
Network Working Group R. R. Stewart
INTERNET-DRAFT Cisco
 Q. Xie
 L Yarroll
 Motorola
 J. Wood
 DoCoMo USA Labs
 K. Poon
 Sun Microsystems
 K. Fujita
 NEC

expires in six months May 12, 2002

Sockets API Extensions for Stream Control Transmission Protocol
<draft-ietf-tsvwg-sctpsocket-04.txt>

 Status of This Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026]. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document describes a mapping of the Stream Control Transmission
 Protocol [SCTP] into a sockets API. The benefits of this mapping
 include compatibility for TCP applications, access to new SCTP
 features and a consolidated error and event notification scheme.

 Table of Contents

1. Introduction.. 3
2. Conventions... 4
2.1 Data Types.. 4
3. UDP-style Interface..................................... 4
3.1 Basic Operation....................................... 4

3.1.1 socket() - UDP Style Syntax...................... 5
3.1.2 bind() - UDP Style Syntax........................ 5
3.1.3 listen() - UDP Style Syntax...................... 6
3.1.4 sendmsg() and recvmsg() - UDP Style Syntax....... 7
3.1.5 close() - UDP Style Syntax....................... 8
3.1.6 connect() - UDP Style Syntax..................... 8

3.2 Implicit Association Setup............................ 9

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctpsocket-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

3.3 Non-blocking mode..................................... 9
4. TCP-style Interface.....................................10
4.1 Basic Operation.......................................10
4.1.1 socket() - TCP Style Syntax........................11

Stewart et.al. [Page 1]

Internet Draft SCTP Sockets API May 2002

4.1.2 bind() - TCP Style Syntax..........................11
4.1.3 listen() - TCP Style Syntax........................12
4.1.4 accept() - TCP Style Syntax........................13
4.1.5 connect() - TCP Style Syntax.......................13
4.1.6 close() - TCP Style Syntax.........................14
4.1.7 shutdown() - TCP Style Syntax......................14
4.1.8 sendmsg() and recvmsg() - TCP Style Syntax.........15
4.1.9 getpeername()15

5. Data Structures..16
5.1 The msghdr and cmsghdr Structures......................16
5.2 SCTP msg_control Structures............................17
5.2.1 SCTP Initiation Structure (SCTP_INIT)...............17
5.2.2 SCTP Header Information Structure (SCTP_SNDRCV).....19
5.3 SCTP Events and Notifications..........................21
5.3.1 SCTP Notification Structure.........................21
5.3.1.1 SCTP_ASSOC_CHANGE................................23
5.3.1.2 SCTP_PEER_ADDR_CHANGE............................24
5.3.1.3 SCTP_REMOTE_ERROR................................25
5.3.1.4 SCTP_SEND_FAILED.................................26
5.3.1.5 SCTP_SHUTDOWN_EVENT..............................27
5.3.1.6 SCTP_ADAPTION_INDICATION.........................28
5.3.1.7 SCTP_PARTIAL_DELIVERY_EVENT......................29
5.4 Ancillary Data Considerations and Semantics...........30
5.4.1 Multiple Items and Ordering........................30
5.4.2 Accessing and Manipulating Ancillary Data..........30
5.4.3 Control Message Buffer Sizing......................31

6. Common Operations for Both Styles.......................31
6.1 send(), recv(), sendto(), recvfrom()..................31
6.2 setsockopt(), getsockopt()............................32
6.3 read() and write()....................................33
6.4 getsockname()...33
7. Socket Options..34
7.1 Read / Write Options..................................36
7.1.1 Retransmission Timeout Parameters (SCTP_RTOINFO)...36

 7.1.2 Association Retransmission Parameter
 (SCTP_ASSOCRTXINFO)................................36

7.1.3 Initialization Parameters (SCTP_INITMSG)...........38
7.1.4 SO_LINGER..38
7.1.5 SO_NODELAY...38
7.1.6 SO_RCVBUF..38
7.1.7 SO_SNDBUF..38
7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)...39
7.1.9 SCTP_SET_PRIMARY_ADDR..............................39
7.1.10 SCTP_SET_PEER_PRIMARY_ADDR........................39
7.1.11 Set Adaption Layer Bits...........................40

 7.1.12 Set default message time outs
 (SCTP_SET_STREAM_TIMEOUTS)........................40
 7.1.13 Enable/Disable message fragmentation
 (SCTP_DISABLE_FRAGMENTS)..........................40

 7.1.14 Peer Address Parameters
 (SCTP_SET_PEER_ADDR_PARAMS).......................40

7.1.15 Set default send parameters.......................41
 7.1.16 Set notification and ancillary events
 (SCTP_SET_EVENTS).................................41

7.2 Read-Only Options.....................................41
7.2.1 Association Status (SCTP_STATUS)...................42

Stewart et.al. [Page 2]

Internet Draft SCTP Sockets API May 2002

 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO).43
7.3. Ancillary Data and Notification Interest Options.....43
8. New Interfaces..45
8.1 sctp_bindx()..45
8.2 Branched-off Association, sctp_peeloff()..............46
8.3 sctp_getpaddrs()......................................47
8.4 sctp_freepaddrs().....................................47
8.5 sctp_getladdrs()......................................48
8.6 sctp_freeladdrs().....................................48
9. Security Considerations.................................48
10. Acknowledgments.......................................49
11. Authors' Addresses....................................49
12. References..49
Appendix A: TCP-style Code Example.........................50
Appendix B: UDP-style Code Example.........................55

1. Introduction

 The sockets API has provided a standard mapping of the Internet
 Protocol suite to many operating systems. Both TCP [RFC793] and UDP
 [RFC768] have benefited from this standard representation and access
 method across many diverse platforms. SCTP is a new protocol that
 provides many of the characteristics of TCP but also incorporates
 semantics more akin to UDP. This document defines a method to map
 the existing sockets API for use with SCTP, providing both a base
 for access to new features and compatibility so that most existing
 TCP applications can be migrated to SCTP with few (if any) changes.

 There are three basic design objectives:

 1) Maintain consistency with existing sockets APIs:

 We define a sockets mapping for SCTP that is consistent with other
 sockets API protocol mappings (for instance, UDP, TCP, IPv4, and
 IPv6).

 2) Support a UDP-style interface

 This set of semantics is similar to that defined for connection less
 protocols, such as UDP. It is more efficient than a TCP-like
 connection-oriented interface in terms of exploring the new features
 of SCTP.

 Note that SCTP is connection-oriented in nature, and it does not
 support broadcast or multicast communications, as UDP does.

 3) Support a TCP-style interface

 This interface supports the same basic semantics as sockets for
 connection-oriented protocols, such as TCP.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768

 The purpose of defining this interface is to allow existing
 applications built on connection-oriented protocols be ported to
 use SCTP with very little effort, and developers familiar with those

Stewart et.al. [Page 3]

Internet Draft SCTP Sockets API May 2002

 semantics can easily adapt to SCTP.

 Extensions will be added to this mapping to provide mechanisms to
 exploit new features of SCTP.

 Goals 2 and 3 are not compatible, so in this document we define two
 modes of mapping, namely the UDP-style mapping and the TCP-style
 mapping. These two modes share some common data structures and
 operations, but will require the use of two different programming
 models.

 A mechanism is defined to convert a UDP-style SCTP socket into a
 TCP-style socket.

 Some of the SCTP mechanisms cannot be adequately mapped to existing
 socket interface. In some cases, it is more desirable to have new
 interface instead of using existing socket calls. This document
 also describes those new interface.

2. Conventions

2.1 Data Types

 Whenever possible, data types from Draft 6.6 (March 1997) of POSIX
 1003.1g are used: uintN_t means an unsigned integer of exactly N
 bits (e.g., uint16_t). We also assume the argument data types from
 1003.1g when possible (e.g., the final argument to setsockopt() is a
 size_t value). Whenever buffer sizes are specified, the POSIX
 1003.1 size_t data type is used.

3. UDP-style Interface

 The UDP-style interface has the following characteristics:

 A) Outbound association setup is implicit.

 B) Messages are delivered in complete messages (with one notable
 exception).

3.1 Basic Operation

 A typical server in this model uses the following socket calls in
 sequence to prepare an endpoint for servicing requests:

 1. socket()
 2. bind()
 3. listen()
 4. recvmsg()
 5. sendmsg()
 6. close()

 A typical client uses the following calls in sequence to setup an
 association with a server to request services:

Stewart et.al. [Page 4]

Internet Draft SCTP Sockets API May 2002

 1. socket()
 2. sendmsg()
 3. recvmsg()
 4. close()

 In this model, by default, all the associations connected to the
 endpoint are represented with a single socket.

 If the server or client wishes to branch an existing association off
 to a separate socket, it is required to call sctp_peeloff() and in
 the parameter specifies one of the transport addresses of the
 association. The sctp_peeloff() call will return a new socket which
 can then be used with recv() and send() functions for message
 passing. See Section 8.2 for more on branched-off associations.

 Once an association is branched off to a separate socket, it becomes
 completely separated from the original socket. All subsequent
 control and data operations to that association must be done through
 the new socket. For example, the close operation on the original
 socket will not terminate any associations that have been branched
 off to a different socket.

 We will discuss the UDP-style socket calls in more details in the
 following subsections.

3.1.1 socket() - UDP Style Syntax

 Applications use socket() to create a socket descriptor to represent
 an SCTP endpoint.

 The syntax is,

 sd = socket(PF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

 or,

 sd = socket(PF_INET6, SOCK_SEQPACKET, IPPROTO_SCTP);

 Here, SOCK_SEQPACKET indicates the creation of a UDP-style socket.

 The first form creates an endpoint which can use only IPv4
 addresses, while, the second form creates an endpoint which can use
 both IPv6 and IPv4 mapped addresses.

3.1.2 bind() - UDP Style Syntax

 Applications use bind() to specify which local address the SCTP
 endpoint should associate itself with.

 An SCTP endpoint can be associated with multiple addresses. To do

 this, sctp_bindx() is introduced in section 8.1 to help applications
 do the job of associating multiple addresses.

 These addresses associated with a socket are the eligible transport

Stewart et.al. [Page 5]

Internet Draft SCTP Sockets API May 2002

 addresses for the endpoint to send and receive data. The endpoint
 will also present these addresses to its peers during the
 association initialization process, see [SCTP].

 After calling bind() or sctp_bindx(), if the endpoint wishes to
 accept new associations on the socket, it must call listen() (see

section 3.1.3).

 The syntax of bind() is,

 ret = bind(int sd, struct sockaddr *addr, int addrlen);

 sd - the socket descriptor returned by socket().
 addr - the address structure (struct sockaddr_in or struct
 sockaddr_in6 [RFC 2553]),
 addrlen - the size of the address structure.

 If sd is an IPv4 socket, the address passed must be an IPv4 address.
 If the sd is an IPv6 socket, the address passed can either be an
 IPv4 or an IPv6 address.

 Applications cannot call bind() multiple times to associate multiple
 addresses to an endpoint. After the first call to bind(), all
 subsequent calls will return an error.

 If addr is specified as a wildcard (INADDR_ANY for an IPv4 address,
 or as IN6ADDR_ANY_INIT or in6addr_any for an IPv6 address), the
 operating system will associate the endpoint with an optimal address
 set of the available interfaces.

 If a bind() or sctp_bindx() is not called prior to a sendmsg() call
 that initiates a new association, the system picks an ephemeral port
 and will choose an address set equivalent to binding with a wildcard
 address. One of those addresses will be the primary address for the
 association. This automatically enables the multi-homing capability
 of SCTP.

3.1.3 listen() - UDP Style Syntax

 By default, new associations are not accepted for UDP style sockets.
 An application uses listen() to mark a socket as being able to
 accept new associations. The syntax is,

 int listen(int socket, int backlog);

 socket - the socket descriptor of the endpoint.
 backlog - ignored for UDP-style sockets.

 Note that UDP-style socket consumers do not need to call accept to
 retrieve new associations. Calling accept() on a UDP-style socket

https://datatracker.ietf.org/doc/html/rfc2553

 should return EOPNOTSUPP. Rather, new associations are accepted
 automatically, and notifications of the new associations are
 delivered via recvmsg() with the SCTP_ASSOC_CHANGE event (if these
 notifications are enabled). Clients will typically not call listen,

Stewart et.al. [Page 6]

Internet Draft SCTP Sockets API May 2002

 so that they can be assured that the only associations on the socket
 will be ones they actively initiated. Server or peer-to-peer
 sockets, on the other hand, will always accept new associations, so
 a well-written application using server UDP-style sockets must be
 prepared to handle new associations from unwanted peers.

 Also note that the SCTP_ASSOC_CHANGE event provides the association
 ID for a new association, so if applications wish to use the
 association ID as input to other socket calls, they should ensure
 that the SCTP_ASSOC_CHANGE event is enabled (it is enabled by
 default).

3.1.4 sendmsg() and recvmsg() - UDP Style Syntax

 An application uses sendmsg() and recvmsg() call to transmit data to
 and receive data from its peer.

 ssize_t sendmsg(int socket, const struct msghdr *message,
 int flags);

 ssize_t recvmsg(int socket, struct msghdr *message,
 int flags);

 socket - the socket descriptor of the endpoint.
 message - pointer to the msghdr structure which contains a single
 user message and possibly some ancillary data.

