
Network Working Group R. Stewart
Internet-Draft Huawei
Intended status: Informational K. Poon
Expires: August 5, 2010 Sun Microsystems, Inc.
 M. Tuexen
 Muenster Univ. of Applied Sciences
 V. Yasevich
 HP
 P. Lei
 Cisco Systems, Inc.
 February 1, 2010

Sockets API Extensions for Stream Control Transmission Protocol (SCTP)
draft-ietf-tsvwg-sctpsocket-21.txt

Abstract

 This document describes a mapping of the Stream Control Transmission
 Protocol SCTP into a sockets API. The benefits of this mapping
 include compatibility for TCP applications, access to new SCTP
 features and a consolidated error and event notification scheme.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 5, 2010.

Copyright Notice

Stewart, et al. Expires August 5, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SCTP sockets API February 2010

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Stewart, et al. Expires August 5, 2010 [Page 2]

Internet-Draft SCTP sockets API February 2010

Table of Contents

1. Introduction . 6
2. Data Types . 7
3. One-to-Many Style Interface 7
3.1. Basic Operation . 7
3.1.1. socket() . 8
3.1.2. bind() . 9
3.1.3. listen() . 10
3.1.4. sendmsg() and recvmsg() 10
3.1.5. close() . 12
3.1.6. connect() . 13

3.2. Implicit Association Setup 13
3.3. Non-blocking mode . 14
3.4. Special considerations 15

4. One-to-One Style Interface 16
4.1. Basic Operation . 17
4.1.1. socket() . 17
4.1.2. bind() . 18
4.1.3. listen() . 19
4.1.4. accept() . 19
4.1.5. connect() . 20
4.1.6. close() . 21
4.1.7. shutdown() . 21
4.1.8. sendmsg() and recvmsg() 22
4.1.9. getpeername() . 22

5. Data Structures . 23
5.1. The msghdr and cmsghdr Structures 23
5.2. SCTP msg_control Structures 24
5.2.1. SCTP Initiation Structure (SCTP_INIT) 24
5.2.2. SCTP Header Information Structure (SCTP_SNDRCV) . . . 25

 5.2.3. Extended SCTP Header Information Structure
 (SCTP_EXTRCV) . 28

5.2.4. SCTP Send Information Structure (SCTP_SNDINFO) 29
5.2.5. SCTP Receive Information Structure (SCTP_RCVINFO) . . 31

 5.2.6. SCTP Next Receive Information Structure
 (SCTP_NXTINFO) . 32

5.2.7. SCTP PR-SCTP Information Structure (SCTP_PRINFO) . . . 32
5.2.8. SCTP AUTH Information Structure (SCTP_AUTHINFO) . . . 33

5.3. SCTP Events and Notifications 33
5.3.1. SCTP Notification Structure 34
5.3.2. SCTP_ASSOC_CHANGE 35
5.3.3. SCTP_PEER_ADDR_CHANGE 36
5.3.4. SCTP_REMOTE_ERROR 37
5.3.5. SCTP_SEND_FAILED 38
5.3.6. SCTP_SHUTDOWN_EVENT 39
5.3.7. SCTP_ADAPTATION_INDICATION 40
5.3.8. SCTP_PARTIAL_DELIVERY_EVENT 40

Stewart, et al. Expires August 5, 2010 [Page 3]

Internet-Draft SCTP sockets API February 2010

5.3.9. SCTP_AUTHENTICATION_EVENT 41
5.3.10. SCTP_SENDER_DRY_EVENT 42
5.3.11. SCTP_NOTIFICATIONS_STOPPED_EVENT 43

5.4. Ancillary Data Considerations and Semantics 43
5.4.1. Multiple Items and Ordering 43
5.4.2. Accessing and Manipulating Ancillary Data 43
5.4.3. Control Message Buffer Sizing 44

6. Common Operations for Both Styles 45
6.1. send(), recv(), sendto(), and recvfrom() 45
6.2. setsockopt() and getsockopt() 47
6.3. read() and write() . 48
6.4. getsockname() . 48

7. Socket Options . 48
7.1. Read / Write Options 50
7.1.1. Retransmission Timeout Parameters (SCTP_RTOINFO) . . . 50
7.1.2. Association Parameters (SCTP_ASSOCINFO) 51
7.1.3. Initialization Parameters (SCTP_INITMSG) 52
7.1.4. SO_LINGER . 53
7.1.5. SCTP_NODELAY . 53
7.1.6. SO_RCVBUF . 53
7.1.7. SO_SNDBUF . 54
7.1.8. Automatic Close of Associations (SCTP_AUTOCLOSE) . . . 54
7.1.9. Set Primary Address (SCTP_PRIMARY_ADDR) 54

 7.1.10. Set Adaptation Layer Indicator
 (SCTP_ADAPTATION_LAYER) 55
 7.1.11. Enable/Disable Message Fragmentation
 (SCTP_DISABLE_FRAGMENTS) 55

7.1.12. Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) . . . 55
 7.1.13. Set Default Send Parameters
 (SCTP_DEFAULT_SEND_PARAM) 58
 7.1.14. Set Notification and Ancillary Events (SCTP_EVENTS) . 58
 7.1.15. Set/Clear IPv4 Mapped Addresses
 (SCTP_I_WANT_MAPPED_V4_ADDR) 58
 7.1.16. Get or Set the Maximum Fragmentation Size
 (SCTP_MAXSEG) . 58
 7.1.17. Get or Set the List of Supported HMAC Identifiers
 (SCTP_HMAC_IDENT) 59
 7.1.18. Get or Set the Active Shared Key
 (SCTP_AUTH_ACTIVE_KEY) 60

7.1.19. Get or Set Delayed SACK Timer (SCTP_DELAYED_SACK) . . 60
 7.1.20. Get or Set Fragmented Interleave
 (SCTP_FRAGMENT_INTERLEAVE) 61
 7.1.21. Set or Get the SCTP Partial Delivery Point
 (SCTP_PARTIAL_DELIVERY_POINT) 62
 7.1.22. Set or Get the Use of Extended Receive Info
 (SCTP_USE_EXT_RCVINFO) 63

7.1.23. Set or Get the Auto ASCONF Flag (SCTP_AUTO_ASCONF) . . 63
7.1.24. Set or Get the Maximum Burst (SCTP_MAX_BURST) 63

Stewart, et al. Expires August 5, 2010 [Page 4]

Internet-Draft SCTP sockets API February 2010

7.1.25. Set or Get the Default Context (SCTP_CONTEXT) 64
 7.1.26. Enable or Disable Explicit EOR Marking
 (SCTP_EXPLICIT_EOR) 64

7.1.27. Enable SCTP Port Reusage (SCTP_REUSE_PORT) 64
7.1.28. Set Notification Event (SCTP_EVENT) 65

7.2. Read-Only Options . 65
7.2.1. Association Status (SCTP_STATUS) 65
7.2.2. Peer Address Information (SCTP_GET_PEER_ADDR_INFO) . . 66

 7.2.3. Get the List of Chunks the Peer Requires to be
 Authenticated (SCTP_PEER_AUTH_CHUNKS) 67
 7.2.4. Get the List of Chunks the Local Endpoint Requires
 to be Authenticated (SCTP_LOCAL_AUTH_CHUNKS) 68
 7.2.5. Get the Current Number of Associations
 (SCTP_GET_ASSOC_NUMBER) 68
 7.2.6. Get the Current Identifiers of Associations
 (SCTP_GET_ASSOC_ID_LIST) 68

7.3. Write-Only Options . 69
 7.3.1. Set Peer Primary Address
 (SCTP_SET_PEER_PRIMARY_ADDR) 69
 7.3.2. Add a Chunk That Must Be Authenticated
 (SCTP_AUTH_CHUNK) 69

7.3.3. Set a Shared Key (SCTP_AUTH_KEY) 70
7.3.4. Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) . . 70
7.3.5. Delete a Shared Key (SCTP_AUTH_DELETE_KEY) 71

7.4. Ancillary Data and Notification Interest Options 72
8. New Functions . 75
8.1. sctp_bindx() . 75
8.2. sctp_peeloff() . 76
8.3. sctp_getpaddrs() . 77
8.4. sctp_freepaddrs() . 77
8.5. sctp_getladdrs() . 78
8.6. sctp_freeladdrs() . 78
8.7. sctp_sendmsg() . 79
8.8. sctp_recvmsg() . 79
8.9. sctp_connectx() . 80
8.10. sctp_send() . 81
8.11. sctp_sendx() . 82
8.12. sctp_getaddrlen() . 83

9. IANA Considerations . 83
10. Security Considerations 83
11. Acknowledgments . 84
12. Normative References . 84
Appendix A. One-to-One Style Code Example 85
Appendix B. One-to-Many Style Code Example 90

 Authors' Addresses . 91

Stewart, et al. Expires August 5, 2010 [Page 5]

Internet-Draft SCTP sockets API February 2010

1. Introduction

 The sockets API has provided a standard mapping of the Internet
 Protocol suite to many operating systems. Both TCP [RFC0793] and UDP
 [RFC0768] have benefited from this standard representation and access
 method across many diverse platforms. SCTP is a new protocol that
 provides many of the characteristics of TCP but also incorporates
 semantics more akin to UDP. This document defines a method to map
 the existing sockets API for use with SCTP, providing both a base for
 access to new features and compatibility so that most existing TCP
 applications can be migrated to SCTP with few (if any) changes.

 There are three basic design objectives:
 1. Maintain consistency with existing sockets APIs: We define a
 sockets mapping for SCTP that is consistent with other sockets
 API protocol mappings (for instance UDP, TCP, IPv4, and IPv6).
 2. Support a one-to-many style interface: This set of semantics is
 similar to that defined for connection-less protocols, such as
 UDP. A one-to-many style SCTP socket should be able to control
 multiple SCTP associations. This is similar to a UDP socket,
 which can communicate with many peer endpoints. Each of these
 associations is assigned an association ID so that an application
 can use the ID to differentiate them. Note that SCTP is
 connection-oriented in nature, and it does not support broadcast
 or multicast communications, as UDP does.
 3. Support a one-to-one style interface: This interface supports a
 similar semantics as sockets for connection-oriented protocols,
 such as TCP. A one-to-one style SCTP socket should only control
 one SCTP association. One purpose of defining this interface is
 to allow existing applications built on other connection-oriented
 protocols be ported to use SCTP with very little effort. And
 developers familiar with those semantics can easily adapt to
 SCTP. Another purpose is to make sure that existing mechanisms
 in most operating systems to deal with socket, such as select(),
 should continue to work with this style of socket. Extensions
 are added to this mapping to provide mechanisms to exploit new
 features of SCTP.

 Goals 2 and 3 are not compatible, so in this document we define two
 modes of mapping, namely the one-to-many style mapping and the one-
 to-one style mapping. These two modes share some common data
 structures and operations, but will require the use of two different
 application programming styles. Note that all new SCTP features can
 be used with both styles of socket. The decision on which one to use
 depends mainly on the nature of applications.

 A mechanism is defined to extract a one-to-many style SCTP
 association into a one-to-one style socket.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768

Stewart, et al. Expires August 5, 2010 [Page 6]

Internet-Draft SCTP sockets API February 2010

 Some of the SCTP mechanisms cannot be adequately mapped to an
 existing socket interface. In some cases, it is more desirable to
 have a new interface instead of using existing socket calls.

Section 8 of this document describes those new interfaces.

2. Data Types

 Whenever possible, data types from Draft 6.6 (March 1997) of POSIX
 1003.1g are used: uintN_t means an unsigned integer of exactly N bits
 (e.g. uint16_t). We also assume the argument data types from 1003.1g
 when possible (e.g. the final argument to setsockopt() is a size_t
 value). Whenever buffer sizes are specified, the POSIX 1003.1 size_t
 data type is used.

3. One-to-Many Style Interface

 The one-to-many style interface has the following characteristics:
 o Outbound association setup is implicit.
 o Messages are delivered in complete messages (with one notable
 exception).
 o There is a 1 to MANY relationship between socket and association.

3.1. Basic Operation

 A typical server in this style uses the following socket calls in
 sequence to prepare an endpoint for servicing requests:
 o socket()
 o bind()
 o listen()
 o recvmsg()
 o sendmsg()
 o close()

 A typical client uses the following calls in sequence to setup an
 association with a server to request services:
 o socket()
 o sendmsg()
 o recvmsg()
 o close()

 In this style, by default, all the associations connected to the
 endpoint are represented with a single socket. Each association is
 assigned an association ID (type is sctp_assoc_t) so that an
 application can use it to differentiate between them. In some
 implementations, the peer endpoints' addresses can also be used for
 this purpose. But this is not required for performance reasons. If

Stewart, et al. Expires August 5, 2010 [Page 7]

Internet-Draft SCTP sockets API February 2010

 an implementation does not support using addresses to differentiate
 between different associations, the sendto() call can only be used to
 setup an association implicitly. It cannot be used to send data to
 an established association as the association ID cannot be specified.

 Once as association ID is assigned to an SCTP association, that ID
 will not be reused until the application explicitly terminates the
 association. The resources belonging to that association will not be
 freed until that happens. This is similar to the close() operation
 on a normal socket. The only exception is when the SCTP_AUTOCLOSE
 option (section 7.1.8) is set. In this case, after the association
 is terminated gracefully and automatically, the association ID
 assigned to it can be reused. All applications using this option
 should be aware of this to avoid the possible problem of sending data
 to an incorrect peer endpoint.

 If the server or client wishes to branch an existing association off
 to a separate socket, it is required to call sctp_peeloff() and to
 specify the association identifier. The sctp_peeloff() call will
 return a new socket which can then be used with recv() and send()
 functions for message passing. See Section 8.2 for more on branched-
 off associations. The returned socket is a one-to-one style socket.

 Once an association is branched off to a separate socket, it becomes
 completely separated from the original socket. All subsequent
 control and data operations to that association must be done through
 the new socket. For example, the close operation on the original
 socket will not terminate any associations that have been branched
 off to a different socket.

 We will discuss the one-to-many style socket calls in more detail in
 the following subsections.

3.1.1. socket()

 Applications use socket() to create a socket descriptor to represent
 an SCTP endpoint.

 The function prototype is

 int socket(int domain,
 int type,
 int protocol);

 and one uses PF_INET or PF_INET6 as the domain, SOCK_SEQPACKET as the
 type and IPPROTO_SCTP as the protocol.

 Here, SOCK_SEQPACKET indicates the creation of a one-to-many style

Stewart, et al. Expires August 5, 2010 [Page 8]

Internet-Draft SCTP sockets API February 2010

 socket.

 Using the PF_INET domain indicates the creation of an endpoint which
 can use only IPv4 addresses, while PF_INET6 creates an endpoint which
 can use both IPv6 and IPv4 addresses.

3.1.2. bind()

 Applications use bind() to specify which local address the SCTP
 endpoint should associate itself with.

 An SCTP endpoint can be associated with multiple addresses. To do
 this, sctp_bindx() is introduced in Section 8.1 to help applications
 do the job of associating multiple addresses.

 These addresses associated with a socket are the eligible transport
 addresses for the endpoint to send and receive data. The endpoint
 will also present these addresses to its peers during the association
 initialization process, see [RFC4960].

 After calling bind(), if the endpoint wishes to accept new
 associations on the socket, it must call listen() (see

Section 3.1.3).

 The function prototype of bind() is

 int bind(int sd,
 struct sockaddr *addr,
 socklen_t addrlen);

 and the arguments are
 sd: The socket descriptor returned by socket().
 addr: The address structure (struct sockaddr_in or struct
 sockaddr_in6, see [RFC3493]).
 addrlen: The size of the address structure.

 If sd is an IPv4 socket, the address passed must be an IPv4 address.
 If the sd is an IPv6 socket, the address passed can either be an IPv4
 or an IPv6 address.

 Applications cannot call bind() multiple times to associate multiple
 addresses to an endpoint. After the first call to bind(), all
 subsequent calls will return an error.

 If addr is specified as a wildcard (INADDR_ANY for an IPv4 address,
 or as IN6ADDR_ANY_INIT or in6addr_any for an IPv6 address), the
 operating system will associate the endpoint with an optimal address
 set of the available interfaces.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires August 5, 2010 [Page 9]

Internet-Draft SCTP sockets API February 2010

 If a bind() is not called prior to a sendmsg() call that initiates a
 new association, the system picks an ephemeral port and will choose
 an address set equivalent to binding with a wildcard address. One of
 those addresses will be the primary address for the association.
 This automatically enables the multi-homing capability of SCTP.

3.1.3. listen()

 By default, new associations are not accepted for one-to-many style
 sockets. An application uses listen() to mark a socket as being able
 to accept new associations.

 The function prototype is

 int listen(int sd,
 int backlog);

 and the arguments are
 sd: The socket descriptor of the endpoint.
 backlog: If backlog is non-zero, enable listening else disable
 listening.

 Note that one-to-many style socket consumers do not need to call
 accept to retrieve new associations. Calling accept() on a one-to-
 many style socket should return EOPNOTSUPP. Rather, new associations
 are accepted automatically, and notifications of the new associations
 are delivered via recvmsg() with the SCTP_ASSOC_CHANGE event (if
 these notifications are enabled). Clients will typically not call
 listen(), so that they can be assured that the only associations on
 the socket will be the ones those actively initiated. Server or
 peer-to-peer sockets, on the other hand, will always accept new
 associations, so a well-written application using server one-to-many
 style sockets must be prepared to handle new associations from
 unwanted peers.

 Also note that the SCTP_ASSOC_CHANGE event provides the association
 ID for a new association, so if applications wish to use the
 association ID as input to other socket calls, they should ensure
 that the SCTP_ASSOC_CHANGE event is enabled.

3.1.4. sendmsg() and recvmsg()

 An application uses the sendmsg() and recvmsg() call to transmit data
 to and receive data from its peer.

 The function prototypes are

Stewart, et al. Expires August 5, 2010 [Page 10]

Internet-Draft SCTP sockets API February 2010

 ssize_t sendmsg(int sd,
 const struct msghdr *message,
 int flags);

 and

 ssize_t recvmsg(int sd,
 struct msghdr *message,
 int flags);

 using the arguments:
 sd: The socket descriptor of the endpoint.
 message: Pointer to the msghdr structure which contains a single
 user message and possibly some ancillary data. See Section 5 for
 complete description of the data structures.
 flags: No new flags are defined for SCTP at this level. See

Section 5 for SCTP-specific flags used in the msghdr structure.

 As we will see in Section 5, along with the user data, the ancillary
 data field is used to carry the sctp_sndrcvinfo and/or the
 sctp_initmsg structures to perform various SCTP functions including
 specifying options for sending each user message. Those options,
 depending on whether sending or receiving, include stream number,
 stream sequence number, various flags, context and payload protocol
 Id, etc.

 When sending user data with sendmsg(), the msg_name field in the
 msghdr structure will be filled with one of the transport addresses
 of the intended receiver. If there is no association existing
 between the sender and the intended receiver, the sender's SCTP stack
 will set up a new association and then send the user data (see

Section 3.2 for more on implicit association setup). If an SCTP_INIT
 cmsg structure is used with NULL data, an association will be
 established using the parameters from the struct sctp_initmsg
 structure. If no SCTP_INIT cmsg structure is used in combination
 with NULL data, an association is established using the default
 parameters. If NULL data is used, no association exists and the
 SCTP_ABORT or SCTP_EOF flags are present, then -1 must be returned
 and an errno should be set to something like EDONOTBESTUPID. Sending
 a message using sendmsg() is atomic unless explicit EOR marking is
 enabled on the socket specified by sd.

 If a peer sends a SHUTDOWN, an SCTP_SHUTDOWN_EVENT notification will
 be delivered if that notification has been enabled, and no more data
 can be sent to that association. Any attempt to send more data will
 cause sendmsg() to return with an ESHUTDOWN error. Note that the
 socket is still open for reading at this point so it is possible to
 retrieve notifications.

Stewart, et al. Expires August 5, 2010 [Page 11]

Internet-Draft SCTP sockets API February 2010

 When receiving a user message with recvmsg(), the msg_name field in
 the msghdr structure will be populated with the source transport
 address of the user data. The caller of recvmsg() can use this
 address information to determine to which association the received
 user message belongs. Note that if SCTP_ASSOC_CHANGE events are
 disabled, applications must use the peer transport address provided
 in the msg_name field by recvmsg() to perform correlation to an
 association, since they will not have the association ID.

 If all data in a single message has been delivered, MSG_EOR will be
 set in the msg_flags field of the msghdr structure (see section

Section 5.1).

