
Network Working Group R. Stewart
Internet-Draft Adara Networks
Intended status: Informational M. Tuexen
Expires: October 25, 2011 Muenster Univ. of Appl. Sciences
 K. Poon
 Oracle Corporation
 P. Lei
 Cisco Systems, Inc.
 V. Yasevich
 HP
 April 23, 2011

Sockets API Extensions for Stream Control Transmission Protocol (SCTP)
draft-ietf-tsvwg-sctpsocket-29.txt

Abstract

 This document describes a mapping of the Stream Control Transmission
 Protocol (SCTP) into a sockets API. The benefits of this mapping
 include compatibility for TCP applications, access to new SCTP
 features and a consolidated error and event notification scheme.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 25, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Stewart, et al. Expires October 25, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SCTP sockets API April 2011

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Stewart, et al. Expires October 25, 2011 [Page 2]

Internet-Draft SCTP sockets API April 2011

Table of Contents

1. Introduction . 7
2. Data Types . 8
3. One-to-Many Style Interface 8
3.1. Basic Operation . 8
3.1.1. socket() . 10
3.1.2. bind() . 10
3.1.3. listen() . 11
3.1.4. sendmsg() and recvmsg() 12
3.1.5. close() . 14
3.1.6. connect() . 15

3.2. Non-blocking mode . 15
3.3. Special considerations 16

4. One-to-One Style Interface 18
4.1. Basic Operation . 18
4.1.1. socket() . 19
4.1.2. bind() . 19
4.1.3. listen() . 21
4.1.4. accept() . 21
4.1.5. connect() . 22
4.1.6. close() . 23
4.1.7. shutdown() . 23
4.1.8. sendmsg() and recvmsg() 24
4.1.9. getpeername() . 25

5. Data Structures . 25
5.1. The msghdr and cmsghdr Structures 25
5.2. Ancillary Data Considerations and Semantics 26
5.2.1. Multiple Items and Ordering 26
5.2.2. Accessing and Manipulating Ancillary Data 27
5.2.3. Control Message Buffer Sizing 27

5.3. SCTP msg_control Structures 28
5.3.1. SCTP Initiation Structure (SCTP_INIT) 29

 5.3.2. SCTP Header Information Structure (SCTP_SNDRCV) -
 DEPRECATED . 30
 5.3.3. Extended SCTP Header Information Structure
 (SCTP_EXTRCV) - DEPRECATED 33

5.3.4. SCTP Send Information Structure (SCTP_SNDINFO) . . . 34
5.3.5. SCTP Receive Information Structure (SCTP_RCVINFO) . . 36

 5.3.6. SCTP Next Receive Information Structure
 (SCTP_NXTINFO) 37

5.3.7. SCTP PR-SCTP Information Structure (SCTP_PRINFO) . . 39
5.3.8. SCTP AUTH Information Structure (SCTP_AUTHINFO) . . . 39

 5.3.9. SCTP Destination Address Structure (IPv4)
 (SCTP_DSTADDRV4) 40
 5.3.10. SCTP Destination Address Structure (IPv6)
 (SCTP_DSTADDRV6) 40

6. SCTP Events and Notifications 40

Stewart, et al. Expires October 25, 2011 [Page 3]

Internet-Draft SCTP sockets API April 2011

6.1. SCTP Notification Structure 41
6.1.1. SCTP_ASSOC_CHANGE 43
6.1.2. SCTP_PEER_ADDR_CHANGE 44
6.1.3. SCTP_REMOTE_ERROR 46
6.1.4. SCTP_SEND_FAILED - DEPRECATED 46
6.1.5. SCTP_SHUTDOWN_EVENT 48
6.1.6. SCTP_ADAPTATION_INDICATION 48
6.1.7. SCTP_PARTIAL_DELIVERY_EVENT 49
6.1.8. SCTP_AUTHENTICATION_EVENT 50
6.1.9. SCTP_SENDER_DRY_EVENT 51
6.1.10. SCTP_NOTIFICATIONS_STOPPED_EVENT 51
6.1.11. SCTP_SEND_FAILED_EVENT 52

6.2. Notification Interest Options 53
6.2.1. SCTP_EVENTS option - DEPRECATED 53
6.2.2. SCTP_EVENT option 55

7. Common Operations for Both Styles 56
7.1. send(), recv(), sendto(), and recvfrom() 56
7.2. setsockopt() and getsockopt() 58
7.3. read() and write() 60
7.4. getsockname() . 60
7.5. Implicit Association Setup 60

