight): The
 total amount of the DATA chunks associated with outstanding TSNs.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-6.1
https://datatracker.ietf.org/doc/html/rfc4960#section-6.1

Stewart, et al. Expires January 17, 2019 [Page 47]

Internet-Draft RFC 4960 Errata and Issues July 2018

 A retransmitted DATA chunk is counted once in outstanding data.
 A DATA chunk which is classified as lost but which has not been
 retransmitted yet is not in outstanding data.

 o Flightsize: The amount of bytes of outstanding data to a
 particular destination transport address at any given time.

 o Congestion window (cwnd): An SCTP variable that limits outstanding
 data, in number of bytes, a sender can send to a particular
 destination transport address before receiving an acknowledgement.

 Old text: (Section 6.1)

 C) When the time comes for the sender to transmit, before sending new
 DATA chunks, the sender MUST first transmit any outstanding DATA
 chunks that are marked for retransmission (limited by the current
 cwnd).

 New text: (Section 6.1)

 C) When the time comes for the sender to transmit, before sending new
 DATA chunks, the sender MUST first transmit any DATA chunks that
 are marked for retransmission (limited by the current cwnd).

3.30.3. Solution Description

 Now Section 1.3, Key Terms, includes explanations of outstanding
 data, data in flight and flightsize key terms. Section 6.1 is
 corrected to properly use the outstanding data term.

3.31. CWND Degradation due to Max.Burst

3.31.1. Description of the Problem

 Some implementations were experiencing a degradation of cwnd because
 of the Max.Burst limit. This was due to misinterpretation of the
 suggestion in [RFC4960], Section 6.1, on how to use the Max.Burst
 parameter when calculating the number of packets to transmit.

3.31.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-6.1

Stewart, et al. Expires January 17, 2019 [Page 48]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 6.1)

 D) When the time comes for the sender to transmit new DATA chunks,
 the protocol parameter Max.Burst SHOULD be used to limit the
 number of packets sent. The limit MAY be applied by adjusting
 cwnd as follows:

 if((flightsize + Max.Burst*MTU) < cwnd) cwnd = flightsize +
 Max.Burst*MTU

 Or it MAY be applied by strictly limiting the number of packets
 emitted by the output routine.

 New text: (Section 6.1)

 D) When the time comes for the sender to transmit new DATA chunks,
 the protocol parameter Max.Burst SHOULD be used to limit the
 number of packets sent. The limit MAY be applied by adjusting
 cwnd temporarily as follows:

 if ((flightsize + Max.Burst*MTU) < cwnd)
 cwnd = flightsize + Max.Burst*MTU

 Or it MAY be applied by strictly limiting the number of packets
 emitted by the output routine. When calculating the number of
 packets to transmit and particularly using the formula above,
 cwnd SHOULD NOT be changed permanently.

3.31.3. Solution Description

 The new text clarifies that cwnd should not be changed when applying
 the Max.Burst limit. This mitigates packet bursts related to the
 reception of SACK chunks, but not bursts related to an application
 sending a burst of user messages.

3.32. Reduction of RTO.Initial

3.32.1. Description of the Problem

 [RFC4960] uses 3 seconds as the default value for RTO.Initial in
 accordance with Section 4.3.2.1 of [RFC1122]. [RFC6298] updates
 [RFC1122] and lowers the initial value of the retransmission timer
 from 3 seconds to 1 second.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc1122#section-4.3.2.1
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc1122

Stewart, et al. Expires January 17, 2019 [Page 49]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.32.2. Text Changes to the Document

 Old text: (Section 15)

 The following protocol parameters are RECOMMENDED:

 RTO.Initial - 3 seconds
 RTO.Min - 1 second
 RTO.Max - 60 seconds
 Max.Burst - 4
 RTO.Alpha - 1/8
 RTO.Beta - 1/4
 Valid.Cookie.Life - 60 seconds
 Association.Max.Retrans - 10 attempts
 Path.Max.Retrans - 5 attempts (per destination address)
 Max.Init.Retransmits - 8 attempts
 HB.interval - 30 seconds
 HB.Max.Burst - 1
 SACK.Delay - 200 milliseconds

 New text: (Section 15)

 The following protocol parameters are RECOMMENDED:

 RTO.Initial - 1 second
 RTO.Min - 1 second
 RTO.Max - 60 seconds
 Max.Burst - 4
 RTO.Alpha - 1/8
 RTO.Beta - 1/4
 Valid.Cookie.Life - 60 seconds
 Association.Max.Retrans - 10 attempts
 Path.Max.Retrans - 5 attempts (per destination address)
 Max.Init.Retransmits - 8 attempts
 HB.interval - 30 seconds
 HB.Max.Burst - 1
 SACK.Delay - 200 milliseconds

3.32.3. Solution Description

 The value RTO.Initial has been lowered to 1 second to be in tune with
 [RFC6298].

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6298

Stewart, et al. Expires January 17, 2019 [Page 50]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.33. Ordering of Bundled SACK and ERROR Chunks

3.33.1. Description of the Problem

 When an SCTP endpoint receives a DATA chunk with an invalid stream
 identifier it shall acknowledge it by sending a SACK chunk and
 indicate that the stream identifier was invalid by sending an ERROR
 chunk. These two chunks may be bundled. However, [RFC4960] requires
 in case of bundling that the ERROR chunk follows the SACK chunk.
 This restriction of the ordering is not necessary and might only
 limit interoperability.

3.33.2. Text Changes to the Document

 Old text: (Section 6.5)

 Every DATA chunk MUST carry a valid stream identifier. If an
 endpoint receives a DATA chunk with an invalid stream identifier, it
 shall acknowledge the reception of the DATA chunk following the
 normal procedure, immediately send an ERROR chunk with cause set to
 "Invalid Stream Identifier" (see Section 3.3.10), and discard the
 DATA chunk. The endpoint may bundle the ERROR chunk in the same
 packet as the SACK as long as the ERROR follows the SACK.

 New text: (Section 6.5)

 Every DATA chunk MUST carry a valid stream identifier. If an
 endpoint receives a DATA chunk with an invalid stream identifier, it
 SHOULD acknowledge the reception of the DATA chunk following the
 normal procedure, immediately send an ERROR chunk with cause set to
 "Invalid Stream Identifier" (see Section 3.3.10), and discard the
 DATA chunk. The endpoint MAY bundle the ERROR chunk and the SACK Chunk
 in the same packet.

3.33.3. Solution Description

 The unnecessary restriction regarding the ordering of the SACK and
 ERROR chunk has been removed.

3.34. Undefined Parameter Returned by RECEIVE Primitive

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 51]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.34.1. Description of the Problem

 [RFC4960] provides a description of an abstract API. In the
 definition of the RECEIVE primitive an optional parameter with name
 "delivery number" is mentioned. However, no definition of this
 parameter is given in [RFC4960] and the parameter is unnecessary.

3.34.2. Text Changes to the Document

 Old text: (Section 10.1)

 G) Receive

 Format: RECEIVE(association id, buffer address, buffer size
 [,stream id])
 -> byte count [,transport address] [,stream id] [,stream sequence
 number] [,partial flag] [,delivery number] [,payload protocol-id]

 New text: (Section 10.1)

 G) Receive

 Format: RECEIVE(association id, buffer address, buffer size
 [,stream id])
 -> byte count [,transport address] [,stream id] [,stream sequence
 number] [,partial flag] [,payload protocol-id]

3.34.3. Solution Description

 The undefined parameter has been removed.

3.35. DSCP Changes

3.35.1. Description of the Problem

 The upper layer can change the Differentiated Services Code Point
 (DSCP) used for packets being sent. A change of the DSCP can result
 in packets hitting different queues on the path and, therefore, the
 congestion control should be initialized when the DSCP is changed by
 the upper layer. This is not described in [RFC4960].