 If the application does not provide enough buffer space to completely
 receive a data message, MSG_EOR will not be set in msg_flags.
 Successive reads will consume more of the same message until the
 entire message has been delivered, and MSG_EOR will be set.

 If the SCTP stack is running low on buffers, it may partially deliver
 a message. In this case, MSG_EOR will not be set, and more calls to
 recvmsg() will be necessary to completely consume the message. Only
 one message at a time can be partially delivered in any stream. The
 socket option SCTP_FRAGMENT_INTERLEAVE controls various aspects of
 what interlacing of messages occurs for both the one-to-one and the
 one-to-many model sockets. Please consult Section 7.1.20 for further
 details on message delivery options.

 Note, if the socket is a branched-off socket that only represents one
 association (see Section 3.1), the msg_name field can be used to
 override the primary address when sending data.

3.1.5. close()

 Applications use close() to perform graceful shutdown (as described
 in Section 10.1 of [RFC4960]) on ALL the associations currently
 represented by a one-to-many style socket.

 The function prototype is

 int close(int sd);

 and the argument is
 sd: The socket descriptor of the associations to be closed.

 To gracefully shutdown a specific association represented by the one-
 to-many style socket, an application should use the sendmsg() call,
 and include the SCTP_EOF flag. A user may optionally terminate an
 association non-gracefully by sending with the SCTP_ABORT flag and

https://datatracker.ietf.org/doc/html/rfc4960#section-10.1

Stewart, et al. Expires August 5, 2010 [Page 12]

Internet-Draft SCTP sockets API February 2010

 possibly passing a user specified abort code in the data field. Both
 flags SCTP_EOF and SCTP_ABORT are passed with ancillary data (see

Section 5.2.2) in the sendmsg() call.

 If sd in the close() call is a branched-off socket representing only
 one association, the shutdown is performed on that association only.

3.1.6. connect()

 An application may use the connect() call in the one-to-many style to
 initiate an association without sending data.

 The function prototype is

 int connect(int sd,
 const struct sockaddr *nam,
 socklen_t len);

 and the arguments are
 sd: The socket descriptor to have a new association added to.
 nam: The address structure (either struct sockaddr_in or struct
 sockaddr_in6 defined in [RFC3493]).
 len: The size of the address.

 Multiple connect() calls can be made on the same socket to create
 multiple associations. This is different from the semantics of
 connect() on a UDP socket.

3.2. Implicit Association Setup

 Implicit association setup applies only to one-to-many style sockets.
 For one-to-one style sockets implicit association setup must not be
 used.

 Once the bind() call is complete on a one-to-many style socket, the
 application can begin sending and receiving data using the sendmsg()/
 recvmsg() or sendto()/recvfrom() calls, without going through any
 explicit association setup procedures (i.e., no connect() calls
 required).

 Whenever sendmsg() or sendto() is called and the SCTP stack at the
 sender finds that there is no association existing between the sender
 and the intended receiver (identified by the address passed either in
 the msg_name field of msghdr structure in the sendmsg() call or the
 dest_addr field in the sendto() call), the SCTP stack will
 automatically setup an association to the intended receiver.

 Upon the successful association setup an SCTP_COMM_UP notification

https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires August 5, 2010 [Page 13]

Internet-Draft SCTP sockets API February 2010

 will be dispatched to the socket at both the sender and receiver
 side. This notification can be read by the recvmsg() system call
 (see Section 3.1.3).

 Note, if the SCTP stack at the sender side supports bundling, the
 first user message may be bundled with the COOKIE ECHO message
 [RFC4960].

 When the SCTP stack sets up a new association implicitly, it first
 consults the sctp_initmsg structure, which is passed along within the
 ancillary data in the sendmsg() call (see Section 5.2.1 for details
 of the data structures), for any special options to be used on the
 new association.

 If this information is not present in the sendmsg() call, or if the
 implicit association setup is triggered by a sendto() call, the
 default association initialization parameters will be used. These
 default association parameters may be set with respective
 setsockopt() calls or be left to the system defaults.

 Implicit association setup cannot be initiated by send()/recv()
 calls.

3.3. Non-blocking mode

 Some SCTP users might want to avoid blocking when they call socket
 interface function.

 Once all bind() calls are complete on a one-to-many style socket, the
 application must set the non-blocking option by a fcntl() (such as
 O_NONBLOCK), after which the sendmsg() function returns immediately,
 and the success or failure of the data message (and possible
 SCTP_INITMSG parameters) will be signaled by the SCTP_ASSOC_CHANGE
 event with SCTP_COMM_UP or CANT_START_ASSOC. If user data could not
 be sent (due to a CANT_START_ASSOC), the sender will also receive an
 SCTP_SEND_FAILED event. Events can be received by the user calling
 recvmsg(). A server (having called listen()) is also notified of an
 association up event by the reception of an SCTP_ASSOC_CHANGE with
 SCTP_COMM_UP via the calling of recvmsg() and possibly the reception
 of the first data message.

 In order to shutdown the association gracefully, the user must call
 sendmsg() with no data and with the SCTP_EOF flag set. The function
 returns immediately, and completion of the graceful shutdown is
 indicated by an SCTP_ASSOC_CHANGE notification of type
 SHUTDOWN_COMPLETE (see Section 5.3.2). Note that this can also be
 done using the sctp_send() call described in Section 8.10.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires August 5, 2010 [Page 14]

Internet-Draft SCTP sockets API February 2010

 An application is recommended to use caution when using select() (or
 poll()) for writing on a one-to-many style socket. The reason being
 that the interpretation of select on write is implementation
 specific. Generally a positive return on a select on write would
 only indicate that one of the associations represented by the one-to-
 many socket is writable. An application that writes after the
 select() returns may still block since the association that was
 writeable is not the destination association of the write call.
 Likewise select() (or poll()) for reading from a one-to-many socket
 will only return an indication that one of the associations
 represented by the socket has data to be read.

 An application that wishes to know that a particular association is
 ready for reading or writing should either use the one-to-one style
 or use the sctp_peeloff() (see Section 8.2) function to separate the
 association of interest from the one-to-many socket.

3.4. Special considerations

 The fact that a one-to-many style socket can provide access to many
 SCTP associations through a single socket descriptor has important
 implications for both application programmers and system programmers
 implementing this API. A key issue is how buffer space inside the
 sockets layer is managed. Because this implementation detail
 directly affects how application programmers must write their code to
 ensure correct operation and portability, this section provides some
 guidance to both implementers and application programmers.

 An important feature that SCTP shares with TCP is flow control:
 specifically, a sender may not send data faster than the receiver can
 consume it.

 For TCP, flow control is typically provided for in the sockets API as
 follows. If the reader stops reading, the sender queues messages in
 the socket layer until it uses all of its socket buffer space
 allocation creating a "stalled connection". Further attempts to
 write to the socket will block or return the error EAGAIN or
 EWOULDBLOCK for a non-blocking socket. At some point, either the
 connection is closed, or the receiver begins to read again freeing
 space in the output queue.

 For one-to-one style SCTP sockets (this includes sockets descriptors
 that were separated from a one-to-many style socket with
 sctp_peeloff()) the behavior is identical. For one-to-many style
 SCTP sockets, the fact that we have multiple associations on a single
 socket makes the situation more complicated. If the implementation
 uses a single buffer space allocation shared by all associations, a
 single stalled association can prevent the further sending of data on

Stewart, et al. Expires August 5, 2010 [Page 15]

Internet-Draft SCTP sockets API February 2010

 all associations active on a particular one-to-many style socket.

 For a blocking socket, it should be clear that a single stalled
 association can block the entire socket. For this reason,
 application programmers may want to use non-blocking one-to-many
 style sockets. The application should at least be able to send
 messages to the non-stalled associations.

 But a non-blocking socket is not sufficient if the API implementer
 has chosen a single shared buffer allocation for the socket. A
 single stalled association would eventually cause the shared
 allocation to fill, and it would become impossible to send even to
 non-stalled associations.

 The API implementer can solve this problem by providing each
 association with its own allocation of outbound buffer space. Each
 association should conceptually have as much buffer space as it would
 have if it had its own socket. As a bonus, this simplifies the
 implementation of sctp_peeloff().

 To ensure that a given stalled association will not prevent other
 non-stalled associations from being writable, application programmers
 should either:
 o demand that the underlying implementation dedicates independent
 buffer space allotments to each association (as suggested above),
 or
 o verify that their application layer protocol does not permit large
 amounts of unread data at the receiver (this is true of some
 request-response protocols, for example), or
 o use one-to-one style sockets for association which may potentially
 stall (either from the beginning, or by using sctp_peeloff before
 sending large amounts of data that may cause a stalled condition).

4. One-to-One Style Interface

 The goal of this style is to follow as closely as possible the
 current practice of using the sockets interface for a connection
 oriented protocol, such as TCP. This style enables existing
 applications using connection oriented protocols to be ported to SCTP
 with very little effort.

 Note that some new SCTP features and some new SCTP socket options can
 only be utilized through the use of sendmsg() and recvmsg() calls,
 see Section 4.1.8. Also note that some socket interfaces may not be
 able to bundle DATA chunks with the COOKIE chunk when using this
 interface style.

Stewart, et al. Expires August 5, 2010 [Page 16]

Internet-Draft SCTP sockets API February 2010

4.1. Basic Operation

 A typical server in one-to-one style uses the following system call
 sequence to prepare an SCTP endpoint for servicing requests:
 o socket()
 o bind()
 o listen()
 o accept()

 The accept() call blocks until a new association is set up. It
 returns with a new socket descriptor. The server then uses the new
 socket descriptor to communicate with the client, using recv() and
 send() calls to get requests and send back responses.

 Then it calls
 o close()
 to terminate the association.

 A typical client uses the following system call sequence to setup an
 association with a server to request services:
 o socket()
 o connect()

 After returning from connect(), the client uses send() and recv()
 calls to send out requests and receive responses from the server.

 The client calls
 o close()
 to terminate this association when done.

4.1.1. socket()

 Applications call socket() to create a socket descriptor to represent
 an SCTP endpoint.

 The function prototype is

 int socket(int domain,
 int type,
 int protocol);

 and one uses PF_INET or PF_INET6 as the domain, SOCK_STREAM as the
 type and IPPROTO_SCTP as the protocol.

 Here, SOCK_STREAM indicates the creation of a one-to-one style
 socket.

 Using the PF_INET domain indicates the creation of an endpoint which

Stewart, et al. Expires August 5, 2010 [Page 17]

Internet-Draft SCTP sockets API February 2010

 can use only IPv4 addresses, while PF_INET6 creates an endpoint which
 can use both IPv6 and IPv4 addresses.

4.1.2. bind()

 Applications use bind() to pass an address to be associated with an
 SCTP endpoint to the system. bind() allows only either a single
 address or a IPv4 or IPv6 wildcard address to be bound. An SCTP
 endpoint can be associated with multiple addresses. To do this,
 sctp_bindx() is introduced in Section 8.1 to help applications do the
 job of associating multiple addresses.

 These addresses associated with a socket are the eligible transport
 addresses for the endpoint to send and receive data. The endpoint
 will also present these addresses to its peers during the association
 initialization process, see [RFC4960].

 The function prototype of bind() is

 int bind(int sd,
 struct sockaddr *addr,
 socklen_t addrlen);

 and the arguments are
 sd: The socket descriptor returned by socket().
 addr: The address structure (struct sockaddr_in or struct
 sockaddr_in6, see [RFC3493]).
 addrlen: The size of the address structure.

 If sd is an IPv4 socket, the address passed must be an IPv4 address.
 Otherwise, i.e., the sd is an IPv6 socket, the address passed can
 either be an IPv4 or an IPv6 address.

 Applications cannot call bind() multiple times to associate multiple
 addresses to the endpoint. After the first call to bind(), all
 subsequent calls will return an error.

 If addr is specified as a wildcard (INADDR_ANY for an IPv4 address,
 or as IN6ADDR_ANY_INIT or in6addr_any for an IPv6 address), the
 operating system will associate the endpoint with an optimal address
 set of the available interfaces.

 If a bind() is not called prior to the connect() call, the system
 picks an ephemeral port and will choose an address set equivalent to
 binding with a wildcard address. One of those addresses will be the
 primary address for the association. This automatically enables the
 multi-homing capability of SCTP.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires August 5, 2010 [Page 18]

Internet-Draft SCTP sockets API February 2010

 The completion of this bind() process does not ready the SCTP
 endpoint to accept inbound SCTP association requests. Until a
 listen() system call, described below, is performed on the socket,
 the SCTP endpoint will promptly reject an inbound SCTP INIT request
 with an SCTP ABORT.

4.1.3. listen()

 Applications use listen() to ready the SCTP endpoint for accepting
 inbound associations.

 The function prototype is

 int listen(int sd,
 int backlog);

 and the arguments are
 sd: the socket descriptor of the SCTP endpoint.
 backlog: this specifies the max number of outstanding associations
 allowed in the socket's accept queue. These are the associations
 that have finished the four-way initiation handshake (see Section

5 of [RFC4960]) and are in the ESTABLISHED state. Note, a backlog
 of '0' indicates that the caller no longer wishes to receive new
 associations.

4.1.4. accept()

 Applications use the accept() call to remove an established SCTP
 association from the accept queue of the endpoint. A new socket
 descriptor will be returned from accept() to represent the newly
 formed association.

 The function prototype is

 int accept(int sd,
 struct sockaddr *addr,
 socklen_t *addrlen);

 and the arguments are
 sd: The listening socket descriptor.
 addr: On return, will contain the primary address of the peer
 endpoint.
 addrlen: On return, will contain the size of addr.
 The functions returns the socket descriptor for the newly formed
 association.

https://datatracker.ietf.org/doc/html/rfc4960#section-5
https://datatracker.ietf.org/doc/html/rfc4960#section-5

Stewart, et al. Expires August 5, 2010 [Page 19]

Internet-Draft SCTP sockets API February 2010

4.1.5. connect()

 Applications use connect() to initiate an association to a peer.

 The function prototype is

 int connect(int sd,
 const struct sockaddr *addr,
 socklen_t addrlen);

 and the arguments are
 sd: The socket descriptor of the endpoint.
 addr: The peer's address.
 addrlen: The size of the address.

 This operation corresponds to the ASSOCIATE primitive described in
section 10.1 of [RFC4960].

 By default, the new association created has only one outbound stream.
 The SCTP_INITMSG option described in Section 7.1.3 should be used
 before connecting to change the number of outbound streams.

 If a bind() is not called prior to the connect() call, the system
 picks an ephemeral port and will choose an address set equivalent to
 binding with INADDR_ANY and IN6ADDR_ANY_INIT for IPv4 and IPv6 socket
 respectively. One of those addresses will be the primary address for
 the association. This automatically enables the multi-homing
 capability of SCTP.

 Note that SCTP allows data exchange, similar to T/TCP [RFC1644],
 during the association set up phase. If an application wants to do
 this, it cannot use the connect() call. Instead, it should use
 sendto() or sendmsg() to initiate an association. If it uses
 sendto() and it wants to change the initialization behavior, it needs
 to use the SCTP_INITMSG socket option before calling sendto(). Or it
 can use SCTP_INIT type sendmsg() to initiate an association without
 doing the setsockopt(). Note that some sockets implementations may
 not support the sending of data to initiate an association with the
 one-to-one style (implementations that do not support T/TCP normally
 have this restriction).

 SCTP does not support half close semantics. This means that unlike
 T/TCP, MSG_EOF should not be set in the flags parameter when calling
 sendto() or sendmsg() when the call is used to initiate a connection.
 MSG_EOF is not an acceptable flag with an SCTP socket.

https://datatracker.ietf.org/doc/html/rfc4960#section-10.1
https://datatracker.ietf.org/doc/html/rfc1644

Stewart, et al. Expires August 5, 2010 [Page 20]

Internet-Draft SCTP sockets API February 2010

4.1.6. close()

 Applications use close() to gracefully close down an association.

 The function prototype is

 int close(int sd);

 and the argument is
 sd: The socket descriptor of the association to be closed.

 After an application calls close() on a socket descriptor, no further
 socket operations will succeed on that descriptor.

4.1.7. shutdown()

 SCTP differs from TCP in that it does not have half closed semantics.
 Hence the shutdown() call for SCTP is an approximation of the TCP
 shutdown() call, and solves some different problems. Full TCP-
 compatibility is not provided, so developers porting TCP applications
 to SCTP may need to recode sections that use shutdown(). (Note that
 it is possible to achieve the same results as half close in SCTP
 using SCTP streams.)

 The function prototype is

 int shutdown(int sd,
 int how);

 and the arguments are
 sd: The socket descriptor of the association to be closed.
 how: Specifies the type of shutdown. The values are as follows:
 SHUT_RD: Disables further receive operations. No SCTP protocol
 action is taken.
 SHUT_WR: Disables further send operations, and initiates the SCTP
 shutdown sequence.
 SHUT_RDWR: Disables further send and receive operations and
 initiates the SCTP shutdown sequence.

 The major difference between SCTP and TCP shutdown() is that SCTP
 SHUT_WR initiates immediate and full protocol shutdown, whereas TCP
 SHUT_WR causes TCP to go into the half closed state. SHUT_RD behaves
 the same for SCTP as TCP. The purpose of SCTP SHUT_WR is to close
 the SCTP association while still leaving the socket descriptor open,
 so that the caller can receive back any data SCTP was unable to
 deliver (see Section 5.3.5 for more information).

 To perform the ABORT operation described in [RFC4960] section 10.1,

https://datatracker.ietf.org/doc/html/rfc4960#section-10.1

Stewart, et al. Expires August 5, 2010 [Page 21]

Internet-Draft SCTP sockets API February 2010

 an application can use the socket option SO_LINGER. It is described
 in Section 7.1.4.

4.1.8. sendmsg() and recvmsg()

 With a one-to-one style socket, the application can also use
 sendmsg() and recvmsg() to transmit data to and receive data from its
 peer. The semantics is similar to those used in the one-to-many
 style (section Section 3.1.3), with the following differences:
 1. When sending, the msg_name field in the msghdr is not used to
 specify the intended receiver, rather it is used to indicate a
 preferred peer address if the sender wishes to discourage the
 stack from sending the message to the primary address of the
 receiver. If the socket is connected and the transport address
 given is not part of the current association, the data will not
 be sent and an SCTP_SEND_FAILED event will be delivered to the
 application if send failure events are enabled.
 2. Using sendmsg() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the
 SCTP implementation.

4.1.9. getpeername()

 Applications use getpeername() to retrieve the primary socket address
 of the peer. This call is for TCP compatibility, and is not multi-
 homed. It does not work with one-to-many style sockets. See

Section 8.3 for a multi-homed/one-to-many style version of the call.

 The function prototype is

 int getpeername(int sd,
 struct sockaddr *address,
 socklen_t *len);

 and the arguments are:
 sd: The socket descriptor to be queried.
 address: On return, the peer primary address is stored in this
 buffer. If the socket is an IPv4 socket, the address will be
 IPv4. If the socket is an IPv6 socket, the address will be either
 an IPv6 or IPv4 address.
 len: The caller should set the length of address here. On return,
 this is set to the length of the returned address.

 If the actual length of the address is greater than the length of the
 supplied sockaddr structure, the stored address will be truncated.

Stewart, et al. Expires August 5, 2010 [Page 22]

Internet-Draft SCTP sockets API February 2010

5. Data Structures

 In this section we discuss important data structures which are
 specific to SCTP and are used with sendmsg() and recvmsg() calls to
 control SCTP endpoint operations and to access ancillary information
 and notifications.

5.1. The msghdr and cmsghdr Structures

 The msghdr structure used in the sendmsg() and recvmsg() calls, as
 well as the ancillary data carried in the structure, is the key for
 the application to set and get various control information from the
 SCTP endpoint.

 The msghdr and the related cmsghdr structures are defined and
 discussed in detail in [RFC3542]. Here we will cite their
 definitions from [RFC3542].

 The msghdr structure:

 struct msghdr {
 void *msg_name; /* ptr to socket address structure */
 socklen_t msg_namelen; /* size of socket address structure */
 struct iovec *msg_iov; /* scatter/gather array */
 size_t msg_iovlen; /* # elements in msg_iov */
 void *msg_control; /* ancillary data */
 socklen_t msg_controllen; /* ancillary data buffer length */
 int msg_flags; /* flags on received message */
 };

 and the cmsghdr structure:

 struct cmsghdr {
 socklen_t cmsg_len; /* #bytes, including this header */
 int cmsg_level; /* originating protocol */
 int cmsg_type; /* protocol-specific type */
 /* followed by unsigned char cmsg_data[]; */
 };

 In the msghdr structure, the usage of msg_name has been discussed in
 previous sections (see Section 3.1.3 and Section 4.1.8).