8. Socket Options . 61
8.1. Read / Write Options 63
8.1.1. Retransmission Timeout Parameters (SCTP_RTOINFO) . . 63
8.1.2. Association Parameters (SCTP_ASSOCINFO) 64
8.1.3. Initialization Parameters (SCTP_INITMSG) 65
8.1.4. SO_LINGER . 65
8.1.5. SCTP_NODELAY . 66
8.1.6. SO_RCVBUF . 66
8.1.7. SO_SNDBUF . 66
8.1.8. Automatic Close of Associations (SCTP_AUTOCLOSE) . . 67
8.1.9. Set Primary Address (SCTP_PRIMARY_ADDR) 67

 8.1.10. Set Adaptation Layer Indicator
 (SCTP_ADAPTATION_LAYER) 68
 8.1.11. Enable/Disable Message Fragmentation
 (SCTP_DISABLE_FRAGMENTS) 68

8.1.12. Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) . . . 68
 8.1.13. Set Default Send Parameters
 (SCTP_DEFAULT_SEND_PARAM) - DEPRECATED 71
 8.1.14. Set Notification and Ancillary Events
 (SCTP_EVENTS) - DEPRECATED 71
 8.1.15. Set/Clear IPv4 Mapped Addresses
 (SCTP_I_WANT_MAPPED_V4_ADDR) 72
 8.1.16. Get or Set the Maximum Fragmentation Size
 (SCTP_MAXSEG) . 72
 8.1.17. Get or Set the List of Supported HMAC Identifiers
 (SCTP_HMAC_IDENT) 72
 8.1.18. Get or Set the Active Shared Key

Stewart, et al. Expires October 25, 2011 [Page 4]

Internet-Draft SCTP sockets API April 2011

 (SCTP_AUTH_ACTIVE_KEY) 73
8.1.19. Get or Set Delayed SACK Timer (SCTP_DELAYED_SACK) . . 74

 8.1.20. Get or Set Fragmented Interleave
 (SCTP_FRAGMENT_INTERLEAVE) 75
 8.1.21. Set or Get the SCTP Partial Delivery Point
 (SCTP_PARTIAL_DELIVERY_POINT) 76
 8.1.22. Set or Get the Use of Extended Receive Info
 (SCTP_USE_EXT_RCVINFO) - DEPRECATED 76
 8.1.23. Set or Get the Auto ASCONF Flag (SCTP_AUTO_ASCONF) . 77

8.1.24. Set or Get the Maximum Burst (SCTP_MAX_BURST) 77
8.1.25. Set or Get the Default Context (SCTP_CONTEXT) 77

 8.1.26. Enable or Disable Explicit EOR Marking
 (SCTP_EXPLICIT_EOR) 78

8.1.27. Enable SCTP Port Reusage (SCTP_REUSE_PORT) 78
8.1.28. Set Notification Event (SCTP_EVENT) 79

 8.1.29. Enable or Disable the Delivery of SCTP_RCVINFO as
 Ancillary Data (SCTP_RECVRCVINFO) 79
 8.1.30. Enable or Disable the Delivery of SCTP_NXTINFO as
 Ancillary Data (SCTP_RECVNXTINFO) 79
 8.1.31. Set Default Send Parameters (SCTP_DEFAULT_SNDINFO) . 79

8.2. Read-Only Options . 79
8.2.1. Association Status (SCTP_STATUS) 80

 8.2.2. Peer Address Information (SCTP_GET_PEER_ADDR_INFO) . 81
 8.2.3. Get the List of Chunks the Peer Requires to be
 Authenticated (SCTP_PEER_AUTH_CHUNKS) 82
 8.2.4. Get the List of Chunks the Local Endpoint Requires
 to be Authenticated (SCTP_LOCAL_AUTH_CHUNKS) 83
 8.2.5. Get the Current Number of Associations
 (SCTP_GET_ASSOC_NUMBER) 83
 8.2.6. Get the Current Identifiers of Associations
 (SCTP_GET_ASSOC_ID_LIST) 84

8.3. Write-Only Options 84
 8.3.1. Set Peer Primary Address
 (SCTP_SET_PEER_PRIMARY_ADDR) 84
 8.3.2. Add a Chunk that must be Authenticated
 (SCTP_AUTH_CHUNK) 85

