
 Network Working Group R. Stewart
 Category: Internet Draft Cisco Systems
 J. Stone
 Stanford
 D. Otis
 SANlight

 March 22, 2002

SCTP Checksum Change
draft-ietf-tsvwg-sctpcsum-04.txt

 Status of this Memo

 This document is an internet-draft and is in full conformance with all
 provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other groups
 may also distribute working documents as Internet-Drafts. Internet-
 Drafts are draft documents valid for a maximum of six months and may be
 updated, replaced, or obsoleted by other documents at any time. It is
 inappropriate to use Internet-Drafts as reference material or to cite
 them other than as "work in progress."
 The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt
 The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

 Abstract

 SCTP [RFC2960] currently uses an Adler-32 checksum. For small packets
 Adler-32 provides weak detection of errors. This document changes that
 checksum and updates SCTP to use a 32 bit CRC checksum.

 Table of Contents

1 Introduction ..1
2 Checksum Procedures ...2
3 Security Considerations......................................6
4 IANA Considerations..6
5 Acknowledgments ...6
6 Authors' Addresses ..6
7 References ..7
8 Appendix ..8

 1 Introduction

 A fundamental weakness has been detected in SCTP's current Adler-32
 checksum algorithm [STONE]. One requirement of an effective checksum is
 that it evenly and smoothly spreads its input packets over the available

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2960

 check bits.

 From an email from Jonathan Stone, who analyzed the Adler-32 as part

Stewart et.al. [Page 1]

Internet Draft SCTP Checksum March 2002

 of his doctoral thesis:

 "Briefly, the problem is that, for very short packets, Adler32 is
 guaranteed to give poor coverage of the available bits. Don't take my
 word for it, ask Mark Adler. :-).

 Adler-32 uses two 16-bit counters, s1 and s2. s1 is the sum of the
 input, taken as 8-bit bytes. s2 is a running sum of each value of s1.
 Both s1 and s2 are computed mod-65521 (the largest prime less than 2^16).
 Consider a packet of 128 bytes. The *most* that each byte can be is 255.
 There are only 128 bytes of input, so the greatest value which the s1
 accumulator can have is 255 * 128 = 32640. So for 128-byte packets, s1
 never wraps. That is critical. Why?

 The key is to consider the distribution of the s1 values, over some
 distribution of the values of the individual input bytes in each packet.
 Because s1 never wraps, s1 is simply the sum of the individual input
 bytes. (even Doug's trick of adding 0x5555 doesn't help here, and an even
 larger value doesn't really help: we can get at most one mod-65521
 reduction).

 Given the further assumption that the input bytes are drawn independently
 from some distribution (they probably aren't: for file system data, it's
 even worse than that!), the Central Limit Theorem tells us that that s1
 will tend to have a normal distribution. That's bad: it tells us that
 the value of s1 will have hot-spots at around 128 times the mean of the
 input distribution: around 16k, assuming a uniform distribution. That's
 bad. We want the accumulator to wrap as many times as possible, so that
 the resulting sum has as close to a uniform distribution as possible. (I
 call this "fairness").

 So, for short packets, the Adler-32 s1 sum is guaranteed to be unfair.
 Why is that bad? It's bad because the space of valid packets-- input
 data, plus checksum values -- is also small. If all packets have
 checksum values very close to 32640, then the likelihood of even a
 'small' error leaving a damaged packet with a valid checksum is higher
 than if all checksum values are equally likely."

 Due to this inherent weakness, exacerbated by the fact that SCTP will
 first be used as a signaling transport protocol where signaling messages
 are usually less than 128 bytes, a new checksum algorithm is specified by
 this document, replacing the current Adler-32 algorithm with CRC-32c.

 1.1 Conventions

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,SHOULD
 NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when they appear in
 this document, are to be interpreted as described in [RFC2119].

 2 Checksum Procedures

https://datatracker.ietf.org/doc/html/rfc2119

 The procedures described in section 2.1 of this document MUST be
 followed, replacing the current checksum defined in [RFC2960].
 Furthermore any references within [RFC2960] to Adler-32 MUST be treated

Stewart et.al. [Page 2]

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960

Internet Draft SCTP Checksum March 2002

 as a reference to CRC-32c. Section 2.1 of this document describes the
 new calculation and verification procedures that MUST be followed.

 2.1 Checksum Calculation

 When sending an SCTP packet, the endpoint MUST include in the checksum
 field the CRC-32c value calculated on the packet, as described below.