 The scatter/gather buffers, or I/O vectors (pointed to by the msg_iov
 field) are treated as a single SCTP data chunk, rather than multiple
 chunks, for both sendmsg() and recvmsg().

 The msg_flags are not used when sending a message with sendmsg().

https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3542

Stewart, et al. Expires August 5, 2010 [Page 23]

Internet-Draft SCTP sockets API February 2010

 If a notification has arrived, recvmsg() will return the notification
 with the MSG_NOTIFICATION flag set in msg_flags. If the
 MSG_NOTIFICATION flag is not set, recvmsg() will return data. See

Section 5.3 for more information about notifications.

 If all portions of a data frame or notification have been read,
 recvmsg() will return with MSG_EOR set in msg_flags.

5.2. SCTP msg_control Structures

 A key element of all SCTP-specific socket extensions is the use of
 ancillary data to specify and access SCTP-specific data via the
 struct msghdr's msg_control member used in sendmsg() and recvmsg().
 Fine-grained control over initialization and sending parameters are
 handled with ancillary data.

 Each ancillary data item is proceeded by a struct cmsghdr (see
Section 5.1), which defines the function and purpose of the data

 contained in the cmsg_data[] member.

 By default on either style socket, SCTP will pass no ancillary data;
 Specific ancillary data items can be enabled with socket options
 defined for SCTP; see Section 7.4.

 Note that all ancillary types are fixed length; see Section 5.4 for
 further discussion on this. These data structures use struct
 sockaddr_storage (defined in [RFC3493]) as a portable, fixed length
 address format.

 Other protocols may also provide ancillary data to the socket layer
 consumer. These ancillary data items from other protocols may
 intermingle with SCTP data. For example, the IPv6 socket API
 definitions ([RFC3542] and [RFC3493]) define a number of ancillary
 data items. If a socket API consumer enables delivery of both SCTP
 and IPv6 ancillary data, they both may appear in the same msg_control
 buffer in any order. An application may thus need to handle other
 types of ancillary data besides those passed by SCTP.

 The sockets application must provide a buffer large enough to
 accommodate all ancillary data provided via recvmsg(). If the buffer
 is not large enough, the ancillary data will be truncated and the
 msghdr's msg_flags will include MSG_CTRUNC.

5.2.1. SCTP Initiation Structure (SCTP_INIT)

 This cmsghdr structure provides information for initializing new SCTP
 associations with sendmsg(). The SCTP_INITMSG socket option uses
 this same data structure. This structure is not used for recvmsg().

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires August 5, 2010 [Page 24]

Internet-Draft SCTP sockets API February 2010

 +--------------+-----------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-----------+---------------------+
 | IPPROTO_SCTP | SCTP_INIT | struct sctp_initmsg |
 +--------------+-----------+---------------------+

 Here is the definition of the sctp_initmsg structure:

 struct sctp_initmsg {
 uint16_t sinit_num_ostreams;
 uint16_t sinit_max_instreams;
 uint16_t sinit_max_attempts;
 uint16_t sinit_max_init_timeo;
 };

 sinit_num_ostreams: This is an integer number representing the
 number of streams that the application wishes to be able to send
 to. This number is confirmed in the SCTP_COMM_UP notification and
 must be verified since it is a negotiated number with the remote
 endpoint. The default value of 0 indicates to use the endpoint
 default value.
 sinit_max_instreams: This value represents the maximum number of
 inbound streams the application is prepared to support. This
 value is bounded by the actual implementation. In other words the
 user may be able to support more streams than the Operating
 System. In such a case, the Operating System limit overrides the
 value requested by the user. The default value of 0 indicates to
 use the endpoints default value.
 sinit_max_attempts: This integer specifies how many attempts the
 SCTP endpoint should make at resending the INIT. This value
 overrides the system SCTP 'Max.Init.Retransmits' value. The
 default value of 0 indicates to use the endpoints default value.
 This is normally set to the system's default 'Max.Init.Retransmit'
 value.
 sinit_max_init_timeo: This value represents the largest Time-Out or
 RTO value (in milliseconds) to use in attempting an INIT.
 Normally the 'RTO.Max' is used to limit the doubling of the RTO
 upon timeout. For the INIT message this value may override
 'RTO.Max'. This value must not influence 'RTO.Max' during data
 transmission and is only used to bound the initial setup time. A
 default value of 0 indicates to use the endpoints default value.
 This is normally set to the system's 'RTO.Max' value (60 seconds).

5.2.2. SCTP Header Information Structure (SCTP_SNDRCV)

 This cmsghdr structure specifies SCTP options for sendmsg() and
 describes SCTP header information about a received message through
 recvmsg(). This structure mixes the send and receive path.

Stewart, et al. Expires August 5, 2010 [Page 25]

Internet-Draft SCTP sockets API February 2010

 SCTP_SNDINFO described in Section 5.2.4 and SCTP_RCVINFO described in
Section 5.2.5 split this information. These structures should be

 used, when possible, since SCTP_SNDRCV might be deprecated in the
 future.

 +--------------+-------------+------------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-------------+------------------------+
 | IPPROTO_SCTP | SCTP_SNDRCV | struct sctp_sndrcvinfo |
 +--------------+-------------+------------------------+

 Here is the definition of sctp_sndrcvinfo:

 struct sctp_sndrcvinfo {
 uint16_t sinfo_stream;
 uint16_t sinfo_ssn;
 uint16_t sinfo_flags;
 uint32_t sinfo_ppid;
 uint32_t sinfo_context;
 uint32_t sinfo_pr_value;
 uint32_t sinfo_tsn;
 uint32_t sinfo_cumtsn;
 sctp_assoc_t sinfo_assoc_id;
 };

 sinfo_stream: For recvmsg() the SCTP stack places the message's
 stream number in this value. For sendmsg() this value holds the
 stream number that the application wishes to send this message to.
 If a sender specifies an invalid stream number an error indication
 is returned and the call fails.
 sinfo_ssn: For recvmsg() this value contains the stream sequence
 number that the remote endpoint placed in the DATA chunk. For
 fragmented messages this is the same number for all deliveries of
 the message (if more than one recvmsg() is needed to read the
 message). The sendmsg() call will ignore this parameter.
 sinfo_flags: This field may contain any of the following flags and
 is composed of a bitwise OR of these values.
 recvmsg() flags:
 SCTP_UNORDERED: This flag is present when the message was sent
 non-ordered.
 sendmsg() flags:
 SCTP_UNORDERED: This flag requests the un-ordered delivery of
 the message. If this flag is clear the datagram is
 considered an ordered send.

Stewart, et al. Expires August 5, 2010 [Page 26]

Internet-Draft SCTP sockets API February 2010

 SCTP_ADDR_OVER: This flag, in the one-to-many style, requests
 the SCTP stack to override the primary destination address
 with the address found with the sendto/sendmsg call.
 SCTP_ABORT: Setting this flag causes the specified association
 to abort by sending an ABORT message to the peer (one-to-
 many style only). The ABORT chunk will contain an error
 cause 'User Initiated Abort' with cause code 12. The cause
 specific information of this error cause is provided in
 msg_iov.
 SCTP_EOF: Setting this flag invokes the SCTP graceful shutdown
 procedure on the specified association. Graceful shutdown
 assures that all data queued by both endpoints is
 successfully transmitted before closing the association
 (one-to-many style only).
 SCTP_SENDALL: This flag, if set, will cause a one-to-many
 model socket to send the message to all associations that
 are currently established on this socket. For the one-to-
 one socket, this flag has no effect.
 sinfo_ppid: This value in sendmsg() is an unsigned integer that is
 passed to the remote end in each user message. In recvmsg() this
 value is the same information that was passed by the upper layer
 in the peer application. Please note that the SCTP stack performs
 no byte order modification of this field. For example, if the
 DATA chunk has to contain a given value in network byte order, the
 SCTP user has to perform the htonl() computation.
 sinfo_context: This value is an opaque 32 bit context datum that is
 used in the sendmsg() function. This value is passed back to the
 upper layer if an error occurs on the send of a message and is
 retrieved with each undelivered message (Note: if an endpoint has
 done multiple sends, all of which fail, multiple different
 sinfo_context values will be returned. One with each user data
 message).
 sinfo_pr_value: The meaning of this field depends on the PR-SCTP
 policy specified by the sinfo_pr_policy field. It is ignored when
 SCTP_PR_SCTP_NONE is specified. In case of SCTP_PR_SCTP_TTL the
 lifetime is specified.
 sinfo_tsn: For the receiving side, this field holds a TSN that was
 assigned to one of the SCTP Data Chunks.
 sinfo_cumtsn: This field will hold the current cumulative TSN as
 known by the underlying SCTP layer. Note this field is ignored
 when sending.
 sinfo_assoc_id: The association handle field, sinfo_assoc_id, holds
 the identifier for the association announced in the SCTP_COMM_UP
 notification. All notifications for a given association have the
 same identifier. Ignored for one-to-one style sockets.

 An sctp_sndrcvinfo item always corresponds to the data in msg_iov.

Stewart, et al. Expires August 5, 2010 [Page 27]

Internet-Draft SCTP sockets API February 2010

5.2.3. Extended SCTP Header Information Structure (SCTP_EXTRCV)

 This cmsghdr structure specifies SCTP options for SCTP header
 information about a received message via recvmsg(). Note that this
 structure is an extended version of SCTP_SNDRCV (see Section 5.2.2)
 and will only be received if the user has set the socket option
 SCTP_USE_EXT_RCVINFO to true in addition to any event subscription
 needed to receive ancillary data. Note that next message data is not
 valid unless the current message is completely read, i.e. the MSG_EOR
 is set, in other words if you have more data to read from the current
 message then no next message information will be available.

 SCTP_NXTINFO described in Section 5.2.6 should be used when possible,
 since SCTP_EXTRCV is considered deprecated.

 +--------------+-------------+------------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-------------+------------------------+
 | IPPROTO_SCTP | SCTP_EXTRCV | struct sctp_extrcvinfo |
 +--------------+-------------+------------------------+

 Here is the definition of sctp_extrcvinfo structure:

 struct sctp_extrcvinfo {
 uint16_t sinfo_stream;
 uint16_t sinfo_ssn;
 uint16_t sinfo_flags;
 uint32_t sinfo_ppid;
 uint32_t sinfo_context;
 uint32_t sinfo_pr_value;
 uint32_t sinfo_tsn;
 uint32_t sinfo_cumtsn;
 uint16_t serinfo_next_flags;
 uint16_t serinfo_next_stream;
 uint32_t serinfo_next_aid;
 uint32_t serinfo_next_length;
 uint32_t serinfo_next_ppid;
 sctp_assoc_t sinfo_assoc_id;
 };

 sinfo_*: Please see Section 5.2.2 for the details for these fields.
 serinfo_next_flags: This bitmask will hold one or more of the
 following values:
 SCTP_NEXT_MSG_AVAIL: This bit, when set to 1, indicates that next
 message information is available i.e.: next_stream,
 next_asocid, next_length and next_ppid fields all have valid
 values. If this bit is set to 0, then these fields are not
 valid and should be ignored.

Stewart, et al. Expires August 5, 2010 [Page 28]

Internet-Draft SCTP sockets API February 2010

 SCTP_NEXT_MSG_ISCOMPLETE: This bit, when set, indicates that the
 next message is completely in the receive buffer. The
 next_length field thus contains the entire message size. If
 this flag is set to 0, then the next_length field only contains
 part of the message size since the message is still being
 received (it is being partially delivered).
 SCTP_NEXT_MSG_IS_UNORDERED: This bit, when set, indicates that
 the next message to be received was sent by the peer as
 unordered. If this bit is not set (i.e the bit is 0) the next
 message to be read is an ordered message in the stream
 specified.
 SCTP_NEXT_MSG_IS_NOTIFICATION: This bit, when set, indicates that
 the next message to be received is not a message from the peer,
 but instead is a MSG_NOTIFICATION from the local SCTP stack.
 serinfo_next_stream: This value, when valid (see
 serinfo_next_flags), contains the next stream number that will be
 received on a subsequent call to one of the receive message
 functions.
 serinfo_next_aid: This value, when valid (see serinfo_next_flags),
 contains the next association identification that will be received
 on a subsequent call to one of the receive message functions.
 serinfo_next_length: This value, when valid (see
 serinfo_next_flags), contains the length of the next message that
 will be received on a subsequent call to one of the receive
 message functions. Note that this length may be a partial length
 depending on the settings of next_flags.
 serinfo_next_ppid: This value, when valid (see serinfo_next_flags),
 contains the ppid of the next message that will be received on a
 subsequent call to one of the receive message functions.

5.2.4. SCTP Send Information Structure (SCTP_SNDINFO)

 This cmsghdr structure specifies SCTP options for sendmsg().

 +--------------+--------------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+--------------+---------------------+
 | IPPROTO_SCTP | SCTP_SNDINFO | struct sctp_sndinfo |
 +--------------+--------------+---------------------+

 Here is the definition of the sctp_sndinfo structure:

 struct sctp_sndinfo {
 uint16_t snd_sid;
 uint16_t snd_flags;
 uint32_t snd_ppid;
 uint32_t snd_context;
 sctp_assoc_t snd_assoc_id;

Stewart, et al. Expires August 5, 2010 [Page 29]

Internet-Draft SCTP sockets API February 2010

 };

 snd_sid: This value holds the stream number that the application
 wishes to send this message to. If a sender specifies an invalid
 stream number an error indication is returned and the call fails.
 snd_flags: This field may contain any of the following flags and is
 composed of a bitwise OR of these values.

 SCTP_UNORDERED: This flag requests the un-ordered delivery of the
 message. If this flag is clear the datagram is considered an
 ordered send.
 SCTP_ADDR_OVER: This flag, in the one-to-many style, requests the
 SCTP stack to override the primary destination address with the
 address found with the sendto/sendmsg call.
 SCTP_ABORT: Setting this flag causes the specified association to
 abort by sending an ABORT message to the peer (one-to-many
 style only). The ABORT chunk will contain an error cause 'User
 Initiated Abort' with cause code 12. The cause specific
 information of this error cause is provided in msg_iov.
 SCTP_EOF: Setting this flag invokes the SCTP graceful shutdown
 procedures on the specified association. Graceful shutdown
 assures that all data queued by both endpoints is successfully
 transmitted before closing the association (one-to-many style
 only).
 SCTP_SENDALL: This flag, if set, will cause a one-to-many model
 socket to send the message to all associations that are
 currently established on this socket. For the one-to-one
 socket, this flag has no effect.
 snd_ppid: This value in sendmsg() is an unsigned integer that is
 passed to the remote end in each user message. Please note that
 the SCTP stack performs no byte order modification of this field.
 For example, if the DATA chunk has to contain a given value in
 network byte order, the SCTP user has to perform the htonl()
 computation.
 snd_context: This value is an opaque 32 bit context datum that is
 used in the sendmsg() function. This value is passed back to the
 upper layer if an error occurs on the send of a message and is
 retrieved with each undelivered message (Note: if an endpoint has
 done multiple sends, all of which fail, multiple different
 sinfo_context values will be returned. One with each user data
 message).
 snd_assoc_id: The association handle field, sinfo_assoc_id, holds
 the identifier for the association announced in the SCTP_COMM_UP
 notification. All notifications for a given association have the
 same identifier. Ignored for one-to-one style sockets.

 An sctp_sndinfo item always corresponds to the data in msg_iov.

Stewart, et al. Expires August 5, 2010 [Page 30]

Internet-Draft SCTP sockets API February 2010

5.2.5. SCTP Receive Information Structure (SCTP_RCVINFO)

 This cmsghdr structure describes SCTP header information about a
 received message through recvmsg().

 To receive this information you must subscribe to the SCTP_RCV_EVENT
 using the SCTP_EVENT option.

 +--------------+--------------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+--------------+---------------------+
 | IPPROTO_SCTP | SCTP_RCVINFO | struct sctp_rcvinfo |
 +--------------+--------------+---------------------+

 Here is the definition of the sctp_rcvinfo structure:

 struct sctp_rcvinfo {
 uint16_t rcv_sid;
 uint16_t rcv_ssn;
 uint16_t rcv_flags;
 uint32_t rcv_ppid;
 uint32_t rcv_tsn;
 uint32_t rcv_cumtsn;
 sctp_assoc_t rcv_assoc_id;
 };

 rcv_sid: The SCTP stack places the message's stream number in this
 value.
 rcv_ssn: This value contains the stream sequence number that the
 remote endpoint placed in the DATA chunk. For fragmented messages
 this is the same number for all deliveries of the message (if more
 than one recvmsg() is needed to read the message).
 rcv_flags: This field may contain any of the following flags and is
 composed of a bitwise OR of these values.

 SCTP_UNORDERED: This flag is present when the message was sent
 non-ordered.
 rcv_ppid: This value is the same information that was passed by the
 upper layer in the peer application. Please note that the SCTP
 stack performs no byte order modification of this field. For
 example, if the DATA chunk has to contain a given value in network
 byte order, the SCTP user has to perform the htonl() computation.
 rcv_tsn: This field holds a TSN that was assigned to one of the SCTP
 Data Chunks.

Stewart, et al. Expires August 5, 2010 [Page 31]

Internet-Draft SCTP sockets API February 2010

 rcv_cumtsn: This field will hold the current cumulative TSN as known
 by the underlying SCTP layer.
 rcv_assoc_id: The association handle field, sinfo_assoc_id, holds
 the identifier for the association announced in the SCTP_COMM_UP
 notification. All notifications for a given association have the
 same identifier. Ignored for one-to-one style sockets.

 A sctp_rcvinfo item always corresponds to the data in msg_iov.

5.2.6. SCTP Next Receive Information Structure (SCTP_NXTINFO)

 This cmsghdr structure describes SCTP receive information of the next
 message which will be delivered through recvmsg() if this information
 is available. It uses the same structure as the SCTP Receive
 Information Structure.

 To receive this information you must subscribe to the SCTP_NXT_EVENT
 using the SCTP_EVENT option.

 +--------------+--------------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+--------------+---------------------+
 | IPPROTO_SCTP | SCTP_NXTINFO | struct sctp_rcvinfo |
 +--------------+--------------+---------------------+

5.2.7. SCTP PR-SCTP Information Structure (SCTP_PRINFO)

 This cmsghdr structure specifies SCTP options for sendmsg().

 +--------------+-------------+--------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-------------+--------------------+
 | IPPROTO_SCTP | SCTP_PRINFO | struct sctp_prinfo |
 +--------------+-------------+--------------------+

 Here is the definition of the sctp_prinfo structure:

 struct sctp_prinfo {
 uint16_t pr_policy;
 uint32_t pr_value;
 };

 pr_policy: This specifies which PR-SCTP policy is used. Using
 SCTP_PR_SCTP_NONE results in a reliable transmission. When
 SCTP_PR_SCTP_TTL is used, the PR-SCTP policy "timed reliability"
 defined in [RFC3758] is used. In this case, the lifetime is
 provided in pr_value.

https://datatracker.ietf.org/doc/html/rfc3758

Stewart, et al. Expires August 5, 2010 [Page 32]

Internet-Draft SCTP sockets API February 2010

 pr_value: The meaning of this field depends on the PR-SCTP policy
 specified by the sinfo_pr_policy field. It is ignored when
 SCTP_PR_SCTP_NONE is specified. In case of SCTP_PR_SCTP_TTL the
 lifetime in milliseconds is specified.

 An sctp_prinfo item always corresponds to the data in msg_iov.

5.2.8. SCTP AUTH Information Structure (SCTP_AUTHINFO)

 This cmsghdr structure specifies SCTP options for sendmsg().

 +--------------+---------------+----------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+---------------+----------------------+
 | IPPROTO_SCTP | SCTP_AUTHINFO | struct sctp_authinfo |
 +--------------+---------------+----------------------+

 Here is the definition of the sctp_authinfo structure:

 struct sctp_authinfo {
 uint16_t auth_keyid;
 };

 auth_keyid: This specifies the shared key identifier used for
 sending the user message.

 An sctp_authinfo item always corresponds to the data in msg_iov.

5.3. SCTP Events and Notifications

 An SCTP application may need to understand and process events and
 errors that happen on the SCTP stack. These events include network
 status changes, association startups, remote operational errors and
 undeliverable messages. All of these can be essential for the
 application.