8.3.3. Set a Shared Key (SCTP_AUTH_KEY) 85
 8.3.4. Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) . 86

8.3.5. Delete a Shared Key (SCTP_AUTH_DELETE_KEY) 86
9. New Functions . 87
9.1. sctp_bindx() . 87
9.2. sctp_peeloff() . 89
9.3. sctp_getpaddrs() . 89
9.4. sctp_freepaddrs() . 90
9.5. sctp_getladdrs() . 90
9.6. sctp_freeladdrs() . 91
9.7. sctp_sendmsg() - DEPRECATED 91
9.8. sctp_recvmsg() - DEPRECATED 92

Stewart, et al. Expires October 25, 2011 [Page 5]

Internet-Draft SCTP sockets API April 2011

9.9. sctp_connectx() . 93
9.10. sctp_send() - DEPRECATED 94
9.11. sctp_sendx() - DEPRECATED 95
9.12. sctp_sendv() . 96
9.13. sctp_recvv() . 99

10. IANA Considerations . 101
11. Security Considerations 101
12. Acknowledgments . 101
13. References . 102
13.1. Normative References 102
13.2. Informative References 102

Appendix A. One-to-One Style Code Example 102
Appendix B. One-to-Many Style Code Example 105

 Authors' Addresses . 110

Stewart, et al. Expires October 25, 2011 [Page 6]

Internet-Draft SCTP sockets API April 2011

1. Introduction

 The sockets API has provided a standard mapping of the Internet
 Protocol suite to many operating systems. Both TCP [RFC0793] and UDP
 [RFC0768] have benefited from this standard representation and access
 method across many diverse platforms. SCTP is a new protocol that
 provides many of the characteristics of TCP but also incorporates
 semantics more akin to UDP. This document defines a method to map
 the existing sockets API for use with SCTP, providing both a base for
 access to new features and compatibility so that most existing TCP
 applications can be migrated to SCTP with few (if any) changes.

 There are three basic design objectives:

 1. Maintain consistency with existing sockets APIs: We define a
 sockets mapping for SCTP that is consistent with other sockets
 API protocol mappings (for instance UDP, TCP, IPv4, and IPv6).

 2. Support a one-to-many style interface: This set of semantics is
 similar to that defined for connection-less protocols, such as
 UDP. A one-to-many style SCTP socket should be able to control
 multiple SCTP associations. This is similar to a UDP socket,
 which can communicate with many peer endpoints. Each of these
 associations is assigned an association identifier so that an
 application can use the ID to differentiate them. Note that SCTP
 is connection-oriented in nature, and it does not support
 broadcast or multicast communications, as UDP does.

 3. Support a one-to-one style interface: This interface supports a
 similar semantics as sockets for connection-oriented protocols,
 such as TCP. A one-to-one style SCTP socket should only control
 one SCTP association. One purpose of defining this interface is
 to allow existing applications built on other connection-oriented
 protocols to be ported to use SCTP with very little effort.
 Developers familiar with these semantics can easily adapt to
 SCTP. Another purpose is to make sure that existing mechanisms
 in most operating systems that support sockets, such as select(),
 should continue to work with this style of socket. Extensions
 are added to this mapping to provide mechanisms to exploit new
 features of SCTP.

 Goals 2 and 3 are not compatible, so this document defines two modes
 of mapping, namely the one-to-many style mapping and the one-to-one
 style mapping. These two modes share some common data structures and
 operations, but will require the use of two different application
 programming styles. Note that all new SCTP features can be used with
 both styles of socket. The decision on which one to use depends
 mainly on the nature of applications.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768

Stewart, et al. Expires October 25, 2011 [Page 7]

Internet-Draft SCTP sockets API April 2011

 A mechanism is defined to extract a one-to-many style SCTP
 association into a one-to-one style socket.

 Some of the SCTP mechanisms cannot be adequately mapped to an
 existing socket interface. In some cases, it is more desirable to
 have a new interface instead of using existing socket calls.

Section 9 of this document describes these new interfaces.

2. Data Types

 Whenever possible, data types from Draft 6.6 (March 1997) of POSIX
 1003.1g are used: uintN_t means an unsigned integer of exactly N bits
 (e.g. uint16_t). This document also assumes the argument data types
 from 1003.1g when possible (e.g. the final argument to setsockopt()
 is a size_t value). Whenever buffer sizes are specified, the POSIX
 1003.1 size_t data type is used.

3. One-to-Many Style Interface

 In the one-to-many style interface there is a 1 to many relationship
 between sockets and associations.

