
 Network Working Group R. Stewart
 Category: Internet Draft Cisco Systems
 J. Stone
 Stanford
 D. Otis
 SANlight

 January 18, 2002

SCTP Checksum Change
draft-ietf-tsvwg-sctpcsum-02.txt

 Status of this Memo

 This document is an internet-draft and is in full conformance with all
 provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other groups
 may also distribute working documents as Internet-Drafts. Internet-
 Drafts are draft documents valid for a maximum of six months and may be
 updated, replaced, or obsoleted by other documents at any time. It is
 inappropriate to use Internet-Drafts as reference material or to cite
 them other than as "work in progress."
 The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt
 The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

 Abstract

 SCTP [RFC2960] currently uses an Adler-32 checksum. For small packets
 Adler-32 provides weak detection of errors. This document changes that
 checksum and updates SCTP to use a 32 bit CRC checksum.

 Table of Contents

1 Introduction .. 1
2 Checksum Procedures ... 2
3 Security Considerations...................................... 4
4 IANA Considerations.. 4
5 Acknowledgments ... 4
6 Authors' Addresses .. 4
7 References .. 5
8 Appendix .. 5

 1 Introduction

 A fundamental weakness has been detected in SCTP's current Adler-32
 checksum algorithm [STONE]. One requirement of an effective checksum is
 that it evenly and smoothly spreads its input packets over the available

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2960

 check bits.

 From an email from Jonathan Stone, who analyzed the Adler-32 as part

Stewart et.al. [Page 1]

Internet Draft SCTP Checksum Change January 2002

 of his doctoral thesis:

 "Briefly, the problem is that, for very short packets, Adler32 is
 guaranteed to give poor coverage of the available bits. Don't take my
 word for it, ask Mark Adler. :-).

 Adler-32 uses two 16-bit counters, s1 and s2. s1 is the sum of the
 input, taken as 8-bit bytes. s2 is a running sum of each value of s1.
 Both s1 and s2 are computed mod-65521 (the largest prime less than 2^16).
 Consider a packet of 128 bytes. The *most* that each byte can be is 255.
 There are only 128 bytes of input, so the greatest value which the s1
 accumulator can have is 255 * 128 = 32640. So for 128-byte packets, s1
 never wraps. That is critical. Why?

 The key is to consider the distribution of the s1 values, over some
 distribution of the values of the individual input bytes in each packet.
 Because s1 never wraps, s1 is simply the sum of the individual input
 bytes. (even Doug's trick of adding 0x5555 doesn't help here, and an even
 larger value doesn't really help: we can get at most one mod-65521
 reduction).

 Given the further assumption that the input bytes are drawn independently
 from some distribution (they probably aren't: for file system data, it's
 even worse than that!), the Central Limit Theorem tells us that that s1
 will tend to have a normal distribution. That's bad: it tells us that
 the value of s1 will have hot-spots at around 128 times the mean of the
 input distribution: around 16k, assuming a uniform distribution. That's
 bad. We want the accumulator to wrap as many times as possible, so that
 the resulting sum has as close to a uniform distribution as possible. (I
 call this "fairness").

 So, for short packets, the Adler-32 s1 sum is guaranteed to be unfair.
 Why is that bad? It's bad because the space of valid packets-- input
 data, plus checksum values -- is also small. If all packets have
 checksum values very close to 32640, then the likelihood of even a
 'small' error leaving a damaged packet with a valid checksum is higher
 than if all checksum values are equally likely."

 Due to this inherent weakness, exacerbated by the fact that SCTP will
 first be used as a signaling transport protocol where signaling messages
 are usually less than 128 bytes, a new checksum algorithm is specified by
 this document, replacing the current Adler-32 algorithm with CRC-32c.

 1.1 Conventions

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,SHOULD
 NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when they appear in
 this document, are to be interpreted as described in [RFC2119].