 After the packet is constructed (containing the SCTP common header and
 one or more control or DATA chunks), the transmitter MUST do the
 following:

 1) Fill in the proper Verification Tag in the SCTP common header and
 initialize the Checksum field to 0's.

 2) Calculate the CRC-32c of the whole packet, including the SCTP common
 header and all the chunks.

 3) Put the resultant value into the Checksum field in the common header,
 and leave the rest of the bits unchanged.

 When an SCTP packet is received, the receiver MUST first perform the
 following:

 1) Store the received CRC-32c value,

 2) Replace the 32 bits of the Checksum field in the received SCTP packet
 with all '0's and calculate a CRC-32c value of the whole received
 packet. And,

 3) Verify that the calculated CRC-32c value is the same as the received
 CRC-32c value. If not, the receiver MUST treat the packet as an
 invalid SCTP packet.

 The default procedure for handling invalid SCTP packets is to silently
 discard them.

 We define a 'reflected value' as one that is the opposite of the
 normal bit order of the machine. The 32 bit CRC is
 calculated as described for CRC-32c and uses the polynomial code
 0x11EDC6F41 (Castagnoli93) or x^32+x^28+x^27+x^26+x^25
 +x^23+x^22+x^20+x^19+x^18+x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0.
 The CRC is computed using a procedure similar to ETHERNET CRC [ITU32],
 modified to reflect transport level usage.

 CRC computation uses polynomial division. A message bit-string M
 is transformed to a polynomial, M(X), and the CRC is calculated
 from M(X) using polynomial arithmetic [Peterson 72].
 When CRCs are used at the link layer, the polynomial is derived from
 on-the-wire bit ordering: the first bit `on the wire' is

 the high-order coefficient. Since SCTP is a transport-level protocol,
 it cannot know the actual serial-media bit ordering. Moreover,
 different links in the path between SCTP endpoints may use
 different link-level bit orders)

Stewart et.al. [Page 3]

Internet Draft SCTP Checksum March 2002

 A convention must therefore be established for mapping SCTP transport
 messages to polynomials for purposes of CRC computation.
 The bit-ordering for mapping SCTP messages to polynomials is
 that bytes are taken most-significant first; but within each byte,
 bits are taken least-significant first. The first byte of the
 message provides the eight highest coefficients.
 Within each byte, the least-significant SCTP bit gives the
 most significant polynomial coefficient within that byte, and
 the most-significant SCTP bit is the most significant polynomial
 coefficient in that byte. (This bit ordering is sometimes
 called `mirrored' or `reflected' [Williams93].) CRC polynomials
 are to be transformed back into SCTP transport-level byte values
 using a consistent mapping.

 The SCTP transport-level CRC value should be calculated as follows:
 - CRC input data are assumed to a byte stream numbered from 0
 to N-1.
 - the transport-level byte-stream is mapped to a polynomial value.
 An N-byte PDU with bytes 0 to N-1, is considered as
 coefficients of a polynomial M(x) of order 8N-1, with
 bit 0 of byte j being coefficient x^(8j-1), bit 7 of byte
 0 being coefficient x(8j^-8).
 - the CRC remainder register is initialized with all 1s
 and the CRC is computed with an algorithm that
 simultaneously multiplies by x^32 and divides by the CRC
 polynomial.
 - the polynomial is multiplied by x^32 and divided by G(x),
 the generator polynomial, producing a remainder R(x) of degree
 less than or equal to 31.
 - the coefficients of R(x) are considered a 32 bit sequence.
 - the bit sequence is complemented. The resulting is the CRC
 polynomial.
 - The CRC polynomial is mapped back into SCTP transport-level
 bytes. Coefficient of x^31 gives the value of bit 0 of
 SCTP byte 0, the coefficient of x^24 gives the value of
 bit 7 of byte 0. the coefficient of x^7 gives bit 0 of
 bit 0 and the coefficient of x^0 0 gives bit 7 of byte 3.
 The resulting four-byte transport-level sequence is the
 32-bit SCTP checksum value.

 IMPLEMENTATION NOTE: Standards documents, textbooks, and vendor
 literature on CRCs often follow an alternative formulation, in which
 the register used to hold the remainder of the long-division
 algorithm is initialized to zero rather than all-1s, and instead the
 first 32 bits of the message are complemented. The long-division
 algorithm used in our formulation is specified such that the the
 initial multiplication by 2^32 and the long-division, into one
 simultaneous operation. For such algorithms, and for messages longer

 than 64 bits, the two specifications are precisely equivalent. That
 equivalence is the intent of this document. Implementors of SCTP are
 warned that both specifications are to be found in the literature,
 sometimes with no restriction on the long-division algorithm.
 The choice of formulation in this document is to permit non-SCTP

Stewart et.al. [Page 4]

Internet Draft SCTP Checksum March 2002

 usage, where the same CRC algorithm may be used to protect messages
 shorter than 64 bits.