 See Section 5 for complete description of the data
 structures.

 flags - No new flags are defined for SCTP at this level. See
Section 5 for SCTP-specific flags used in the msghdr

 structure.

 As we will see in Section 5, along with the user data, the ancillary
 data field is used to carry the sctp_sndrcvinfo and/or the
 sctp_initmsg structures to perform various SCTP functions including
 specifying options for sending each user message. Those options,
 depending on whether sending or receiving, include stream number,
 stream sequence number, TOS, various flags, context and payload
 protocol Id, etc.

 When sending user data with sendmsg(), the msg_name field in msghdr
 structure will be filled with one of the transport addresses of the
 intended receiver. If there is no association existing between the
 sender and the intended receiver, the sender's SCTP stack will set
 up a new association and then send the user data (see Section 3.2
 for more on implicit association setup).

 If a peer sends a SHUTDOWN, a SCTP_SHUTDOWN_EVENT notification will

 be delivered if that notification has been enabled, and no more data
 can be sent to that association. Any attempt to send more data will
 cause sendmsg() to return with an ESHUTDOWN error. Note that the
 socket is still open for reading at this point so it is possible to

Stewart et.al. [Page 7]

Internet Draft SCTP Sockets API May 2002

 retrieve notifications.

 When receiving a user message with recvmsg(), the msg_name field in
 msghdr structure will be populated with the source transport address
 of the user data. The caller of recvmsg() can use this address
 information to determine to which association the received user
 message belongs. Note that if SCTP_ASSOC_CHANGE events are disabled,
 applications must use the peer transport address provided in the
 msg_name field by recvmsg() to perform correlation to an
 association, since they will not have the association ID.

 If all data in a single message has been delivered, MSG_EOR will be
 set in the msg_flags field of the msghdr structure (see section

5.1).

 If the application does not provide enough buffer space to
 completely receive a data message, MSG_EOR will not be set in
 msg_flags. Successive reads will consume more of the same message
 until the entire message has been delivered, and MSG_EOR will be
 set.

 If the SCTP stack is running low on buffers, it may partially
 deliver a message. In this case, MSG_EOR will not be set, and more
 calls to recvmsg() will be necessary to completely consume the
 message. Only one message at a time can be partially delivered.

 Note, if the socket is a branched-off socket that only represents
 one association (see Section 3.1), the msg_name field is not used
 when sending data (i.e., ignored by the SCTP stack).

3.1.5 close() - UDP Style Syntax

 Applications use close() to perform graceful shutdown (as described
 in Section 10.1 of [SCTP]) on ALL the associations currently
 represented by a UDP-style socket.

 The syntax is

 ret = close(int sd);

 sd - the socket descriptor of the associations to be closed.

 To gracefully shutdown a specific association represented by the
 UDP-style socket, an application should use the sendmsg() call,
 passing no user data, but including the MSG_EOF flag in the
 ancillary data (see Section 5.2.2).

 If sd in the close() call is a branched-off socket representing only
 one association, the shutdown is performed on that association only.

3.1.6 connect() - UDP Style Syntax

 An application may use the connect() call in the UDP model to
 initiate an association without sending data.

Stewart et.al. [Page 8]

Internet Draft SCTP Sockets API May 2002

 The syntax is

 ret = connect(int sd, const struct sockaddr *nam, int len);

 sd - the socket descriptor to have a new association added
 to.

 nam - the address structure (either struct sockaddr_in or struct
 sockaddr_in6 defined in [RFC 2553]).

 len - the size of the address.

3.2 Implicit Association Setup

 Once all bind() calls are complete on a UDP-style socket, the
 application can begin sending and receiving data using the
 sendmsg()/recvmsg() or sendto()/recvfrom() calls, without going
 through any explicit association setup procedures (i.e., no
 connect() calls required).

 Whenever sendmsg() or sendto() is called and the SCTP stack at the
 sender finds that there is no association existing between the
 sender and the intended receiver (identified by the address passed
 either in the msg_name field of msghdr structure in the sendmsg()
 call or the dest_addr field in the sendto() call), the SCTP stack
 will automatically setup an association to the intended receiver.

 Upon the successful association setup a SCTP_COMM_UP
 notification will be dispatched to the socket at both the sender and
 receiver side. This notification can be read by the recvmsg() system
 call (see Section 3.1.3).

 Note, if the SCTP stack at the sender side supports bundling, the
 first user message may be bundled with the COOKIE ECHO message
 [SCTP].

 When the SCTP stack sets up a new association implicitly, it first
 consults the sctp_initmsg structure, which is passed along within
 the ancillary data in the sendmsg() call (see Section 5.2.1 for
 details of the data structures), for any special options to be used
 on the new association.

 If this information is not present in the sendmsg() call, or if the
 implicit association setup is triggered by a sendto() call, the
 default association initialization parameters will be used. These
 default association parameters may be set with respective
 setsockopt() calls or be left to the system defaults.

https://datatracker.ietf.org/doc/html/rfc2553

 Implicit association setup cannot be initiated by send()/recv()
 calls.

3.3 Non-blocking mode

Stewart et.al. [Page 9]

Internet Draft SCTP Sockets API May 2002

 Some SCTP users might want to avoid blocking when they call
 socket interface function.

 Whenever the user which want to avoid blocking must call select()
 before calling sendmsg()/sendto() and recvmsg()/recvfrom(), and
 check the socket status is writable or readable. If the socket
 status isn't writeable or readable, the user should not call
 sendmsg()/sendto() and recvmsg()/recvfrom().

 Once all bind() calls are complete on a UDP-style socket, the
 application must set the non-blocking option by a fcntl() (such as
 O_NONBLOCK). After which the sendmsg() function returns
 immediately, and the success or failure of the data message (and
 possible SCTP_INITMSG parameters) will be signaled by the
 SCTP_ASSOC_CHANGE event with SCTP_COMM_UP or
 CANT_START_ASSOC. If user data could not be sent (due to a
 CANT_START_ASSOC), the sender will also receive a SCTP_SEND_FAILED
 event. Those event(s) can be received by the user calling of
 recvmsg(). A server (having called listen()) is also notified of an
 association up event by the reception of a SCTP_ASSOC_CHANGE with
 SCTP_COMM_UP via the calling of recvmsg() and possibly the
 reception of the first data message.

 In order to shutdown the association gracefully, the user must call
 sendmsg() with no data and with the MSG_EOF flag set. The function
 returns immediately, and completion of the graceful shutdown is
 indicated by an SCTP_ASSOC_CHANGE notification of type
 SHUTDOWN_COMPLETE (see section 5.3.1.1).

4. TCP-style Interface

 The goal of this model is to follow as closely as possible the
 current practice of using the sockets interface for a connection
 oriented protocol, such as TCP. This model enables existing
 applications using connection oriented protocols to be ported to
 SCTP with very little effort.

 Note that some new SCTP features and some new SCTP socket options
 can only be utilized through the use of sendmsg() and recvmsg()
 calls, see Section 4.1.8.

4.1 Basic Operation

 A typical server in TCP-style model uses the following system call
 sequence to prepare an SCTP endpoint for servicing requests:

 1. socket()
 2. bind()

 3. listen()
 4. accept()

 The accept() call blocks until a new association is set up. It

Stewart et.al. [Page 10]

Internet Draft SCTP Sockets API May 2002

 returns with a new socket descriptor. The server then uses the new
 socket descriptor to communicate with the client, using recv() and
 send() calls to get requests and send back responses.

 Then it calls

 5. close()

 to terminate the association.

 A typical client uses the following system call sequence to setup an
 association with a server to request services:

 1. socket()
 2. connect()

 After returning from connect(), the client uses send() and recv()
 calls to send out requests and receive responses from the server.

 The client calls

 3. close()

 to terminate this association when done.

4.1.1 socket() - TCP Style Syntax

 Applications calls socket() to create a socket descriptor to
 represent an SCTP endpoint.

 The syntax is:

 int socket(PF_INET, SOCK_STREAM, IPPROTO_SCTP);

 or,

 int socket(PF_INET6, SOCK_STREAM, IPPROTO_SCTP);

 Here, SOCK_STREAM indicates the creation of a TCP-style socket.

 The first form creates an endpoint which can use only IPv4
 addresses, while the second form creates an endpoint which can use
 both IPv6 and mapped IPv4 addresses.

4.1.2 bind() - TCP Style Syntax

 Applications use bind() to pass an address to be associated with an
 SCTP endpoint to the system. bind() allows only either a single
 address or a IPv4 or IPv6 wildcard address to be bound. An SCTP
 endpoint can be associated with multiple addresses. To do this,

 sctp_bindx() is introduced in section 8.1 to help applications do
 the job of associating multiple addresses.

 These addresses associated with a socket are the eligible transport

Stewart et.al. [Page 11]

Internet Draft SCTP Sockets API May 2002

 addresses for the endpoint to send and receive data. The endpoint
 will also present these addresses to its peers during the
 association initialization process, see [SCTP].

 The syntax is:

 int bind(int sd, struct sockaddr *addr, int addrlen);

 sd - the socket descriptor returned by socket() call.
 addr - the address structure (either struct sockaddr_in or struct
 sockaddr_in6 defined in [RFC 2553]).
 addrlen - the size of the address structure.

 If sd is an IPv4 socket, the address passed must be an IPv4 address.
 Otherwise, i.e., the sd is an IPv6 socket, the address passed can
 either be an IPv4 or an IPv6 address.

 Applications cannot call bind() multiple times to associate multiple
 addresses to the endpoint. After the first call to bind(), all
 subsequent calls will return an error.

 If addr is specified as a wildcard (INADDR_ANY for an IPv4 address,
 or as IN6ADDR_ANY_INIT or in6addr_any for an IPv6 address), the
 operating system will associate the endpoint with an optimal address
 set of the available interfaces.

 If a bind() or sctp_bindx() is not called prior to the connect()
 call, the system picks an ephemeral port and will choose an address
 set equivalent to binding with a wildcard address. One of those
 addresses will be the primary address for the association. This
 automatically enables the multi-homing capability of SCTP.

 The completion of this bind() process does not ready the SCTP
 endpoint to accept inbound SCTP association requests. Until a
 listen() system call, described below, is performed on the socket,
 the SCTP endpoint will promptly reject an inbound SCTP INIT request
 with an SCTP ABORT.

4.1.3 listen() - TCP Style Syntax

 Applications use listen() to ready the SCTP endpoint for accepting
 inbound associations.

 The syntax is:

 int listen(int sd, int backlog);

 sd - the socket descriptor of the SCTP endpoint.
 backlog - this specifies the max number of outstanding associations
 allowed in the socket's accept queue. These are the

https://datatracker.ietf.org/doc/html/rfc2553

 associations that have finished the four-way initiation
 handshake (see Section 5 of [SCTP]) and are in the
 ESTABLISHED state. Note, a backlog of '0' indicates
 that the caller no longer wishes to receive new

Stewart et.al. [Page 12]

Internet Draft SCTP Sockets API May 2002

 associations.

4.1.4 accept() - TCP Style Syntax

 Applications use accept() call to remove an established SCTP
 association from the accept queue of the endpoint. A new socket
 descriptor will be returned from accept() to represent the newly
 formed association.

 The syntax is:

 new_sd = accept(int sd, struct sockaddr *addr, socklen_t *addrlen);

 new_sd - the socket descriptor for the newly formed association.
 sd - the listening socket descriptor.
 addr - on return, will contain the primary address of the peer
 endpoint.
 addrlen - on return, will contain the size of addr.

4.1.5 connect() - TCP Style Syntax

 Applications use connect() to initiate an association to a peer.

 The syntax is

 int connect(int sd, const struct sockaddr *addr, int addrlen);

 sd - the socket descriptor of the endpoint.
 addr - the peer's address.
 addrlen - the size of the address.

 This operation corresponds to the ASSOCIATE primitive described in
 section 10.1 of [SCTP].

 By default, the new association created has only one outbound
 stream. The SCTP_INITMSG option described in Section 7.1.3 should be
 used before connecting to change the number of outbound streams.

 If a bind() or sctp_bindx() is not called prior to the connect()
 call, the system picks an ephemeral port and will choose an address
 set equivalent to binding with INADDR_ANY and IN6ADDR_ANY for IPv4
 and IPv6 socket respectively. One of those addresses will be the
 primary address for the association. This automatically enables the
 multi-homing capability of SCTP.

 Note that SCTP allows data exchange, similar to T/TCP [RFC1644],
 during the association set up phase. If an application wants to do
 this, it cannot use connect() call. Instead, it should use sendto()
 or sendmsg() to initiate an association. If it uses sendto() and it
 wants to change initialization behavior, it needs to use the

https://datatracker.ietf.org/doc/html/rfc1644

 SCTP_INITMSG socket option before calling sendto(). Or it can use
 SCTP_INIT type sendmsg() to initiate an association without doing
 the setsockopt().

Stewart et.al. [Page 13]

Internet Draft SCTP Sockets API May 2002

 SCTP does not support half close semantics. This means that unlike
 T/TCP, MSG_EOF should not be set in the flags parameter when calling
 sendto() or sendmsg() when the call is used to initiate a
 connection. MSG_EOF is not an acceptable flag with SCTP socket.