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 52]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.35.2. Text Changes to the Document

 New text: (Section 7.2.5)

 7.2.5. Change of Differentiated Services Code Points

 SCTP implementations MAY allow an application to configure the
 Differentiated Services Code Point (DSCP) used for sending packets.
 If a DSCP change might result in outgoing packets being queued in
 different queues, the congestion control parameters for all affected
 destination addresses MUST be reset to their initial values.

 Old text: (Section 10.1)

 M) Set Protocol Parameters

 Format: SETPROTOCOLPARAMETERS(association id,
 [,destination transport address,]
 protocol parameter list)
 -> result

 This primitive allows the local SCTP to customize the protocol
 parameters.

 Mandatory attributes:

 o association id - local handle to the SCTP association.

 o protocol parameter list - the specific names and values of the
 protocol parameters (e.g., Association.Max.Retrans; see Section

15) that the SCTP user wishes to customize.

 New text: (Section 10.1)

 M) Set Protocol Parameters

 Format: SETPROTOCOLPARAMETERS(association id,
 [,destination transport address,]
 protocol parameter list)
 -> result

 This primitive allows the local SCTP to customize the protocol
 parameters.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 53]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Mandatory attributes:

 o association id - local handle to the SCTP association.

 o protocol parameter list - the specific names and values of the
 protocol parameters (e.g., Association.Max.Retrans; see Section

15, or other parameters like the DSCP) that the SCTP user wishes
 to customize.

3.35.3. Solution Description

 Text describing the required action on DSCP changes has been added.

3.36. Inconsistent Handling of ICMPv4 and ICMPv6 Messages

3.36.1. Description of the Problem

Appendix C of [RFC4960] describes the handling of ICMPv4 and ICMPv6
 messages. The handling of ICMP messages indicating that the port
 number is unreachable described in the enumeration is not consistent
 with the description given in [RFC4960] after the enumeration.
 Furthermore, the text explicitly describes the handling of ICMPv6
 packets indicating reachability problems, but does not do the same
 for the corresponding ICMPv4 packets.

3.36.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#appendix-C
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 54]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Appendix C)

 ICMP3) An implementation MAY ignore any ICMPv4 messages where the
 code does not indicate "Protocol Unreachable" or
 "Fragmentation Needed".

 New text: (Appendix C)

 ICMP3) An implementation SHOULD ignore any ICMP messages where the
 code indicates "Port Unreachable".

 Old text: (Appendix C)

 ICMP9) If the ICMPv6 code is "Destination Unreachable", the
 implementation MAY mark the destination into the unreachable
 state or alternatively increment the path error counter.

 New text: (Appendix C)

 ICMP9) If the ICMP type is "Destination Unreachable", the
 implementation MAY mark the destination into the unreachable
 state or alternatively increment the path error counter.

3.36.3. Solution Description

 The text has been changed to describe the intended handling of ICMP
 messages indicating that the port number is unreachable by replacing
 the third rule. Furthermore, remove the limitation to ICMPv6 in the
 ninth rule.

3.37. Handling of Soft Errors

3.37.1. Description of the Problem

 [RFC1122] defines the handling of soft errors and hard errors for
 TCP. Appendix C of [RFC4960] only deals with hard errors.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#appendix-C

Stewart, et al. Expires January 17, 2019 [Page 55]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.37.2. Text Changes to the Document

 Old text: (Appendix C)

 ICMP9) If the ICMP type is "Destination Unreachable", the
 implementation MAY mark the destination into the unreachable
 state or alternatively increment the path error counter.

 New text: (Appendix C)

 ICMP9) If the ICMP type is "Destination Unreachable", the
 implementation MAY mark the destination into the unreachable
 state or alternatively increment the path error counter.
 SCTP MAY provide information to the upper layer indicating
 the reception of ICMP messages when reporting a network status
 change.

3.37.3. Solution Description

 Text has been added allowing SCTP to notify the application in case
 of soft errors.

3.38. Honoring CWND

3.38.1. Description of the Problem

 When using the slow start algorithm, SCTP increases the congestion
 window only when it is being fully utilized. Since SCTP uses DATA
 chunks and does not use the congestion window to fragment user
 messages, this requires that some overbooking of the congestion
 window is allowed.

3.38.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 56]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 6.1)

 B) At any given time, the sender MUST NOT transmit new data to a
 given transport address if it has cwnd or more bytes of data
 outstanding to that transport address.

 New text: (Section 6.1)

 B) At any given time, the sender MUST NOT transmit new data to a
 given transport address if it has cwnd + (PMTU - 1) or more bytes
 of data outstanding to that transport address. If data is
 available the sender SHOULD exceed cwnd by up to (PMTU-1) bytes on
 a new data transmission if the flightsize does not currently reach
 cwnd. The breach of cwnd MUST constitute one packet only.

 Old text: (Section 7.2.1)

 o Whenever cwnd is greater than zero, the endpoint is allowed to
 have cwnd bytes of data outstanding on that transport address.

 New text: (Section 7.2.1)

 o Whenever cwnd is greater than zero, the endpoint is allowed to
 have cwnd bytes of data outstanding on that transport address.
 A limited overbooking as described in B) of Section 6.1 SHOULD
 be supported.

3.38.3. Solution Description

 Text was added to clarify how the cwnd limit should be handled.

3.39. Zero Window Probing

3.39.1. Description of the Problem

 The text describing zero window probing was not clearly handling the
 case where the window was not zero, but too small for the next DATA
 chunk to be transmitted. Even in this case, zero window probing has
 to be performed to avoid deadlocks.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 57]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.39.2. Text Changes to the Document

 Old text: (Section 6.1)

 A) At any given time, the data sender MUST NOT transmit new data to
 any destination transport address if its peer's rwnd indicates
 that the peer has no buffer space (i.e., rwnd is 0; see Section

6.2.1). However, regardless of the value of rwnd (including if it
 is 0), the data sender can always have one DATA chunk in flight to
 the receiver if allowed by cwnd (see rule B, below). This rule
 allows the sender to probe for a change in rwnd that the sender
 missed due to the SACK's having been lost in transit from the data
 receiver to the data sender.

 When the receiver's advertised window is zero, this probe is
 called a zero window probe. Note that a zero window probe SHOULD
 only be sent when all outstanding DATA chunks have been
 cumulatively acknowledged and no DATA chunks are in flight. Zero
 window probing MUST be supported.

 New text: (Section 6.1)

 A) At any given time, the data sender MUST NOT transmit new data to
 any destination transport address if its peer's rwnd indicates
 that the peer has no buffer space (i.e., rwnd is smaller than the
 size of the next DATA chunk; see Section 6.2.1).
 However, regardless of the value of rwnd (including if it is 0),
 the data sender can always have one DATA chunk in flight to
 the receiver if allowed by cwnd (see rule B, below). This rule
 allows the sender to probe for a change in rwnd that the sender
 missed due to the SACK's having been lost in transit from the data
 receiver to the data sender.

 When the receiver has no buffer space, this probe is
 called a zero window probe. Note that a zero window probe SHOULD
 only be sent when all outstanding DATA chunks have been
 cumulatively acknowledged and no DATA chunks are in flight. Zero
 window probing MUST be supported.

3.39.3. Solution Description

 The terminology is used in a cleaner way.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 58]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.40. Updating References Regarding ECN

3.40.1. Description of the Problem

 [RFC4960] refers for ECN only to [RFC3168], which will be updated by
 [RFC8311]. This needs to be reflected when referring to ECN.