 2 Checksum Procedures

https://datatracker.ietf.org/doc/html/rfc2119

 The procedures described in section 2.1 of this document MUST be
 followed, replacing the current checksum defined in [RFC2960].
 Furthermore any references within [RFC2960] to Adler-32 MUST be treated

Stewart et.al. [Page 2]

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960

Internet Draft SCTP Checksum Change January 2002

 as a reference to CRC-32c. Section 2.1 of this document describes the
 new calculation and verification procedures that MUST be followed.

 2.1 Checksum Calculation

 When sending an SCTP packet, the endpoint MUST include in the checksum
 field the CRC-32c value calculated on the packet, as described below.

 After the packet is constructed (containing the SCTP common header and
 one or more control or DATA chunks), the transmitter MUST do the
 following:

 1) Fill in the proper Verification Tag in the SCTP common header and
 initialize the Checksum field to 0's.

 2) Calculate the CRC-32c of the whole packet, including the SCTP common
 header and all the chunks.

 3) Put the resultant value into the Checksum field in the common header,
 and leave the rest of the bits unchanged.

 When an SCTP packet is received, the receiver MUST first perform the
 following:

 1) Store the received CRC-32c value,

 2) Replace the 32 bits of the Checksum field in the received SCTP packet
 with all '0's and calculate a CRC-32c value of the whole received
 packet. And,

 3) Verify that the calculated CRC-32c value is the same as the received
 CRC-32c value. If not, the receiver MUST treat the packet as an
 invalid SCTP packet.

 The default procedure for handling invalid SCTP packets is to silently
 discard them.

 We define a 'reflected value' as one that is the opposite of the
 normal bit order of the machine. The 32 bit CRC is
 calculated as described for CRC-32c and uses the polynomial code
 0x11EDC6F41 (Castagnoli93) or x^32+x^28+x^27+x^26+x^25
 +x^23+x^22+x^20+x^19+x^18+x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0 with
 reflected placement. With most serial media, the bits within each
 byte are shifted out least significant bit first. CRCs are
 calculated from most significant to least. To accommodate the
 serial bit order, a reflected table is used. This reflected technique
 also reduces the number of instructions needed for each lookup.
 Background information on reflected and non-reflected CRC tables
 can be found in [Williams93]. A byte based lookup table would
 use the same shifting algorithm (not the same table) as that

 used by the ETHERNET CRC [ITU32] since the ethernet CRC is also
 built with reflected placment.

 To improve leading zero detection, the working accumulator holding

Stewart et.al. [Page 3]

Internet Draft SCTP Checksum Change January 2002

 the CRC value is initialized to all one's prior to the packet
 calculation but is not inverted before being placed in the SCTP
 Checksum field [McKee75]. Placement in the SCTP common header and jumbo
 frames cause variances from the Ethernet CRC algorithm. The
 [Castagnoli93] polynomial offers error detection enhancements for
 jumbo frames at the expense of gates. The software table
 implementations for any 32 bit polynomial has the same overhead
 however.

 3 Security Considerations

 There may be a computational advantage in validating the Association
 against the Verification Tag prior to performing a checksum as
 invalid tags will result in the same action as a bad checksum in
 most cases. The exceptions for this technique would be INIT and some
 SHUTDOWN-COMPLETE exchanges as well as a stale COOKIE-ECHO. These
 special case exchanges must represent small packets and will
 minimize the effect of the checksum calculation. In general,
 the security considerations of RFC2960 apply to the protocol
 with the new checksum as well.

 4 IANA Considerations

 There are no IANA considerations required in this document.