4.1.6 close() - TCP Style Syntax

 Applications use close() to gracefully close down an association.

 The syntax is:

 int close(int sd);

 sd - the socket descriptor of the association to be closed.

 After an application calls close() on a socket descriptor, no
 further socket operations will succeed on that descriptor.

4.1.7 shutdown() - TCP Style Syntax

 SCTP differs from TCP in that it does not have half closed
 semantics. Hence the shutdown() call for SCTP is an approximation
 of the TCP shutdown() call, and solves some different problems.
 Full TCP-compatibility is not provided, so developers porting TCP
 applications to SCTP may need to recode sections that use
 shutdown(). (Note that it is possible to achieve the same results
 as half close in SCTP using SCTP streams.)

 The syntax is:

 int shutdown(int socket, int how);

 sd - the socket descriptor of the association to be closed.

 how - Specifies the type of shutdown. The values are
 as follows:

 SHUT_RD
 Disables further receive operations. No SCTP
 protocol action is taken.

 SHUT_WR
 Disables further send operations, and initiates
 the SCTP shutdown sequence.

 SHUT_RDWR
 Disables further send and receive operations
 and initiates the SCTP shutdown sequence.

 The major difference between SCTP and TCP shutdown() is that SCTP

 SHUT_WR initiates immediate and full protocol shutdown, whereas TCP
 SHUT_WR causes TCP to go into the half closed state. SHUT_RD behaves
 the same for SCTP as TCP. The purpose of SCTP SHUT_WR is to close
 the SCTP association while still leaving the socket descriptor open,

Stewart et.al. [Page 14]

Internet Draft SCTP Sockets API May 2002

 so that the caller can receive back any data SCTP was unable to
 deliver (see section 5.3.1.4 for more information).

 To perform the ABORT operation described in [SCTP] section 10.1, an
 application can use the socket option SO_LINGER. It is described in

section 7.1.4.

4.1.8 sendmsg() and recvmsg() - TCP Style Syntax

 With a TCP-style socket, the application can also use sendmsg() and
 recvmsg() to transmit data to and receive data from its peer. The
 semantics is similar to those used in the UDP-style model (section

3.1.3), with the following differences:

 1) When sending, the msg_name field in the msghdr is not used to
 specify the intended receiver, rather it is used to indicate a
 different peer address if the sender does not want to send the
 message over the primary address of the receiver. If the transport
 address given is not part of the current association, the data will
 not be sent and a SCTP_SEND_FAILED event will be delivered to the
 application if send failure events are enabled.

 When receiving, if a message is not received from the primary
 address, the SCTP stack will fill in the msg_name field on return so
 that the application can retrieve the source address information of
 the received message.

 2) An application must use close() to gracefully shutdown an
 association, or use SO_LINGER option with close() to abort an
 association. It must not use the MSG_ABORT or MSG_EOF flag in
 sendmsg(). The system returns an error if an application tries to
 do so.

4.1.9 getpeername()

 Applications use getpeername() to retrieve the primary socket
 address of the peer. This call is for TCP compatibility, and is not
 multi-homed.It does not work with UDP-style sockets. See section 8.3
 for a multi-homed/UDP-sockets version of the call.

 The syntax is:

 int getpeername(int socket, struct sockaddr *address,
 socklen_t *len);

 sd - the socket descriptor to be queried.

 address - On return, the peer primary address is stored in
 this buffer. If the socket is an IPv4 socket, the
 address will be IPv4. If the socket is an IPv6 socket,

 the address will be either an IPv6 or mapped IPv4
 address.

 len - The caller should set the length of address here.

Stewart et.al. [Page 15]

Internet Draft SCTP Sockets API May 2002

 On return, this is set to the length of the returned
 address.

 If the actual length of the address is greater than the length of
 the supplied sockaddr structure, the stored address will be
 truncated.

5. Data Structures

 We discuss in this section important data structures which are
 specific to SCTP and are used with sendmsg() and recvmsg() calls to
 control SCTP endpoint operations and to access ancillary
 information and notifications.

5.1 The msghdr and cmsghdr Structures

 The msghdr structure used in the sendmsg() and recvmsg() calls, as
 well as the ancillary data carried in the structure, is the key for
 the application to set and get various control information from the
 SCTP endpoint.

 The msghdr and the related cmsghdr structures are defined and
 discussed in details in [RFC2292]. Here we will cite their
 definitions from [RFC2292].

 The msghdr structure:

 struct msghdr {
 void *msg_name; /* ptr to socket address structure */
 socklen_t msg_namelen; /* size of socket address structure */
 struct iovec *msg_iov; /* scatter/gather array */
 size_t msg_iovlen; /* # elements in msg_iov */
 void *msg_control; /* ancillary data */
 socklen_t msg_controllen; /* ancillary data buffer length */
 int msg_flags; /* flags on received message */
 };

 The cmsghdr structure:

 struct cmsghdr {
 socklen_t cmsg_len; /* #bytes, including this header */
 int cmsg_level; /* originating protocol */
 int cmsg_type; /* protocol-specific type */
 /* followed by unsigned char cmsg_data[]; */
 };

 In the msghdr structure, the usage of msg_name has been discussed in
 previous sections (see Sections 3.1.3 and 4.1.8).

 The scatter/gather buffers, or I/O vectors (pointed to by the

https://datatracker.ietf.org/doc/html/rfc2292
https://datatracker.ietf.org/doc/html/rfc2292

 msg_iov field) are treated as a single SCTP data chunk, rather than
 multiple chunks, for both sendmsg() and recvmsg().

 The msg_flags are not used when sending a message with sendmsg().

Stewart et.al. [Page 16]

Internet Draft SCTP Sockets API May 2002

 If a notification has arrived, recvmsg() will return the
 notification with the MSG_NOTIFICATION flag set in msg_flags. If the
 MSG_NOTIFICATION flag is not set, recvmsg() will return data. See

section 5.3 for more information about notifications.

 If all portions of a data frame or notification have been read,
 recvmsg() will return with MSG_EOR set in msg_flags.

5.2 SCTP msg_control Structures

 A key element of all SCTP-specific socket extensions is the use of
 ancillary data to specify and access SCTP-specific data via the
 struct msghdr's msg_control member used in sendmsg() and recvmsg().
 Fine-grained control over initialization and sending parameters are
 handled with ancillary data.

 Each ancillary data item is proceeded by a struct cmsghdr (see
Section 5.1), which defines the function and purpose of the data

 contained in in the cmsg_data[] member.

 There are two kinds of ancillary data used by SCTP: initialization
 data, and, header information (SNDRCV). Initialization data
 (UDP-style only) sets protocol parameters for new associations.

Section 5.2.1 provides more details. Header information can set or
 report parameters on individual messages in a stream. See section

5.2.2 for how to use SNDRCV ancillary data.

 By default on a TCP-style socket, SCTP will pass no ancillary data;
 on a UDP-style socket, SCTP will only pass SCTP_SNDRCV and
 SCTP_ASSOC_CHANGE information. Specific ancillary data items can be
 enabled with socket options defined for SCTP; see section 7.3.

 Note that all ancillary types are fixed length; see section 5.4 for
 further discussion on this. These data structures use struct
 sockaddr_storage (defined in [RFC2553]) as a portable, fixed length
 address format.

 Other protocols may also provide ancillary data to the socket layer
 consumer. These ancillary data items from other protocols may
 intermingle with SCTP data. For example, the IPv6 socket API
 definitions ([RFC2292] and [RFC2553]) define a number of ancillary
 data items. If a socket API consumer enables delivery of both SCTP
 and IPv6 ancillary data, they both may appear in the same
 msg_control buffer in any order. An application may thus need to
 handle other types of ancillary data besides that passed by SCTP.

 The sockets application must provide a buffer large enough to
 accommodate all ancillary data provided via recvmsg(). If the buffer
 is not large enough, the ancillary data will be truncated and the

https://datatracker.ietf.org/doc/html/rfc2553
https://datatracker.ietf.org/doc/html/rfc2292
https://datatracker.ietf.org/doc/html/rfc2553

 msghdr's msg_flags will include MSG_CTRUNC.

5.2.1 SCTP Initiation Structure (SCTP_INIT)

Stewart et.al. [Page 17]

Internet Draft SCTP Sockets API May 2002

 This cmsghdr structure provides information for initializing new
 SCTP associations with sendmsg(). The SCTP_INITMSG socket option
 uses this same data structure. This structure is not used for
 recvmsg().

 cmsg_level cmsg_type cmsg_data[]
 ------------ ------------ ----------------------
 IPPROTO_SCTP SCTP_INIT struct sctp_initmsg

 Here is the definition of the sctp_initmsg structure:

 struct sctp_initmsg {
 uint16_t sinit_num_ostreams;
 uint16_t sinit_max_instreams;
 uint16_t sinit_max_attempts;
 uint16_t sinit_max_init_timeo;
 };

 sinit_num_ostreams: 16 bits (unsigned integer)

 This is an integer number representing the number of streams that
 the application wishes to be able to send to. This number is
 confirmed in the SCTP_COMM_UP notification and must be verified
 since it is a negotiated number with the remote endpoint. The
 default value of 0 indicates to use the endpoint default value.

 sinit_max_instreams: 16 bits (unsigned integer)

 This value represents the maximum number of inbound streams the
 application is prepared to support. This value is bounded by the
 actual implementation. In other words the user MAY be able to
 support more streams than the Operating System. In such a case, the
 Operating System limit overrides the value requested by the
 user. The default value of 0 indicates to use the endpoint's default
 value.

 sinit_max_attempts: 16 bits (unsigned integer)

 This integer specifies how many attempts the SCTP endpoint should
 make at resending the INIT. This value overrides the system SCTP
 'Max.Init.Retransmits' value. The default value of 0 indicates to
 use the endpoint's default value. This is normally set to the
 system's default 'Max.Init.Retransmit' value.

 sinit_max_init_timeo: 16 bits (unsigned integer)

 This value represents the largest Time-Out or RTO value to use in
 attempting a INIT. Normally the 'RTO.Max' is used to limit the
 doubling of the RTO upon timeout. For the INIT message this value
 MAY override 'RTO.Max'. This value MUST NOT influence 'RTO.Max'

 during data transmission and is only used to bound the initial setup
 time. A default value of 0 indicates to use the endpoint's default
 value. This is normally set to the system's 'RTO.Max' value (60
 seconds).

Stewart et.al. [Page 18]

Internet Draft SCTP Sockets API May 2002

5.2.2 SCTP Header Information Structure (SCTP_SNDRCV)

 This cmsghdr structure specifies SCTP options for sendmsg() and
 describes SCTP header information about a received message through
 recvmsg().

 cmsg_level cmsg_type cmsg_data[]
 ------------ ------------ ----------------------
 IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo

 Here is the definition of sctp_sndrcvinfo:

 struct sctp_sndrcvinfo {
 uint16_t sinfo_stream;
 uint16_t sinfo_ssn;
 uint16_t sinfo_flags;
 uint32_t sinfo_ppid;
 uint32_t sinfo_context;
 uint32_t sinfo_timetolive;
 uint32_t sinfo_tsn;
 sctp_assoc_t sinfo_assoc_id;
 };

 sinfo_stream: 16 bits (unsigned integer)

 For recvmsg() the SCTP stack places the message's stream number in
 this value. For sendmsg() this value holds the stream number that
 the application wishes to send this message to. If a sender
 specifies an invalid stream number an error indication is returned
 and the call fails.

 sinfo_ssn: 16 bits (unsigned integer)

 For recvmsg() this value contains the stream sequence number that
 the remote endpoint placed in the DATA chunk. For fragmented
 messages this is the same number for all deliveries of the message
 (if more than one recvmsg() is needed to read the message). The
 sendmsg() call will ignore this parameter.

 sinfo_ppid: 32 bits (unsigned integer)

 This value in sendmsg() is an opaque unsigned value that is passed
 to the remote end in each user message. In recvmsg() this value is
 the same information that was passed by the upper layer in the peer
 application. Please note that byte order issues are NOT accounted
 for and this information is passed opaquely by the SCTP stack from
 one end to the other.

 sinfo_context: 32 bits (unsigned integer)

 This value is an opaque 32 bit context datum that is used in the
 sendmsg() function. This value is passed back to the upper layer if
 a error occurs on the send of a message and is retrieved with each

Stewart et.al. [Page 19]

Internet Draft SCTP Sockets API May 2002

 undelivered message (Note: if a endpoint has done multiple sends, all
 of which fail, multiple different sinfo_context values will be
 returned. One with each user data message).

 sinfo_flags: 16 bits (unsigned integer)

 This field may contain any of the following flags and is composed of
 a bitwise OR of these values.

 recvmsg() flags:

 MSG_UNORDERED - This flag is present when the message was sent
 non-ordered.

 sendmsg() flags:

 MSG_UNORDERED - This flag requests the un-ordered delivery of the
 message. If this flag is clear the datagram is
 considered an ordered send.

 MSG_ADDR_OVER - This flag, in the UDP model, requests the SCTP
 stack to override the primary destination address
 with the address found with the sendto/sendmsg
 call.