3.40.2. Text Changes to the Document

 Old text: (Appendix A)

 ECN [RFC3168] describes a proposed extension to IP that details a
 method to become aware of congestion outside of datagram loss.

 New text: (Appendix A)

 ECN as specified in [RFC3168] updated by [RFC8311] describes an
 extension to IP that details a method to become aware of congestion
 outside of datagram loss.

 Old text: (Appendix A)

 In general, [RFC3168] should be followed with the following
 exceptions.

 New text: (Appendix A)

 In general, [RFC3168] updated by [RFC8311] SHOULD be followed with the
 following exceptions.

 Old text: (Appendix A)

 [RFC3168] details negotiation of ECN during the SYN and SYN-ACK
 stages of a TCP connection.

 New text: (Appendix A)

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311

Stewart, et al. Expires January 17, 2019 [Page 59]

Internet-Draft RFC 4960 Errata and Issues July 2018

 [RFC3168] updated by [RFC8311] details negotiation of ECN during the
 SYN and SYN-ACK stages of a TCP connection.

 Old text: (Appendix A)

 [RFC3168] details a specific bit for a receiver to send back in its
 TCP acknowledgements to notify the sender of the Congestion
 Experienced (CE) bit having arrived from the network.

 New text: (Appendix A)

 [RFC3168] updated by [RFC8311] details a specific bit for a receiver
 to send back in its TCP acknowledgements to notify the sender of the
 Congestion Experienced (CE) bit having arrived from the network.

 Old text: (Appendix A)

 [RFC3168] details a specific bit for a sender to send in the header
 of its next outbound TCP segment to indicate to its peer that it has
 reduced its congestion window.

 New text: (Appendix A)

 [RFC3168] updated by [RFC8311] details a specific bit for a sender
 to send in the header of its next outbound TCP segment to indicate to
 its peer that it has reduced its congestion window.

3.40.3. Solution Description

 References to [RFC8311] have been added. While there, some
 wordsmithing has been performed.

3.41. Host Name Address Parameter Deprecated

3.41.1. Description of the Problem

 [RFC4960] defines three types of address parameters to be used with
 INIT and INIT ACK chunks:

 1. IPv4 Address parameters.
 2. IPv6 Address parameters.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8311

Stewart, et al. Expires January 17, 2019 [Page 60]

Internet-Draft RFC 4960 Errata and Issues July 2018

 3. Host Name Address parameters.

 The first two are supported by the SCTP kernel implementations of
 FreeBSD, Linux and Solaris, but the third one is not. In addition,
 the first two where successfully tested in all nine interoperability
 tests for SCTP, but the third one has never been successfully tested.
 Therefore, the Host Name Address parameter should be deprecated.

3.41.2. Text Changes to the Document

 Old text: (Section 3.3.2)

 Note 3: An INIT chunk MUST NOT contain more than one Host Name
 Address parameter. Moreover, the sender of the INIT MUST NOT combine
 any other address types with the Host Name Address in the INIT. The
 receiver of INIT MUST ignore any other address types if the Host Name
 Address parameter is present in the received INIT chunk.

 New text: (Section 3.3.2)

 Note 3: An INIT chunk MUST NOT contain the Host Name Address
 parameter. The receiver of an INIT chunk containing a Host Name
 Address parameter MUST send an ABORT and MAY include an Error Cause
 indicating an Unresolvable Address.

 Old text: (Section 3.3.2.1)

 The sender of INIT uses this parameter to pass its Host Name (in
 place of its IP addresses) to its peer. The peer is responsible for
 resolving the name. Using this parameter might make it more likely
 for the association to work across a NAT box.

 New text: (Section 3.3.2.1)

 The sender of an INIT chunk MUST NOT include this parameter. The
 usage of the Host Name Address parameter is deprecated.

 Old text: (Section 3.3.2.1)

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 61]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Address Type: 16 bits (unsigned integer)

 This is filled with the type value of the corresponding address
 TLV (e.g., IPv4 = 5, IPv6 = 6, Host name = 11).

 New text: (Section 3.3.2.1)

 Address Type: 16 bits (unsigned integer)

 This is filled with the type value of the corresponding address
 TLV (e.g., IPv4 = 5, IPv6 = 6). The value indicating the Host
 Name Address parameter (Host name = 11) MUST NOT be used.

 Old text: (Section 3.3.3)

 Note 3: The INIT ACK chunks MUST NOT contain more than one Host Name
 Address parameter. Moreover, the sender of the INIT ACK MUST NOT
 combine any other address types with the Host Name Address in the
 INIT ACK. The receiver of the INIT ACK MUST ignore any other address
 types if the Host Name Address parameter is present.

 New text: (Section 3.3.3)

 Note 3: An INIT ACK chunk MUST NOT contain the Host Name Address
 parameter. The receiver of INIT ACK chunks containing a Host Name
 Address parameter MUST send an ABORT and MAY include an Error Cause
 indicating an Unresolvable Address.

 Old text: (Section 5.1.2)

 B) If there is a Host Name parameter present in the received INIT or
 INIT ACK chunk, the endpoint shall resolve that host name to a
 list of IP address(es) and derive the transport address(es) of
 this peer by combining the resolved IP address(es) with the SCTP
 source port.

 The endpoint MUST ignore any other IP Address parameters if they
 are also present in the received INIT or INIT ACK chunk.

 The time at which the receiver of an INIT resolves the host name
 has potential security implications to SCTP. If the receiver of

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 62]

Internet-Draft RFC 4960 Errata and Issues July 2018

 an INIT resolves the host name upon the reception of the chunk,
 and the mechanism the receiver uses to resolve the host name
 involves potential long delay (e.g., DNS query), the receiver may
 open itself up to resource attacks for the period of time while it
 is waiting for the name resolution results before it can build the
 State Cookie and release local resources.

 Therefore, in cases where the name translation involves potential
 long delay, the receiver of the INIT MUST postpone the name
 resolution till the reception of the COOKIE ECHO chunk from the
 peer. In such a case, the receiver of the INIT SHOULD build the
 State Cookie using the received Host Name (instead of destination
 transport addresses) and send the INIT ACK to the source IP
 address from which the INIT was received.

 The receiver of an INIT ACK shall always immediately attempt to
 resolve the name upon the reception of the chunk.

 The receiver of the INIT or INIT ACK MUST NOT send user data
 (piggy-backed or stand-alone) to its peer until the host name is
 successfully resolved.

 If the name resolution is not successful, the endpoint MUST
 immediately send an ABORT with "Unresolvable Address" error cause
 to its peer. The ABORT shall be sent to the source IP address
 from which the last peer packet was received.

 New text: (Section 5.1.2)

 B) If there is a Host Name parameter present in the received INIT or
 INIT ACK chunk, the endpoint MUST immediately send an ABORT and
 MAY include an Error Cause indicating an Unresolvable Address to
 its peer. The ABORT SHALL be sent to the source IP address
 from which the last peer packet was received.

 Old text: (Section 11.2.4.1)

 The use of the host name feature in the INIT chunk could be used to
 flood a target DNS server. A large backlog of DNS queries, resolving
 the host name received in the INIT chunk to IP addresses, could be
 accomplished by sending INITs to multiple hosts in a given domain.
 In addition, an attacker could use the host name feature in an
 indirect attack on a third party by sending large numbers of INITs to
 random hosts containing the host name of the target. In addition to

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 63]

Internet-Draft RFC 4960 Errata and Issues July 2018

 the strain on DNS resources, this could also result in large numbers
 of INIT ACKs being sent to the target. One method to protect against
 this type of attack is to verify that the IP addresses received from
 DNS include the source IP address of the original INIT. If the list
 of IP addresses received from DNS does not include the source IP
 address of the INIT, the endpoint MAY silently discard the INIT.
 This last option will not protect against the attack against the DNS.