 When an SCTP packet is transmitted, the sender MUST perform this
 checksum procedure, using the preceding CRC computation:

 1) Fill in the proper Verification Tag in the SCTP common header and
 initialize the Checksum field to 0's.

 2) Calculate the CRC-32c of the whole packet, including the SCTP common
 header and all the chunks.

 3) Put the resultant 32-bit SCTP checksum value into the Checksum field
 in the common header, and leave the rest of the bits unchanged.

 When an SCTP packet is received, the receiver MUST first perform the
 following:

 1) Store the received CRC-32c value,

 2) Replace the 32 bits of the Checksum field in the received SCTP packet
 with all '0's and calculate the SCTP CRC-32c checksum value of
 the whole received packet. And,

 3) Verify that the calculated CRC-32c value is the same as the received
 CRC-32c value. If not, the receiver MUST treat the packet as an
 invalid SCTP packet.

 The default procedure for handling invalid SCTP packets is to silently
 discard them.

 If SCTP could follow link level CRC use, the CRC would be computed
 over the link-level bit-stream. The first bit on the link
 mapping to the highest-order coefficient, and so on down to the
 last link-level bit as the lowest-order coefficient. The CRC value
 would be transmitted immediately after the input message as a link-level
 `trailer'. The resulting link-level bit-stream would be
 (M(X)x) * x^32) + (M(X)*x^32))/ G(x), which is divisible by G(X).
 There would thus be a constant CRC remainder for `good' packets.
 However, given that implementations of RFC2960 have already
 proliferated, the IETF discussions considered that the benefit of
 a `trailer' CRC did not outweigh the cost of making a very large
 change in the protocol processing. Further, packets accepted by
 the SCTP `header' CRC are in one-to-one correspondence with
 packets accepted by a modified procedure using a `trailer'
 CRC value, and where the SCTP common checksum header is set to zero
 on transmission and is received as zero.

 There may be a computational advantage in validating the Association
 against the Verification Tag prior to performing a checksum as

https://datatracker.ietf.org/doc/html/rfc2960

 invalid tags will result in the same action as a bad checksum in
 most cases. The exceptions for this technique would be INIT and some
 SHUTDOWN-COMPLETE exchanges as well as a stale COOKIE-ECHO. These
 special case exchanges must represent small packets and will

Stewart et.al. [Page 5]

Internet Draft SCTP Checksum March 2002

 minimize the effect of the checksum calculation.

 3 Security Considerations

 In general, the security considerations of RFC2960 apply to
 the protocol with the new checksum as well.

 4 IANA Considerations

 There are no IANA considerations required in this document.

 5 Acknowledgments

 The authors would like to thank the following people that have
 provided comments and input on the checksum issue:

 Mark Adler, Ran Atkinson, Stephen Bailey, David Black, Scott
 Bradner, Mikael Degermark, Laurent Glaude, Klaus Gradischnig, Alf
 Heidermark, Jacob Heitz, Gareth Kiely, David Lehmann, Allision
 Mankin, Lyndon Ong, Craig Partridge, Vern Paxson, Kacheong Poon,
 Michael Ramalho, David Reed, Ian Rytina, Hanns Juergen Schwarzbauer,
 Chip Sharp, Bill Sommerfeld, Michael Tuexen, Jim Williams, Jim Wendt,
 Michael Welzl, Jonathan Wood, Lloyd Wood, Qiaobing Xie, La Monte
 Yarroll.

 Special thanks to Dafna Scheinwald, Julian Satran Pat Thaler, Matt
 Wakeley, and Vince Cavanna, for selection criteria of polynomials and
 examination of CRC polynomials, particularly CRC-32c [Castagnoli93].

 Special thanks to Mr. Ross Williams and his document [Williams93].
 This non-formal perspective on software aspects of CRCs furthered
 understanding of authors previously unfamiliar with CRC computation.
 More formal treatments of [Blahut 94] or [Peterson 72], was
 also essential.