 MSG_ABORT - Setting this flag causes the specified association
 to abort by sending an ABORT message to the peer
 (UDP-style only).

 MSG_EOF - Setting this flag invokes the SCTP graceful shutdown
 procedures on the specified association. Graceful
 shutdown assures that all data enqueued by both
 endpoints is successfully transmitted before closing
 the association (UDP-style only).

 sinfo_timetolive: 32 bit (unsigned integer)

 For the sending side, this field contains the message time
 to live in milliseconds. The sending side will expire the
 message within the specified time period if the message as
 not been sent to the peer within this time period. This value
 will override any default value set using any socket option.
 Also note that the value of 0 is special in that it indicates
 no timeout should occur on this message.

 sinfo_tsn: 32 bit (unsigned integer)

 For the receiving side, this field holds a TSN that was
 assigned to one of the SCTP Data Chunks.

 sinfo_assoc_id: sizeof (sctp_assoc_t)

 The association handle field, sinfo_assoc_id, holds the identifier
 for the association announced in the SCTP_COMM_UP notification.

Stewart et.al. [Page 20]

Internet Draft SCTP Sockets API May 2002

 All notifications for a given association have the same identifier.
 Ignored for TCP-style sockets.

 A sctp_sndrcvinfo item always corresponds to the data in msg_iov.

5.3 SCTP Events and Notifications

 An SCTP application may need to understand and process events and
 errors that happen on the SCTP stack. These events include network
 status changes, association startups, remote operational errors and
 undeliverable messages. All of these can be essential for the
 application.

 When an SCTP application layer does a recvmsg() the message read is
 normally a data message from a peer endpoint. If the application
 wishes to have the SCTP stack deliver notifications of non-data
 events, it sets the appropriate socket option for the notifications
 it wants. See section 7.3 for these socket options. When a
 notification arrives, recvmsg() returns the notification in the
 application-supplied data buffer via msg_iov, and sets
 MSG_NOTIFICATION in msg_flags.

 Multiple notifications may be returned to a single recvmsg()
 call.

 This section details the notification structures. Every
 notification structure carries some common fields which provides
 general information.

 A recvmsg() call will return only one notification at a time. Just
 as when reading normal data, it may return part of a notification if
 the msg_iov buffer is not large enough. If a single read is not
 sufficient, msg_flags will have MSG_EOR clear. The user MUST finish
 reading the notification before subsequent data can arrive.

5.3.1 SCTP Notification Structure

 The notification structure is defined as the union of all
 notification types.

 union sctp_notification {
 struct {
 uint16_t sn_type; /* Notification type. */
 uint16_t sn_flags;
 uint32_t sn_length;
 } h;
 struct sctp_assoc_change sn_assoc_change;
 struct sctp_paddr_change sn_padr_change;
 struct sctp_remote_error sn_remote_error;

 struct sctp_send_failed sn_send_failed;
 struct sctp_shutdown_event sn_shutdown_event;
 struct sctp_adaption_event sn_adaption_event;
 struct sctp_rcv_pdapi_event sn_rcv_pdapi_event;

Stewart et.al. [Page 21]

Internet Draft SCTP Sockets API May 2002

 };

 sn_type: 16 bits (unsigned integer)

 The following table describes the SCTP notification and event types
 for the field sn_type.

 sn_type Description
 --------- ---------------------------

 SCTP_ASSOC_CHANGE This tag indicates that an
 association has either been
 opened or closed. Refer to
 5.3.1.1 for details.

 SCTP_PEER_ADDR_CHANGE This tag indicates that an
 address that is part of an existing
 association has experienced a
 change of state (e.g. a failure
 or return to service of the
 reachability of a endpoint
 via a specific transport
 address). Please see 5.3.1.2
 for data structure details.

 SCTP_REMOTE_ERROR The attached error message
 is an Operational Error received from
 the remote peer. It includes the complete
 TLV sent by the remote endpoint.
 See section 5.3.1.3 for the detailed format.

 SCTP_SEND_FAILED The attached datagram
 could not be sent to the remote endpoint.
 This structure includes the
 original SCTP_SNDRCVINFO
 that was used in sending this
 message i.e. this structure
 uses the sctp_sndrecvinfo per

section 5.3.1.4.

 SCTP_SHUTDOWN_EVENT The peer has sent a SHUTDOWN. No further
 data should be sent on this socket.

 SCTP_ADAPTION_INDICATION This notification holds the
 peers indicated adaption layer.
 Please see 5.3.1.6.

 SCTP_PARTIAL_DELIVERY_EVENT This notification is used to
 tell a receiver that the partial

 delivery has been aborted. This
 may indicate the association is
 about to be aborted. Please see
 5.3.1.7.

Stewart et.al. [Page 22]

Internet Draft SCTP Sockets API May 2002

 All standard values for sn_type flags are greater than 2^15.
 Values from 2^15 and down are reserved.

 sn_flags: 16 bits (unsigned integer)

 These are notification-specific flags.

 sn_length: 32 bits (unsigned integer)

 This is the length of the whole sctp_notification structure
 including the sn_type, sn_flags, and sn_length fields.

5.3.1.1 SCTP_ASSOC_CHANGE

 Communication notifications inform the ULP that an SCTP association
 has either begun or ended. The identifier for a new association is
 provided by this notification. The notification information has the
 following format:

 struct sctp_assoc_change {
 uint16_t sac_type;
 uint16_t sac_flags;
 uint32_t sac_length;
 uint16_t sac_state;
 uint16_t sac_error;
 uint16_t sac_outbound_streams;
 uint16_t sac_inbound_streams;
 sctp_assoc_t sac_assoc_id;
 };

 sac_type:

 It should be SCTP_ASSOC_CHANGE.

 sac_flags: 16 bits (unsigned integer)

 Currently unused.

 sac_length: 32 bits (unsigned integer)

 This field is the total length of the notification data, including
 the notification header.

 sac_state: 16 bits (signed integer)

 This field holds one of a number of values that communicate the
 event that happened to the association. They include:

 Event Name Description
 ---------------- ---------------
 SCTP_COMM_UP A new association is now ready
 and data may be exchanged with this

Stewart et.al. [Page 23]

Internet Draft SCTP Sockets API May 2002

 peer.

 SCTP_COMM_LOST The association has failed. The association
 is now in the closed state. If SEND FAILED
 notifications are turned on, a SCTP_COMM_LOST
 is followed by a series of SCTP_SEND_FAILED
 events, one for each outstanding message.

 SCTP_RESTART SCTP has detected that the peer has restarted.

 SCTP_SHUTDOWN_COMP The association has gracefully closed.

 SCTP_CANT_STR_ASSOC The association failed to setup. If non blocking
 mode is set and data was sent (in the udp mode),
 a SCTP_CANT_STR_ASSOC is followed by a series of
 SCTP_SEND_FAILED events, one for each outstanding
 message.

 sac_error: 16 bits (signed integer)

 If the state was reached due to a error condition (e.g.
 SCTP_COMM_LOST) any relevant error information is available in
 this field. This corresponds to the protocol error codes defined in
 [SCTP].

 sac_outbound_streams: 16 bits (unsigned integer)
 sac_inbound_streams: 16 bits (unsigned integer)

 The maximum number of streams allowed in each direction are
 available in sac_outbound_streams and sac_inbound streams.

 sac_assoc_id: sizeof (sctp_assoc_t)

 The association id field, holds the identifier for the association.
 All notifications for a given association have the same association
 identifier. For TCP style socket, this field is ignored.

5.3.1.2 SCTP_PEER_ADDR_CHANGE

 When a destination address on a multi-homed peer encounters a change
 an interface details event is sent. The information has the
 following structure:

 struct sctp_paddr_change {
 uint16_t spc_type;
 uint16_t spc_flags;
 uint32_t spc_length;
 struct sockaddr_storage spc_aaddr;
 int spc_state;
 int spc_error;

 sctp_assoc_t spc_assoc_id;
 }

 spc_type:

Stewart et.al. [Page 24]

Internet Draft SCTP Sockets API May 2002

 It should be SCTP_PEER_ADDR_CHANGE.

 spc_flags: 16 bits (unsigned integer)

 Currently unused.

 spc_length: 32 bits (unsigned integer)

 This field is the total length of the notification data, including
 the notification header.

 spc_aaddr: sizeof (struct sockaddr_storage)

 The affected address field, holds the remote peer's address that is
 encountering the change of state.

 spc_state: 32 bits (signed integer)

 This field holds one of a number of values that communicate the
 event that happened to the address. They include:

 Event Name Description
 ---------------- ---------------
 SCTP_ADDR_AVAILABLE This address is now reachable.

 SCTP_ADDR_UNREACHABL The address specified can no
 longer be reached. Any data sent
 to this address is rerouted to an
 alternate until this address becomes
 reachable.

 SCTP_ADDR_REMOVED The address is no longer part of
 the association.

 SCTP_ADDR_ADDED The address is now part of the
 association.

 SCTP_ADDR_MADE_PRIM This address has now been made
 to be the primary destination address.

 spc_error: 32 bits (signed integer)

 If the state was reached due to any error condition (e.g.
 SCTP_ADDR_UNREACHABL) any relevant error information is available in
 this field.

 spc_assoc_id: sizeof (sctp_assoc_t)

 The association id field, holds the identifier for the association.

 All notifications for a given association have the same association
 identifier. For TCP style socket, this field is ignored.

5.3.1.3 SCTP_REMOTE_ERROR

Stewart et.al. [Page 25]

Internet Draft SCTP Sockets API May 2002

 A remote peer may send an Operational Error message to its peer.
 This message indicates a variety of error conditions on an
 association. The entire error TLV as it appears on the wire is
 included in a SCTP_REMOTE_ERROR event. Please refer to the SCTP
 specification [SCTP] and any extensions for a list of possible
 error formats. SCTP error TLVs have the format:

 struct sctp_remote_error {
 uint16_t sre_type;
 uint16_t sre_flags;
 uint32_t sre_length;
 uint16_t sre_error;
 sctp_assoc_t sre_assoc_id;
 uint8_t sre_data[0];
 };

 sre_type:

 It should be SCTP_REMOTE_ERROR.

 sre_flags: 16 bits (unsigned integer)

 Currently unused.

 sre_length: 32 bits (unsigned integer)

 This field is the total length of the notification data, including
 the notification header and the contents of sre_data.

 sre_error: 16 bits (unsigned integer)

 This value represents one of the Operational Error causes defined in
 the SCTP specification, in network byte order.

 sre_assoc_id: sizeof (sctp_assoc_t)

 The association id field, holds the identifier for the association.
 All notifications for a given association have the same association
 identifier. For TCP style socket, this field is ignored.

 sre_data: variable

 This contains the payload of the operational error as defined in the
 SCTP specification [SCTP] section 3.3.10.

5.3.1.4 SCTP_SEND_FAILED

 If SCTP cannot deliver a message it may return the message as a
 notification.

 struct sctp_send_failed {
 uint16_t ssf_type;
 uint16_t ssf_flags;

Stewart et.al. [Page 26]

Internet Draft SCTP Sockets API May 2002

 uint32_t ssf_length;
 uint32_t ssf_error;
 struct sctp_sndrcvinfo ssf_info;
 sctp_assoc_t ssf_assoc_id;
 uint8_t ssf_data[0];
 };

 ssf_type:

 It should be SCTP_SEND_FAILED.

 ssf_flags: 16 bits (unsigned integer)

 The flag value will take one of the following values

 SCTP_DATA_UNSENT - Indicates that the data was never put on
 the wire.

 SCTP_DATA_SENT - Indicates that the data was put on the wire.
 Note that this does not necessarily mean that the
 data was (or was not) successfully delivered.

 ssf_length: 32 bits (unsigned integer)

 This field is the total length of the notification data, including
 the notification header and the payload in ssf_data.

 ssf_error: 16 bits (unsigned integer)

 This value represents the reason why the send failed, and if set,
 will be a SCTP protocol error code as defined in [SCTP] section

3.3.10.

 ssf_info: sizeof (struct sctp_sndrcvinfo)

 The original send information associated with the undelivered
 message.

 ssf_assoc_id: sizeof (sctp_assoc_t)

 The association id field, sf_assoc_id, holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For TCP style socket, this field is
 ignored.

 ssf_data: variable length

 The undelivered message, exactly as delivered by the caller to the
 original send*() call.

5.3.1.5 SCTP_SHUTDOWN_EVENT

 When a peer sends a SHUTDOWN, SCTP delivers this notification to

Stewart et.al. [Page 27]

Internet Draft SCTP Sockets API May 2002

 inform the application that it should cease sending data.

 struct sctp_shutdown_event {
 uint16_t sse_type;
 uint16_t sse_flags;
 uint32_t sse_length;
 sctp_assoc_t sse_assoc_id;
 };

 sse_type

 It should be SCTP_SHUTDOWN_EVENT

 sse_flags: 16 bits (unsigned integer)

 Currently unused.

 sse_length: 32 bits (unsigned integer)

 This field is the total length of the notification data, including
 the notification header. It will generally be
 sizeof (struct sctp_shutdown_event).

 sse_flags: 16 bits (unsigned integer)

 Currently unused.

 sse_assoc_id: sizeof (sctp_assoc_t)

 The association id field, holds the identifier for the association.
 All notifications for a given association have the same association
 identifier. For TCP style socket, this field is ignored.