 New text: (Section 11.2.4.1)

 The support of the Host Name Address parameter has been removed from
 the protocol. Endpoints receiving INIT or INIT ACK chunks containing
 the Host Name Address parameter MUST send an ABORT chunk in response
 and MAY include an Error Cause indicating an Unresolvable Address.

3.41.3. Solution Description

 The usage of the Host Name Address parameter has been deprecated.

3.42. Conflicting Text Regarding the Supported Address Types Parameter

3.42.1. Description of the Problem

 When receiving an SCTP packet containing an INIT chunk sent from an
 address for which the corresponding address type is not listed in the
 Supported Address Types, there is conflicting text in Section 5.1.2
 of [RFC4960]. It is stated that the association MUST be aborted and
 also that the association SHOULD be established and there SHOULD NOT
 be any error indication.

3.42.2. Text Changes to the Document

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc4960#section-5.1.2

Stewart, et al. Expires January 17, 2019 [Page 64]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Old text: (Section 5.1.2)

 The sender of INIT may include a 'Supported Address Types' parameter
 in the INIT to indicate what types of address are acceptable. When
 this parameter is present, the receiver of INIT (initiate) MUST
 either use one of the address types indicated in the Supported
 Address Types parameter when responding to the INIT, or abort the
 association with an "Unresolvable Address" error cause if it is
 unwilling or incapable of using any of the address types indicated by
 its peer.

 New text: (Section 5.1.2)

 The sender of INIT chunks MAY include a 'Supported Address Types'
 parameter in the INIT to indicate what types of addresses are
 acceptable.

3.42.3. Solution Description

 The conflicting text has been removed.

3.43. Integration of RFC 6096

3.43.1. Description of the Problem

 [RFC6096] updates [RFC4960] by adding a Chunk Flags Registry. This
 should be integrated into the base specification.

3.43.2. Text Changes to the Document

Old text: (Section 14.1)

14.1. IETF-Defined Chunk Extension

 The assignment of new chunk parameter type codes is done through an
 IETF Consensus action, as defined in [RFC2434]. Documentation of the
 chunk parameter MUST contain the following information:

 a) A long and short name for the new chunk type.

 b) A detailed description of the structure of the chunk, which MUST

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6096
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2434

Stewart, et al. Expires January 17, 2019 [Page 65]

Internet-Draft RFC 4960 Errata and Issues July 2018

 conform to the basic structure defined in Section 3.2.

 c) A detailed definition and description of the intended use of each
 field within the chunk, including the chunk flags if any.

 d) A detailed procedural description of the use of the new chunk type
 within the operation of the protocol.

 The last chunk type (255) is reserved for future extension if
 necessary.

New text: (Section 14.1)

14.1. IETF-Defined Chunk Extension

 The assignment of new chunk type codes is done through an IETF Review
 action, as defined in [RFC8126]. Documentation of a new chunk MUST
 contain the following information:

 a) A long and short name for the new chunk type;

 b) A detailed description of the structure of the chunk, which MUST
 conform to the basic structure defined in Section 3.2 of
 [RFC4960];

 c) A detailed definition and description of the intended use of each
 field within the chunk, including the chunk flags if any.
 Defined chunk flags will be used as initial entries in the chunk
 flags table for the new chunk type;

 d) A detailed procedural description of the use of the new chunk
 type within the operation of the protocol.

 The last chunk type (255) is reserved for future extension if
 necessary.

 For each new chunk type, IANA creates a registration table for the
 chunk flags of that type. The procedure for registering particular
 chunk flags is described in the following Section 14.2.

New text: (Section 14.2)

14.2. New IETF Chunk Flags Registration

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc4960#section-3.2
https://datatracker.ietf.org/doc/html/rfc4960#section-3.2

Stewart, et al. Expires January 17, 2019 [Page 66]

Internet-Draft RFC 4960 Errata and Issues July 2018

 The assignment of new chunk flags is done through an RFC required
 action, as defined in [RFC8126]. Documentation of the chunk flags
 MUST contain the following information:

 a) A name for the new chunk flag;

 b) A detailed procedural description of the use of the new chunk
 flag within the operation of the protocol. It MUST be considered
 that implementations not supporting the flag will send '0' on
 transmit and just ignore it on receipt.

 IANA selects a chunk flags value. This MUST be one of 0x01, 0x02,
 0x04, 0x08, 0x10, 0x20, 0x40, or 0x80, which MUST be unique within
 the chunk flag values for the specific chunk type.

 Please note that Sections 14.2, 14.3, 14.4, and 14.5 need to be
 renumbered.

3.43.3. Solution Description

 [RFC6096] was integrated and the reference updated to [RFC8126].

3.44. Integration of RFC 6335

3.44.1. Description of the Problem

 [RFC6335] updates [RFC4960] by updating Procedures for the Port
 Numbers Registry. This should be integrated into the base
 specification. While there, update the reference to the RFC giving
 guidelines for writing IANA sections to [RFC8126].

3.44.2. Text Changes to the Document

 Old text: (Section 14.5)

 SCTP services may use contact port numbers to provide service to
 unknown callers, as in TCP and UDP. IANA is therefore requested to
 open the existing Port Numbers registry for SCTP using the following
 rules, which we intend to mesh well with existing Port Numbers
 registration procedures. An IESG-appointed Expert Reviewer supports
 IANA in evaluating SCTP port allocation requests, according to the
 procedure defined in [RFC2434].

 Port numbers are divided into three ranges. The Well Known Ports are
 those from 0 through 1023, the Registered Ports are those from 1024
 through 49151, and the Dynamic and/or Private Ports are those from

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc2434

Stewart, et al. Expires January 17, 2019 [Page 67]

Internet-Draft RFC 4960 Errata and Issues July 2018

 49152 through 65535. Well Known and Registered Ports are intended
 for use by server applications that desire a default contact point on
 a system. On most systems, Well Known Ports can only be used by
 system (or root) processes or by programs executed by privileged
 users, while Registered Ports can be used by ordinary user processes
 or programs executed by ordinary users. Dynamic and/or Private Ports
 are intended for temporary use, including client-side ports, out-of-
 band negotiated ports, and application testing prior to registration
 of a dedicated port; they MUST NOT be registered.

 The Port Numbers registry should accept registrations for SCTP ports
 in the Well Known Ports and Registered Ports ranges. Well Known and
 Registered Ports SHOULD NOT be used without registration. Although
 in some cases -- such as porting an application from TCP to SCTP --
 it may seem natural to use an SCTP port before registration
 completes, we emphasize that IANA will not guarantee registration of
 particular Well Known and Registered Ports. Registrations should be
 requested as early as possible.

 Each port registration SHALL include the following information:

 o A short port name, consisting entirely of letters (A-Z and a-z),
 digits (0-9), and punctuation characters from "-_+./*" (not
 including the quotes).

 o The port number that is requested for registration.

 o A short English phrase describing the port's purpose.

 o Name and contact information for the person or entity performing
 the registration, and possibly a reference to a document defining
 the port's use. Registrations coming from IETF working groups
 need only name the working group, but indicating a contact person
 is recommended.