 6 Authors' Addresses

 Randall R. Stewart
 24 Burning Bush Trail.
 Crystal Lake, IL 60012
 USA

 EMail: rrs@cisco.com

 Jonathan Stone
 Room 446, Mail code 9040
 Gates building 4A
 Stanford, Ca 94305

 EMail: jonathan@dsg.stanford.edu

https://datatracker.ietf.org/doc/html/rfc2960

 Douglas Otis
 800 E. Middlefield

Stewart et.al. [Page 6]

Internet Draft SCTP Checksum March 2002

 Mountain View, CA 94043
 USA

 Email dotis@sanlight.net

 7 References

 [Castagnoli93] G. Castagnoli, S. Braeuer and M. Herrman,
 "Optimization of Cyclic Redundancy-Check Codes with 24 and 32 Parity
 Bits", IEEE Transactions on Communications, Vol. 41, No. 6, June 1993

 [McKee75] H. McKee, "Improved {CRC} techniques detects erroneous
 leading and trailing 0's in transmitted data blocks",
 Computer Design Volume 14 Number 10 Pages 102-4,106,
 October 1975

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2960] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp,
 H. J. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
 and, V. Paxson, "Stream Control Transmission Protocol," RFC

2960, October 2000.

 [ITU32] ITU-T Recommendation V.42, "Error-correcting
 procedures for DCEs using asynchronous-to-synchronous
 conversion", section 8.1.1.6.2, October 1996.

 7.1 Informative References

 [STONE] Stone, J., "Checksums in the Internet", Doctoral
 dissertation - August 2001

 [Williams93] Williams, R., "A PAINLESS GUIDE TO CRC ERROR DETECTION
 ALGORITHMS" - Internet publication, August 1993,

http://www.geocities.com/SiliconValley/Pines/8659/crc.htm.

 [Blahut 1994], R.E. Blahut, Theory and Practice of Error Control
 Codes, Addison-Wesley, 1994.

 [Easics 2001]. http://www.easics.be/webtools/crctool. Online tools
 for synthesis of CRC Verilog and VHDL.

 [Feldmeier 95], David C. Feldmeier, Fast software implementation of
 error detection codes, IEEE Transactions on Networking, vol 3 no 6,
 pp 640-651, December, 1995.

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm
http://www.easics.be/webtools/crctool

 [Glaise 1997] R. J. Glaise, A two-step computation of cyclic
 redundancy code CRC-32 for ATM networks, IBM Journal of Research and
 Development} vol 41 no 6, 1997. URL=

Stewart et.al. [Page 7]

Internet Draft SCTP Checksum March 2002

http://www.research.ibm.com/journal/rd/416/glaise.html.

 [Prange 1957], E. Prange, Cyclic Error-Correcting codes in two
 symbols, Technical report AFCRC-TN-57-103, Air Force Cambridge
 Research Center, Cambridge, Mass. 1957.

 [Peterson 1972], W. W. Peterson and E.J Weldon, Error Correcting
 Codes, 2nd. edition, MIT Press, Cambridge, Massachusetts.

 [Shie2001] Ming-Der Shieh et. al, A Systematic Approach for Parallel
 CRC Computations. Journal of Information Science and Engineering,
 Vol.17 No.3, pp.445-461

 [Sprachman2001] Michael Sprachman, Automatic Generation of Parallel
 CRC Circuits, IEEE Design & Test May-June 2001

 8 Appendix

This appendix is for information only and is NOT part of the
 standard.

 The anticipated deployment of SCTP ranges over several orders of
 magnitude of link speed: from cellular-power telephony devices at
 tens of kilobits, to local links at tens of gigabits. Implementors
 of SCTP should consider their link speed and choose, from the wide
 range of CRC implementations, one which matches their own design
 point for size, cost, and throughput. Many techniques for computing
 CRCs are known. This Appendix surveys just a few, to give a feel for
 the range of techniques available.

 CRCs are derived from early work by Prange in the 1950s [Prange 57].
 The theory underlying CRCs and choice of generator polynomial can be
 introduced by either via the theory of Galois fields [Blahut 94]
 or as ideals of an algebra over cyclic codes [cite Peterson 72].

 One of the simplest techniques is direct bit-serial hardware
 implementations, using the generator polynomial as the taps of a
 linear feedback shift register (LSFR). LSFR computation follows
 directly from the mathematics, and is generally attributed to Prange.
 Tools exist which, a CRC generator polynomial, will produce
 synthesizable Verilog code for CRC hardware [Easics 2001].