5.3.1.6 SCTP_ADAPTION_INDICATION

 When a peer sends a Adaption Layer Indication parameter , SCTP
 delivers this notification to inform the application
 that of the peers requested adaption layer.

 struct sctp_adaption_event {
 uint16_t sai_type;
 uint16_t sai_flags;
 uint32_t sai_length;
 uint32_t sai_adaptation_bits;
 sctp_assoc_t sse_assoc_id;
 };

 sai_type

 It should be SCTP_ADAPTION_INDICATION

 sai_flags: 16 bits (unsigned integer)

Stewart et.al. [Page 28]

Internet Draft SCTP Sockets API May 2002

 Currently unused.

 sai_length: 32 bits (unsigned integer)

 This field is the total length of the notification data, including
 the notification header. It will generally be
 sizeof (struct sctp_adaption_event).

 sai_adaption_bits: 32 bits (unsigned integer)

 This field holds the bit array sent by the peer in the
 adaption layer indication parameter. The bits are in
 network byte order.

 sai_assoc_id: sizeof (sctp_assoc_t)

 The association id field, holds the identifier for the association.
 All notifications for a given association have the same association
 identifier. For TCP style socket, this field is ignored.

5.3.1.7 SCTP_PARTIAL_DELIVERY_EVENT

 When a receiver is engaged in a partial delivery of a
 message this notification will be used to indicate
 various events.

 struct sctp_rcv_pdapi_event {
 uint16_t pdapi_type;
 uint16_t pdapi_flags;
 uint32_t pdapi_length;
 uint32_t pdapi_indication;
 sctp_assoc_t pdapi_assoc_id;
 };

 pdapi_type

 It should be SCTP_ADAPTION_INDICATION

 pdapi_flags: 16 bits (unsigned integer)

 Currently unused.

 pdapi_length: 32 bits (unsigned integer)

 This field is the total length of the notification data, including
 the notification header. It will generally be
 sizeof (struct sctp_rcv_pdapi_event).

 pdapi_indication: 32 bits (unsigned integer)

 This field holds the indication being sent to the
 application possible values include:

 SCTP_PARTIAL_DELIVERY_ABORTED

Stewart et.al. [Page 29]

Internet Draft SCTP Sockets API May 2002

 pdapi_assoc_id: sizeof (sctp_assoc_t)

 The association id field, holds the identifier for the association.
 All notifications for a given association have the same association
 identifier. For TCP style socket, this field is ignored.

5.4 Ancillary Data Considerations and Semantics

 Programming with ancillary socket data contains some subtleties and
 pitfalls, which are discussed below.

5.4.1 Multiple Items and Ordering

 Multiple ancillary data items may be included in any call to
 sendmsg() or recvmsg(); these may include multiple SCTP or non-SCTP
 items, or both.

 The ordering of ancillary data items (either by SCTP or another
 protocol) is not significant and is implementation-dependent, so
 applications must not depend on any ordering.

 SCTP_SNDRCV items must always correspond to the data in the msghdr's
 msg_iov member. There can be only a single SCTP_SNDRCV info for
 each sendmsg() or recvmsg() call.

5.4.2 Accessing and Manipulating Ancillary Data

 Applications can infer the presence of data or ancillary data by
 examining the msg_iovlen and msg_controllen msghdr members,
 respectively.

 Implementations may have different padding requirements for
 ancillary data, so portable applications should make use of the
 macros CMSG_FIRSTHDR, CMSG_NXTHDR, CMSG_DATA, CMSG_SPACE, and
 CMSG_LEN. See [RFC2292] and your SCTP implementation's documentation
 for more information. Following is an example, from [RFC2292],
 demonstrating the use of these macros to access ancillary data:

 struct msghdr msg;
 struct cmsghdr *cmsgptr;

 /* fill in msg */

 /* call recvmsg() */

 for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;
 cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {
 if (cmsgptr->cmsg_level == ... && cmsgptr->cmsg_type == ...) {

https://datatracker.ietf.org/doc/html/rfc2292
https://datatracker.ietf.org/doc/html/rfc2292

 u_char *ptr;

 ptr = CMSG_DATA(cmsgptr);
 /* process data pointed to by ptr */

Stewart et.al. [Page 30]

Internet Draft SCTP Sockets API May 2002

 }
 }

5.4.3 Control Message Buffer Sizing

 The information conveyed via SCTP_SNDRCV events will often be
 fundamental to the correct and sane operation of the sockets
 application. This is particularly true of the UDP semantics, but
 also of the TCP semantics. For example, if an application needs to
 send and receive data on different SCTP streams, SCTP_SNDRCV events
 are indispensable.

 Given that some ancillary data is critical, and that multiple
 ancillary data items may appear in any order, applications should be
 carefully written to always provide a large enough buffer to contain
 all possible ancillary data that can be presented by recvmsg(). If
 the buffer is too small, and crucial data is truncated, it may pose
 a fatal error condition.

 Thus it is essential that applications be able to deterministically
 calculate the maximum required buffer size to pass to recvmsg(). One
 constraint imposed on this specification that makes this possible is
 that all ancillary data definitions are of a fixed length. One way
 to calculate the maximum required buffer size might be to take the
 sum the sizes of all enabled ancillary data item structures, as
 calculated by CMSG_SPACE. For example, if we enabled
 SCTP_SNDRCV_INFO and IPV6_RECVPKTINFO [RFC2292], we would calculate
 and allocate the buffer size as follows:

 size_t total;
 void *buf;

 total = CMSG_SPACE(sizeof (struct sctp_sndrcvinfo)) +
 CMSG_SPACE(sizeof (struct in6_pktinfo));

 buf = malloc(total);

 We could then use this buffer for msg_control on each call to
 recvmsg() and be assured that we would not lose any ancillary data
 to truncation.

6. Common Operations for Both Styles

6.1 send(), recv(), sendto(), recvfrom()

 Applications can use send() and sendto() to transmit data to the
 peer of an SCTP endpoint. recv() and recvfrom() can be used to
 receive data from the peer.

 The syntax is:

https://datatracker.ietf.org/doc/html/rfc2292

 ssize_t send(int sd, connst void *msg, size_t len, int flags);
 ssize_t sendto(int sd, const void *msg, size_t len, int flags,
 const struct sockaddr *to, int tolen);

Stewart et.al. [Page 31]

Internet Draft SCTP Sockets API May 2002

 ssize_t recv(int sd, void *buf, size_t len, int flags);
 ssize_t recvfrom(int sd, void *buf, size_t len, int flags,
 struct sockaddr *from, int *fromlen);

 sd - the socket descriptor of an SCTP endpoint.
 msg - the message to be sent.
 len - the size of the message or the size of buffer.
 to - one of the peer addresses of the association to be
 used to send the message.
 tolen - the size of the address.
 buf - the buffer to store a received message.
 from - the buffer to store the peer address used to send the
 received message.
 fromlen - the size of the from address
 flags - (described below).

 These calls give access to only basic SCTP protocol features. If
 either peer in the association uses multiple streams, or sends
 unordered data these calls will usually be inadequate, and may
 deliver the data in unpredictable ways.

 SCTP has the concept of multiple streams in one association. The
 above calls do not allow the caller to specify on which stream a
 message should be sent. The system uses stream 0 as the default
 stream for send() and sendto(). recv() and recvfrom() return data
 from any stream, but the caller can not distinguish the different
 streams. This may result in data seeming to arrive out of
 order. Similarly, if a data chunk is sent unordered, recv() and
 recvfrom() provide no indication.

 SCTP is message based. The msg buffer above in send() and sendto()
 is considered to be a single message. This means that if the caller
 wants to send a message which is composed by several buffers, the
 caller needs to combine them before calling send() or sendto().
 Alternately, the caller can use sendmsg() to do that without
 combining them. recv() and recvfrom() cannot distinguish message
 boundaries.

 In receiving, if the buffer supplied is not large enough to hold a
 complete message, the receive call acts like a stream socket and
 returns as much data as will fit in the buffer.

 Note, the send and recv calls, when used in the UDP-style model, may
 only be used with branched off socket descriptors (see Section 8.2).

 Note, if an application calls a send function with no user data
 and no ancillary data the SCTP implementation should reject the
 request with an appropriate error message. An implementation is
 NOT allowed to send a Data chunk with no user data [RFC2960].

https://datatracker.ietf.org/doc/html/rfc2960

6.2 setsockopt(), getsockopt()

 Applications use setsockopt() and getsockopt() to set or retrieve
 socket options. Socket options are used to change the default

Stewart et.al. [Page 32]

Internet Draft SCTP Sockets API May 2002

 behavior of sockets calls. They are described in Section 7.

 The syntax is:

 ret = getsockopt(int sd, int level, int optname, void *optval,
 size_t *optlen);
 ret = setsockopt(int sd, int level, int optname, const void *optval,
 size_t optlen);

 sd - the socket descript.
 level - set to IPPROTO_SCTP for all SCTP options.
 optname - the option name.
 optval - the buffer to store the value of the option.
 optlen - the size of the buffer (or the length of the option
 returned).

6.3 read() and write()

 Applications can use read() and write() to send and receive data to
 and from peer. They have the same semantics as send() and recv()
 except that the flags parameter cannot be used.

 Note, these calls, when used in the UDP-style model, may only be
 used with branched off socket descriptors (see Section 8.2).

6.4 getsockname()

 Applications use getsockname() to retrieve the locally-bound socket
 address of the specified socket. This is especially useful if the
 caller let SCTP chose a local port. This call is for where the
 endpoint is not multi-homed. It does not work well with multi-homed
 sockets. See section 8.5 for a multi-homed version of the call.

 The syntax is:

 int getsockname(int socket, struct sockaddr *address,
 socklen_t *len);

 sd - the socket descriptor to be queried.

 address - On return, one locally bound address (chosen by
 the SCTP stack) is stored in this buffer. If the
 socket is an IPv4 socket, the address will be IPv4.
 If the socket is an IPv6 socket, the address will
 be either an IPv6 or mapped IPv4 address.

 len - The caller should set the length of address here.
 On return, this is set to the length of the returned
 address.

 If the actual length of the address is greater than the length of
 the supplied sockaddr structure, the stored address will be
 truncated.

Stewart et.al. [Page 33]

Internet Draft SCTP Sockets API May 2002

 If the socket has not been bound to a local name, the value stored
 in the object pointed to by address is unspecified.

7. Socket Options

 The following sub-section describes various SCTP level socket
 options that are common to both models. SCTP associations can be
 multi-homed. Therefore, certain option parameters include a
 sockaddr_storage structure to select which peer address the option
 should be applied to.

 For the UDP-style sockets, an sctp_assoc_t structure (association
 ID) is used to identify the the association instance that the
 operation affects. So it must be set when using this model.

 For the TCP-style sockets and branched off UDP-style sockets (see
section 8.2) this association ID parameter is ignored. In the cases

 noted below where the parameter is ignored, an application can pass
 to the system a corresponding option structure similar to those
 described below but without the association ID parameter, which
 should be the last field of the option structure. This can make the
 option setting/getting operation more efficient. If an application
 does this, it should also specify an appropriate optlen value
 (i.e. sizeof (option parameter) - sizeof (struct sctp_assoc_t)).

 Note that socket or IP level options is set or retrieved per socket.
 This means that for UDP-style sockets, those options will be applied
 to all associations belonging to the socket. And for TCP-style
 model, those options will be applied to all peer addresses of the
 association controlled by the socket. Applications should be very
 careful in setting those options.

 sctp_opt_info()

 For some implementations getsockopt() is read-only, so a new
 interface will be needed when information must be passed both in
 to and out of the SCTP stack. The syntax for scpt_opt_info() is,

 int sctp_opt_info(int sd,
 sctp_assoc_t id,
 int opt,
 void *arg,
 size_t *size);

 For UDP-style sockets, id specifies the association to query. For
 TCP-style sockets, id is ignored.

 opt specifies which SCTP socket option to get. It can
 any socket option currently supported that requests information
 (either read/write options or read only) such as:

 SCTP_RTOINFO
 SCTP_ASSOCINFO
 SCTP_SET_PRIMARY_ADDR

Stewart et.al. [Page 34]

Internet Draft SCTP Sockets API May 2002

 SCTP_SET_PEER_PRIMARY_ADDR
 SCTP_SET_STREAM_TIMEOUTS
 SCTP_SET_PEER_ADDR_PARAMS
 SCTP_STATUS
 SCTP_GET_PEER_ADDR_INFO

 arg is an option-specific structure buffer provided by the caller.
 See 8.5 subsections for more information on these options and
 option-specific structures.

 sctp_opt_info() returns 0 on success, or on failure returns -1 and
 sets errno to the appropriate error code.