 Registrants are encouraged to follow these guidelines when submitting
 a registration.

 o A port name SHOULD NOT be registered for more than one SCTP port
 number.

 o A port name registered for TCP MAY be registered for SCTP as well.
 Any such registration SHOULD use the same port number as the
 existing TCP registration.

 o Concrete intent to use a port SHOULD precede port registration.
 For example, existing TCP ports SHOULD NOT be registered in
 advance of any intent to use those ports for SCTP.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 68]

Internet-Draft RFC 4960 Errata and Issues July 2018

 New text: (Section 14.5)

 SCTP services can use contact port numbers to provide service to
 unknown callers, as in TCP and UDP. IANA is therefore requested to
 open the existing Port Numbers registry for SCTP using the following
 rules, which we intend to mesh well with existing Port Numbers
 registration procedures. An IESG-appointed Expert Reviewer supports
 IANA in evaluating SCTP port allocation requests, according to the
 procedure defined in [RFC8126]. The details of this process are
 defined in [RFC6335].

3.44.3. Solution Description

 [RFC6335] was integrated and the reference was updated to [RFC8126].

3.45. Integration of RFC 7053

3.45.1. Description of the Problem

 [RFC7053] updates [RFC4960] by adding the I bit to the DATA chunk.
 This should be integrated into the base specification.

3.45.2. Text Changes to the Document

Old text: (Section 3.3.1)

The following format MUST be used for the DATA chunk:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0 | Reserved|U|B|E| Length |
 +-+
 | TSN |
 +-+
 | Stream Identifier S | Stream Sequence Number n |
 +-+
 | Payload Protocol Identifier |
 +-+
 \ \
 / User Data (seq n of Stream S) /
 \ \
 +-+

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 69]

Internet-Draft RFC 4960 Errata and Issues July 2018

Reserved: 5 bits

 Should be set to all '0's and ignored by the receiver.

New text: (Section 3.3.1)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0 | Res |I|U|B|E| Length |
 +-+
 | TSN |
 +-+
 | Stream Identifier S | Stream Sequence Number n |
 +-+
 | Payload Protocol Identifier |
 +-+
 \ \
 / User Data (seq n of Stream S) /
 \ \
 +-+

Res: 4 bits

 SHOULD be set to all '0's and ignored by the receiver.

I bit: 1 bit

 The (I)mmediate Bit MAY be set by the sender, whenever the sender of
 a DATA chunk can benefit from the corresponding SACK chunk being sent
 back without delay. See [RFC7053] for a discussion about

New text: (Append to Section 6.1)

Whenever the sender of a DATA chunk can benefit from the
corresponding SACK chunk being sent back without delay, the sender
MAY set the I bit in the DATA chunk header. Please note that why the
sender has set the I bit is irrelevant to the receiver.

Reasons for setting the I bit include, but are not limited to (see
Section 4 of [RFC7053] for the benefits):

o The application requests to set the I bit of the last DATA chunk
 of a user message when providing the user message to the SCTP

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc7053#section-4

Stewart, et al. Expires January 17, 2019 [Page 70]

Internet-Draft RFC 4960 Errata and Issues July 2018

 implementation (see Section 7).

o The sender is in the SHUTDOWN-PENDING state.

o The sending of a DATA chunk fills the congestion or receiver
 window.

Old text: (Section 6.2)

Note: The SHUTDOWN chunk does not contain Gap Ack Block fields.
Therefore, the endpoint should use a SACK instead of the SHUTDOWN
chunk to acknowledge DATA chunks received out of order.

New text: (Section 6.2)

Note: The SHUTDOWN chunk does not contain Gap Ack Block fields.
Therefore, the endpoint SHOULD use a SACK instead of the SHUTDOWN
chunk to acknowledge DATA chunks received out of order.

Upon receipt of an SCTP packet containing a DATA chunk with the I bit
set, the receiver SHOULD NOT delay the sending of the corresponding
SACK chunk, i.e., the receiver SHOULD immediately respond with the
corresponding SACK chunk.

Old text: (Section 10.1)

E) Send

 Format: SEND(association id, buffer address, byte count [,context]
 [,stream id] [,life time] [,destination transport address]
 [,unordered flag] [,no-bundle flag] [,payload protocol-id])
 -> result

New text: (Section 10.1)

E) Send

 Format: SEND(association id, buffer address, byte count [,context]
 [,stream id] [,life time] [,destination transport address]

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 71]

Internet-Draft RFC 4960 Errata and Issues July 2018

 [,unordered flag] [,no-bundle flag] [,payload protocol-id]
 [,sack immediately])
 -> result

New text: (Append optional parameter in Subsection E of Section 10.1)

o sack immediately - set the I bit on the last DATA chunk used for
 sending buffer.

 Please note that the change in Section 6.2 is only about adding a
 paragraph.

3.45.3. Solution Description

 [RFC7053] was integrated.

3.46. CRC32c Code Improvements

3.46.1. Description of the Problem

 The code given for the CRC32c computations uses types like long which
 may have different length on different operating systems or
 processors. Therefore, the code is changed to use specific types
 like uint32_t.

 While there, fix also some syntax errors and a comment.

3.46.2. Text Changes to the Document

 Old text: (Appendix B)

 /***/
 /* Note Definition for Ross Williams table generator would */
 /* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE */
 /* For Mr. Williams direct calculation code use the settings */
 /* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF, */
 /* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000 */
 /***/

 /* Example of the crc table file */
 #ifndef __crc32cr_table_h__
 #define __crc32cr_table_h__

 #define CRC32C_POLY 0x1EDC6F41

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 72]

Internet-Draft RFC 4960 Errata and Issues July 2018

 #define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

 unsigned long crc_c[256] =
 {
 0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
 0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
 0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
 0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
 0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,

 0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
 0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
 0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
 0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
 0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
 0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
 0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,
 0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
 0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
 0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
 0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
 0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 73]

Internet-Draft RFC 4960 Errata and Issues July 2018

 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
 0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
 0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
 0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
 0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
 0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
 0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
 0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,

 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
 0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L,
 };

 #endif

 New text: (Appendix B)

 <CODE BEGINS>
 /***/
 /* Note Definition for Ross Williams table generator would */
 /* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE */
 /* For Mr. Williams direct calculation code use the settings */
 /* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF, */
 /* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000 */
 /***/

 /* Example of the crc table file */
 #ifndef __crc32cr_h__
 #define __crc32cr_h__

 #define CRC32C_POLY 0x1EDC6F41UL
 #define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

 uint32_t crc_c[256] =
 {

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 74]