 When an SCTP application layer does a recvmsg() the message read is
 normally a data message from a peer endpoint. If the application
 wishes to have the SCTP stack deliver notifications of non-data
 events, it sets the appropriate socket option for the notifications
 it wants. See Section 7.4 for these socket options. When a
 notification arrives, recvmsg() returns the notification in the
 application-supplied data buffer via msg_iov, and sets
 MSG_NOTIFICATION in msg_flags.

 This section details the notification structures. Every notification
 structure carries some common fields which provide general
 information.

Stewart, et al. Expires August 5, 2010 [Page 33]

Internet-Draft SCTP sockets API February 2010

 A recvmsg() call will return only one notification at a time. Just
 as when reading normal data, it may return part of a notification if
 the msg_iov buffer is not large enough. If a single read is not
 sufficient, msg_flags will have MSG_EOR clear. The user must finish
 reading the notification before subsequent data can arrive.

5.3.1. SCTP Notification Structure

 The notification structure is defined as the union of all
 notification types.

 union sctp_notification {
 struct sctp_tlv {
 uint16_t sn_type; /* Notification type. */
 uint16_t sn_flags;
 uint32_t sn_length;
 } sn_header;
 struct sctp_assoc_change sn_assoc_change;
 struct sctp_paddr_change sn_paddr_change;
 struct sctp_remote_error sn_remote_error;
 struct sctp_send_failed sn_send_failed;
 struct sctp_shutdown_event sn_shutdown_event;
 struct sctp_adaptation_event sn_adaptation_event;
 struct sctp_pdapi_event sn_pdapi_event;
 struct sctp_authkey_event sn_auth_event;
 struct sctp_sender_dry_event sn_sender_dry_event;
 };

 sn_type: The following list describes the SCTP notification and
 event types for the field sn_type.
 SCTP_ASSOC_CHANGE: This tag indicates that an association has
 either been opened or closed. Refer to Section 5.3.2 for
 details.
 SCTP_PEER_ADDR_CHANGE: This tag indicates that an address that is
 part of an existing association has experienced a change of
 state (e.g. a failure or return to service of the reachability
 of an endpoint via a specific transport address). Please see

Section 5.3.3 for data structure details.
 SCTP_REMOTE_ERROR: The attached error message is an Operational
 Error received from the remote peer. It includes the complete
 TLV sent by the remote endpoint. See Section 5.3.4 for the
 detailed format.
 SCTP_SEND_FAILED: The attached datagram could not be sent to the
 remote endpoint. This structure includes the original
 SCTP_SNDRCVINFO that was used in sending this message i.e. this
 structure uses the sctp_sndrcvinfo per Section 5.3.5.

Stewart, et al. Expires August 5, 2010 [Page 34]

Internet-Draft SCTP sockets API February 2010

 SCTP_SHUTDOWN_EVENT: The peer has sent a SHUTDOWN. No further
 data should be sent on this socket.
 SCTP_ADAPTATION_INDICATION: This notification holds the peer's
 indicated adaptation layer. Please see Section 5.3.7.
 SCTP_PARTIAL_DELIVERY_EVENT: This notification is used to tell a
 receiver that the partial delivery has been aborted. This may
 indicate the association is about to be aborted. Please see

Section 5.3.8.
 SCTP_AUTHENTICATION_EVENT: This notification is used to tell a
 receiver that either an error occurred on authentication, or a
 new key was made active. See Section 5.3.9.
 SCTP_SENDER_DRY_EVENT: This notification is used to inform the
 application that the sender has no user data queued anymore,
 neither for transmission nor retransmission. See

Section 5.3.10.
 sn_flags: These are notification-specific flags.
 sn_length: This is the length of the whole sctp_notification
 structure including the sn_type, sn_flags, and sn_length fields.

5.3.2. SCTP_ASSOC_CHANGE

 Communication notifications inform the ULP that an SCTP association
 has either begun or ended. The identifier for a new association is
 provided by this notification. The notification information has the
 following format:

 struct sctp_assoc_change {
 uint16_t sac_type;
 uint16_t sac_flags;
 uint32_t sac_length;
 uint16_t sac_state;
 uint16_t sac_error;
 uint16_t sac_outbound_streams;
 uint16_t sac_inbound_streams;
 sctp_assoc_t sac_assoc_id;
 uint8_t sac_info[];
 };

 sac_type: It should be SCTP_ASSOC_CHANGE.
 sac_flags: Currently unused.
 sac_length: This field is the total length of the notification data,
 including the notification header.
 sac_state: This field holds one of a number of values that
 communicate the event that happened to the association. They
 include:

Stewart, et al. Expires August 5, 2010 [Page 35]

Internet-Draft SCTP sockets API February 2010

 SCTP_COMM_UP: A new association is now ready and data may be
 exchanged with this peer. When an association has been
 established successfully, this notification should be the first
 one.
 SCTP_COMM_LOST: The association has failed. The association is
 now in the closed state. If SEND FAILED notifications are
 turned on, a SCTP_COMM_LOST is accompanied by a series of
 SCTP_SEND_FAILED events, one for each outstanding message.
 SCTP_RESTART: SCTP has detected that the peer has restarted.
 SCTP_SHUTDOWN_COMP: The association has gracefully closed.
 SCTP_CANT_STR_ASSOC: The association failed to setup. If non
 blocking mode is set and data was sent (on a one-to-many style
 socket), a SCTP_CANT_STR_ASSOC is accompanied by a series of
 SCTP_SEND_FAILED events, one for each outstanding message.
 sac_error: If the state was reached due to an error condition (e.g.
 SCTP_COMM_LOST) any relevant error information is available in
 this field. This corresponds to the protocol error codes defined
 in [RFC4960].
 sac_outbound_streams:
 sac_inbound_streams: The maximum number of streams allowed in each
 direction are available in sac_outbound_streams and sac_inbound
 streams.
 sac_assoc_id: The association id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.
 sac_info: If the sac_state is SCTP_COMM_LOST and an ABORT chunk was
 received for this association, sac_info[] contains the complete
 ABORT chunk as defined in the SCTP specification [RFC4960] section

3.3.7. If the sac_state is SCTP_COMM_UP or SCTP_RESTART, sac_info
 may contain an array of features that the current association
 supports. Features may include
 SCTP_PR: Both endpoints support the protocol extension described
 in [RFC3758].
 SCTP_AUTH: Both endpoints support the protocol extension
 described in [RFC4895].
 SCTP_ASCONF: Both endpoints support the protocol extension
 described in [RFC5061].
 SCTP_MULTIBUF: For a one-to-many style socket, the local
 endpoints use separate send and/or receive buffers for each
 SCTP association.

5.3.3. SCTP_PEER_ADDR_CHANGE

 When a destination address of a multi-homed peer encounters a change
 a peer address change event is sent. The information has the
 following structure:

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires August 5, 2010 [Page 36]

Internet-Draft SCTP sockets API February 2010

 struct sctp_paddr_change {
 uint16_t spc_type;
 uint16_t spc_flags;
 uint32_t spc_length;
 struct sockaddr_storage spc_aaddr;
 uint32_t spc_state;
 uint32_t spc_error;
 sctp_assoc_t spc_assoc_id;
 }

 spc_type: It should be SCTP_PEER_ADDR_CHANGE.
 spc_flags: Currently unused.
 spc_length: This field is the total length of the notification data,
 including the notification header.
 spc_aaddr: The affected address field holds the remote peer's
 address that is encountering the change of state.
 spc_state: This field holds one of a number of values that
 communicate the event that happened to the address. They include:
 SCTP_ADDR_AVAILABLE: This address is now reachable.
 SCTP_ADDR_UNREACHABLE: The address specified can no longer be
 reached. Any data sent to this address is rerouted to an
 alternate until this address becomes reachable.
 SCTP_ADDR_REMOVED: The address is no longer part of the
 association.
 SCTP_ADDR_ADDED: The address is now part of the association.
 SCTP_ADDR_MADE_PRIM: This address has now been made to be the
 primary destination address.
 SCTP_ADDR_CONFIRMED: This address has now been confirmed as a
 valid address.
 spc_error: If the state was reached due to any error condition (e.g.
 SCTP_ADDR_UNREACHABLE) any relevant error information is available
 in this field.
 spc_assoc_id: The association id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

5.3.4. SCTP_REMOTE_ERROR

 A remote peer may send an Operational Error message to its peer.
 This message indicates a variety of error conditions on an
 association. The entire ERROR chunk as it appears on the wire is
 included in an SCTP_REMOTE_ERROR event. Please refer to the SCTP
 specification [RFC4960] and any extensions for a list of possible
 error formats. SCTP error notifications have the format:

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires August 5, 2010 [Page 37]

Internet-Draft SCTP sockets API February 2010

 struct sctp_remote_error {
 uint16_t sre_type;
 uint16_t sre_flags;
 uint32_t sre_length;
 uint16_t sre_error;
 sctp_assoc_t sre_assoc_id;
 uint8_t sre_data[];
 };

 sre_type: It should be SCTP_REMOTE_ERROR.
 sre_flags: Currently unused.
 sre_length: This field is the total length of the notification data,
 including the notification header and the contents of sre_data.
 sre_error: This value represents one of the Operational Error causes
 defined in the SCTP specification, in network byte order.
 sre_assoc_id: The association id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.
 sre_data: This contains the ERROR chunk as defined in the SCTP
 specification [RFC4960] section 3.3.10.

5.3.5. SCTP_SEND_FAILED

 If SCTP cannot deliver a message it may return the message as a
 notification.

 struct sctp_send_failed {
 uint16_t ssf_type;
 uint16_t ssf_flags;
 uint32_t ssf_length;
 uint32_t ssf_error;
 struct sctp_sndrcvinfo ssf_info;
 sctp_assoc_t ssf_assoc_id;
 uint8_t ssf_data[];
 };

 ssf_type: It should be SCTP_SEND_FAILED.
 ssf_flags: The flag value will take one of the following values:
 SCTP_DATA_UNSENT: Indicates that the data was never put on the
 wire.
 SCTP_DATA_SENT: Indicates that the data was put on the wire.
 Note that this does not necessarily mean that the data was (or
 was not) successfully delivered.

https://datatracker.ietf.org/doc/html/rfc4960#section-3.3.10

Stewart, et al. Expires August 5, 2010 [Page 38]

Internet-Draft SCTP sockets API February 2010

 ssf_length: This field is the total length of the notification data,
 including the notification header and the payload in ssf_data.
 ssf_error: This value represents the reason why the send failed, and
 if set, will be an SCTP protocol error code as defined in

[RFC4960] section 3.3.10.
 ssf_info: The send information associated with the undelivered
 message. The ssf_info.sinfo_flags field will also contain an
 indication if the beginning of the message and/or end of the
 message is present. In cases where no data has been sent on the
 wire, this field will have or'ed in the value SCTP_DATA_NOT_FRAG,
 which is a composition of both a "BEGIN" and "END" fragmentation
 bit. In cases where only part of the data has been sent, this
 field will have or'ed in the value SCTP_DATA_LAST_FRAG, which
 corresponds to the "END" bit. Note that the message itself may be
 more than one chunk. If the ssf_info.sinfo_flags field holds
 neither of these two values then a piece that has been fragmented
 and sent but not acknowledged is present. This piece is from an
 unspecified position in the message and the application can make
 no assumptions about the data itself. Applications wanting to
 examine a recovered message should look for the
 SCTP_DATA_NOT_FRAG. Without this flag the application should
 assume part of the message arrived and take appropriate steps to
 audit and recover any lost or missing data.
 ssf_assoc_id: The association id field, ssf_assoc_id, holds the
 identifier for the association. All notifications for a given
 association have the same association identifier. For a one-to-
 one style socket, this field is ignored.
 ssf_data: The undelivered message or part of the undelivered message
 will be present in the ssf_data field. Note that the
 ssf_info.sinfo_flags field as noted above should be used to
 determine if a complete message is present or just a piece of the
 message. Note that only user data is present in this field, any
 chunk headers or SCTP common headers must be removed by the SCTP
 stack.

5.3.6. SCTP_SHUTDOWN_EVENT

 When a peer sends a SHUTDOWN, SCTP delivers this notification to
 inform the application that it should cease sending data.

 struct sctp_shutdown_event {
 uint16_t sse_type;
 uint16_t sse_flags;
 uint32_t sse_length;
 sctp_assoc_t sse_assoc_id;
 };

https://datatracker.ietf.org/doc/html/rfc4960#section-3.3.10

Stewart, et al. Expires August 5, 2010 [Page 39]

Internet-Draft SCTP sockets API February 2010

 sse_type: It should be SCTP_SHUTDOWN_EVENT.
 sse_flags: Currently unused.
 sse_length: This field is the total length of the notification data,
 including the notification header. It will generally be sizeof
 (struct sctp_shutdown_event).
 sse_flags: Currently unused.
 sse_assoc_id: The association id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

5.3.7. SCTP_ADAPTATION_INDICATION

 When a peer sends an Adaptation Layer Indication parameter as
 described in [RFC5061], SCTP delivers this notification to inform the
 application about the peer's adaptation layer indication.

 struct sctp_adaptation_event {
 uint16_t sai_type;
 uint16_t sai_flags;
 uint32_t sai_length;
 uint32_t sai_adaptation_ind;
 sctp_assoc_t sai_assoc_id;
 };

 sai_type: It should be SCTP_ADAPTATION_INDICATION.
 sai_flags: Currently unused.
 sai_length: This field is the total length of the notification data,
 including the notification header. It will generally be sizeof
 (struct sctp_adaptation_event).
 sai_adaptation_ind: This field holds the bit array sent by the peer
 in the adaptation layer indication parameter. The bits are in
 network byte order.
 sai_assoc_id: The association id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

5.3.8. SCTP_PARTIAL_DELIVERY_EVENT

 When a receiver is engaged in a partial delivery of a message this
 notification will be used to indicate various events.

https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires August 5, 2010 [Page 40]

Internet-Draft SCTP sockets API February 2010

 struct sctp_pdapi_event {
 uint16_t pdapi_type;
 uint16_t pdapi_flags;
 uint32_t pdapi_length;
 uint32_t pdapi_indication;
 uint32_t pdapi_stream;
 uint32_t pdapi_seq;
 sctp_assoc_t pdapi_assoc_id;
 };

 pdapi_type: It should be SCTP_PARTIAL_DELIVERY_EVENT.
 pdapi_flags: Currently unused.
 pdapi_length: This field is the total length of the notification
 data, including the notification header. It will generally be
 sizeof(struct sctp_pdapi_event).
 pdapi_indication: This field holds the indication being sent to the
 application. Possible values include:
 SCTP_PARTIAL_DELIVERY_ABORTED: This notification indicates that
 the partial delivery of a user message has been aborted.
 pdapi_stream: This field holds the stream on which the partial
 delivery event happened.
 pdapi_seq: This field holds the stream sequence number which was
 partially delivered.
 pdapi_assoc_id: The association id field holds the identifier for
 the association. All notifications for a given association have
 the same association identifier. For a one-to-one style socket
 this field is ignored.

5.3.9. SCTP_AUTHENTICATION_EVENT

 When a receiver is using authentication this message will provide
 notifications regarding new keys being made active as well as errors.

 struct sctp_authkey_event {
 uint16_t auth_type;
 uint16_t auth_flags;
 uint32_t auth_length;
 uint16_t auth_keynumber;
 uint16_t auth_altkeynumber;
 uint32_t auth_indication;
 sctp_assoc_t auth_assoc_id;
 };

 auth_type: It should be SCTP_AUTHENTICATION_EVENT.

Stewart, et al. Expires August 5, 2010 [Page 41]

Internet-Draft SCTP sockets API February 2010

 auth_flags: Currently unused.
 auth_length: This field is the total length of the notification
 data, including the notification header. It will generally be
 sizeof (struct sctp_authkey_event).
 auth_keynumber: This field holds the keynumber set by the user for
 the effected key. If more than one key is involved, this will
 contain one of the keys involved in the notification.
 auth_altkeynumber: This field holds an alternate keynumber which is
 used by some notifications.
 auth_indication: This field holds the error or indication being
 reported. The following values are currently defined:
 SCTP_AUTH_NEWKEY: This report indicates that a new key has been
 made active (used for the first time by the peer) and is now
 the active key. The auth_keynumber field holds the user
 specified key number.
 SCTP_AUTH_NO_AUTH: This report indicates that the peer does not
 support SCTP-AUTH.
 SCTP_AUTH_FREE_KEY: This report indicates that the SCTP
 implementation will not use the key identifier specified in
 auth_keynumber anymore.
 auth_assoc_id: The association id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket this
 field is ignored.

5.3.10. SCTP_SENDER_DRY_EVENT

 When the SCTP implementation has no user data anymore to send or
 retransmit, this notification is given to the user. If the user
 subscribes to this event and SCTP has at this point of time no user
 data to send or retransmit, this notification is also given to the
 user.

 struct sctp_sender_dry_event {
 uint16_t sender_dry_type;
 uint16_t sender_dry_flags;
 uint32_t sender_dry_length;
 sctp_assoc_t sender_dry_assoc_id;
 };

 sender_dry_type: It should be SCTP_SENDER_DRY_EVENT.
 sender_dry_flags: Currently unused.
 sender_dry_length: This field is the total length of the
 notification data, including the notification header. It will
 generally be sizeof(struct sctp_sender_dry_event).

Stewart, et al. Expires August 5, 2010 [Page 42]

Internet-Draft SCTP sockets API February 2010

5.3.11. SCTP_NOTIFICATIONS_STOPPED_EVENT

 Notifications, when subscribed to, are reliable. They are always
 delivered as long as there is space in the socket receive buffer.
 However, if an implementation experiences a notification storm, it
 may run out of socket buffer space. When this occurs it may wish to
 disable notifications. If the implementation chooses to do this, it
 will append a final notification SCTP_NOTIFICATIONS_STOPPED_EVENT.
 This notification is an empty sctp_tlv (see the union above), that
 merely has this type in the sn_type field, the sn_length field set to
 the sizeof an sctp_tlv structure and the sn_flags set to 0. If an
 application receives this notification, it will need to resubscribe
 to any notifications of interest to it.

5.4. Ancillary Data Considerations and Semantics

 Programming with ancillary socket data contains some subtleties and
 pitfalls, which are discussed below.

5.4.1. Multiple Items and Ordering

 Multiple ancillary data items may be included in any call to
 sendmsg() or recvmsg(); these may include multiple SCTP or non-SCTP
 items, or both.

 The ordering of ancillary data items (either by SCTP or another
 protocol) is not significant and is implementation-dependent, so
 applications must not depend on any ordering.

 SCTP_SNDRCV items must always correspond to the data in the msghdr's
 msg_iov member. There can be only a single SCTP_SNDRCV info for each
 sendmsg() or recvmsg() call.

5.4.2. Accessing and Manipulating Ancillary Data

 Applications can infer the presence of data or ancillary data by
 examining the msg_iovlen and msg_controllen msghdr members,
 respectively.

 Implementations may have different padding requirements for ancillary
 data, so portable applications should make use of the macros
 CMSG_FIRSTHDR, CMSG_NXTHDR, CMSG_DATA, CMSG_SPACE, and CMSG_LEN. See
 [RFC3542] and your SCTP implementation's documentation for more
 information. The following is an example, from [RFC3542],
 demonstrating the use of these macros to access ancillary data:

https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3542

Stewart, et al. Expires August 5, 2010 [Page 43]

Internet-Draft SCTP sockets API February 2010

 struct msghdr msg;
 struct cmsghdr *cmsgptr;

 /* fill in msg */

 /* call recvmsg() */

 for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;
 cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {
 if (cmsgptr->cmsg_level == ... && cmsgptr->cmsg_type == ...) {
 u_char *ptr;

 ptr = CMSG_DATA(cmsgptr);
 /* process data pointed to by ptr */
 }
 }

5.4.3. Control Message Buffer Sizing

 The information conveyed via SCTP_SNDRCV events will often be
 fundamental to the correct and sane operation of the sockets
 application. This is particularly true of the one-to-many semantics,
 but also of the one-to-one semantics. For example, if an application
 needs to send and receive data on different SCTP streams, SCTP_SNDRCV
 events are indispensable.

 Given that some ancillary data is critical, and that multiple
 ancillary data items may appear in any order, applications should be
 carefully written to always provide a large enough buffer to contain
 all possible ancillary data that can be presented by recvmsg(). If
 the buffer is too small, and crucial data is truncated, it may pose a
 fatal error condition.