 For those implementations that DO support a read/write
 getsocketopt interface a simple macro wrapper can be
 created to support the sctp_opt_info() interface such as:

 #define sctp_opt_info(fd,asoc,opt,arg,sz) \
 do { \
 if((opt == SCTP_RTOINFO) || \
 (opt == SCTP_ASSOCINFO) || \
 (opt == SCTP_SET_PRIMARY_ADDR) || \
 (opt == SCTP_SET_PEER_PRIMARY_ADDR) || \
 (opt == SCTP_SET_STREAM_TIMEOUTS) || \
 (opt == SCTP_SET_PEER_ADDR_PARAMS) || \
 (opt == SCTP_STATUS) || \
 (opt == SCTP_GET_PEER_ADDR_INFO)){ \
 *(sctp_assoc_t *)arg = asoc; \
 return(getsockopt(fd,IPPROTO_SCTP,opt,arg,sz)); \
 }else{ \
 return(ENOTSUP); \
 } \
 }while(0);

 All options that support specific settings on an association
 by filling in either an association id variable or a
 sockaddr_storage SHOULD also support setting of the same
 value for the entire endpoint (i.e. future associations).
 To accomplish this the following logic is used when
 setting one of these options:

 a) If an address is specified via a sockaddr_storage that
 is included in the structure the address is used to
 lookup the association and the settings are applied to
 the specific address (if appropriate) or to the entire
 association.

 b) If an association identification is filled in but not a
 sockaddr_storage (if present) the association is found

 using the association identification and the settings
 should be applied to the entire association (since a specific
 address is specified). Note this also applies to options that
 hold an association identification in their structure but do not
 have a sockaddr_storage field.

Stewart et.al. [Page 35]

Internet Draft SCTP Sockets API May 2002

 c) If neither the sockaddr_storage or association identification is set
 i.e. the sockadd_storage is set to all 0's (INADDR_ANY) and the
 association identification is 0, the settings are a default and
 to be applied to the endpoint (all future associations).

7.1 Read / Write Options

7.1.1 Retransmission Timeout Parameters (SCTP_RTOINFO)

 The protocol parameters used to initialize and bound retransmission
 timeout (RTO) are tunable. See [SCTP] for more information on how
 these parameters are used in RTO calculation. The peer address
 parameter is ignored for TCP style socket.

 The following structure is used to access and modify these
 parameters:

 struct sctp_rtoinfo {
 sctp_assoc_t srto_assoc_id;
 uint32_t srto_initial;
 uint32_t srto_max;
 uint32_t srto_min;
 };

 srto_initial - This contains the initial RTO value.
 srto_max and srto_min - These contain the maximum and minimum bounds
 for all RTOs.
 srto_assoc_id - (UDP style socket) This is filled in the application,
 and identifies the association for this query. If
 this parameter is missing (on a UDP style socket),
 then the change effects the entire endpoint.

 All parameters are time values, in milliseconds. A value of 0, when
 modifying the parameters, indicates that the current value should
 not be changed.

 To access or modify these parameters, the application should call
 getsockopt or setsockopt() respectively with the option name
 SCTP_RTOINFO.

7.1.2 Association Parameters (SCTP_ASSOCINFO)

 This option is used to both examine and set various association
 and endpoint parameters.

 See [SCTP] for more information on how this parameter is used. The
 peer address parameter is ignored for TCP style socket.

 The following structure is used to access and modify this

 parameters:

 struct sctp_assocparams {
 sctp_assoc_t sasoc_assoc_id;

Stewart et.al. [Page 36]

Internet Draft SCTP Sockets API May 2002

 uint16_t sasoc_asocmaxrxt;
 uint16_t sasoc_number_peer_destinations;
 uint32_t sasoc_peer_rwnd;
 uint32_t sasoc_local_rwnd;
 uint32_t sasoc_cookie_life;
 };

 sasoc_asocmaxrxt - This contains the maximum retransmission attempts
 to make for the association.

 sasoc_number_peer_destinations - This is the number of destination
 address that the peer considers
 valid.
 sasoc_peer_rwnd - This holds the current value of the peers
 rwnd (reported in the last SACK) minus any
 outstanding data (i.e. data inflight).
 sasoc_local_rwnd - This holds the last reported rwnd that was
 sent to the peer.
 sasoc_cookie_life - This is the associations cookie life value
 used when issuing cookies.

 sasoc_assoc_id - (UDP style socket) This is filled in the application,
 and identifies the association for this query.

 This information may be examined for either the
 endpoint or a specific association. To examine a endpoints
 default parameters the association id (sasoc_assoc_id) should
 must be set to the value '0'. The values of the sasoc_peer_rwnd
 is meaningless when examining endpoint information.

 The values of the sasoc_asocmaxrxt and sasoc_cookie_life may
 be set on either an endpoint or association basis. The
 rwnd and destination counts (sasoc_number_peer_destinations,
 sasoc_peer_rwnd,sasoc_local_rwnd) are NOT settable and any
 value placed in these is ignored.

 To access or modify these parameters, the application should call
 getsockopt or setsockopt() respectively with the option name
 SCTP_ASSOCRTXINFO.

 The maximum number of retransmissions before an address is
 considered unreachable is also tunable, but is address-specific, so
 it is covered in a separate option. If an application attempts to
 set the value of the association maximum retransmission parameter to
 more than the sum of all maximum retransmission parameters,
 setsockopt() shall return an error. The reason for this, from
 [SCTP] section 8.2:

 Note: When configuring the SCTP endpoint, the user should avoid

 having the value of 'Association.Max.Retrans' larger than the
 summation of the 'Path.Max.Retrans' of all the destination addresses
 for the remote endpoint. Otherwise, all the destination addresses
 may become inactive while the endpoint still considers the peer

Stewart et.al. [Page 37]

Internet Draft SCTP Sockets API May 2002

 endpoint reachable.

7.1.3 Initialization Parameters (SCTP_INITMSG)

 Applications can specify protocol parameters for the default
 association initialization. The structure used to access and modify
 these parameters is defined in section 5.2.1. The option name
 argument to setsockopt() and getsockopt() is SCTP_INITMSG.

 Setting initialization parameters is effective only on an
 unconnected socket (for UDP-style sockets only future associations
 are effected by the change). With TCP-style sockets, this option is
 inherited by sockets derived from a listener socket.

7.1.4 SO_LINGER

 An application using the TCP-style socket can use this option to
 perform the SCTP ABORT primitive. The linger option structure is:

 struct linger {
 int l_onoff; /* option on/off */
 int l_linger; /* linger time */
 };

 To enable the option, set l_onoff to 1. If the l_linger value is
 set to 0, calling close() is the same as the ABORT primitive. If
 the value is set to a negative value, the setsockopt() call will
 return an error. If the value is set to a positive value
 linger_time, the close() can be blocked for at most linger_time ms.
 If the graceful shutdown phase does not finish during this period,
 close() will return but the graceful shutdown phase continues in the
 system.

7.1.5 SCTP_NODELAY

 Turn off any Nagle-like algorithm. This means that packets are
 generally sent as soon as possible and no unnecessary delays are
 introduced, at the cost of more packets in the network. Expects an
 integer boolean flag.

7.1.6 SO_RCVBUF

 Sets receive buffer size. For SCTP TCP-style sockets, this controls
 the receiver window size. For UDP-style sockets, this controls the
 receiver window size for all associations bound to the socket
 descriptor used in the setsockopt() or getsockopt() call. The option
 applies to each association's window size separately. Expects an
 integer.

7.1.7 SO_SNDBUF

 Sets send buffer size. For SCTP TCP-style sockets, this controls the
 amount of data SCTP may have waiting in internal buffers to be
 sent. This option therefore bounds the maximum size of data that can

Stewart et.al. [Page 38]

Internet Draft SCTP Sockets API May 2002

 be sent in a single send call. For UDP-style sockets, the effect is
 the same, except that it applies to all associations bound to the
 socket descriptor used in the setsockopt() or getsockopt() call. The
 option applies to each association's window size separately. Expects
 an integer.

7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)

 This socket option is applicable to the UDP-style socket only. When
 set it will cause associations that are idle for more than the
 specified number of seconds to automatically close. An association
 being idle is defined an association that has NOT sent or received
 user data. The special value of '0' indicates that no automatic
 close of any associations should be performed. The option expects
 an integer defining the number of seconds of idle time before
 an association is closed.

7.1.9 Set Primary Address (SCTP_SET_PRIMARY_ADDR)

 Requests that the peer mark the enclosed address as the association
 primary. The enclosed address must be one of the association's
 locally bound addresses. The following structure is used to make a
 set primary request:

 struct sctp_setprim {
 sctp_assoc_t ssp_assoc_id;
 struct sockaddr_storage ssp_addr;
 };

 ssp_addr The address to set as primary
 ssp_assoc_id (UDP style socket) This is filled in by the
 application, and identifies the association
 for this request.

 This functionality is optional. Implementations that do not support
 this functionality should return EOPNOTSUPP.

7.1.10 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)

 Requests that the local SCTP stack use the enclosed peer address as
 the association primary. The enclosed address must be one of the
 association peer's addresses. The following structure is used to
 make a set peer primary request:

 struct sctp_setpeerprim {
 sctp_assoc_t sspp_assoc_id;
 struct sockaddr_storage sspp_addr;
 };

 sspp_addr The address to set as primary

 sspp_assoc_id (UDP style socket) This is filled in by the
 application, and identifies the association
 for this request.

Stewart et.al. [Page 39]

Internet Draft SCTP Sockets API May 2002

7.1.11 Set Adaption Layer Indicator (SCTP_SET_ADAPTION_LAYER)

 Requests that the local endpoint set the specified Adaption Layer
 Indication parameter for all future
 INIT and INIT-ACK exchanges.

 struct sctp_setadaption {
 u_int32_t ssb_adaption_ind;
 };

 ssb_adaption_ind The adaption layer indicator that will be included
 in any outgoing Adaption Layer Indication
 parameter.

7.1.12 Set default message time outs (SCTP_SET_STREAM_TIMEOUTS)

 This option requests that the requested stream apply a
 default time-out for messages in queue. The default value
 is used when the application does not specify a timeout
 in the sendrcvinfo structure (sinfo_timetolive element
 see section 5.2.2).

 struct sctp_setstrm_timeout {
 sctp_assoc_t ssto_assoc_id;
 u_int32_t ssto_timeout;
 u_int16_t ssto_streamid_start;
 u_int16_t ssto_streamid_end;
 };

 ssto_assoc_id (UDP style socket) This is filled in by the
 application, and identifies the association
 for this request.
 ssto_timeout The maximum time in milliseconds that messages
 should be held inqueue before failure.
 ssto_streamid_start The beginning stream identifier to apply this
 default against.
 ssto_streamid_end The ending stream identifier to apply this
 default against.

 Note that a timeout value of 0 indicates that no inqueue timeout
 should be applied against the stream.

7.1.13 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)

 This option is a on/off flag. If enabled no SCTP message
 fragmentation will be performed. Instead if a message
 being sent exceeds the current PMTU size, the message will
 NOT be sent and instead a error will be indicated to the user.

7.1.14 Peer Address Parameters (SCTP_SET_PEER_ADDR_PARAMS)

 Applications can enable or disable heartbeats for any peer address

Stewart et.al. [Page 40]

Internet Draft SCTP Sockets API May 2002

 of an association, modify an address's heartbeat interval, force a
 heartbeat to be sent immediately, and adjust the address's maximum
 number of retransmissions sent before an address is considered
 unreachable. The following structure is used to access and modify an
 address's parameters:

 struct sctp_paddrparams {
 sctp_assoc_t spp_assoc_id;
 struct sockaddr_storage spp_address;
 uint32_t spp_hbinterval;
 uint16_t spp_pathmaxrxt;
 };

 spp_assoc_id - (UDP style socket) This is filled in the application,
 and identifies the association for this query.
 spp_address - This specifies which address is of interest.
 spp_hbinterval - This contains the value of the heartbeat interval,
 in milliseconds. A value of 0, when modifying the
 parameter, specifies that the heartbeat on this
 address should be disabled. A value of UINT32_MAX
 (4294967295), when modifying the parameter,
 specifies that a heartbeat should be sent
 immediately to the peer address, and the current
 interval should remain unchanged.
 spp_pathmaxrxt - This contains the maximum number of
 retransmissions before this address shall be
 considered unreachable.

 To read or modify these parameters, the application should call
 sctp_opt_info() with the SCTP_SET_PEER_ADDR_PARAMS option.

7.1.15 Set default send parameters (SET_DEFAULT_SEND_PARAM)

 Applications that wish to use the sendto() system call may wish
 to specify a default set of parameters that would normally be
 supplied through the inclusion of ancillary data. This socket
 option allows such an application to set the default
 sctp_sndrcvinfo structure. The application that wishes
 to use this socket option simply passes in to this
 call the sctp_sndrcvinfo structure defined in section 5.2.2
 The input parameters accepted by this call include
 sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
 sinfo_timetolive. The user must provide the sinfo_assoc_id
 field in to this call if the caller is using the UDP model.

7.1.16 Set notification and ancillary events (SCTP_SET_EVENTS)

 This socket option is used to specify various notifications

 and ancillary data the user wishes to receive. Please see
section 7.3 for a full description of this option and its

 usage.