 5 Acknowledgments

 The authors would like to thank the following people that have
 provided comments and input on the checksum issue:

 Mark Adler, Ran Atkinson, Stephen Bailey, David Black, Scott
 Bradner, Mikael Degermark, Laurent Glaude, Klaus Gradischnig, Alf
 Heidermark, Jacob Heitz, Gareth Kiely, David Lehmann, Allision
 Mankin, Lyndon Ong, Craig Partridge, Vern Paxson, Kacheong Poon,
 Michael Ramalho, David Reed, Ian Rytina, Hanns Juergen Schwarzbauer,
 Chip Sharp, Bill Sommerfeld, Michael Tuxen, Jim Williams, Jim Wendt,
 Michael Welzl, Jonathan Wood, Lloyd Wood, Qiaobing Xie, La Monte
 Yarroll, Dafna Sheinwald, and Julian Satran, Pat Thaler, Vince
 Cavanna, Matt Wakeley.

 Special thanks to Mr. Ross William's and his informative document
 [Williams93] which helped further the authors understanding of
 both CRC's and bit reflection.

 6 Authors' Addresses

 Randall R. Stewart
 24 Burning Bush Trail.
 Crystal Lake, IL 60012

https://datatracker.ietf.org/doc/html/rfc2960

 USA

 EMail: rrs@cisco.com

Stewart et.al. [Page 4]

Internet Draft SCTP Checksum Change January 2002

 Jonathan Stone
 Room 446, Mail code 9040
 Gates building 4A
 Stanford, Ca 94305

 EMail: jonathan@dsg.stanford.edu

 Douglas Otis
 800 E. Middlefield
 Mountain View, CA 94043
 USA

 Email dotis@sanlight.net

 7 References

 [Castagnoli93] G. Castagnoli, S. Braeuer and M. Herrman,
 "Optimization of Cyclic Redundancy-Check Codes with 24 and 32 Parity
 Bits", IEEE Transactions on Communications, Vol. 41, No. 6, June 1993

 [McKee75] H. McKee, "Improved {CRC} techniques detects erroneous
 leading and trailing 0's in transmitted data blocks",
 Computer Design Volume 14 Number 10 Pages 102-4,106,
 October 1975

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2960] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp,
 H. J. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
 and, V. Paxson, "Stream Control Transmission Protocol," RFC

2960, October 2000.

 [ITU32] ITU-T Recommendation V.42, "Error-correcting
 procedures for DCEs using asynchronous-to-synchronous
 conversion", section 8.1.1.6.2, October 1996.

 7.1 Informative References

 [STONE] Stone, J., "Checksums in the Internet", Doctoral
 dissertation - August 2001

 [Williams93] Williams, R., "A PAINLESS GUIDE TO CRC ERROR DETECTION
 ALGORITHMS" - Internet publication, August 1993,

http://www.geocities.com/SiliconValley/Pines/8659/crc.htm.

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm

 8 Appendix

This appendix is for information only and is NOT part of the

Stewart et.al. [Page 5]

Internet Draft SCTP Checksum Change January 2002

 standard. The following code is based on the Castagnoli's
 CRC-32c polynomial 0x11EDC6F41 as in [Castagnoli93] and is
 not intended to represent an optimal implementation.

 /***/
 /* Note Definition for Ross Williams table generatator would */
 /* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE */
 /* For Mr. Williams direct calculation code use the settings */
 /* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF, */
 /* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000 */
 /***/

 /* Example of the crc table file */
 #ifndef __crc32cr_table_h__
 #define __crc32cr_table_h__

 #define CRC32C_POLY 0x1EDC6F41
 #define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

 unsigned long crc_c[256] =
 {
 0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
 0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
 0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
 0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
 0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,
 0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
 0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
 0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
 0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
 0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
 0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,

 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
 0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,
 0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,

Stewart et.al. [Page 6]

Internet Draft SCTP Checksum Change January 2002

 0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
 0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
 0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
 0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
 0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
 0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
 0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
 0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
 0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
 0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
 0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,
 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
 0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L,
 };