 Thus, it is essential that applications be able to deterministically
 calculate the maximum required buffer size to pass to recvmsg(). One
 constraint imposed on this specification that makes this possible is
 that all ancillary data definitions are of a fixed length. One way
 to calculate the maximum required buffer size might be to take the
 sum the sizes of all enabled ancillary data item structures, as
 calculated by CMSG_SPACE. For example, if we enabled
 SCTP_SNDRCV_INFO and IPV6_RECVPKTINFO [RFC3542], we would calculate
 and allocate the buffer size as follows:

https://datatracker.ietf.org/doc/html/rfc3542

Stewart, et al. Expires August 5, 2010 [Page 44]

Internet-Draft SCTP sockets API February 2010

 size_t total;
 void *buf;

 total = CMSG_SPACE(sizeof (struct sctp_sndrcvinfo)) +
 CMSG_SPACE(sizeof (struct in6_pktinfo));

 buf = malloc(total);

 We could then use this buffer (buf) for msg_control on each call to
 recvmsg() and be assured that we would not lose any ancillary data to
 truncation.

6. Common Operations for Both Styles

6.1. send(), recv(), sendto(), and recvfrom()

 Applications can use send() and sendto() to transmit data to the peer
 of an SCTP endpoint. recv() and recvfrom() can be used to receive
 data from the peer.

 The function prototypes are

 ssize_t send(int sd,
 const void *msg,
 size_t len,
 int flags);

 ssize_t sendto(int sd,
 const void *msg,
 size_t len,
 int flags,
 const struct sockaddr *to,
 socklen_t tolen);

 ssize_t recv(int sd,
 void *buf,
 size_t len,
 int flags);

 ssize_t recvfrom(int sd,
 void *buf,
 size_t len,
 int flags,
 struct sockaddr *from,

Stewart, et al. Expires August 5, 2010 [Page 45]

Internet-Draft SCTP sockets API February 2010

 socklen_t *fromlen);

 and the arguments are
 sd: The socket descriptor of an SCTP endpoint.
 msg: The message to be sent.
 len: the size of the message or the size of the buffer.
 to: one of the peer addresses of the association to be used to send
 the message.
 tolen: The size of the address.
 buf: The buffer to store a received message.
 from: The buffer to store the peer address used to send the received
 message.
 fromlen: The size of the from address.
 flags: (described below).

 These calls give access to only basic SCTP protocol features. If
 either peer in the association uses multiple streams, or sends
 unordered data, these calls will usually be inadequate, and may
 deliver the data in unpredictable ways.

 SCTP has the concept of multiple streams in one association. The
 above calls do not allow the caller to specify on which stream a
 message should be sent. The system uses stream 0 as the default
 stream for send() and sendto(). recv() and recvfrom() return data
 from any stream, but the caller can not distinguish the different
 streams. This may result in data seeming to arrive out of order.
 Similarly, if a data chunk is sent unordered, recv() and recvfrom()
 provide no indication.

 SCTP is message based. The msg buffer above in send() and sendto()
 is considered to be a single message. This means that if the caller
 wants to send a message which is composed by several buffers, the
 caller needs to combine them before calling send() or sendto().
 Alternately, the caller can use sendmsg() to do that without
 combining them. Sending a message using send() or sendto() is atomic
 unless explicit EOR marking is enabled on the socket specified by sd.
 Using sendto() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the SCTP
 implementation. recv() and recvfrom() cannot distinguish message
 boundaries.

 In receiving, if the buffer supplied is not large enough to hold a
 complete message, the receive call acts like a stream socket and
 returns as much data as will fit in the buffer.

 Note, the send() and recv() calls may not be used for a one-to-many
 style socket.

Stewart, et al. Expires August 5, 2010 [Page 46]

Internet-Draft SCTP sockets API February 2010

 Note, if an application calls a send function with no user data and
 no ancillary data the SCTP implementation should reject the request
 with an appropriate error message. An implementation is NOT allowed
 to send a DATA chunk with no user data [RFC4960].

6.2. setsockopt() and getsockopt()

 Applications use setsockopt() and getsockopt() to set or retrieve
 socket options. Socket options are used to change the default
 behavior of socket calls. They are described in Section 7.

 The function prototypes are

 int getsockopt(int sd,
 int level,
 int optname,
 void *optval,
 socklen_t *optlen);

 and

 int setsockopt(int sd,
 int level,
 int optname,
 const void *optval,
 socklen_t optlen);

 and the arguments are
 sd: The socket descriptor.
 level: Set to IPPROTO_SCTP for all SCTP options.
 optname: The option name.
 optval: The buffer to store the value of the option.
 optlen: The size of the buffer (or the length of the option
 returned).

 All socket options set on a one-to-one style listening socket also
 apply to all accepted sockets. For one-to-many style sockets often a
 socket option will pass a structure that includes an assoc_id field.
 This field can be filled with the association id of a particular
 association and unless otherwise specified can be filled with one of
 the following constants:
 SCTP_FUTURE_ASSOC: Specifies that only future associations created
 after this socket option will be effected by this call.
 SCTP_CURRENT_ASSOC: Specifies that only currently existing
 associations will be effected by this call, future associations
 will still receive the previous default value.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires August 5, 2010 [Page 47]

Internet-Draft SCTP sockets API February 2010

 SCTP_ALL_ASSOC: Specifies that all current and future associations
 will be effected by this call.

6.3. read() and write()

 Applications can use read() and write() to send and receive data to
 and from a peer. They have the same semantics as send() and recv()
 except that the flags parameter cannot be used.

 Note, these calls, when used in the one-to-many style, should only be
 used with branched off socket descriptors (see Section 8.2).

6.4. getsockname()

 Applications use getsockname() to retrieve the locally-bound socket
 address of the specified socket. This is especially useful if the
 caller let SCTP chose a local port. This call is for single homed
 endpoints. It does not work well with multi-homed endpoints. See

Section 8.5 for a multi-homed version of the call.

 The function prototype is

 int getsockname(int sd,
 struct sockaddr *address,
 socklen_t *len);

 and the arguments are
 sd: The socket descriptor to be queried.
 address: On return, one locally bound address (chosen by the SCTP
 stack) is stored in this buffer. If the socket is an IPv4 socket,
 the address will be IPv4. If the socket is an IPv6 socket, the
 address will be either an IPv6 or IPv4 address.
 len: The caller should set the length of the address here. On
 return, this is set to the length of the returned address.

 If the actual length of the address is greater than the length of the
 supplied sockaddr structure, the stored address will be truncated.

 If the socket has not been bound to a local name, the value stored in
 the object pointed to by address is unspecified.

7. Socket Options

 The following sub-section describes various SCTP level socket options
 that are common to both styles. SCTP associations can be multi-
 homed. Therefore, certain option parameters include a
 sockaddr_storage structure to select which peer address the option

Stewart, et al. Expires August 5, 2010 [Page 48]

Internet-Draft SCTP sockets API February 2010

 should be applied to.

 For the one-to-many style sockets, an sctp_assoc_t structure
 (association ID) is used to identify the association instance that
 the operation affects. So it must be set when using this style.

 For the one-to-one style sockets and branched off one-to-many style
 sockets (see Section 8.2) this association ID parameter is ignored.

 Note that socket or IP level options are set or retrieved per socket.
 This means that for one-to-many style sockets, those options will be
 applied to all associations belonging to the socket. And for one-to-
 one style, those options will be applied to all peer addresses of the
 association controlled by the socket. Applications should be very
 careful in setting those options.

 For some IP stacks getsockopt() is read-only; so a new interface will
 be needed when information must be passed both into and out of the
 SCTP stack. The syntax for sctp_opt_info() is

 int sctp_opt_info(int sd,
 sctp_assoc_t id,
 int opt,
 void *arg,
 socklen_t *size);

 The sctp_opt_info() call is a replacement for getsockopt() only and
 will not set any options associated with the specified socket. A
 setsockopt() must be used to set any writeable option.

 For one-to-many style sockets, id specifies the association to query.
 For one-to-one style sockets, id is ignored.

 The field opt specifies which SCTP socket option to get. It can get
 any socket option currently supported that requests information
 (either read/write options or read only) such as:
 SCTP_RTOINFO
 SCTP_ASSOCINFO
 SCTP_DEFAULT_SEND_PARAM
 SCTP_GET_PEER_ADDR_INFO
 SCTP_PRIMARY_ADDR
 SCTP_PEER_ADDR_PARAMS
 SCTP_STATUS
 SCTP_CONTEXT

Stewart, et al. Expires August 5, 2010 [Page 49]

Internet-Draft SCTP sockets API February 2010

 SCTP_AUTH_ACTIVE_KEY
 SCTP_PEER_AUTH_CHUNKS
 SCTP_LOCAL_AUTH_CHUNKS

 The arg field is an option-specific structure buffer provided by the
 caller. See Section 8.5 subsections for more information on these
 options and option-specific structures.

 sctp_opt_info() returns 0 on success, or on failure returns -1 and
 sets errno to the appropriate error code.

 All options that support specific settings on an association by
 filling in either an association id variable or a sockaddr_storage
 should also support the setting of the same value for the entire
 endpoint (i.e. future associations). To accomplish this the
 following logic is used when setting one of these options:
 o If an address is specified via a sockaddr_storage that is included
 in the structure, the address is used to lookup the association
 and the settings are applied to the specific address (if
 appropriate) or to the entire association.
 o If an association identification is filled in but not a
 sockaddr_storage (if present), the association is found using the
 association identification and the settings should be applied to
 the entire association (since a specific address is not
 specified). Note this also applies to options that hold an
 association identification in their structure but do not have a
 sockaddr_storage field.
 o If neither the sockaddr_storage nor association identification is
 set, i.e. the sockaddr_storage is set to all 0 (INADDR_ANY) and
 the association identification is SCTP_FUTURE_ASSOC, the settings
 are a default and to be applied to the endpoint.

7.1. Read / Write Options

7.1.1. Retransmission Timeout Parameters (SCTP_RTOINFO)

 The protocol parameters used to initialize and limit the
 retransmission timeout (RTO) are tunable. See [RFC4960] for more
 information on how these parameters are used in RTO calculation.

 The following structure is used to access and modify these
 parameters:

 struct sctp_rtoinfo {
 sctp_assoc_t srto_assoc_id;
 uint32_t srto_initial;
 uint32_t srto_max;
 uint32_t srto_min;

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires August 5, 2010 [Page 50]

Internet-Draft SCTP sockets API February 2010

 };

 srto_initial: This contains the initial RTO value.
 srto_max and srto_min: These contain the maximum and minimum bounds
 for all RTOs.
 srto_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets the application may fill
 in an association identification or one of the predefined
 constants.

 All times are given in milliseconds. A value of 0, when modifying
 the parameters, indicates that the current value should not be
 changed.

 To access or modify these parameters, the application should call
 getsockopt() or setsockopt() respectively with the option name
 SCTP_RTOINFO.

7.1.2. Association Parameters (SCTP_ASSOCINFO)

 This option is used to both examine and set various association and
 endpoint parameters. See [RFC4960] for more information on how this
 parameter is used.

 The following structure is used to access and modify these
 parameters:

 struct sctp_assocparams {
 sctp_assoc_t sasoc_assoc_id;
 uint16_t sasoc_asocmaxrxt;
 uint16_t sasoc_number_peer_destinations;
 uint32_t sasoc_peer_rwnd;
 uint32_t sasoc_local_rwnd;
 uint32_t sasoc_cookie_life;
 };

 sasoc_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets the application may fill
 in an association identification or one of the predefined
 constants.
 sasoc_asocmaxrxt: This contains the maximum retransmission attempts
 to make for the association.
 sasoc_number_peer_destinations: This is the number of destination
 addresses that the peer has.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires August 5, 2010 [Page 51]

Internet-Draft SCTP sockets API February 2010

 sasoc_peer_rwnd: This holds the current value of the peers rwnd
 (reported in the last SACK) minus any outstanding data (i.e. data
 in flight).
 sasoc_local_rwnd: This holds the last reported rwnd that was sent to
 the peer.
 sasoc_cookie_life: This is the association's cookie life value used
 when issuing cookies.

 The values of the sasoc_peer_rwnd is meaningless when examining
 endpoint information.

 All time values are given in milliseconds. A value of 0, when
 modifying the parameters, indicates that the current value should not
 be changed.

 The values of the sasoc_asocmaxrxt and sasoc_cookie_life may be set
 on either an endpoint or association basis. The rwnd and destination
 counts (sasoc_number_peer_destinations, sasoc_peer_rwnd,
 sasoc_local_rwnd) are NOT settable and any value placed in these is
 ignored.

 To access or modify these parameters, the application should call
 getsockopt() or setsockopt() respectively with the option name
 SCTP_ASSOCINFO.

 The maximum number of retransmissions before an address is considered
 unreachable is also tunable, but is address-specific, so it is
 covered in a separate option. If an application attempts to set the
 value of the association maximum retransmission parameter to more
 than the sum of all maximum retransmission parameters, setsockopt()
 may return an error. The reason for this, from [RFC4960] section

8.2:

 Note: When configuring the SCTP endpoint, the user should avoid
 having the value of 'Association.Max.Retrans' larger than the
 summation of the 'Path.Max.Retrans' of all the destination addresses
 for the remote endpoint. Otherwise, all the destination addresses
 may become inactive while the endpoint still considers the peer
 endpoint reachable.

7.1.3. Initialization Parameters (SCTP_INITMSG)

 Applications can specify protocol parameters for the default
 association initialization. The structure used to access and modify
 these parameters is defined in Section 5.2.1. The option name
 argument to setsockopt() and getsockopt() is SCTP_INITMSG.

 Setting initialization parameters is effective only on an unconnected

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires August 5, 2010 [Page 52]

Internet-Draft SCTP sockets API February 2010

 socket (for one-to-many style sockets only future associations are
 effected by the change). With one-to-one style sockets, this option
 is inherited by sockets derived from a listening socket.

7.1.4. SO_LINGER

 An application can use this option to perform the SCTP ABORT
 primitive. This option affects all associations related to the
 socket.

 The linger option structure is:

 struct linger {
 int l_onoff; /* option on/off */
 int l_linger; /* linger time */
 };

 To enable the option, set l_onoff to 1. If the l_linger value is set
 to 0, calling close() is the same as the ABORT primitive. If the
 value is set to a negative value, the setsockopt() call will return
 an error. If the value is set to a positive value linger_time, the
 close() can be blocked for at most linger_time ms. If the graceful
 shutdown phase does not finish during this period, close() will
 return but the graceful shutdown phase will continue in the system.

 Note, this is a socket level option NOT an SCTP level option. So
 when setting SO_LINGER you must specify a level of SOL_SOCKET in the
 setsockopt() call.

7.1.5. SCTP_NODELAY

 Turn on/off any Nagle-like algorithm. This means that packets are
 generally sent as soon as possible and no unnecessary delays are
 introduced, at the cost of more packets in the network. Expects an
 integer boolean flag. Turning this option on disables any Nagle-like
 algorithm.

7.1.6. SO_RCVBUF

 Sets the receive buffer size in octets. For SCTP one-to-one style
 sockets, this controls the receiver window size. For one-to-many
 style sockets the meaning is implementation dependent. It might
 control the receive buffer for each association bound to the socket
 descriptor or it might control the receive buffer for the whole
 socket. The call expects an integer.

Stewart, et al. Expires August 5, 2010 [Page 53]

Internet-Draft SCTP sockets API February 2010

7.1.7. SO_SNDBUF

 Sets the send buffer size. For SCTP one-to-one style sockets, this
 controls the amount of data SCTP may have waiting in internal buffers
 to be sent. This option therefore bounds the maximum size of data
 that can be sent in a single send call. For one-to-many style
 sockets, the effect is the same, except that it applies to one or all
 associations (see Section 3.4) bound to the socket descriptor used in
 the setsockopt() or getsockopt() call. The option applies to each
 association's window size separately. The call expects an integer.

7.1.8. Automatic Close of Associations (SCTP_AUTOCLOSE)

 This socket option is applicable to the one-to-many style socket
 only. When set it will cause associations that are idle for more
 than the specified number of seconds to automatically close using the
 graceful shutdown procedure. An association being idle is defined as
 an association that has NOT sent or received user data. The special
 value of '0' indicates that no automatic close of any association
 should be performed, this is the default value. The option expects
 an integer defining the number of seconds of idle time before an
 association is closed.

 An application using this option should enable receiving the
 association change notification. This is the only mechanism an
 application is informed about the closing of an association. After
 an association is closed, the association ID assigned to it can be
 reused. An application should be aware of this to avoid the possible
 problem of sending data to an incorrect peer endpoint.

7.1.9. Set Primary Address (SCTP_PRIMARY_ADDR)

 Requests that the local SCTP stack uses the enclosed peer address as
 the association's primary. The enclosed address must be one of the
 association peer's addresses.

 The following structure is used to make a set peer primary request:

 struct sctp_setprim {
 sctp_assoc_t ssp_assoc_id;
 struct sockaddr_storage ssp_addr;
 };

 ssp_addr: The address to set as primary.

Stewart, et al. Expires August 5, 2010 [Page 54]

Internet-Draft SCTP sockets API February 2010

 ssp_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it identifies the
 association for this request. Note that the predefined constants
 are NOT allowed.

7.1.10. Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)

 Requests that the local endpoint set the specified Adaptation Layer
 Indication parameter for all future INIT and INIT-ACK exchanges.

 The following structure is used to access and modify this parameter:

 struct sctp_setadaptation {
 uint32_t ssb_adaptation_ind;
 };

 ssb_adaptation_ind: The adaptation layer indicator that will be
 included in any outgoing Adaptation Layer Indication parameter.

7.1.11. Enable/Disable Message Fragmentation (SCTP_DISABLE_FRAGMENTS)

 This option is a on/off flag and is passed as an integer where a non-
 zero is on and a zero is off. If enabled no SCTP message
 fragmentation will be performed. Instead, if a message being sent
 exceeds the current PMTU size, the message will NOT be sent and
 instead an error will be indicated to the user.

7.1.12. Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)

 Applications can enable or disable heartbeats for any peer address of
 an association, modify an address's heartbeat interval, force a
 heartbeat to be sent immediately, and adjust the address's maximum
 number of retransmissions sent before an address is considered
 unreachable.

 The following structure is used to access and modify an address's
 parameters:

 struct sctp_paddrparams {
 sctp_assoc_t spp_assoc_id;
 struct sockaddr_storage spp_address;
 uint32_t spp_hbinterval;
 uint16_t spp_pathmaxrxt;
 uint32_t spp_pathmtu;
 uint32_t spp_flags;
 uint32_t spp_ipv6_flowlabel;
 uint8_t spp_ipv4_tos;
 };

Stewart, et al. Expires August 5, 2010 [Page 55]

Internet-Draft SCTP sockets API February 2010

 spp_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it identifies the
 association for this query. Note that the predefined constants
 are NOT allowed.
 spp_address: This specifies which address is of interest.
 spp_hbinterval: This contains the value of the heartbeat interval,
 in milliseconds. Note that unless the spp_flag is set to
 SPP_HB_ENABLE the value of this field is ignored. Note also that
 a value of zero indicates the current setting should be left
 unchanged. To set an actual value of zero the use of the flag
 SPP_HB_TIME_IS_ZERO should be used.
 spp_pathmaxrxt: This contains the maximum number of retransmissions
 before this address shall be considered unreachable. Note that a
 value of zero indicates the current setting should be left
 unchanged.
 spp_pathmtu: When Path MTU discovery is disabled the value specified
 here will be the "fixed" path MTU (i.e. the value of the spp_flags
 field must include the flag SPP_PMTUD_DISABLE). Note that if the
 spp_address field is empty then all destinations for this
 association will have this fixed path MTU set upon them. If an
 address is specified, then only that address will be effected.
 Note also that this option cannot be set on the endpoint, but must
 be set on each individual association. Also, when disabling PMTU
 discovery, the implementation may disallow this behavior if the
 "fixed" path MTU is below the constant value SCTP_SMALLEST_PMTU.
 spp_ipv6_flowlabel: This field is used in conjunction with the
 SPP_IPV6_FLOWLABEL flag.
 spp_ipv4_tos: This field is used in conjunction with the
 SPP_IPV4_TOS flag.
 spp_flags: These flags are used to control various features on an
 association. The flag field is a bit mask which may contain zero
 or more of the following options:
 SPP_HB_ENABLE: Enable heartbeats on the specified address. Note
 that if the address field is empty all addresses for the
 association have heartbeats enabled upon them.
 SPP_HB_DISABLE: Disable heartbeats on the specified address.
 Note that if the address field is empty all addresses for the
 association will have their heartbeats disabled. Note also
 that SPP_HB_ENABLE and SPP_HB_DISABLE are mutually exclusive,
 only one of these two should be specified. Enabling both
 fields will have undetermined results.
 SPP_HB_DEMAND: Request a user initiated heartbeat to be made
 immediately.
 SPP_HB_TIME_IS_ZERO: Specifies that the time for heartbeat delay
 is to be set to the value of 0 milliseconds.