 Since LSFRs do not scale well in speed, a variety of other
 techniques have been explored. One technique exploits the fact that
 the divisor of the polynomial long-division, G, is known in
 advance. It is thus possible to pre-compute lookup tables giving the
 polynomial remainder of multiple input bits --- typically 2, 4, or 8
 bits of input at a time. This technique can be used either in
 software or in hardware. Software to compute lookup tables yielding

http://www.research.ibm.com/journal/rd/416/glaise.html

 2, 4, or 8 bits of result is freely available. [Williams93]

 For multi-gigabit links, the above techniques may still not be fast
 enough. One technique for computing CRCS at OC-48 rates is

Stewart et.al. [Page 8]

Internet Draft SCTP Checksum March 2002

 `two-stage' CRC computation [Glaise 1997]. Here, some multiple
 of G(x), G(x)H(x), is chosen so as to minimize the number of nonzero
 coefficients, or weight, of the product G(x)H(x). The low weight of
 the product polynomial makes it susceptible to efficient hardware
 divide-by-constant implementations. This first stage gives M(x) /
 (G(x)H(x)) as its result. The second stage then divides the result
 of the first stage by H(x), yielding (M(x) / (G(x)H(x))) / H(x). If
 H(x) is also relatively prime to G(x), this gives M(x)/G(x).
 Further developments on this approach can be found in [Shie2001] and
 [Sprachman2001].

 The literature also includes a variety of software CRC
 implementations. One approach is to use carefully-tuned assembly
 code for direct polynomial division. [Feldmeier 95] reports that for
 low-weight polynomials, tuned polynomial arithmetic gives higher
 throughput than table-lookup algorithms. Even within table-lookup
 algorithms, the size of the table can be tuned, either for total
 cache footprint, or (for space-restricted environments) to minimize
 total size.

 Implementors should keep in mind the bit ordering described in
Section 2: the ordering of bits within bytes for computing CRCs in

 SCTP is the least significant bit of each byte is the
 most-significant polynomial coefficient(and vice-versa). This
 `reflected' SCTP CRC bit ordering matches on-the-wire bit order for
 Ethernet and other serial media, but is the reverse of traditional
 Internet bit ordering.

 One technique to accommodate this bit-reversal can be explained as
 follows: sketch out a hardware implementation assuming the bits are
 in CRC bit order; then perform a left-to-right inversion (mirror
 image) on the entire algorithm. (We defer for a moment the issue of
 byte order within words.) Then compute that "mirror image" in
 software. The CRC from the ``mirror image'' algorithm will be the
 bit-reversal of a correct hardware implementation. When the
 link-level media sends each byte, the byte is sent in the reverse of
 the host CPU bit-order. Serialization of each byte of the
 ``reflected'' CRC value re-reverses the bit order, so in the end,
 each byte will be transmitted on-the-wire in the specified bit
 order.

 The following non-normative sample code is taken from an open-source
 CRC generator [Williams93] using the ``mirroring'' technique
 and yielding a lookup table for SCTP CRC32-c with 256 entries, each
 32 bits wide. While neither especially slow nor especially fast, as
 software table-lookup CRCs go, it has the advantage of working on
 both big-endian and little-endian CPUs, using the same (host-order)
 lookup tables, and using only the pre-defined ntohl() and htonl()
 operations. The code is somewhat modified from [Williams93], to

 ensure portability between big-endian and little-endian
 architectures. (Note that if the byte endian-ness of the target
 architecture is known to be little-endian the final bit-reversal and
 byte-reversal steps can be folded into a single operation.)

Stewart et.al. [Page 9]

Internet Draft SCTP Checksum March 2002

 /***/
 /* Note Definition for Ross Williams table generator would */
 /* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE */
 /* For Mr. Williams direct calculation code use the settings */
 /* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF, */
 /* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000 */
 /***/

 /* Example of the crc table file */
 #ifndef __crc32cr_table_h__
 #define __crc32cr_table_h__

 #define CRC32C_POLY 0x1EDC6F41
 #define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

 unsigned long crc_c[256] =
 {
 0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
 0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
 0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
 0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
 0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,
 0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
 0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
 0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
 0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
 0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
 0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
 0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,
 0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,

 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
 0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
 0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,

Stewart et.al. [Page 10]

Internet Draft SCTP Checksum March 2002

 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
 0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
 0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
 0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
 0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
 0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
 0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
 0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
 0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
 0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,
 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
 0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L,
 };