Internet-Draft RFC 4960 Errata and Issues July 2018

 0x00000000UL, 0xF26B8303UL, 0xE13B70F7UL, 0x1350F3F4UL,
 0xC79A971FUL, 0x35F1141CUL, 0x26A1E7E8UL, 0xD4CA64EBUL,
 0x8AD958CFUL, 0x78B2DBCCUL, 0x6BE22838UL, 0x9989AB3BUL,
 0x4D43CFD0UL, 0xBF284CD3UL, 0xAC78BF27UL, 0x5E133C24UL,
 0x105EC76FUL, 0xE235446CUL, 0xF165B798UL, 0x030E349BUL,
 0xD7C45070UL, 0x25AFD373UL, 0x36FF2087UL, 0xC494A384UL,
 0x9A879FA0UL, 0x68EC1CA3UL, 0x7BBCEF57UL, 0x89D76C54UL,
 0x5D1D08BFUL, 0xAF768BBCUL, 0xBC267848UL, 0x4E4DFB4BUL,
 0x20BD8EDEUL, 0xD2D60DDDUL, 0xC186FE29UL, 0x33ED7D2AUL,
 0xE72719C1UL, 0x154C9AC2UL, 0x061C6936UL, 0xF477EA35UL,
 0xAA64D611UL, 0x580F5512UL, 0x4B5FA6E6UL, 0xB93425E5UL,
 0x6DFE410EUL, 0x9F95C20DUL, 0x8CC531F9UL, 0x7EAEB2FAUL,
 0x30E349B1UL, 0xC288CAB2UL, 0xD1D83946UL, 0x23B3BA45UL,
 0xF779DEAEUL, 0x05125DADUL, 0x1642AE59UL, 0xE4292D5AUL,
 0xBA3A117EUL, 0x4851927DUL, 0x5B016189UL, 0xA96AE28AUL,
 0x7DA08661UL, 0x8FCB0562UL, 0x9C9BF696UL, 0x6EF07595UL,
 0x417B1DBCUL, 0xB3109EBFUL, 0xA0406D4BUL, 0x522BEE48UL,
 0x86E18AA3UL, 0x748A09A0UL, 0x67DAFA54UL, 0x95B17957UL,
 0xCBA24573UL, 0x39C9C670UL, 0x2A993584UL, 0xD8F2B687UL,
 0x0C38D26CUL, 0xFE53516FUL, 0xED03A29BUL, 0x1F682198UL,
 0x5125DAD3UL, 0xA34E59D0UL, 0xB01EAA24UL, 0x42752927UL,
 0x96BF4DCCUL, 0x64D4CECFUL, 0x77843D3BUL, 0x85EFBE38UL,
 0xDBFC821CUL, 0x2997011FUL, 0x3AC7F2EBUL, 0xC8AC71E8UL,
 0x1C661503UL, 0xEE0D9600UL, 0xFD5D65F4UL, 0x0F36E6F7UL,
 0x61C69362UL, 0x93AD1061UL, 0x80FDE395UL, 0x72966096UL,
 0xA65C047DUL, 0x5437877EUL, 0x4767748AUL, 0xB50CF789UL,
 0xEB1FCBADUL, 0x197448AEUL, 0x0A24BB5AUL, 0xF84F3859UL,
 0x2C855CB2UL, 0xDEEEDFB1UL, 0xCDBE2C45UL, 0x3FD5AF46UL,
 0x7198540DUL, 0x83F3D70EUL, 0x90A324FAUL, 0x62C8A7F9UL,
 0xB602C312UL, 0x44694011UL, 0x5739B3E5UL, 0xA55230E6UL,
 0xFB410CC2UL, 0x092A8FC1UL, 0x1A7A7C35UL, 0xE811FF36UL,
 0x3CDB9BDDUL, 0xCEB018DEUL, 0xDDE0EB2AUL, 0x2F8B6829UL,
 0x82F63B78UL, 0x709DB87BUL, 0x63CD4B8FUL, 0x91A6C88CUL,
 0x456CAC67UL, 0xB7072F64UL, 0xA457DC90UL, 0x563C5F93UL,
 0x082F63B7UL, 0xFA44E0B4UL, 0xE9141340UL, 0x1B7F9043UL,
 0xCFB5F4A8UL, 0x3DDE77ABUL, 0x2E8E845FUL, 0xDCE5075CUL,
 0x92A8FC17UL, 0x60C37F14UL, 0x73938CE0UL, 0x81F80FE3UL,
 0x55326B08UL, 0xA759E80BUL, 0xB4091BFFUL, 0x466298FCUL,
 0x1871A4D8UL, 0xEA1A27DBUL, 0xF94AD42FUL, 0x0B21572CUL,
 0xDFEB33C7UL, 0x2D80B0C4UL, 0x3ED04330UL, 0xCCBBC033UL,
 0xA24BB5A6UL, 0x502036A5UL, 0x4370C551UL, 0xB11B4652UL,
 0x65D122B9UL, 0x97BAA1BAUL, 0x84EA524EUL, 0x7681D14DUL,
 0x2892ED69UL, 0xDAF96E6AUL, 0xC9A99D9EUL, 0x3BC21E9DUL,
 0xEF087A76UL, 0x1D63F975UL, 0x0E330A81UL, 0xFC588982UL,
 0xB21572C9UL, 0x407EF1CAUL, 0x532E023EUL, 0xA145813DUL,
 0x758FE5D6UL, 0x87E466D5UL, 0x94B49521UL, 0x66DF1622UL,
 0x38CC2A06UL, 0xCAA7A905UL, 0xD9F75AF1UL, 0x2B9CD9F2UL,
 0xFF56BD19UL, 0x0D3D3E1AUL, 0x1E6DCDEEUL, 0xEC064EEDUL,

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 75]

Internet-Draft RFC 4960 Errata and Issues July 2018

 0xC38D26C4UL, 0x31E6A5C7UL, 0x22B65633UL, 0xD0DDD530UL,
 0x0417B1DBUL, 0xF67C32D8UL, 0xE52CC12CUL, 0x1747422FUL,
 0x49547E0BUL, 0xBB3FFD08UL, 0xA86F0EFCUL, 0x5A048DFFUL,
 0x8ECEE914UL, 0x7CA56A17UL, 0x6FF599E3UL, 0x9D9E1AE0UL,
 0xD3D3E1ABUL, 0x21B862A8UL, 0x32E8915CUL, 0xC083125FUL,
 0x144976B4UL, 0xE622F5B7UL, 0xF5720643UL, 0x07198540UL,
 0x590AB964UL, 0xAB613A67UL, 0xB831C993UL, 0x4A5A4A90UL,
 0x9E902E7BUL, 0x6CFBAD78UL, 0x7FAB5E8CUL, 0x8DC0DD8FUL,
 0xE330A81AUL, 0x115B2B19UL, 0x020BD8EDUL, 0xF0605BEEUL,
 0x24AA3F05UL, 0xD6C1BC06UL, 0xC5914FF2UL, 0x37FACCF1UL,
 0x69E9F0D5UL, 0x9B8273D6UL, 0x88D28022UL, 0x7AB90321UL,
 0xAE7367CAUL, 0x5C18E4C9UL, 0x4F48173DUL, 0xBD23943EUL,
 0xF36E6F75UL, 0x0105EC76UL, 0x12551F82UL, 0xE03E9C81UL,
 0x34F4F86AUL, 0xC69F7B69UL, 0xD5CF889DUL, 0x27A40B9EUL,
 0x79B737BAUL, 0x8BDCB4B9UL, 0x988C474DUL, 0x6AE7C44EUL,
 0xBE2DA0A5UL, 0x4C4623A6UL, 0x5F16D052UL, 0xAD7D5351UL,
 };

 #endif

 Old text: (Appendix B)

 /* Example of table build routine */

 #include <stdio.h>
 #include <stdlib.h>

 #define OUTPUT_FILE "crc32cr.h"
 #define CRC32C_POLY 0x1EDC6F41L
 FILE *tf;
 unsigned long
 reflect_32 (unsigned long b)
 {
 int i;
 unsigned long rw = 0L;

 for (i = 0; i < 32; i++){
 if (b & 1)
 rw |= 1 << (31 - i);
 b >>= 1;
 }
 return (rw);
 }

 unsigned long
 build_crc_table (int index)

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 76]

Internet-Draft RFC 4960 Errata and Issues July 2018

 {
 int i;
 unsigned long rb;

 rb = reflect_32 (index);

 for (i = 0; i < 8; i++){
 if (rb & 0x80000000L)
 rb = (rb << 1) ^ CRC32C_POLY;
 else
 rb <<= 1;
 }
 return (reflect_32 (rb));
 }

 main ()
 {
 int i;

 printf ("\nGenerating CRC-32c table file <%s>\n",
 OUTPUT_FILE);
 if ((tf = fopen (OUTPUT_FILE, "w")) == NULL){
 printf ("Unable to open %s\n", OUTPUT_FILE);
 exit (1);
 }
 fprintf (tf, "#ifndef __crc32cr_table_h__\n");
 fprintf (tf, "#define __crc32cr_table_h__\n\n");
 fprintf (tf, "#define CRC32C_POLY 0x%08lX\n",
 CRC32C_POLY);
 fprintf (tf,
 "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
 fprintf (tf, "\nunsigned long crc_c[256] =\n{\n");
 for (i = 0; i < 256; i++){
 fprintf (tf, "0x%08lXL, ", build_crc_table (i));
 if ((i & 3) == 3)
 fprintf (tf, "\n");
 }
 fprintf (tf, "};\n\n#endif\n");

 if (fclose (tf) != 0)
 printf ("Unable to close <%s>." OUTPUT_FILE);
 else
 printf ("\nThe CRC-32c table has been written to <%s>.\n",
 OUTPUT_FILE);
 }