Stewart, et al. Expires August 5, 2010 [Page 56]

Internet-Draft SCTP sockets API February 2010

 SPP_PMTUD_ENABLE: This field will enable PMTU discovery upon the
 specified address. Note that if the address field is empty
 then all addresses on the association are effected.
 SPP_PMTUD_DISABLE: This field will disable PMTU discovery upon
 the specified address. Note that if the address field is empty
 then all addresses on the association are effected. Note also
 that SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
 exclusive. Enabling both will have undetermined results.
 SPP_IPV6_FLOWLABEL: Setting this flag enables the setting of the
 IPV6 flowlabel value associated with either the association or
 the specific address. If the address field is filled in, then
 the specific destination address has this value set upon it.
 If the association is specified, but not the address, then the
 flowlabel value is set for any future destination addresses
 that may be added. The value is obtained in the
 spp_ipv6_flowlabel field.

 Upon retrieval, this flag will be set to indicate that the
 spp_ipv6_flowlabel field has a valid value returned. If a
 specific destination address is set (in the spp_address field)
 when called then the value returned is that of the address. If
 just an association is specified (and no address) then the
 association's default flowlabel is returned. If neither an
 association nor a destination is specified, then the socket's
 default flowlabel is returned. For non IPv6 sockets, this flag
 will be left cleared.
 SPP_IPV4_TOS: Setting this flag enables the setting of the IPV4
 TOS value associated with either the association or a specific
 address. If the address field is filled in, then the specific
 destination address has this value set upon it. If the
 association is specified, but not the address, then the TOS
 value is set for any future destination addresses that may be
 added. The value is obtained in the spp_ipv4_tos field.

 Upon retrieval, this flag will be set to indicate that the
 spp_ipv4_tos field has a valid value returned. If a specific
 destination address is set when called (in the spp_address
 field) then that specific destination address' TOS value is
 returned. If just an association is specified then the
 association default TOS is returned. If neither an association
 nor an destination is specified, then the sockets default TOS
 is returned. For non IPv4 sockets, this flag will be left
 cleared.

 To read or modify these parameters, the application should call
 sctp_opt_info() with the SCTP_PEER_ADDR_PARAMS option.

Stewart, et al. Expires August 5, 2010 [Page 57]

Internet-Draft SCTP sockets API February 2010

7.1.13. Set Default Send Parameters (SCTP_DEFAULT_SEND_PARAM)

 Applications that wish to use the sendto() system call may wish to
 specify a default set of parameters that would normally be supplied
 through the inclusion of ancillary data. This socket option allows
 such an application to set the default sctp_sndrcvinfo structure.
 The application that wishes to use this socket option simply passes
 the sctp_sndrcvinfo structure defined in Section 5.2.2 to this call.
 The input parameters accepted by this call include sinfo_stream,
 sinfo_flags, sinfo_ppid, sinfo_context, sinfo_pr_policy and
 sinfo_pr_value. The sinfo_flags is composed of a bitwise OR of
 SCTP_UNORDERED, SCTP_EOF, and SCTP_SENDALL. The sinfo_assoc_id field
 specifies the association to apply the parameters to. In a one-to-
 many style sockets any of the predefined constants are also allowed
 in this field. The field is ignored on the one-to-one style.

7.1.14. Set Notification and Ancillary Events (SCTP_EVENTS)

 This socket option is used to specify various notifications and
 ancillary data the user wishes to receive. Please see Section 7.4
 for a full description of this option and its usage. Note that this
 option is considered deprecated and present for backward
 compatibility. New applications should use the SCTP_SET_EVENT
 option. See Section 7.4 for a full description of that option as
 well.

7.1.15. Set/Clear IPv4 Mapped Addresses (SCTP_I_WANT_MAPPED_V4_ADDR)

 This socket option is a boolean flag which turns on or off the
 mapping of IPv4 addresses. If this option is turned on and the
 socket is type PF_INET6, then IPv4 addresses will be mapped to V6
 representation. If this option is turned off, then no mapping will
 be done of V4 addresses and a user will receive both PF_INET6 and
 PF_INET type addresses on the socket.

 By default this option is turned off and expects an integer to be
 passed where non-zero turns on the option and zero turns off the
 option.

7.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)

 This option will get or set the maximum size to put in any outgoing
 SCTP DATA chunk. If a message is larger than this size it will be
 fragmented by SCTP into the specified size. Note that the underlying
 SCTP implementation may fragment into smaller sized chunks when the
 PMTU of the underlying association is smaller than the value set by
 the user. The default value for this option is '0' which indicates
 the user is NOT limiting fragmentation and only the PMTU will effect

Stewart, et al. Expires August 5, 2010 [Page 58]

Internet-Draft SCTP sockets API February 2010

 SCTP's choice of DATA chunk size. Note also that values set larger
 than the maximum size of an IP datagram will effectively let SCTP
 control fragmentation (i.e. the same as setting this option to 0).

 The following structure is used to access and modify this parameter:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

 assoc_id: This parameter is ignored for one-to-one style sockets.
 For one-to-many style sockets this parameter indicates which
 association the user is performing an action upon. Note that any
 of the predefined constants are also allowed in this field.
 assoc_value: This parameter specifies the maximum size in bytes.

7.1.17. Get or Set the List of Supported HMAC Identifiers
 (SCTP_HMAC_IDENT)

 This option gets or sets the list of HMAC algorithms that the local
 endpoint requires the peer to use.

 The following structure is used to get or set these identifiers:

 struct sctp_hmacalgo {
 uint32_t shmac_number_of_idents;
 uint16_t shmac_idents[];
 };

 shmac_number_of_idents: This field gives the number of elements
 present in the array shmac_idents.
 shmac_idents: This parameter contains an array of HMAC Identifiers
 that the local endpoint is requesting the peer to use, in priority
 order. The following identifiers are valid:
 * SCTP_AUTH_HMAC_ID_SHA1
 * SCTP_AUTH_HMAC_ID_SHA256

 Note that the list supplied must include SCTP_AUTH_HMAC_ID_SHA1 and
 may include any of the other values in its preferred order (lowest
 list position has the highest preference in algorithm selection).
 Note also that the lack of SCTP_AUTH_HMAC_ID_SHA1, or the inclusion
 of an unknown HMAC identifier (including optional identifiers unknown
 to the implementation) will cause the set option to fail and return
 an error.

Stewart, et al. Expires August 5, 2010 [Page 59]

Internet-Draft SCTP sockets API February 2010

7.1.18. Get or Set the Active Shared Key (SCTP_AUTH_ACTIVE_KEY)

 This option will get or set the active shared key to be used to build
 the association shared key.

 The following structure is used to access and modify these
 parameters:

 struct sctp_authkeyid {
 sctp_assoc_t scact_assoc_id;
 uint16_t scact_keynumber;
 };

 scact_assoc_id: This parameter, if non-zero, indicates the
 association that the shared key identifier is set active upon.
 Note that if this element contains zero, then the activation
 applies to the endpoint and all future associations will use the
 specified shared key identifier. For one-to-one sockets, this
 parameter is ignored. Note, however, that this option will set
 the active key on the association if the socket is connected,
 otherwise this will set the default active key for the endpoint.
 scact_keynumber: This parameter is the shared key identifier which
 the application is requesting to become the active shared key to
 be used for sending authenticated chunks. The key identifier must
 correspond to an existing shared key. Note that shared key
 identifier '0' defaults to a null key.

 When used with setsockopt() the SCTP implementation must use the
 indicated shared key identifier for all messages being given to an
 SCTP implementation via a send call after the setsockopt() call until
 changed again. Therefore, the SCTP implementation must not bundle
 user messages which should be authenticated using different shared
 key identifiers.

 Initially the key with key identifier 0 is the active key.

7.1.19. Get or Set Delayed SACK Timer (SCTP_DELAYED_SACK)

 This option will effect the way delayed acks are performed. This
 option allows you to get or set the delayed ack time, in
 milliseconds. It also allows changing the delayed ack frequency.
 Changing the frequency to 1 disables the delayed sack algorithm. If
 the sack_assoc_id is 0, then this sets or gets the endpoints default
 values. If the sack_assoc_id field is non-zero, then the set or get
 effects the specified association for the one-to-many model (the
 assoc_id field is ignored by the one-to-one model). Note that if
 sack_delay or sack_freq are 0 when setting this option, the current
 values will remain unchanged.

Stewart, et al. Expires August 5, 2010 [Page 60]

Internet-Draft SCTP sockets API February 2010

 The following structure is used to access and modify these
 parameters:

 struct sctp_sack_info {
 sctp_assoc_t sack_assoc_id;
 uint32_t sack_delay;
 uint32_t sack_freq;
 };

 sack_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets this parameter indicates
 which association the user is performing an action upon. Note
 that any of the predefined constants may also be used for one-to-
 many style sockets.
 sack_delay: This parameter contains the number of milliseconds that
 the user is requesting the delayed ACK timer to be set to. Note
 that this value is defined in the standard to be between 200 and
 500 milliseconds.
 sack_freq: This parameter contains the number of packets that must
 be received before a sack is sent without waiting for the delay
 timer to expire. The default value is 2, setting this value to 1
 will disable the delayed sack algorithm.

7.1.20. Get or Set Fragmented Interleave (SCTP_FRAGMENT_INTERLEAVE)

 Fragmented interleave controls how the presentation of messages
 occurs for the message receiver. There are three levels of fragment
 interleave defined. Two of the levels effect the one-to-one model,
 while the one-to-many model is effected by all three levels.

 This option takes an integer value. It can be set to a value of 0, 1
 or 2. Attempting to set this level to other values will return an
 error.

 Setting the three levels provides the following receiver
 interactions:

 level 0: Prevents the interleaving of any messages. This means that
 when a partial delivery begins, no other messages will be received
 except the message being partially delivered. If another message
 arrives on a different stream (or association) that could be
 delivered, it will be blocked waiting for the user to read all of
 the partially delivered message.
 level 1: Allows interleaving of messages that are from different
 associations. For the one-to-one model, level 0 and level 1 thus
 have the same meaning since a one-to-one socket always receives
 messages from the same association. Note that setting the one-to-
 many model to this level may cause multiple partial deliveries

Stewart, et al. Expires August 5, 2010 [Page 61]

Internet-Draft SCTP sockets API February 2010

 from different associations but for any given association, only
 one message will be delivered until all parts of a message have
 been delivered. This means that one large message, being read
 with an association identification of "X", will block other
 messages from association "X" from being delivered.
 level 2: Allows complete interleaving of messages. This level
 requires that the sender carefully observes not only the peer
 association identification (or address) but must also pay careful
 attention to the stream number. With this option enabled a
 partially delivered message may begin being delivered for
 association "X" stream "Y" and the next subsequent receive may
 return a message from association "X" stream "Z". Note that no
 other messages would be delivered for association "X" stream "Y"
 until all of stream "Y"'s partially delivered message was read.
 Note that this option also effects the one-to-one model. Also
 note that for the one-to-many model not only may another streams
 message from the same association be delivered from the next
 receive, some other associations message may be delivered upon the
 next receive.

 An implementation should default the one-to-many model to level 1.
 The reason for this is that otherwise it is possible that a peer
 could begin sending a partial message and thus block all other peers
 from sending data. However a setting of level 2 requires the
 application to not only be aware of the association (via the
 association id or peer's address) but also the stream number. The
 stream number is NOT present unless the user has subscribed to the
 sctp_data_io_events (see Section 7.4). This is also why we recommend
 that the one-to-one model be defaulted to level 0 (level 1 for the
 one-to-one model has no effect). Note that an implementation should
 return an error if an application attempts to set the level to 2 and
 has NOT subscribed to the sctp_data_io_events.

 For applications that have subscribed to events those events appear
 in the normal socket buffer data stream. This means that unless the
 user has set the fragmentation interleave level to 0, notifications
 may also be interleaved with partially delivered messages.

7.1.21. Set or Get the SCTP Partial Delivery Point
 (SCTP_PARTIAL_DELIVERY_POINT)

 This option will set or get the SCTP partial delivery point. This
 point is the size of a message where the partial delivery API will be
 invoked to help free up rwnd space for the peer. Setting this to a
 lower value will cause partial deliveries to happen more often. The
 call's argument is an integer that sets or gets the partial delivery
 point. Note also that the call will fail if the user attempts to set
 this value larger than the socket receive buffer size.

Stewart, et al. Expires August 5, 2010 [Page 62]

Internet-Draft SCTP sockets API February 2010

 Note that any single message having a length smaller than or equal to
 the SCTP partial delivery point will be delivered in one single read
 call as long as the user provided buffer is large enough to hold the
 message.

7.1.22. Set or Get the Use of Extended Receive Info
 (SCTP_USE_EXT_RCVINFO)

 This option will enable or disable the use of the extended version of
 the sctp_sndrcvinfo structure. If this option is disabled, then the
 normal sctp_sndrcvinfo structure is returned in all receive message
 calls. If this option is enabled then the sctp_extrcvinfo structure
 is returned in all receive message calls. This option is present for
 compatibility with older applications and is deprecated. Future
 applications should use SCTP_NXTINFO to retrieve this same
 information via ancillary data.

 Note that the sctp_extrcvinfo structure is never used in any send
 call.

7.1.23. Set or Get the Auto ASCONF Flag (SCTP_AUTO_ASCONF)

 This option will enable or disable the use of the automatic
 generation of ASCONF chunks to add and delete addresses to an
 existing association. Note that this option has two caveats namely:
 a) it only effects sockets that are bound to all addresses on the
 machine, and b) the system administrator may have an overriding
 control that turns the ASCONF feature off no matter what setting the
 socket option may have.

7.1.24. Set or Get the Maximum Burst (SCTP_MAX_BURST)

 This option will allow a user to change the maximum burst of packets
 that can be emitted by this association. Note that the default value
 is 4, and some implementations may restrict this setting so that it
 can only be lowered.

 To set or get this option the user fills in the following structure:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

Stewart, et al. Expires August 5, 2010 [Page 63]

Internet-Draft SCTP sockets API February 2010

 assoc_id: This parameter is ignored for one-to-one style sockets.
 For one-to-many style sockets this parameter indicates which
 association the user is performing an action upon. Note that any
 of the predefined constants may be used for one-to-many style
 sockets.
 assoc_value: This parameter contains the maximum burst.

7.1.25. Set or Get the Default Context (SCTP_CONTEXT)

 The context field in the sctp_sndrcvinfo structure is normally only
 used when a failed message is retrieved holding the value that was
 sent down on the actual send call. This option allows the setting of
 a default context on an association basis that will be received on
 reading messages from the peer. This is especially helpful in the
 one-to-many model for an application to keep some reference to an
 internal state machine that is processing messages on the
 association. Note that the setting of this value only effects
 received messages from the peer and does not effect the value that is
 saved with outbound messages.

 To set or get this option the user fills in the following structure:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

 assoc_id: This parameter is ignored for one-to-one style sockets.
 For one-to-many style sockets this parameter indicates which
 association the user is performing an action upon. Note that any
 of the predefined constants may be used for one-to-many style
 sockets.
 assoc_value: This parameter contains the context.

7.1.26. Enable or Disable Explicit EOR Marking (SCTP_EXPLICIT_EOR)

 This boolean flag is used to enable or disable explicit end of record
 (EOR) marking. When this option is enabled, a user may make multiple
 send system calls to send a record and must indicate that they are
 finished sending a particular record by including the SCTP_EOR flag.
 If this boolean flag is disabled then each individual send system
 call is considered to have an SCTP_EOR indicator set on it implicitly
 without the user having to explicitly add this flag.

7.1.27. Enable SCTP Port Reusage (SCTP_REUSE_PORT)

 This option only supports one-to-one style SCTP sockets. If used on
 a one-to-many style SCTP socket an error is indicated.

Stewart, et al. Expires August 5, 2010 [Page 64]

Internet-Draft SCTP sockets API February 2010

 This setsockopt() call must not be used after calling bind() or
 sctp_bindx() for a one-to-one style SCTP socket. If using bind() or
 sctp_bindx() on a socket with the SCTP_REUSE_PORT option, all other
 SCTP sockets bound to the same port must have set the
 SCTP_REUSE_PORT. Calling bind() or sctp_bindx() for a socket without
 having set the SCTP_REUSE_PORT option will fail if there are other
 sockets bound to the same port. At most one socket being bound to
 the same port may be listening.

 It should be noted that the behavior of the socket level socket
 option to reuse ports and/or addresses for SCTP sockets is
 unspecified.

7.1.28. Set Notification Event (SCTP_EVENT)

 This socket option is used to set a specific notification or
 ancillary data option. Please see Section 7.4 for a full description
 of this option and its usage.

7.2. Read-Only Options

 The options defined in this subsection are read-only. Using this
 option in a setsockopt() call will result in an error indicating
 EOPNOTSUPP.

7.2.1. Association Status (SCTP_STATUS)

 Applications can retrieve current status information about an
 association, including association state, peer receiver window size,
 number of unacked data chunks, and number of data chunks pending
 receipt. This information is read-only.

 The following structure is used to access this information:

 struct sctp_status {
 sctp_assoc_t sstat_assoc_id;
 int32_t sstat_state;
 uint32_t sstat_rwnd;
 uint16_t sstat_unackdata;
 uint16_t sstat_penddata;
 uint16_t sstat_instrms;
 uint16_t sstat_outstrms;
 uint32_t sstat_fragmentation_point;
 struct sctp_paddrinfo sstat_primary;
 };

Stewart, et al. Expires August 5, 2010 [Page 65]

Internet-Draft SCTP sockets API February 2010

 sstat_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it holds the identifier
 for the association. All notifications for a given association
 have the same association identifier. Note that the one-to-many
 predefined constants may not be used with this option.
 sstat_state: This contains the association's current state one of
 the following values:
 * SCTP_CLOSED
 * SCTP_BOUND
 * SCTP_LISTEN
 * SCTP_COOKIE_WAIT
 * SCTP_COOKIE_ECHOED
 * SCTP_ESTABLISHED
 * SCTP_SHUTDOWN_PENDING
 * SCTP_SHUTDOWN_SENT
 * SCTP_SHUTDOWN_RECEIVED
 * SCTP_SHUTDOWN_ACK_SENT
 sstat_rwnd: This contains the association peer's current receiver
 window size.
 sstat_unackdata: This is the number of unacked data chunks.
 sstat_penddata: This is the number of data chunks pending receipt.
 sstat_primary: This is information on the current primary peer
 address.
 sstat_instrms: The number of streams that the peer will be using
 inbound.
 sstat_outstrms: The number of streams that the endpoint is allowed
 to use outbound.
 sstat_fragmentation_point: The size at which SCTP fragmentation will
 occur.

 To access these status values, the application calls getsockopt()
 with the option name SCTP_STATUS.

7.2.2. Peer Address Information (SCTP_GET_PEER_ADDR_INFO)

 Applications can retrieve information about a specific peer address
 of an association, including its reachability state, congestion
 window, and retransmission timer values. This information is read-
 only.

 The following structure is used to access this information:

Stewart, et al. Expires August 5, 2010 [Page 66]

Internet-Draft SCTP sockets API February 2010

 struct sctp_paddrinfo {
 sctp_assoc_t spinfo_assoc_id;
 struct sockaddr_storage spinfo_address;
 int32_t spinfo_state;
 uint32_t spinfo_cwnd;
 uint32_t spinfo_srtt;
 uint32_t spinfo_rto;
 uint32_t spinfo_mtu;
 };

 spinfo_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets the following applies:
 This field may be filled by the application, if so, this field
 will have priority in looking up the association using the address
 specified in spinfo_address. Note that if the address does not
 belong to the association specified then this call will fail. If
 the application does NOT fill in the spinfo_assoc_id, then the
 address will be used to lookup the association and on return this
 field will have the valid association id. In other words, this
 call can be used to translate an address into an association id.
 Note that the predefined constants are not allowed on this option.
 spinfo_address: This is filled by the application, and contains the
 peer address of interest.
 spinfo_state: This contains the peer address' state (either
 SCTP_ACTIVE or SCTP_INACTIVE and possibly the modifier
 SCTP_UNCONFIRMED).
 spinfo_cwnd: This contains the peer address' current congestion
 window.
 spinfo_srtt: This contains the peer address' current smoothed round-
 trip time calculation in milliseconds.
 spinfo_rto: This contains the peer address' current retransmission
 timeout value in milliseconds.
 spinfo_mtu: The current P-MTU of this address.