7.2 Read-Only Options

Stewart et.al. [Page 41]

Internet Draft SCTP Sockets API May 2002

7.2.1 Association Status (SCTP_STATUS)

 Applications can retrieve current status information about an
 association, including association state, peer receiver window size,
 number of unacked data chunks, and number of data chunks pending
 receipt. This information is read-only. The following structure is
 used to access this information:

 struct sctp_status {
 sctp_assoc_t sstat_assoc_id;
 int32_t sstat_state;
 uint32_t sstat_rwnd;
 uint16_t sstat_unackdata;
 uint16_t sstat_penddata;
 uint16_t sstat_instrms;
 uint16_t sstat_outstrms;
 uint32_t sstat_fragmentation_point;
 struct sctp_paddrinfo sstat_primary;
 };

 sstat_state - This contains the association's current state one
 of the following values:

 SCTP_CLOSED
 SCTP_BOUND
 SCTP_LISTEN
 SCTP_COOKIE_WAIT
 SCTP_COOKIE_ECHOED
 SCTP_ESTABLISHED
 SCTP_SHUTDOWN_PENDING
 SCTP_SHUTDOWN_SENT
 SCTP_SHUTDOWN_RECEIVED
 SCTP_SHUTDOWN_ACK_SENT

 sstat_rwnd - This contains the association peer's current
 receiver window size.
 sstat_unackdata - This is the number of unacked data chunks.
 sstat_penddata - This is the number of data chunks pending receipt.
 sstat_primary - This is information on the current primary peer
 address.
 sstat_assoc_id - (UDP style socket) This holds the an identifier for the
 association. All notifications for a given association
 have the same association identifier.

 sstat_instrms - The number of streams that the peer will
 be using inbound.

 sstat_outstrms - The number of streams that the endpoint is

 allowed to use outbound.

 sstat_fragmentation_point - The size at which SCTP fragmentation
 will occur.

Stewart et.al. [Page 42]

Internet Draft SCTP Sockets API May 2002

 To access these status values, the application calls getsockopt()
 with the option name SCTP_STATUS. The sstat_assoc_id parameter is
 ignored for TCP style socket.

7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)

 Applications can retrieve information about a specific peer address
 of an association, including its reachability state, congestion
 window, and retransmission timer values. This information is
 read-only. The following structure is used to access this
 information:

 struct sctp_paddrinfo {
 sctp_assoc_t spinfo_assoc_id;
 struct sockaddr_storage spinfo_address;
 int32_t spinfo_state;
 uint32_t spinfo_cwnd;
 uint32_t spinfo_srtt;
 uint32_t spinfo_rto;
 uint32_t spinfo_mtu;
 };

 spinfo_address - This is filled in the application, and contains
 the peer address of interest.

 On return from getsockopt():

 spinfo_state - This contains the peer addresses's state (either
 SCTP_ACTIVE or SCTP_INACTIVE).
 spinfo_cwnd - This contains the peer addresses's current congestion
 window.
 spinfo_srtt - This contains the peer addresses's current smoothed
 round-trip time calculation in milliseconds.
 spinfo_rto - This contains the peer addresses's current
 retransmission timeout value in milliseconds.
 spinfo_mtu - The current P-MTU of this address.
 spinfo_assoc_id - (UDP style socket) This is filled in the application,
 and identifies the association for this query.

 To retrieve this information, use sctp_opt_info() with the
 SCTP_GET_PEER_ADDR_INFO options.

7.3. Ancillary Data and Notification Interest Options

 Applications can receive per-message ancillary information and
 notifications of certain SCTP events with recvmsg().

 The following optional information is available to the application:

 1. SCTP_SNDRCV: Per-message information (i.e. stream number,
 TSN, SSN, etc. described in section 5.2.2)
 2. SCTP_ASSOC_CHANGE: (described in section 5.3.1.1)

Stewart et.al. [Page 43]

Internet Draft SCTP Sockets API May 2002

 3. SCTP_PEER_ADDR_CHANGE: (described in section 5.3.1.2)
 4. SCTP_REMOTE_ERROR: (described in section 5.3.1.3)
 5. SCTP_SEND_FAILED: (described in section 5.3.1.4)
 6. SCTP_SHUTDOWN_EVENT: (described in section 5.3.1.5)
 7. SCTP_ADAPTION_INDICATION: (described in section 5.3.1.6)
 8. SCTP_PARTIAL_DELIVERY_EVENT: (described in section 5.3.1.7)

 To receive any ancillary data or notifications, first the
 application registers it's interest by calling the SCTP_SET_EVENTS
 setsockopt() with the following structure.

 struct sctp_event_subscribe{
 u_int8_t sctp_data_io_event;
 u_int8_t sctp_association_event;
 u_int8_t sctp_address_event;
 u_int8_t sctp_send_failure_event;
 u_int8_t sctp_peer_error_event;
 u_int8_t sctp_shutdown_event;
 u_int8_t sctp_partial_delivery_event;
 u_int8_t sctp_adaption_layer_event;
 };

 sctp_data_io_event - Setting this flag to 1 will cause the
 reception of SCTP_SNDRCV information on a per message basis.
 The application will need to use the recvmsg() interface so
 that it can receive the event information contained in the
 msg_control field. Please see section 5.2 for further details.
 Setting the flag to 0 will disable reception of the message
 control information.

 sctp_association_event - Setting this flag to 1 will enable
 the reception of association event notifications. Setting
 the flag to 0 will disable association event notifications.
 For more information on event notifications please see section

5.3.

 sctp_address_event - Setting this flag to 1 will enable
 the reception of address event notifications. Setting
 the flag to 0 will disable address event notifications.
 For more information on event notifications please see section

5.3.

 sctp_send_failure_event - Setting this flag to 1 will enable
 the reception of send failure event notifications. Setting
 the flag to 0 will disable send failure event notifications.
 For more information on event notifications please see section

5.3.

 sctp_peer_error_event - Setting this flag to 1 will enable
 the reception of peer error event notifications. Setting
 the flag to 0 will disable peer error event notifications.
 For more information on event notifications please see section

Stewart et.al. [Page 44]

Internet Draft SCTP Sockets API May 2002

 5.3.

 sctp_shutdown_event - Setting this flag to 1 will enable
 the reception of shutdown event notifications. Setting
 the flag to 0 will disable shutdown event notifications.
 For more information on event notifications please see section

5.3.

 sctp_partial_delivery_event - Setting this flag to 1 will enable
 the reception of partial delivery notifications. Setting
 the flag to 0 will disable partial delivery event notifications.
 For more information on event notifications please see section

5.3.

 sctp_adaption_layer_event - Setting this flag to 1 will enable
 the reception of adaption layer notifications. Setting
 the flag to 0 will disable adaption layer event notifications.
 For more information on event notifications please see section

5.3.

 An example where an application would like to receive data
 io events and association events but no others would be
 as follows:

 {
 struct sctp_event_subscribe event;

 memset(&event,0,sizeof(event));

 event.sctp_data_io_event = 1;
 event.sctp_association_event = 1;

 setsockopt(fd, IPPROTO_SCTP, SCTP_SET_EVENT, &event, sizeof(event));
 }

 Note that for UDP-style SCTP sockets, the caller of recvmsg()
 receives ancillary data and notifications for ALL associations bound
 to the file descriptor. For TCP-style SCTP sockets, the caller
 receives ancillary data and notifications for only the single
 association bound to the file descriptor.

 By default a TCP-style socket has all options off.

 By default a UDP-style socket has sctp_data_io_event and
 sctp_association_event on and all other options off.

8. New Interfaces

 Depending on the system, the following interface can be implemented
 as a system call or library function.

8.1 sctp_bindx()

 The syntax of sctp_bindx() is,

Stewart et.al. [Page 45]

Internet Draft SCTP Sockets API May 2002

 int sctp_bindx(int sd, struct sockaddr_storage *addrs, int addrcnt,
 int flags);

 If sd is an IPv4 socket, the addresses passed must be IPv4
 addresses. If the sd is an IPv6 socket, the addresses passed can
 either be IPv4 or IPv6 addresses.

 A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
section 3.1.2 for this usage.

 addrs is a pointer to an array of one or more socket addresses.
 Each address is contained in a struct sockaddr_storage, so each
 address is a fixed length. The caller specifies the number of
 addresses in the array with addrcnt.

 On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
 -1, and sets errno to the appropriate error code.

 For SCTP, the port given in each socket address must be the same, or
 sctp_bindx() will fail, setting errno to EINVAL.

 The flags parameter is formed from the bitwise OR of zero or more of
 the following currently defined flags:

 SCTP_BINDX_ADD_ADDR
 SCTP_BINDX_REM_ADDR

 SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
 association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the
 given addresses from the association. The two flags are mutually
 exclusive; if both are given, sctp_bindx() will fail with EINVAL. A
 caller may not remove all addresses from an association;
 sctp_bindx() will reject such an attempt with EINVAL.

 An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
 additional addresses with an endpoint after calling bind(). Or use
 sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
 socket is associated with so that no new association accepted will
 be associated with those addresses. If the endpoint supports dynamic
 address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause
 a endpoint to send the appropriate message to the peer to
 change the peers address lists.

 Adding and removing addresses from a connected association is
 optional functionality. Implementations that do not support this
 functionality should return EOPNOTSUPP.

8.2 Branched-off Association

 After an association is established on a UDP-style socket, the
 application may wish to branch off the association into a separate
 socket/file descriptor.

Stewart et.al. [Page 46]

Internet Draft SCTP Sockets API May 2002

 This is particularly desirable when, for instance, the application
 wishes to have a number of sporadic message senders/receivers remain
 under the original UDP-style socket but branch off those
 associations carrying high volume data traffic into their own
 separate socket descriptors.

 The application uses sctp_peeloff() call to branch off an
 association into a separate socket (Note the semantics are somewhat
 changed from the traditional TCP-style accept() call).

 The syntax is:

 new_sd = sctp_peeloff(int sd, sctp_assoc_t *assoc_id)

 new_sd - the new socket descriptor representing the branched-off
 association.

 sd - the original UDP-style socket descriptor returned from the
 socket() system call (see Section 3.1.1).

 assoc_id - the specified identifier of the association that is to be
 branched off to a separate file descriptor (Note, in a
 traditional TCP-style accept() call, this would be an out
 parameter, but for the UDP-style call, this is an in
 parameter).

8.3 sctp_getpaddrs()

 sctp_getpaddrs() returns all peer addresses in an association. The
 syntax is,

 int sctp_getpaddrs(int sd, sctp_assoc_t id,
 struct sockaddr_storage **addrs);

 On return, addrs will point to a dynamically allocated array of
 struct sockaddr_storages, one for each peer address. The caller
 should use sctp_freepaddrs() to free the memory. addrs must not be
 NULL.

 If sd is an IPv4 socket, the addresses returned will be all IPv4
 addresses. If sd is an IPv6 socket, the addresses returned can be a
 mix of IPv4 or IPv6 addresses.

 For UDP-style sockets, id specifies the association to query. For
 TCP-style sockets, id is ignored.

 On success, sctp_getpaddrs() returns the number of peer addresses in
 the association. If there is no association on this socket,
 sctp_getpaddrs() returns 0, and the value of *addrs is undefined. If
 an error occurs, sctp_getpaddrs() returns -1, and the value of

 *addrs is undefined.

8.4 sctp_freepaddrs()

Stewart et.al. [Page 47]

Internet Draft SCTP Sockets API May 2002

 sctp_freepaddrs() frees all resources allocated by
 sctp_getpaddrs(). Its syntax is,

 void sctp_freepaddrs(struct sockaddr_storage *addrs);

 addrs is the array of peer addresses returned by sctp_getpaddrs().

8.5 sctp_getladdrs()

 sctp_getladdrs() returns all locally bound address on a socket. The
 syntax is,

 int sctp_getladdrs(int sock, sctp_assoc_t id,
 struct sockaddr_storage **ss);

 On return, addrs will point to a dynamically allocated array of
 struct sockaddr_storages, one for each local address. The caller
 should use sctp_freeladdrs() to free the memory. addrs must not be
 NULL.

 If sd is an IPv4 socket, the addresses returned will be all IPv4
 addresses. If sd is an IPv6 socket, the addresses returned can be a
 mix of IPv4 or IPv6 addresses.

 For UDP-style sockets, id specifies the association to query. For
 TCP-style sockets, id is ignored.

 If the id field is set to the value '0' then the locally bound
 addresses are returned without regard to any particular association.

 On success, sctp_getladdrs() returns the number of local addresses
 bound to the socket. If the socket is unbound, sctp_getladdrs()
 returns 0, and the value of *addrs is undefined. If an error occurs,
 sctp_getladdrs() returns -1, and the value of *addrs is undefined.

8.6 sctp_freeladdrs()

 sctp_freeladdrs() frees all resources allocated by
 sctp_getladdrs(). Its syntax is,

 void sctp_freeladdrs(struct sockaddr_storage *addrs);

 addrs is the array of peer addresses returned by sctp_getladdrs().

9. Security Considerations

 Many TCP and UDP implementations reserve port numbers below 1024 for
 privileged users. If the target platform supports privileged users,
 the SCTP implementation SHOULD restrict the ability to call bind()
 or sctp_bindx() on these port numbers to privileged users.

 Similarly unprevledged users should not be able to set protocol
 parameters which could result in the congestion control algorithm
 being more aggressive than permitted on the public Internet. These

Stewart et.al. [Page 48]

Internet Draft SCTP Sockets API May 2002

 parameters are:

 struct sctp_rtoinfo

 If an unprivileged user inherits a UDP-style socket with open
 associations on a privileged port, it MAY be permitted to accept new
 associations, but it SHOULD NOT be permitted to open new
 associations. This could be relevant for the r* family of
 protocols.