 #endif

 /* Example of table build routine */

 #include <stdio.h>
 #include <stdlib.h>

 #define OUTPUT_FILE "crc32cr.h"
 #define CRC32C_POLY 0x1EDC6F41L
 FILE *tf;

 unsigned long
 reflect_32 (unsigned long b)
 {
 int i;
 unsigned long rw = 0L;

 for (i = 0; i < 32; i++){

 if (b & 1)
 rw |= 1 << (31 - i);
 b >>= 1;
 }
 return (rw);

Stewart et.al. [Page 11]

Internet Draft SCTP Checksum March 2002

 }

 unsigned long
 build_crc_table (int index)
 {
 int i;
 unsigned long rb;

 rb = reflect_32 (index);

 for (i = 0; i < 8; i++){
 if (rb & 0x80000000L)
 rb = (rb << 1) ^ CRC32C_POLY;
 else
 rb <<= 1;
 }
 return (reflect_32 (rb));
 }

 main ()
 {
 int i;

 printf ("\nGenerating CRC-32c table file <%s>\n", OUTPUT_FILE);
 if ((tf = fopen (OUTPUT_FILE, "w")) == NULL){
 printf ("Unable to open %s\n", OUTPUT_FILE);
 exit (1);
 }
 fprintf (tf, "#ifndef __crc32cr_table_h__\n");
 fprintf (tf, "#define __crc32cr_table_h__\n\n");
 fprintf (tf, "#define CRC32C_POLY 0x%08lX\n", CRC32C_POLY);
 fprintf (tf, "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
 fprintf (tf, "\nunsigned long crc_c[256] =\n{\n");
 for (i = 0; i < 256; i++){
 fprintf (tf, "0x%08lXL, ", build_crc_table (i));
 if ((i & 3) == 3)
 fprintf (tf, "\n");
 }
 fprintf (tf, "};\n\n#endif\n");

 if (fclose (tf) != 0)
 printf ("Unable to close <%s>." OUTPUT_FILE);
 else
 printf ("\nThe CRC-32c table has been written to <%s>.\n",
 OUTPUT_FILE);
 }

 /* Example of crc insertion */

 #include "crc32cr.h"

 unsigned long

Stewart et.al. [Page 12]

Internet Draft SCTP Checksum March 2002

 generate_crc32c(unsigned char *buffer, unsigned int length)
 {
 unsigned int i;
 unsigned long crc32 = ~0L;
 unsigned long result;
 unsigned char byte0,byte1,byte2,byte3;

 for (i = 0; i < length; i++){
 CRC32C(crc32, buffer[i]);
 }
 result = ~crc32;

 /* result now holds the negated polynomial remainder;
 * since the table and algorithm is "reflected" [williams95].
 * That is, result has the same value as if we mapped the message
 * to a polynomial, computed the host-bit-order polynomial
 * remainder, performed final negation, then did an end-for-end
 * bit-reversal.
 * Note that a 32-bit bit-reversal is identical to four inplace
 * 8-bit reversals followed by an end-for-end byteswap.
 * In other words, the bytes of each bit are in the right order,
 * but the bytes have been byteswapped. So we now do an explicit
 * byteswap. On a little-endian machine, this byteswap and
 * the final ntohl cancel out and could be elided.
 */
 byte0 = result & 0xff;
 byte1 = (result>>8) & 0xff;
 byte2 = (result>>16) & 0xff;
 byte3 = (result>>24) & 0xff;

 crc32 = ((byte0 << 24) |
 (byte1 << 16) |
 (byte2 << 8) |
 byte3);
 return (crc32);
 }

 int
 insert_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 unsigned long crc32;
 message = (SCTP_message *) buffer;
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 /* and insert it into the message */
 message->common_header.checksum = htonl(crc32);
 return 1;
 }

 int
 validate_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;

Stewart et.al. [Page 13]

Internet Draft SCTP Checksum March 2002

 unsigned int i;
 unsigned long original_crc32;
 unsigned long crc32 = ~0L;

 /* save and zero checksum */
 message = (SCTP_message *) buffer;
 original_crc32 = ntohl(message->common_header.checksum);
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 return ((original_crc32 == crc32)? 1 : -1);
 }

 Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it or
 assist in its implementation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are included
 on all such copies and derivative works. However, this document itself
 may not be modified in any way, such as by removing the copyright notice
 or references to the Internet Society or other Internet organizations,
 except as needed for the purpose of developing Internet standards in
 which case the procedures for copyrights defined in the Internet
 Standards process must be followed, or as required to translate it into
 languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an "AS
 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
 FITNESS FOR A PARTICULAR PURPOSE.

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Stewart et.al. [Page 14]