 New text: (Appendix B)

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 77]

Internet-Draft RFC 4960 Errata and Issues July 2018

 /* Example of table build routine */

 #include <stdio.h>
 #include <stdlib.h>

 #define OUTPUT_FILE "crc32cr.h"
 #define CRC32C_POLY 0x1EDC6F41UL

 static FILE *tf;

 static uint32_t
 reflect_32(uint32_t b)
 {
 int i;
 uint32_t rw = 0UL;

 for (i = 0; i < 32; i++) {
 if (b & 1)
 rw |= 1 << (31 - i);
 b >>= 1;
 }
 return (rw);
 }

 static uint32_t
 build_crc_table(int index)
 {
 int i;
 uint32_t rb;

 rb = reflect_32(index);

 for (i = 0; i < 8; i++) {
 if (rb & 0x80000000UL)
 rb = (rb << 1) ^ (uint32_t)CRC32C_POLY;
 else
 rb <<= 1;
 }
 return (reflect_32(rb));
 }

 int
 main (void)
 {
 int i;

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 78]

Internet-Draft RFC 4960 Errata and Issues July 2018

 printf("\nGenerating CRC-32c table file <%s>\n",
 OUTPUT_FILE);
 if ((tf = fopen(OUTPUT_FILE, "w")) == NULL) {
 printf ("Unable to open %s\n", OUTPUT_FILE);
 exit (1);
 }
 fprintf(tf, "#ifndef __crc32cr_h__\n");
 fprintf(tf, "#define __crc32cr_h__\n\n");
 fprintf(tf, "#define CRC32C_POLY 0x%08XUL\n",
 (uint32_t)CRC32C_POLY);
 fprintf(tf,
 "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
 fprintf(tf, "\nuint32_t crc_c[256] =\n{\n");
 for (i = 0; i < 256; i++) {
 fprintf(tf, "0x%08XUL,", build_crc_table (i));
 if ((i & 3) == 3)
 fprintf(tf, "\n");
 else
 fprintf(tf, " ");
 }
 fprintf(tf, "};\n\n#endif\n");

 if (fclose (tf) != 0)
 printf("Unable to close <%s>.", OUTPUT_FILE);
 else
 printf("\nThe CRC-32c table has been written to <%s>.\n",
 OUTPUT_FILE);
 }

 Old text: (Appendix B)

 /* Example of crc insertion */

 #include "crc32cr.h"

 unsigned long
 generate_crc32c(unsigned char *buffer, unsigned int length)
 {
 unsigned int i;
 unsigned long crc32 = ~0L;
 unsigned long result;
 unsigned char byte0,byte1,byte2,byte3;

 for (i = 0; i < length; i++){
 CRC32C(crc32, buffer[i]);
 }

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 79]

Internet-Draft RFC 4960 Errata and Issues July 2018

 result = ~crc32;

 /* result now holds the negated polynomial remainder;
 * since the table and algorithm is "reflected" [williams95].
 * That is, result has the same value as if we mapped the message
 * to a polynomial, computed the host-bit-order polynomial
 * remainder, performed final negation, then did an end-for-end
 * bit-reversal.
 * Note that a 32-bit bit-reversal is identical to four inplace
 * 8-bit reversals followed by an end-for-end byteswap.
 * In other words, the bytes of each bit are in the right order,
 * but the bytes have been byteswapped. So we now do an explicit
 * byteswap. On a little-endian machine, this byteswap and
 * the final ntohl cancel out and could be elided.
 */

 byte0 = result & 0xff;
 byte1 = (result>>8) & 0xff;
 byte2 = (result>>16) & 0xff;
 byte3 = (result>>24) & 0xff;
 crc32 = ((byte0 << 24) |
 (byte1 << 16) |
 (byte2 << 8) |
 byte3);
 return (crc32);
 }

 int
 insert_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 unsigned long crc32;
 message = (SCTP_message *) buffer;
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 /* and insert it into the message */
 message->common_header.checksum = htonl(crc32);
 return 1;
 }

 int
 validate_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 unsigned int i;
 unsigned long original_crc32;
 unsigned long crc32 = ~0L;

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 80]

Internet-Draft RFC 4960 Errata and Issues July 2018

 /* save and zero checksum */
 message = (SCTP_message *) buffer;
 original_crc32 = ntohl(message->common_header.checksum);
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 return ((original_crc32 == crc32)? 1 : -1);
 }

 New text: (Appendix B)

 /* Example of crc insertion */

 #include "crc32cr.h"

 uint32_t
 generate_crc32c(unsigned char *buffer, unsigned int length)
 {
 unsigned int i;
 uint32_t crc32 = 0xffffffffUL;
 uint32_t result;
 uint8_t byte0, byte1, byte2, byte3;

 for (i = 0; i < length; i++) {
 CRC32C(crc32, buffer[i]);
 }

 result = ~crc32;

 /* result now holds the negated polynomial remainder;
 * since the table and algorithm is "reflected" [williams95].
 * That is, result has the same value as if we mapped the message
 * to a polynomial, computed the host-bit-order polynomial
 * remainder, performed final negation, then did an end-for-end
 * bit-reversal.
 * Note that a 32-bit bit-reversal is identical to four inplace
 * 8-bit reversals followed by an end-for-end byteswap.
 * In other words, the bits of each byte are in the right order,
 * but the bytes have been byteswapped. So we now do an explicit
 * byteswap. On a little-endian machine, this byteswap and
 * the final ntohl cancel out and could be elided.
 */

 byte0 = result & 0xff;
 byte1 = (result>>8) & 0xff;
 byte2 = (result>>16) & 0xff;
 byte3 = (result>>24) & 0xff;

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 81]

Internet-Draft RFC 4960 Errata and Issues July 2018

 crc32 = ((byte0 << 24) |
 (byte1 << 16) |
 (byte2 << 8) |
 byte3);
 return (crc32);
 }

 int
 insert_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 uint32_t crc32;
 message = (SCTP_message *) buffer;
 message->common_header.checksum = 0UL;
 crc32 = generate_crc32c(buffer,length);
 /* and insert it into the message */
 message->common_header.checksum = htonl(crc32);
 return 1;
 }

 int
 validate_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 unsigned int i;
 uint32_t original_crc32;
 uint32_t crc32;

 /* save and zero checksum */
 message = (SCTP_message *)buffer;
 original_crc32 = ntohl(message->common_header.checksum);
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer, length);
 return ((original_crc32 == crc32)? 1 : -1);
 }
 <CODE ENDS>

3.46.3. Solution Description

 The code was changed to use platform independent types.

3.47. Clarification of Gap Ack Blocks in SACK Chunks

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 82]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.47.1. Description of the Problem

 The Gap Ack Blocks in the SACK chunk are intended to be isolated.
 However, this is not mentioned with normative text.

 This issue was reported as part of an Errata for [RFC4960] with
 Errata ID 5202.

3.47.2. Text Changes to the Document

Old text: (Section 3.3.4)

The SACK also contains zero or more Gap Ack Blocks. Each Gap Ack
Block acknowledges a subsequence of TSNs received following a break
in the sequence of received TSNs. By definition, all TSNs
acknowledged by Gap Ack Blocks are greater than the value of the
Cumulative TSN Ack.