7.2.3. Get the List of Chunks the Peer Requires to be Authenticated
 (SCTP_PEER_AUTH_CHUNKS)

 This option gets a list of chunks for a specified association that
 the peer requires to be received authenticated only.

 The following structure is used to access these parameters:

 struct sctp_authchunks {
 sctp_assoc_t gauth_assoc_id;
 guint32_t gauth_number_of_chunks
 uint8_t gauth_chunks[];
 };

Stewart, et al. Expires August 5, 2010 [Page 67]

Internet-Draft SCTP sockets API February 2010

 gauth_assoc_id: This parameter indicates for which association the
 user is requesting the list of peer authenticated chunks. For
 one-to-one sockets, this parameter is ignored. Note that the
 predefined constants are not allowed with this option.
 gauth_number_of_chunks: This parameter gives the number of elements
 in the array gauth_chunks.
 gauth_chunks: This parameter contains an array of chunks that the
 peer is requesting to be authenticated.

7.2.4. Get the List of Chunks the Local Endpoint Requires to be
 Authenticated (SCTP_LOCAL_AUTH_CHUNKS)

 This option gets a list of chunks for a specified association that
 the local endpoint requires to be received authenticated only.

 The following structure is used to access these parameters:

 struct sctp_authchunks {
 sctp_assoc_t gauth_assoc_id;
 uint32_t gauth_number_of_chunks;
 uint8_t gauth_chunks[];
 };

 gauth_assoc_id: This parameter indicates for which association the
 user is requesting the list of local authenticated chunks. For
 one-to-one sockets, this parameter is ignored.
 gauth_number_of_chunks: This parameter gives the number of elements
 in the array gauth_chunks.
 gauth_chunks: This parameter contains an array of chunks that the
 local endpoint is requesting to be authenticated.

7.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)

 This option gets the current number of associations that are attached
 to a one-to-many style socket. The option value is an uint32_t.

7.2.6. Get the Current Identifiers of Associations
 (SCTP_GET_ASSOC_ID_LIST)

 This option gets the current list of SCTP association identifiers of
 the SCTP associations handled by a one-to-many style socket.

 The option value has the structure

 struct sctp_assoc_ids {
 uint32_t gaids_number_of_ids;
 sctp_assoc_t gaids_assoc_id[];
 };

Stewart, et al. Expires August 5, 2010 [Page 68]

Internet-Draft SCTP sockets API February 2010

 The caller must provide a large enough buffer to hold all association
 identifiers. If the buffer is too small, an error must be returned.
 The user can use the SCTP_GET_ASSOC_NUMBER socket option to get an
 idea how large the buffer has to be. gaids_number_of_ids gives the
 number of elements in the array gaids_assoc_id.

7.3. Write-Only Options

 The options defined in this subsection are write-only. Using this
 option in a getsockopt() or sctp_opt_info() call will result in an
 error indicating EOPNOTSUPP.

7.3.1. Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)

 Requests that the peer marks the enclosed address as the association
 primary. The enclosed address must be one of the association's
 locally bound addresses.

 The following structure is used to make a set peer primary request:

 struct sctp_setpeerprim {
 sctp_assoc_t sspp_assoc_id;
 struct sockaddr_storage sspp_addr;
 };

 sspp_addr: The address to set as primary.
 sspp_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it identifies the
 association for this request. Note that the predefined constants
 are not allowed on this option.

7.3.2. Add a Chunk That Must Be Authenticated (SCTP_AUTH_CHUNK)

 This set option adds a chunk type that the user is requesting to be
 received only in an authenticated way. Changes to the list of chunks
 will only effect future associations on the socket.

 The following structure is used to add a chunk:

 struct sctp_authchunk {
 uint8_t sauth_chunk;
 };

 sauth_chunk: This parameter contains a chunk type that the user is
 requesting to be authenticated.

 The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE, and AUTH
 chunks must not be used. If they are used, an error must be

Stewart, et al. Expires August 5, 2010 [Page 69]

Internet-Draft SCTP sockets API February 2010

 returned. The usage of this option enables SCTP-AUTH in cases where
 it is not required by other means (for example the use of dynamic
 address reconfiguration).

7.3.3. Set a Shared Key (SCTP_AUTH_KEY)

 This option will set a shared secret key which is used to build an
 association shared key.

 The following structure is used to access and modify these
 parameters:

 struct sctp_authkey {
 sctp_assoc_t sca_assoc_id;
 uint16_t sca_keynumber;
 uint16_t sca_keylength;
 uint8_t sca_key[];
 };

 sca_assoc_id: This parameter, if non-zero, indicates what
 association the shared key is being set upon. Note that any of
 the predefined constants can be used. For one-to-one sockets,
 this parameter is ignored. Note, however, that this option will
 set a key on the association if the socket is connected, otherwise
 this will set a key on the endpoint.
 sca_keynumber: This parameter is the shared key identifier by which
 the application will refer to this shared key. If a key of the
 specified index already exists, then this new key will replace the
 old existing key. Note that shared key identifier '0' defaults to
 a null key.
 sca_keylength: This parameter is the length of the array sca_key.
 sca_key: This parameter contains an array of bytes that is to be
 used by the endpoint (or association) as the shared secret key.
 Note, if the length of this field is zero, a null key is set.

7.3.4. Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)

 This set option indicates that the application will not send user
 messages anymore requiring the usage of the indicated key identifier.

 struct sctp_authkeyid {
 sctp_assoc_t scact_assoc_id;
 uint16_t scact_keynumber;
 };

Stewart, et al. Expires August 5, 2010 [Page 70]

Internet-Draft SCTP sockets API February 2010

 scact_assoc_id: This parameter, if non-zero, indicates what
 association the shared key identifier is being deactivated for.
 Note that the predefined constants may be used with this option.
 For one-to-one sockets, this parameter is ignored. Note, however,
 that this option will deactivate the key from the association if
 the socket is connected, otherwise this will deactivate the key
 from the endpoint.
 scact_keynumber: This parameter is the shared key identifier which
 the application is requesting to be deactivated. The key
 identifier must correspond to an existing shared key. Note if
 this parameter is zero, use of the null key identifier '0' is
 deactivated on the endpoint and/or association.

 The currently active key cannot be deactivated.

7.3.5. Delete a Shared Key (SCTP_AUTH_DELETE_KEY)

 This set option will delete a shared secret key in the SCTP
 implementation.

 struct sctp_authkeyid {
 sctp_assoc_t scact_assoc_id;
 uint16_t scact_keynumber;
 };

 scact_assoc_id: This parameter, if non-zero, indicates which
 association the shared key identifier is being deleted from. Note
 that if this element contains zero, then the shared key is deleted
 from the endpoint and all associations will no longer use the
 specified shared key identifier (unless otherwise set on the
 association using SCTP_AUTH_KEY). For one-to-one sockets, this
 parameter is ignored. Note, however, that this option will delete
 the key from the association if the socket is connected, otherwise
 this will delete the key from the endpoint.
 scact_keynumber: This parameter is the shared key identifier which
 the application is requesting to be deleted. The key identifier
 must correspond to an existing shared key and must not be in use
 for any packet being sent by the SCTP implementation. This means
 in particular, that it must be deactivated first. Note if this
 parameter is zero, use of the null key identifier '0' is deleted
 from the endpoint and/or association.

 Only deactivated keys which are no longer used by the kernel can be
 deleted.

Stewart, et al. Expires August 5, 2010 [Page 71]

Internet-Draft SCTP sockets API February 2010

7.4. Ancillary Data and Notification Interest Options

 Applications can receive per-message ancillary information and
 notifications of certain SCTP events with recvmsg().

 The following optional information is available to the application:
 SCTP_SNDRCV (sctp_data_io_event): Per-message information (i.e.
 stream number, TSN, SSN, etc. described in Section 5.2.2)
 SCTP_ASSOC_CHANGE (sctp_association_event): described in

Section 5.3.2
 SCTP_PEER_ADDR_CHANGE (sctp_address_event): described in

Section 5.3.3
 SCTP_SEND_FAILED (sctp_send_failure_event): described in

Section 5.3.5
 SCTP_REMOTE_ERROR (sctp_peer_error_event): described in

Section 5.3.4
 SCTP_SHUTDOWN_EVENT (sctp_shutdown_event): described in

Section 5.3.6
 SCTP_PARTIAL_DELIVERY_EVENT (sctp_partial_delivery_event): described
 in Section 5.3.8
 SCTP_ADAPTATION_INDICATION (sctp_adaptation_layer_event): described
 in Section 5.3.7
 SCTP_AUTHENTICATION_EVENT (sctp_authentication_event): described in

Section 5.3.9)
 SCTP_SENDER_DRY_EVENT (sctp_sender_dry_event): described in

Section 5.3.10
 SCTP_NOTIFICATIONS_STOPPED_EVENT (sctp_tlv): described in

Section 5.3.11

 To receive any ancillary data or notifications, first the application
 registers its interest by calling the SCTP_EVENTS setsockopt() with
 the following structure:

 struct sctp_event_subscribe{
 uint8_t sctp_data_io_event;
 uint8_t sctp_association_event;
 uint8_t sctp_address_event;
 uint8_t sctp_send_failure_event;
 uint8_t sctp_peer_error_event;
 uint8_t sctp_shutdown_event;
 uint8_t sctp_partial_delivery_event;
 uint8_t sctp_adaptation_layer_event;
 uint8_t sctp_authentication_event;
 uint8_t sctp_sender_dry_event;
 };

Stewart, et al. Expires August 5, 2010 [Page 72]

Internet-Draft SCTP sockets API February 2010

 sctp_data_io_event: Setting this flag to 1 will cause the reception
 of SCTP_SNDRCV information on a per message basis. The
 application will need to use the recvmsg() interface so that it
 can receive the event information contained in the msg_control
 field. Setting the flag to 0 will disable the reception of the
 message control information.
 sctp_association_event: Setting this flag to 1 will enable the
 reception of association event notifications. Setting the flag to
 0 will disable association event notifications.
 sctp_address_event: Setting this flag to 1 will enable the reception
 of address event notifications. Setting the flag to 0 will
 disable address event notifications.
 sctp_send_failure_event: Setting this flag to 1 will enable the
 reception of send failure event notifications. Setting the flag
 to 0 will disable send failure event notifications.
 sctp_peer_error_event: Setting this flag to 1 will enable the
 reception of peer error event notifications. Setting the flag to
 0 will disable peer error event notifications.
 sctp_shutdown_event: Setting this flag to 1 will enable the
 reception of shutdown event notifications. Setting the flag to 0
 will disable shutdown event notifications.
 sctp_partial_delivery_event: Setting this flag to 1 will enable the
 reception of partial delivery notifications. Setting the flag to
 0 will disable partial delivery event notifications.
 sctp_adaptation_layer_event: Setting this flag to 1 will enable the
 reception of adaptation layer notifications. Setting the flag to
 0 will disable adaptation layer event notifications.
 sctp_authentication_event: Setting this flag to 1 will enable the
 reception of authentication layer notifications. Setting the flag
 to 0 will disable authentication layer event notifications.
 sctp_sender_dry_event: Setting this flag to 1 will enable the
 reception of sender dry notifications. Setting the flag to 0 will
 disable sender dry event notifications.

 An example where an application would like to receive data io events
 and association events but no others would be as follows:

 {
 struct sctp_event_subscribe events;

 memset(&events,0,sizeof(events));

 events.sctp_data_io_event = 1;
 events.sctp_association_event = 1;

 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &events, sizeof(events));
 }

Stewart, et al. Expires August 5, 2010 [Page 73]

Internet-Draft SCTP sockets API February 2010

 Note that for one-to-many style SCTP sockets, the caller of recvmsg()
 receives ancillary data and notifications for ALL associations bound
 to the file descriptor. For one-to-one style SCTP sockets, the
 caller receives ancillary data and notifications only for the single
 association bound to the file descriptor.

 The SCTP_EVENTS socket option has one issue for future compatibility.
 As new features are added the structure (sctp_event_subscribe) must
 be expanded. This can cause an ABI issue unless an implementation
 has added padding at the end of the structure. To avoid this
 problem, SCTP_EVENTS has been deprecated and a new option SCTP_EVENT
 socket option has taken its place. The option is used with the
 following structure:

 struct sctp_event {
 sctp_assoc_t se_assoc_id;
 uint16_t se_type;
 uint8_t se_on;
 };

 se_assoc_id: The se_assoc_id field is ignored for one-to-one style
 sockets. For one-to-many style sockets any this field can be a
 particular association id or one of the defined constants.
 se_type: The se_type field can be filled with any value that would
 show up in the respective sn_type field (in the sctp_tlv structure
 of the notification). In addition SCTP_SNDRCV_EVENT,
 SCTP_RCV_EVENT, and SCTP_NXT_EVENT can be used.
 se_on: The se_on field is set to 1 to turn on an event and set to 0
 to turn off an event.

 To use this option the user fills in this structure and then calls
 the setsockopt to turn on or off an individual event. The following
 is an example use of this option:

 {
 struct sctp_event event;

 memset(&event, 0, sizeof(event));

 event.se_assoc_id = SCTP_FUTURE_ASSOC;
 event.se_type = SCTP_SENDER_DRY_EVENT;
 event.se_on = 1;
 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(event));
 }

 By default both the one-to-one style and the one-to-many style socket
 has all options off.

Stewart, et al. Expires August 5, 2010 [Page 74]

Internet-Draft SCTP sockets API February 2010

8. New Functions

 Depending on the system, the following interface can be implemented
 as a system call or library function.

8.1. sctp_bindx()

 This function allows the user to bind a specific subset of addresses
 or, if the SCTP extension described in [RFC5061] is supported, add or
 delete specific addresses.

 The function prototype is

 int sctp_bindx(int sd,
 struct sockaddr *addrs,
 int addrcnt,
 int flags);

 If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
 If the sd is an IPv6 socket, the addresses passed can either be IPv4
 or IPv6 addresses.

 A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
Section 3.1.2 for this usage.

 addrs is a pointer to an array of one or more socket addresses. Each
 address is contained in its appropriate structure. For an IPv6
 socket, an array of sockaddr_in6 would be returned. For a IPv4
 socket, an array of sockaddr_in would be returned. The caller
 specifies the number of addresses in the array with addrcnt. Note
 that the wildcard addresses cannot be used in combination with non
 wildcard addresses on a socket with this function, doing so will
 result in an error.

 On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
 -1 and sets errno to the appropriate error code.

 For SCTP, the port given in each socket address must be the same, or
 sctp_bindx() will fail, setting errno to EINVAL.

 The flags parameter is formed from the bitwise OR of zero or more of
 the following currently defined flags:
 o SCTP_BINDX_ADD_ADDR
 o SCTP_BINDX_REM_ADDR
 SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
 association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
 addresses from the association. The two flags are mutually
 exclusive; if both are given, sctp_bindx() will fail with EINVAL. A

https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires August 5, 2010 [Page 75]

Internet-Draft SCTP sockets API February 2010

 caller may not remove all addresses from an association; sctp_bindx()
 will reject such an attempt with EINVAL.

 An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
 additional addresses with an endpoint after calling bind(). Or use
 sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
 socket is associated with, so that no new association accepted will
 be associated with those addresses. If the endpoint supports dynamic
 address reconfiguration an SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR
 may cause an endpoint to send the appropriate message to the peer to
 change the peer's address lists.

 Adding and removing addresses from a connected association is an
 optional functionality. Implementations that do not support this
 functionality should return EOPNOTSUPP.

 sctp_bindx() can be called on an already bound socket or on an
 unbound socket. If the socket is unbound and the first port number
 in the addrs is zero, the kernel will choose a port number. All port
 numbers after the first one being 0 must also be zero. If the first
 port number is not zero, the following port numbers must be zero or
 have the same value as the first one. For an already bound socket,
 all port numbers provided must be the bound one or 0.

 sctp_bindx() is an atomic operation. Therefore, the binding will be
 either successful on all addresses or fail on all addresses. If
 multiple addresses are provided and the sctp_bindx() call fails there
 is no indication which address is responsible for the failure. The
 only way to get a specific error indication is to call sctp_bindx()
 with only one address sequentially.

8.2. sctp_peeloff()

 After an association is established on a one-to-many style socket,
 the application may wish to branch off the association into a
 separate socket/file descriptor.

 This is particularly desirable when, for instance, the application
 wishes to have a number of sporadic message senders/receivers remain
 under the original one-to-many style socket but branch off those
 associations carrying high volume data traffic into their own
 separate socket descriptors.

 The application uses the sctp_peeloff() call to branch off an
 association into a separate socket (Note the semantics are somewhat
 changed from the traditional one-to-one style accept() call). Note
 that the new socket is a one-to-one style socket. Thus it will be
 confined to operations allowed for a one-to-one style socket.

Stewart, et al. Expires August 5, 2010 [Page 76]

Internet-Draft SCTP sockets API February 2010

 The function prototype is

 int sctp_peeloff(int sd,
 sctp_assoc_t assoc_id);

 and the arguments are
 sd: The original one-to-many style socket descriptor returned from
 the socket() system call (see Section 3.1.1).
 assoc_id: the specified identifier of the association that is to be
 branched off to a separate file descriptor (Note, in a traditional
 one-to-one style accept() call, this would be an out parameter,
 but for the one-to-many style call, this is an in parameter).
 The function returns a non-negative file descriptor representing the
 branched-off association, or -1 if an error occurred. The variable
 errno is then set appropriately.

8.3. sctp_getpaddrs()

 sctp_getpaddrs() returns all peer addresses in an association.

 The function protoype is:

 int sctp_getpaddrs(int sd,
 sctp_assoc_t id,
 struct sockaddr **addrs);

 On return, addrs will point to an array dynamically allocated
 sockaddr structures of the appropriate type for the socket type. The
 caller should use sctp_freepaddrs() to free the memory. Note that
 the in/out parameter addrs must not be NULL.

 If sd is an IPv4 socket, the addresses returned will be all IPv4
 addresses. If sd is an IPv6 socket, the addresses returned can be a
 mix of IPv4 or IPv6 addresses.

 For one-to-many style sockets, id specifies the association to query.
 For one-to-one style sockets, id is ignored.

 On success, sctp_getpaddrs() returns the number of peer addresses in
 the association. If there is no association on this socket,
 sctp_getpaddrs() returns 0, and the value of *addrs is undefined. If
 an error occurs, sctp_getpaddrs() returns -1, and the value of *addrs
 is undefined.

8.4. sctp_freepaddrs()

 sctp_freepaddrs() frees all resources allocated by sctp_getpaddrs().

Stewart, et al. Expires August 5, 2010 [Page 77]

Internet-Draft SCTP sockets API February 2010

 The function prototype is

 void sctp_freepaddrs(struct sockaddr *addrs);

 and addrs is the array of peer addresses returned by
 sctp_getpaddrs().

8.5. sctp_getladdrs()

 sctp_getladdrs() returns all locally bound address(es) on a socket.

 The function prototype is

 int sctp_getladdrs(int sd,
 sctp_assoc_t id,
 struct sockaddr **ss);

 On return, addrs will point to a dynamically allocated array of
 sockaddr structures of the appropriate type for the socket type. The
 caller should use sctp_freeladdrs() to free the memory. Note that
 the in/out parameter addrs must not be NULL.

 If sd is an IPv4 socket, the addresses returned will be all IPv4
 addresses. If sd is an IPv6 socket, the addresses returned can be a
 mix of IPv4 or IPv6 addresses.

 For one-to-many style sockets, id specifies the association to query.
 For one-to-one style sockets, id is ignored.

 If the id field is set to the value '0' then the locally bound
 addresses are returned without regard to any particular association.

 On success, sctp_getladdrs() returns the number of local addresses
 bound to the socket. If the socket is unbound, sctp_getladdrs()
 returns 0, and the value of *addrs is undefined. If an error occurs,
 sctp_getladdrs() returns -1, and the value of *addrs is undefined.

8.6. sctp_freeladdrs()

 sctp_freeladdrs() frees all resources allocated by sctp_getladdrs().