 #endif

 /* Example of table build routine */

 #include <stdio.h>
 #include <stdlib.h>

 #define OUTPUT_FILE "crc32cr.h"
 #define CRC32C_POLY 0x1EDC6F41L
 FILE *tf;

 unsigned long
 reflect_32 (unsigned long b)
 {
 int i;
 unsigned long rw = 0L;

 for (i = 0; i < 32; i++)
 {
 if (b & 1)
 rw |= 1 << (31 - i);

Stewart et.al. [Page 7]

Internet Draft SCTP Checksum Change January 2002

 b >>= 1;
 }
 return (rw);
 }

 unsigned long
 build_crc_table (int index)
 {
 int i;
 unsigned long rb;

 rb = reflect_32 (index);

 for (i = 0; i < 8; i++)
 {
 if (rb & 0x80000000L)
 rb = (rb << 1) ^ CRC32C_POLY;
 else
 rb <<= 1;
 }
 return (reflect_32 (rb));
 }

 main ()
 {
 int i;

 printf ("\nGenerating CRC-32c table file <%s>\n", OUTPUT_FILE);
 if ((tf = fopen (OUTPUT_FILE, "w")) == NULL)
 {
 printf ("Unable to open %s\n", OUTPUT_FILE);
 exit (1);
 }
 fprintf (tf, "#ifndef __crc32cr_table_h__\n");
 fprintf (tf, "#define __crc32cr_table_h__\n\n");
 fprintf (tf, "#define CRC32C_POLY 0x%08lX\n", CRC32C_POLY);
 fprintf (tf, "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
 fprintf (tf, "\nunsigned long crc_c[256] =\n{\n");
 for (i = 0; i < 256; i++)
 {
 fprintf (tf, "0x%08lXL, ", build_crc_table (i));
 if ((i & 3) == 3)
 fprintf (tf, "\n");
 }

 fprintf (tf, "};\n\n#endif\n");

 if (fclose (tf) != 0)
 printf ("Unable to close <%s>." OUTPUT_FILE);

 else
 printf ("\nThe CRC-32c table has been written to <%s>.\n",
 OUTPUT_FILE);
 }

Stewart et.al. [Page 8]

Internet Draft SCTP Checksum Change January 2002

 /* Example of crc insertion */

 #include "crc32cr.h"

 int
 insert_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 unsigned int i;
 unsigned long crc32 = ~0L;

 /* check packet length */
 if (length > NMAX || length < NMIN)
 return -1;

 message = (SCTP_message *) buffer;
 message->common_header.checksum = 0L;

 for (i = 0; i < length; i++)
 {
 CRC32C(crc32, buffer[i]);
 }

 /* and insert it into the message */
 message->common_header.checksum = htonl(crc32);
 return 1;
 }

 /* Example of crc validation */
 /* Test of 32 zeros should yield 0x756EC955 placed in network order */
 /* 13 zeros followed by byte values of 1 - 0x1f should yield
 /* 0x5b988D47 */

 int
 validate_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 unsigned int i;
 unsigned long original_crc32;
 unsigned long crc32 = ~0L;

 /* check packet length */
 if (length > NMAX || length < NMIN)
 return -1;

 /* save and zero checksum */
 message = (SCTP_message *) buffer;

 original_crc32 = ntohl(message->common_header.checksum);
 message->common_header.checksum = 0L;

 for (i = 0; i < length; i++)

Stewart et.al. [Page 9]

Internet Draft SCTP Checksum Change January 2002

 {
 CRC32C(crc32, buffer[i]);
 }

 return ((original_crc32 == crc32)? 1 : -1);
 }

 Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it or
 assist in its implementation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are included
 on all such copies and derivative works. However, this document itself
 may not be modified in any way, such as by removing the copyright notice
 or references to the Internet Society or other Internet organizations,
 except as needed for the purpose of developing Internet standards in
 which case the procedures for copyrights defined in the Internet
 Standards process must be followed, or as required to translate it into
 languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an "AS
 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
 FITNESS FOR A PARTICULAR PURPOSE.

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Stewart et.al. [Page 10]