3.1. Basic Operation

 A typical server in this style uses the following socket calls in
 sequence to prepare an endpoint for servicing requests:

 o socket()

 o bind()

 o listen()

 o recvmsg()

 o sendmsg()

 o close()

 A typical client uses the following calls in sequence to setup an
 association with a server to request services:

 o socket()

 o sendmsg()

Stewart, et al. Expires October 25, 2011 [Page 8]

Internet-Draft SCTP sockets API April 2011

 o recvmsg()

 o close()

 In this style, by default, all the associations connected to the
 endpoint are represented with a single socket. Each association is
 assigned an association identifier (type is sctp_assoc_t) so that an
 application can use it to differentiate among them. In some
 implementations, the peer endpoints' addresses can also be used for
 this purpose. But this is not required for performance reasons. If
 an implementation does not support using addresses to differentiate
 between different associations, the sendto() call can only be used to
 setup an association implicitly. It cannot be used to send data to
 an established association as the association identifier cannot be
 specified.

 Once an association identifier is assigned to an SCTP association,
 that identifier will not be reused until the application explicitly
 terminates the use of the association. The resources belonging to
 that association will not be freed until that happens. This is
 similar to the close() operation on a normal socket. The only
 exception is when the SCTP_AUTOCLOSE option (Section 8.1.8) is set.
 In this case, after the association is terminated gracefully and
 automatically, the association identifier assigned to it can be
 reused. All applications using this option should be aware of this
 to avoid the possible problem of sending data to an incorrect peer
 endpoint.

 If the server or client wishes to branch an existing association off
 to a separate socket, it is required to call sctp_peeloff() and to
 specify the association identifier. The sctp_peeloff() call will
 return a new one-to-one style socket which can then be used with
 recv() and send() functions for message passing. See Section 9.2 for
 more on branched-off associations.

 Once an association is branched off to a separate socket, it becomes
 completely separated from the original socket. All subsequent
 control and data operations to that association must be done through
 the new socket. For example, the close operation on the original
 socket will not terminate any associations that have been branched
 off to a different socket.

 One-to-many style socket calls are discussed in more detail in the
 following subsections.

Stewart, et al. Expires October 25, 2011 [Page 9]

Internet-Draft SCTP sockets API April 2011

3.1.1. socket()

 Applications use socket() to create a socket descriptor to represent
 an SCTP endpoint.

 The function prototype is

 int socket(int domain,
 int type,
 int protocol);

 and one uses PF_INET or PF_INET6 as the domain, SOCK_SEQPACKET as the
 type and IPPROTO_SCTP as the protocol.

 Here, SOCK_SEQPACKET indicates the creation of a one-to-many style
 socket.

 The function returns a socket descriptor or -1 in case of an error.

 Using the PF_INET domain indicates the creation of an endpoint which
 can use only IPv4 addresses, while PF_INET6 creates an endpoint which
 can use both IPv6 and IPv4 addresses.

3.1.2. bind()

 Applications use bind() to specify which local address and port the
 SCTP endpoint should associate itself with.

 An SCTP endpoint can be associated with multiple addresses. To do
 this, sctp_bindx() is introduced in Section 9.1 to help applications
 do the job of associating multiple addresses. But note that an
 endpoint can only be associated with one local port.

 These addresses associated with a socket are the eligible transport
 addresses for the endpoint to send and receive data. The endpoint
 will also present these addresses to its peers during the association
 initialization process, see [RFC4960].

 After calling bind(), if the endpoint wishes to accept new
 associations on the socket, it must call listen() (see

Section 3.1.3).

 The function prototype of bind() is

 int bind(int sd,
 struct sockaddr *addr,
 socklen_t addrlen);

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 10]

Internet-Draft SCTP sockets API April 2011

 and the arguments are

 sd: The socket descriptor returned by socket().

 addr: The address structure (struct sockaddr_in for an IPv4 address
 or struct sockaddr_in6 for an IPv6 address, see [RFC3493]).

 addrlen: The size of the address structure.

 It returns 0 on success and -1 in case of an error.

 If sd is an IPv4 socket, the address passed must be an IPv4 address.
 If the sd is an IPv6 socket, the address passed can either be an IPv4
 or an IPv6 address.

 Applications cannot call bind() multiple times to associate multiple
 addresses to an endpoint. After the first call to bind(), all
 subsequent calls will return an error.

 If the IP address part of addr is specified as a wildcard (INADDR_ANY
 for an IPv4 address, or as IN6ADDR_ANY_INIT or in6addr_any for an
 IPv6 address), the operating system will associate the endpoint with
 an optimal address set of the available interfaces. If the IPv4
 sin_port or IPv6 sin6_port is set to 0, the operating system will
 choose an ephemeral port for the endpoint.