 The function prototype is

 void sctp_freeladdrs(struct sockaddr *addrs);

 and addrs is the array of peer addresses returned by
 sctp_getladdrs().

Stewart, et al. Expires August 5, 2010 [Page 78]

Internet-Draft SCTP sockets API February 2010

8.7. sctp_sendmsg()

 An implementation may provide a library function (or possibly system
 call) to assist the user with the advanced features of SCTP.

 The function prototype is

 ssize_t sctp_sendmsg(int sd,
 const void *msg,
 size_t len,
 const struct sockaddr *to,
 socklen_t tolen,
 uint32_t ppid,
 uint32_t flags,
 uint16_t stream_no,
 uint32_t pr_value,
 uint32_t context);

 and the arguments are:
 sd: The socket descriptor
 msg: The message to be sent.
 len: The length of the message.
 to: The destination address of the message.
 tolen: The length of the destination address.
 ppid: The same as sinfo_ppid (see Section 5.2.2)
 flags: The same as sinfo_flags (see Section 5.2.2)
 stream_no: The same as sinfo_stream (see Section 5.2.2)
 pr_value: The same as sinfo_pr_value (see Section 5.2.2).
 context: The same as sinfo_context (see Section 5.2.2)
 The call returns the number of characters sent, or -1 if an error
 occurred. The variable errno is then set appropriately.

 Sending a message using sctp_sendmsg() is atomic (unless explicit EOR
 marking is enabled on the socket specified by sd).

 Using sctp_sendmsg() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the SCTP
 implementation.

8.8. sctp_recvmsg()

 An implementation may provide a library function (or possibly system
 call) to assist the user with the advanced features of SCTP. Note
 that in order for the sctp_sndrcvinfo structure to be filled in by
 sctp_recvmsg() the caller must enable the sctp_data_io_events with
 the SCTP_EVENTS option. Note that the setting of the
 SCTP_USE_EXT_RCVINFO will effect this function as well, causing the
 sctp_sndrcvinfo information to be extended.

Stewart, et al. Expires August 5, 2010 [Page 79]

Internet-Draft SCTP sockets API February 2010

 The function prototype is

 ssize_t sctp_recvmsg(int sd,
 void *msg,
 size_t len,
 struct sockaddr *from,
 socklen_t *fromlen
 struct sctp_sndrcvinfo *sinfo
 int *msg_flags);

 and the arguments are
 sd: The socket descriptor.
 msg: The message buffer to be filled.
 len: The length of the message buffer.
 from: A pointer to an address to be filled with the sender of this
 messages address.
 fromlen: An in/out parameter describing the from length.
 sinfo: A pointer to an sctp_sndrcvinfo structure to be filled upon
 receipt of the message.
 msg_flags: A pointer to an integer to be filled with any message
 flags (e.g. MSG_NOTIFICATION). Note that this field is an in-out
 field. Options for the receive may also be passed into the value
 (e.g. MSG_PEEK). On return from the call, the msg_flags value
 will be different than what was sent in to the call. If
 implemented via a recvmsg() call, the msg_flags should only
 contain the value of the flags from the recvmsg() call.
 The call returns the number of bytes received, or -1 if an error
 occurred. The variable errno is then set appropriately.

8.9. sctp_connectx()

 An implementation may provide a library function (or possibly system
 call) to assist the user with associating to an endpoint that is
 multi-homed. Much like sctp_bindx() this call allows a caller to
 specify multiple addresses at which a peer can be reached. The way
 the SCTP stack uses the list of addresses to set up the association
 is implementation dependent. This function only specifies that the
 stack will try to make use of all the addresses in the list when
 needed.

 Note that the list of addresses passed in is only used for setting up
 the association. It does not necessarily equal the set of addresses
 the peer uses for the resulting association. If the caller wants to
 find out the set of peer addresses, it must use sctp_getpaddrs() to
 retrieve them after the association has been set up.

 The function prototype is

Stewart, et al. Expires August 5, 2010 [Page 80]

Internet-Draft SCTP sockets API February 2010

 int sctp_connectx(int sd,
 struct sockaddr *addrs,
 int addrcnt,
 sctp_assoc_t *id);

 and the arguments are:
 sd: The socket descriptor.
 addrs: An (packed) array of addresses.
 addrcnt: The number of addresses in the array.
 id: An output parameter that if passed in as a non-NULL will return
 the association identification for the newly created association
 (if successful).

 The call returns 0 on success or -1 if an error occurred. The
 variable errno is then set appropriately.

8.10. sctp_send()

 An implementation may provide another alternative function or system
 call to assist an application with the sending of data without the
 use of the CMSG header structures.

 The function prototype is

 ssize_t sctp_send(int sd,
 const void *msg,
 size_t len,
 const struct sctp_sndrcvinfo *sinfo,
 int flags);

 and the arguments are
 sd: The socket descriptor.
 msg: The message to be sent.
 len: The length of the message.
 sinfo: A pointer to an sctp_sndrcvinfo structure used as described
 in Section 5.2.2 for a sendmsg call.
 flags: The same flags as used by the sendmsg call flags (e.g.
 MSG_DONTROUTE).
 The call returns the number of bytes sent, or -1 if an error
 occurred. The variable errno is then set appropriately.

 This function call may also be used to terminate an association using
 an association identification by setting the sinfo.sinfo_flags to
 SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
 to be terminated. In such a case the len of the message would be
 zero.

 Using sctp_send() on a non-connected one-to-one style socket for

Stewart, et al. Expires August 5, 2010 [Page 81]

Internet-Draft SCTP sockets API February 2010

 implicit connection setup may or may not work depending on the SCTP
 implementation.

 Sending a message using sctp_send() is atomic unless explicit EOR
 marking is enabled on the socket specified by sd.

8.11. sctp_sendx()

 An implementation may provide another alternative function or system
 call to assist an application with the sending of data without the
 use of the CMSG header structures that also gives a list of
 addresses. The list of addresses is provided for implicit
 association setup. In such a case the list of addresses serves the
 same purpose as the addresses given in sctp_connectx() (see

Section 8.9).

 The function prototype is

 ssize_t sctp_sendx(int sd,
 const void *msg,
 size_t len,
 struct sockaddr *addrs,
 int addrcnt,
 struct sctp_sndrcvinfo *sinfo,
 int flags);

 and the arguments are:
 sd: The socket descriptor.
 msg: The message to be sent.
 len: The length of the message.
 addrs: is an array of addresses.
 addrcnt: The number of addresses in the array.
 sinfo: A pointer to a sctp_sndrcvinfo structure used as described in

Section 5.2.2 for a sendmsg call.
 flags: The same flags as used by the sendmsg call flags (e.g.
 MSG_DONTROUTE).
 The call returns the number of bytes sent, or -1 if an error
 occurred. The variable errno is then set appropriately.

 Note that on return from this call the sinfo structure will have
 changed in that the sinfo_assoc_id will be filled in with the new
 association id.

 This function call may also be used to terminate an association using
 an association identification by setting the sinfo.sinfo_flags to
 SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
 to be terminated. In such a case the len of the message would be
 zero.

Stewart, et al. Expires August 5, 2010 [Page 82]

Internet-Draft SCTP sockets API February 2010

 Sending a message using sctp_send() is atomic unless explicit EOR
 marking is enabled on the socket specified by sd.

 Using sctp_sendx() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the SCTP
 implementation.

8.12. sctp_getaddrlen()

 For application binary portability it is sometimes desirable to know
 what the kernel thinks is the length of a socket address family.

 The function prototype is:

 int sctp_getaddrlen(sa_family_t family);

 This function, when called with a valid family type returns the
 length that the operating system uses in the specified family's
 socket address structure. In case of an error, -1 is returned and
 the variable errno is then set appropriately.

9. IANA Considerations

 This document requires no actions from IANA.

10. Security Considerations

 Many TCP and UDP implementations reserve port numbers below 1024 for
 privileged users. If the target platform supports privileged users,
 the SCTP implementation should restrict the ability to call bind() or
 sctp_bindx() on these port numbers to privileged users.

 Similarly unprivileged users should not be able to set protocol
 parameters which could result in the congestion control algorithm
 being more aggressive than permitted on the public Internet. These
 parameters are:
 o struct sctp_rtoinfo

 If an unprivileged user inherits a one-to-many style socket with open
 associations on a privileged port, it may be permitted to accept new
 associations, but it should not be permitted to open new
 associations. This could be relevant for the r* family of protocols.

 Applications using the one-to-many style sockets and using the
 interleave level if 0 are subject to denial of service attacks as
 described in Section 7.1.20.

Stewart, et al. Expires August 5, 2010 [Page 83]

Internet-Draft SCTP sockets API February 2010

11. Acknowledgments

 Special acknowledgment is given to Ken Fujita, Jonathan Woods,
 Qiaobing Xie, and La Monte Yarroll, who helped extensively in the
 early formation of this document.

 The authors also wish to thank Kavitha Baratakke, Mike Bartlett, Jon
 Berger, Mark Butler, Scott Kimble, Renee Revis, Andreas Fink,
 Jonathan Leighton, Irene Ruengeler, and many others on the TSVWG
 mailing list for contributing valuable comments.

 A special thanks to Phillip Conrad, for his suggested text, quick and
 constructive insights, and most of all his persistent fighting to
 keep the interface to SCTP usable for the application programmer.

12. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC1644] Braden, B., "T/TCP -- TCP Extensions for Transactions
 Functional Specification", RFC 1644, July 1994.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, February 2003.

 [RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
 "Advanced Sockets Application Program Interface (API) for
 IPv6", RFC 3542, May 2003.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758, May 2004.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, August 2007.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires August 5, 2010 [Page 84]

Internet-Draft SCTP sockets API February 2010

 Dynamic Address Reconfiguration", RFC 5061,
 September 2007.

Appendix A. One-to-One Style Code Example

 The following code is a simple implementation of an echo server over
 SCTP. The example shows how to use some features of one-to-one style
 IPv4 SCTP sockets, including:
 o Opening, binding, and listening for new associations on a socket
 o Enabling ancillary data
 o Enabling notifications
 o Using ancillary data with sendmsg() and recvmsg()
 o Using MSG_EOR to determine if an entire message has been read
 o Handling notifications

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <netinet/sctp.h>
 #include <sys/uio.h>

 #define BUFLEN 100

 static void
 handle_event(void *buf)
 {
 struct sctp_assoc_change *sac;
 struct sctp_send_failed *ssf;
 struct sctp_paddr_change *spc;
 struct sctp_remote_error *sre;
 union sctp_notification *snp;
 char addrbuf[INET6_ADDRSTRLEN];
 const char *ap;
 struct sockaddr_in *sin;
 struct sockaddr_in6 *sin6;

 snp = buf;

 switch (snp->sn_header.sn_type) {
 case SCTP_ASSOC_CHANGE:
 sac = &snp->sn_assoc_change;
 printf("^^^ assoc_change: state=%hu, error=%hu, instr=%hu "
 "outstr=%hu\n", sac->sac_state, sac->sac_error,

https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires August 5, 2010 [Page 85]

Internet-Draft SCTP sockets API February 2010

 sac->sac_inbound_streams, sac->sac_outbound_streams);
 break;
 case SCTP_SEND_FAILED:
 ssf = &snp->sn_send_failed;
 printf("^^^ sendfailed: len=%hu err=%d\n", ssf->ssf_length,
 ssf->ssf_error);
 break;

 case SCTP_PEER_ADDR_CHANGE:
 spc = &snp->sn_paddr_change;
 if (spc->spc_aaddr.ss_family == AF_INET) {
 sin = (struct sockaddr_in *)&spc->spc_aaddr;
 ap = inet_ntop(AF_INET, &sin->sin_addr,
 addrbuf, INET6_ADDRSTRLEN);
 } else {
 sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr;
 ap = inet_ntop(AF_INET6, &sin6->sin6_addr,
 addrbuf, INET6_ADDRSTRLEN);
 }
 printf("^^^ intf_change: %s state=%d, error=%d\n", ap,
 spc->spc_state, spc->spc_error);
 break;
 case SCTP_REMOTE_ERROR:
 sre = &snp->sn_remote_error;
 printf("^^^ remote_error: err=%hu len=%hu\n",
 ntohs(sre->sre_error), ntohs(sre->sre_length));
 break;
 case SCTP_SHUTDOWN_EVENT:
 printf("^^^ shutdown event\n");
 break;
 default:
 printf("unknown type: %hu\n", snp->sn_header.sn_type);
 break;
 };
 }

 static void *
 mysctp_recvmsg(int fd, struct msghdr *msg, void *buf, size_t *buflen,
 ssize_t *nrp, size_t cmsglen)
 {
 ssize_t nr = 0, nnr = 0;
 struct iovec iov;

 *nrp = 0;
 iov.iov_base = buf;
 iov.iov_len = *buflen;
 msg->msg_iov = �
 msg->msg_iovlen = 1;

Stewart, et al. Expires August 5, 2010 [Page 86]

Internet-Draft SCTP sockets API February 2010

 for (;;) {
 #ifndef MSG_XPG4_2
 #define MSG_XPG4_2 0
 #endif
 msg->msg_flags = MSG_XPG4_2;
 msg->msg_controllen = cmsglen;

 nnr = recvmsg(fd, msg, 0);
 if (nnr <= 0) {
 /* EOF or error */
 *nrp = nr;
 return (NULL);
 }
 nr += nnr;

 if ((msg->msg_flags & MSG_EOR) != 0) {
 *nrp = nr;
 return (buf);
 }

 /* Realloc the buffer? */
 if (*buflen == (size_t)nr) {
 buf = realloc(buf, *buflen * 2);
 if (buf == 0) {
 fprintf(stderr, "out of memory\n");
 exit(1);
 }
 *buflen *= 2;
 }
 /* Set the next read offset */
 iov.iov_base = (char *)buf + nr;
 iov.iov_len = *buflen - nr;
 }
 }

 static void
 echo(int fd, int socketModeone_to_many)
 {
 ssize_t nr;
 struct sctp_sndrcvinfo *sri;
 struct msghdr msg;
 struct cmsghdr *cmsg;
 char cbuf[sizeof (*cmsg) + sizeof (*sri)];
 char *buf;
 size_t buflen;
 struct iovec iov;
 size_t cmsglen = sizeof (*cmsg) + sizeof (*sri);
 /* Allocate the initial data buffer */

Stewart, et al. Expires August 5, 2010 [Page 87]

Internet-Draft SCTP sockets API February 2010

 buflen = BUFLEN;
 if (!(buf = malloc(BUFLEN))) {
 fprintf(stderr, "out of memory\n");
 exit(1);
 }

 /* Set up the msghdr structure for receiving */
 memset(&msg, 0, sizeof (msg));
 msg.msg_control = cbuf;
 msg.msg_controllen = cmsglen;
 msg.msg_flags = 0;
 cmsg = (struct cmsghdr *)cbuf;
 sri = (struct sctp_sndrcvinfo *)(cmsg + 1);

 /* Wait for something to echo */
 while (buf = mysctp_recvmsg(fd, &msg,
 buf, &buflen, &nr, cmsglen)) {

 /* Intercept notifications here */
 if (msg.msg_flags & MSG_NOTIFICATION) {
 handle_event(buf);
 continue;
 }

 iov.iov_base = buf;
 iov.iov_len = nr;
 msg.msg_iov = �
 msg.msg_iovlen = 1;

 printf("got %u bytes on stream %hu:\n", nr,
 sri->sinfo_stream);
 write(0, buf, nr);

 /* Echo it back */
 msg.msg_flags = MSG_XPG4_2;
 if (sendmsg(fd, &msg, 0) < 0) {
 perror("sendmsg");
 exit(1);
 }
 }

 if (nr < 0) {
 perror("recvmsg");
 }
 if(socketModeone_to_many == 0)
 close(fd);
 }

Stewart, et al. Expires August 5, 2010 [Page 88]

Internet-Draft SCTP sockets API February 2010

 int main()
 {
 struct sctp_event_subscribe event;
 int lfd, cfd;
 int onoff = 1;
 struct sockaddr_in sin;
 if ((lfd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) == -1) {
 perror("socket");
 exit(1);
 }

 sin.sin_family = AF_INET;
 sin.sin_port = htons(7);
 sin.sin_addr.s_addr = INADDR_ANY;
 if (bind(lfd, (struct sockaddr *)&sin, sizeof (sin)) == -1) {
 perror("bind");
 exit(1);
 }

 if (listen(lfd, 1) == -1) {
 perror("listen");
 exit(1);
 }

 /* Wait for new associations */
 for (;;) {
 if ((cfd = accept(lfd, NULL, 0)) == -1) {
 perror("accept");
 exit(1);
 }

 /* Enable all events */
 event.sctp_data_io_event = 1;
 event.sctp_association_event = 1;
 event.sctp_address_event = 1;
 event.sctp_send_failure_event = 1;
 event.sctp_peer_error_event = 1;
 event.sctp_shutdown_event = 1;
 event.sctp_partial_delivery_event = 1;
 event.sctp_adaptation_layer_event = 1;
 if (setsockopt(cfd, IPPROTO_SCTP,
 SCTP_EVENTS, &event,
 sizeof(event)) != 0) {
 perror("setevent failed");
 exit(1);
 }
 /* Echo back any and all data */
 echo(cfd,0);

Stewart, et al. Expires August 5, 2010 [Page 89]

Internet-Draft SCTP sockets API February 2010

 }
 }

Appendix B. One-to-Many Style Code Example

 The following code is a simple implementation of an echo server over
 SCTP. The example shows how to use some features of one-to-many
 style IPv4 SCTP sockets, including:
 o Opening and binding of a socket
 o Enabling ancillary data
 o Enabling notifications
 o Using ancillary data with sendmsg() and recvmsg()
 o Using MSG_EOR to determine if an entire message has been read
 o Handling notifications

 Note most functions defined in Appendix A are reused in this example.

 int main()
 {
 int fd;
 int idleTime = 2;
 struct sockaddr_in sin;
 struct sctp_event_subscribe event;

 if ((fd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP)) == -1) {
 perror("socket");
 exit(1);
 }

 sin.sin_family = AF_INET;
 sin.sin_port = htons(7);
 sin.sin_addr.s_addr = INADDR_ANY;
 if (bind(fd, (struct sockaddr *)&sin, sizeof (sin)) == -1) {
 perror("bind");
 exit(1);
 }

 /* Enable all notifications and events */
 event.sctp_data_io_event = 1;
 event.sctp_association_event = 1;
 event.sctp_address_event = 1;
 event.sctp_send_failure_event = 1;
 event.sctp_peer_error_event = 1;
 event.sctp_shutdown_event = 1;
 event.sctp_partial_delivery_event = 1;
 event.sctp_adaptation_layer_event = 1;
 if (setsockopt(fd, IPPROTO_SCTP,

Stewart, et al. Expires August 5, 2010 [Page 90]

Internet-Draft SCTP sockets API February 2010

 SCTP_EVENTS, &event,
 sizeof(event)) != 0) {
 perror("setevent failed");
 exit(1);
 }
 /* Set associations to auto-close in 2 seconds of
 * inactivity
 */
 if (setsockopt(fd, IPPROTO_SCTP, SCTP_AUTOCLOSE,
 &idleTime, 4) < 0) {
 perror("setsockopt SCTP_AUTOCLOSE");
 exit(1);
 }

 /* Allow new associations to be accepted */
 if (listen(fd, 1) < 0) {
 perror("listen");
 exit(1);
 }

 /* Wait for new associations */
 while(1){
 /* Echo back any and all data */
 echo(fd,1); /* from appendix a */
 }
 }

Authors' Addresses

 Randall R. Stewart
 Huawei
 Chapin, SC 29036
 USA

 Email: rstewart@huawei.com

 Kacheong Poon
 Sun Microsystems, Inc.
 4150 Network Circle
 Santa Clara, CA 95054
 USA

 Email: kacheong.poon@sun.com

Stewart, et al. Expires August 5, 2010 [Page 91]

Internet-Draft SCTP sockets API February 2010

 Michael Tuexen
 Muenster Univ. of Applied Sciences
 Stegerwaldstr. 39
 48565 Steinfurt
 Germany

 Email: tuexen@fh-muenster.de

 Vladislav Yasevich
 HP
 110 Spitrook Rd
 Nashua, NH, 03062
 USA

 Email: vladislav.yasevich@hp.com

 Peter Lei
 Cisco Systems, Inc.
 8735 West Higgins Road
 Suite 300
 Chicago, IL 60631
 USA

 Email: peterlei@cisco.com

Stewart, et al. Expires August 5, 2010 [Page 92]