10. Acknowledgments

 The authors wish to thank Kavitha Baratakke, Mike Bartlett,
 Jon Berger, Scott Kimble, Renee Revis, and many others on
 the TSVWG mailing list for contributing valuable comments.

11. Authors' Addresses

Randall R. Stewart Tel: +1-815-477-2127
Cisco Systems, Inc. EMail: rrs@cisco.com
Crystal Lake, IL 60012
USA

Qiaobing Xie Tel: +1-847-632-3028
Motorola, Inc. EMail: qxie1@email.mot.com
1501 W. Shure Drive, Room 2309
Arlington Heights, IL 60004
USA

La Monte H.P. Yarroll NIC Handle: LY
Motorola, Inc. EMail: piggy@acm.org
1501 W. Shure Drive, IL27-2315
Arlington Heights, IL 60004
USA

Jonathan Wood
DoCoMo USA Labs Email: jonwood@speakeasy.net
181 Metro Drive, Suite 300
San Jose, CA 95110
USA

Kacheong Poon
Sun Microsystems, Inc. Email: kacheong.poon@sun.com
901 San Antonio Road
Palo Alto, CA 94303
USA

Ken Fujita Tel: +1-408-863-6045
NEC Corporation Email: fken@cd.jp.nec.com
Cupertino, CA

12. References

Stewart et.al. [Page 49]

Internet Draft SCTP Sockets API May 2002

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

[RFC768] Postel, J. (ed.), "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

[RFC1644] Braden, R., "T/TCP -- TCP Extensions for Transactions
 Functional Specification," RFC 1644, July 1994.

[RFC2026] Bradner, S., "The Internet Standards Process -- Revision 3",
RFC 2026, October 1996.

[RFC2292] W.R. Stevens, M. Thomas, "Advanced Sockets API for IPv6",
RFC 2292, February 1998.

[RFC2553] R. Gilligan, S. Thomson, J. Bound, W. Stevens. "Basic Socket
 Interface Extensions for IPv6," RFC 2553, March 1999.

[SCTP] R.R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.J. Schwarzbauer,
 T. Taylor, I. Rytina, M. Kalla, L. Zhang, and, V. Paxson,
 "Stream Control Transmission Protocol," RFC2960, October 2000.

[STEVENS] W.R. Stevens, M. Thomas, E. Nordmark, "Advanced Sockets API for
 IPv6," <draft-ietf-ipngwg-rfc2292bis-03.txt>, November 2001
 (Work in progress)

Appendix A: TCP-style Code Example

The following code is a simple implementation of an echo server over
SCTP. The example shows how to use some features of TCP-style IPv4
SCTP sockets, including:

 o Opening, binding, and listening for new associations on a socket;
 o Enabling ancillary data
 o Enabling notifications
 o Using ancillary data with sendmsg() and recvmsg()
 o Using MSG_EOR to determine if an entire message has been read
 o Handling notifications

static void
handle_event(void *buf)
{
 struct sctp_assoc_change *sac;
 struct sctp_send_failed *ssf;
 struct sctp_paddr_change *spc;
 struct sctp_remote_error *sre;
 union sctp_notification *snp;

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2292
https://datatracker.ietf.org/doc/html/rfc2553
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-rfc2292bis-03.txt

 char addrbuf[INET6_ADDRSTRLEN];
 const char *ap;
 struct sockaddr_in *sin;
 struct sockaddr_in6 *sin6;

Stewart et.al. [Page 50]

Internet Draft SCTP Sockets API May 2002

 snp = buf;

 switch (snp->sn_type) {
 case SCTP_ASSOC_CHANGE:
 sac = &snp->sn_assoc_change;
 printf("^^^ assoc_change: state=%hu, error=%hu, instr=%hu "
 "outstr=%hu\n", sac->sac_state, sac->sac_error,
 sac->sac_inbound_streams, sac->sac_outbound_streams);
 break;
 case SCTP_SEND_FAILED:
 ssf = &snp->sn_send_failed;
 printf("^^^ sendfailed: len=%hu err=%d\n", ssf->ssf_length,
 ssf->ssf_error);
 break;

 case SCTP_PEER_ADDR_CHANGE:
 spc = &snp->sn_paddr_change; /* mt changed */
 if (spc->spc_aaddr.ss_family == AF_INET) {
 sin = (struct sockaddr_in *)&spc->spc_aaddr;
 ap = inet_ntop(AF_INET, &sin->sin_addr,
 addrbuf, INET6_ADDRSTRLEN);
 } else {
 sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr;
 ap = inet_ntop(AF_INET6, &sin6->sin6_addr,
 addrbuf, INET6_ADDRSTRLEN);
 }
 printf("^^^ intf_change: %s state=%d, error=%d\n", ap,
 spc->spc_state, spc->spc_error);
 break;
 case SCTP_REMOTE_ERROR:
 sre = &snp->sn_remote_error;
 printf("^^^ remote_error: err=%hu len=%hu\n",
 ntohs(sre->sre_error), ntohs(sre->sre_len));
 break;
 case SCTP_SHUTDOWN_EVENT:
 printf("^^^ shutdown event\n");
 break;
 default:
 printf("unknown type: %hu\n", snp->sn_type);
 break;
 }
}

static void *
sctp_recvmsg(int fd, struct msghdr *msg, void *buf, size_t *buflen,
 ssize_t *nrp, size_t cmsglen)
{
 ssize_t nr = 0;

 struct iovec iov[1];

 *nrp = 0;
 iov->iov_base = buf;
 msg->msg_iov = iov;

Stewart et.al. [Page 51]

Internet Draft SCTP Sockets API May 2002

 msg->msg_iovlen = 1;

 for (;;) {
 msg->msg_flags = MSG_XPG4_2;
 msg->msg_iov->iov_len = *buflen;
 msg->msg_controllen = cmsglen;

 nr += recvmsg(fd, msg, 0);
 if (nr <= 0) {
 /* EOF or error */
 *nrp = nr;
 return (NULL);
 }

 if ((msg->msg_flags & MSG_EOR) != 0) {
 *nrp = nr;
 return (buf);
 }

 /* Realloc the buffer? */
 if (*buflen == nr) {
 buf = realloc(buf, *buflen * 2);
 if (buf == 0) {
 fprintf(stderr, "out of memory\n");
 exit(1);
 }
 *buflen *= 2;
 }

 /* Set the next read offset */
 iov->iov_base = (char *)buf + nr;
 iov->iov_len = *buflen - nr;

 }
}

static void
echo(int fd, int socketModeUDP)
{
 ssize_t nr;
 struct sctp_sndrcvinfo *sri;
 struct msghdr msg[1];
 struct cmsghdr *cmsg;
 char cbuf[sizeof (*cmsg) + sizeof (*sri)];
 char *buf;
 size_t buflen;
 struct iovec iov[1];
 size_t cmsglen = sizeof (*cmsg) + sizeof (*sri);

 /* Allocate the initial data buffer */
 buflen = BUFLEN;
 if (!(buf = malloc(BUFLEN))) {
 fprintf(stderr, "out of memory\n");
 exit(1);

Stewart et.al. [Page 52]

Internet Draft SCTP Sockets API May 2002

 }

 /* Set up the msghdr structure for receiving */
 memset(msg, 0, sizeof (*msg));
 msg->msg_control = cbuf;
 msg->msg_controllen = cmsglen;
 msg->msg_flags = 0;
 cmsg = (struct cmsghdr *)cbuf;
 sri = (struct sctp_sndrcvinfo *)(cmsg + 1);

 /* Wait for something to echo */
 while (buf = sctp_recvmsg(fd, msg, buf, &buflen, &nr, cmsglen)) {

 /* Intercept notifications here */
 if (msg->msg_flags & MSG_NOTIFICATION) {
 handle_event(buf);
 continue;
 }

 iov->iov_base = buf;
 iov->iov_len = nr;
 msg->msg_iov = iov;
 msg->msg_iovlen = 1;

 printf("got %u bytes on stream %hu:\n", nr,
 sri->sinfo_stream);
 write(0, buf, nr);

 /* Echo it back */
 msg->msg_flags = MSG_XPG4_2;
 if (sendmsg(fd, msg, 0) < 0) {
 perror("sendmsg");
 exit(1);
 }
 }

 if (nr < 0) {
 perror("recvmsg");
 }
 if(socketModeUDP == 0)
 close(fd);
}

int main()
{
 int lfd, cfd;
 int onoff = 1;
 struct sockaddr_in sin[1];

 if ((lfd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) == -1) {

 perror("socket");
 exit(1);
 }

Stewart et.al. [Page 53]

Internet Draft SCTP Sockets API May 2002

 sin->sin_family = AF_INET;
 sin->sin_port = htons(7);
 sin->sin_addr.s_addr = INADDR_ANY;
 if (bind(lfd, (struct sockaddr *)sin, sizeof (*sin)) == -1) {
 perror("bind");
 exit(1);
 }

 if (listen(lfd, 1) == -1) {
 perror("listen");
 exit(1);
 }

 /* Wait for new associations */
 for (;;) {
 if ((cfd = accept(lfd, NULL, 0)) == -1) {
 perror("accept");
 exit(1);
 }

 /* Enable ancillary data */
 if (setsockopt(cfd, IPPROTO_SCTP, SCTP_RECVDATAIOEVNT,
 &onoff, 4) < 0) {
 perror("setsockopt RECVDATAIOEVNT");
 exit(1);
 }
 /* Enable notifications */
 if (setsockopt(cfd, IPPROTO_SCTP, SCTP_RECVASSOCEVNT,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVASSOCEVNT");
 exit(1);
 }
 if (setsockopt(cfd, IPPROTO_SCTP, SCTP_RECVSENDFAILEVNT,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVASSOCEVNT");
 exit(1);
 }
 if (setsockopt(cfd, IPPROTO_SCTP, SCTP_RECVPADDREVNT,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVPADDREVNT");
 exit(1);
 }
 if (setsockopt(cfd, IPPROTO_SCTP, SCTP_RECVPEERERR,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVPEERERR");
 exit(1);
 }
 if (setsockopt(cfd, IPPROTO_SCTP, SCTP_RECVSHUTDOWNEVNT,
 &onoff, 4) < 0) {

 perror("setsockopt SCTP_RECVSHUTDOWNEVNT");
 exit(1);
 }

 /* Echo back any and all data */

Stewart et.al. [Page 54]

Internet Draft SCTP Sockets API May 2002

 echo(cfd,0);
 }
}

Appendix B: UDP-style Code Example

The following code is a simple implementation of an echo server over
SCTP. The example shows how to use some features of UDP-style IPv4
SCTP sockets, including:

 o Opening and binding of a socket;
 o Enabling ancillary data
 o Enabling notifications
 o Using ancillary data with sendmsg() and recvmsg()
 o Using MSG_EOR to determine if an entire message has been read
 o Handling notifications

Note most functions defined in Appendix A are reused in
this example.

int main()
{
 int fd;
 int onoff = 1;
 int idleTime = 2;
 struct sockaddr_in sin[1];

 if ((fd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP)) == -1) {
 perror("socket");
 exit(1);
 }

 sin->sin_family = AF_INET;
 sin->sin_port = htons(7);
 sin->sin_addr.s_addr = INADDR_ANY;
 if (bind(fd, (struct sockaddr *)sin, sizeof (*sin)) == -1) {
 perror("bind");
 exit(1);
 }

 /* Enable notifications */

 /* SCTP_RECVASSOCEVNT and SCTP_RECVDATAIOEVNT are on by default */

 /* if a send fails we want to know it */
 if (setsockopt(fd, IPPROTO_SCTP, SCTP_RECVSENDFAILEVNT,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVASSOCEVNT");

 exit(1);
 }
 /* if a network address change or event transpires
 * we wish to know it

Stewart et.al. [Page 55]

Internet Draft SCTP Sockets API May 2002

 */
 if (setsockopt(fd, IPPROTO_SCTP, SCTP_RECVPADDREVNT,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVPADDREVNT");
 exit(1);
 }
 /* We would like all error TLV's from the peer */
 if (setsockopt(fd, IPPROTO_SCTP, SCTP_RECVPEERERR,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVPEERERR");
 exit(1);
 }
 /* And of course we would like to know about shutdown's */
 if (setsockopt(fd, IPPROTO_SCTP, SCTP_RECVSHUTDOWNEVNT,
 &onoff, 4) < 0) {
 perror("setsockopt SCTP_RECVSHUTDOWNEVNT");
 exit(1);
 }
 /* Set associations to auto-close in 2 seconds of
 * inactivity
 */
 if (setsockopt(fd, IPPROTO_SCTP, SCTP_AUTOCLOSE,
 &idleTime, 4) < 0) {
 perror("setsockopt SCTP_AUTOCLOSE");
 exit(1);
 }

 /* Allow new associations to be accepted */
 if (listen(fd, 0) < 0) {
 perror("listen");
 exit(1);
 }

 /* Wait for new associations */
 while(1){
 /* Echo back any and all data */
 echo(fd,1);
 }
}

Stewart et.al. [Page 56]