New text: (Section 3.3.4)

The SACK also contains zero or more Gap Ack Blocks. Each Gap Ack
Block acknowledges a subsequence of TSNs received following a break
in the sequence of received TSNs. The Gap Ack Blocks SHOULD be isolated.
This means that the TSN just before each Gap Ack Block and the TSN just
after each Gap Ack Block has not been received. By definition, all TSNs
acknowledged by Gap Ack Blocks are greater than the value of the
Cumulative TSN Ack.

Old text: (Section 3.3.4)

Gap Ack Blocks:

 These fields contain the Gap Ack Blocks. They are repeated for
 each Gap Ack Block up to the number of Gap Ack Blocks defined in
 the Number of Gap Ack Blocks field. All DATA chunks with TSNs
 greater than or equal to (Cumulative TSN Ack + Gap Ack Block
 Start) and less than or equal to (Cumulative TSN Ack + Gap Ack
 Block End) of each Gap Ack Block are assumed to have been received
 correctly.

New text: (Section 3.3.4)

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 83]

Internet-Draft RFC 4960 Errata and Issues July 2018

Gap Ack Blocks:

 These fields contain the Gap Ack Blocks. They are repeated for
 each Gap Ack Block up to the number of Gap Ack Blocks defined in
 the Number of Gap Ack Blocks field. All DATA chunks with TSNs
 greater than or equal to (Cumulative TSN Ack + Gap Ack Block
 Start) and less than or equal to (Cumulative TSN Ack + Gap Ack
 Block End) of each Gap Ack Block are assumed to have been received
 correctly. Gap Ack Blocks SHOULD be isolated. That means that
 the DATA chunks with TSN equal to (Cumulative TSN Ack + Gap Ack
 Block Start - 1) and (Cumulative TSN Ack + Gap Ack Block End + 1)
 have not been received.

3.47.3. Solution Description

 Normative text describing the intended usage of Gap Ack Blocks has
 been added.

3.48. Handling of SSN Wrap Arounds

3.48.1. Description of the Problem

 The Stream Sequence Number (SSN) is used for preserving the ordering
 of user messages within each SCTP stream. The SSN is limited to 16
 bits. Therefore, multiple wrap arounds of the SSN might happen
 within the current send window. To allow the receiver to deliver
 ordered user messages in the correct sequence, the sender should
 limit the number of user messages per stream.

3.48.2. Text Changes to the Document

Old text: (Section 6.1)

Note: The data sender SHOULD NOT use a TSN that is more than 2**31 -
1 above the beginning TSN of the current send window.

New text: (Section 6.1)

Note: The data sender SHOULD NOT use a TSN that is more than 2**31 -
1 above the beginning TSN of the current send window.
Note: For each stream, the data sender SHOULD NOT have more than 2**16-1
ordered user messages in the current send window.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 84]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.48.3. Solution Description

 The data sender is required to limit the number of ordered user
 messages within the current send window.

3.49. Update RFC 2119 Boilerplate

3.49.1. Description of the Problem

 The text to be used to refer to the [RFC2119] terms has been updated
 by [RFC8174].

3.49.2. Text Changes to the Document

 Old text: (Section 2)

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 New text: (Section 2)

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3.49.3. Solution Description

 The text has been updated to the one specified in [RFC8174].

3.50. Missed Text Removal

3.50.1. Description of the Problem

 When integrating the changes to Section 7.2.4 of [RFC2960] as
 described in Section 2.8.2 of [RFC4460] some text was not removed and
 is therefore still in [RFC4960].

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc2960#section-7.2.4
https://datatracker.ietf.org/doc/html/rfc4460#section-2.8.2
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 85]

Internet-Draft RFC 4960 Errata and Issues July 2018

3.50.2. Text Changes to the Document

 Old text: (Section 7.2.4)

 A straightforward implementation of the above keeps a counter for
 each TSN hole reported by a SACK. The counter increments for each
 consecutive SACK reporting the TSN hole. After reaching 3 and
 starting the Fast-Retransmit procedure, the counter resets to 0.
 Because cwnd in SCTP indirectly bounds the number of outstanding
 TSN's, the effect of TCP Fast Recovery is achieved automatically with
 no adjustment to the congestion control window size.

 New text: (Section 7.2.4)

3.50.3. Solution Description

 The text has finally been removed.

4. IANA Considerations

Section 3.44 of this document updates the port number registry for
 SCTP to be consistent with [RFC6335]. IANA is requested to review

Section 3.44.

 IANA is only requested to check if it is OK to make the proposed text
 change in an upcoming standards track document that updates[RFC4960].
 IANA is not asked to perform any other action and this document does
 not request IANA to make a change to any registry.

5. Security Considerations

 This document does not add any security considerations to those given
 in [RFC4960].

6. Acknowledgments

 The authors wish to thank Pontus Andersson, Eric W. Biederman,
 Cedric Bonnet, Spencer Dawkins, Gorry Fairhurst, Benjamin Kaduk,
 Mirja Kuehlewind, Peter Lei, Gyula Marosi, Lionel Morand, Jeff
 Morriss, Karen E. E. Nielsen, Tom Petch, Kacheong Poon, Julien
 Pourtet, Irene Ruengeler, Michael Welzl, and Qiaobing Xie for their
 invaluable comments.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 86]

Internet-Draft RFC 4960 Errata and Issues July 2018

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

7.2. Informative References

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1858] Ziemba, G., Reed, D., and P. Traina, "Security
 Considerations for IP Fragment Filtering", RFC 1858,
 DOI 10.17487/RFC1858, October 1995,
 <https://www.rfc-editor.org/info/rfc1858>.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, DOI 10.17487/RFC2960, October 2000,
 <https://www.rfc-editor.org/info/rfc2960>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC4460] Stewart, R., Arias-Rodriguez, I., Poon, K., Caro, A., and
 M. Tuexen, "Stream Control Transmission Protocol (SCTP)
 Specification Errata and Issues", RFC 4460,
 DOI 10.17487/RFC4460, April 2006,
 <https://www.rfc-editor.org/info/rfc4460>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1858
https://www.rfc-editor.org/info/rfc1858
https://datatracker.ietf.org/doc/html/rfc2960
https://www.rfc-editor.org/info/rfc2960
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc4460
https://www.rfc-editor.org/info/rfc4460
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681

Stewart, et al. Expires January 17, 2019 [Page 87]

Internet-Draft RFC 4960 Errata and Issues July 2018

 [RFC6096] Tuexen, M. and R. Stewart, "Stream Control Transmission
 Protocol (SCTP) Chunk Flags Registration", RFC 6096,
 DOI 10.17487/RFC6096, January 2011,
 <https://www.rfc-editor.org/info/rfc6096>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,

RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC7053] Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,
 <https://www.rfc-editor.org/info/rfc7053>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

Authors' Addresses

 Randall R. Stewart
 Netflix, Inc.
 Chapin, SC 29036
 United States

 Email: randall@lakerest.net

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6096
https://www.rfc-editor.org/info/rfc6096
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6335
https://www.rfc-editor.org/info/rfc6335
https://datatracker.ietf.org/doc/html/rfc7053
https://www.rfc-editor.org/info/rfc7053
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311

Stewart, et al. Expires January 17, 2019 [Page 88]

Internet-Draft RFC 4960 Errata and Issues July 2018

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 48565 Steinfurt
 Germany

 Email: tuexen@fh-muenster.de

 Maksim Proshin
 Ericsson
 Kistavaegen 25
 Stockholm 164 80
 Sweden

 Email: mproshin@tieto.mera.ru

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires January 17, 2019 [Page 89]