 If a bind() is not called prior to a sendmsg() call that initiates a
 new association, the system picks an ephemeral port and will choose
 an address set equivalent to binding with a wildcard address. One of
 those addresses will be the primary address for the association.
 This automatically enables the multi-homing capability of SCTP.

 The completion of this bind() process does not allow the SCTP
 endpoint to accept inbound SCTP association requests. Until a
 listen() system call, described below, is performed on the socket,
 the SCTP endpoint will promptly reject an inbound SCTP INIT request
 with an SCTP ABORT.

3.1.3. listen()

 By default, a one-to-many style socket does not accept new
 association requests. An application uses listen() to mark a socket
 as being able to accept new associations.

 The function prototype is

 int listen(int sd,
 int backlog);

https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires October 25, 2011 [Page 11]

Internet-Draft SCTP sockets API April 2011

 and the arguments are

 sd: The socket descriptor of the endpoint.

 backlog: If backlog is non-zero, enable listening, else disable
 listening.

 It returns 0 on success and -1 in case of an error.

 Note that one-to-many style socket consumers do not need to call
 accept to retrieve new associations. Calling accept() on a one-to-
 many style socket should return EOPNOTSUPP. Rather, new associations
 are accepted automatically, and notifications of the new associations
 are delivered via recvmsg() with the SCTP_ASSOC_CHANGE event (if
 these notifications are enabled). Clients will typically not call
 listen(), so that they can be assured that only actively initiated
 associations are possible on the socket. Server or peer-to-peer
 sockets, on the other hand, will always accept new associations, so a
 well-written application using server one-to-many style sockets must
 be prepared to handle new associations from unwanted peers.

 Also note that the SCTP_ASSOC_CHANGE event provides the association
 identifier for a new association, so if applications wish to use the
 association identifier as a parameter to other socket calls, they
 should ensure that the SCTP_ASSOC_CHANGE event is enabled.

3.1.4. sendmsg() and recvmsg()

 An application uses the sendmsg() and recvmsg() call to transmit data
 to and receive data from its peer.

 The function prototypes are

 ssize_t sendmsg(int sd,
 const struct msghdr *message,
 int flags);

 and

 ssize_t recvmsg(int sd,
 struct msghdr *message,
 int flags);

 using the arguments:

Stewart, et al. Expires October 25, 2011 [Page 12]

Internet-Draft SCTP sockets API April 2011

 sd: The socket descriptor of the endpoint.

 message: Pointer to the msghdr structure which contains a single
 user message and possibly some ancillary data. See Section 5 for
 complete description of the data structures.

 flags: No new flags are defined for SCTP at this level. See
Section 5 for SCTP specific flags used in the msghdr structure.

 sendmsg() returns the number of bytes accepted by the kernel or -1 in
 case of an error. recvmsg() returns the number of bytes received or
 -1 in case of an error.

 As described in Section 5, different types of ancillary data can be
 sent and received along with user data. When sending, the ancillary
 data is used to specify the sent behavior, such as the SCTP stream
 number to use. When receiving, the ancillary data is used to
 describe the received data, such as the SCTP stream sequence number
 of the message.

 When sending user data with sendmsg(), the msg_name field in the
 msghdr structure will be filled with one of the transport addresses
 of the intended receiver. If there is no existing association
 between the sender and the intended receiver, the sender's SCTP stack
 will set up a new association and then send the user data (see

Section 7.5 for more on implicit association setup). If sendmsg() is
 called with no data and there is no existing association, a new one
 will be established. The SCTP_INIT type ancillary data can be used
 to change some of the parameters used to set up a new association.
 If sendmsg() is called with NULL data, and there is no existing
 association but the SCTP_ABORT or SCTP_EOF flags are set as described
 in Section 5.3.4, then -1 is returned and errno is set to EINVAL.
 Sending a message using sendmsg() is atomic unless explicit EOR
 marking is enabled on the socket specified by sd (see

Section 8.1.26).

 If a peer sends a SHUTDOWN, an SCTP_SHUTDOWN_EVENT notification will
 be delivered if that notification has been enabled, and no more data
 can be sent to that association. Any attempt to send more data will
 cause sendmsg() to return with an ESHUTDOWN error. Note that the
 socket is still open for reading at this point so it is possible to
 retrieve notifications.

 When receiving a user message with recvmsg(), the msg_name field in
 the msghdr structure will be populated with the source transport
 address of the user data. The caller of recvmsg() can use this
 address information to determine to which association the received
 user message belongs. Note that if SCTP_ASSOC_CHANGE events are

Stewart, et al. Expires October 25, 2011 [Page 13]

Internet-Draft SCTP sockets API April 2011

 disabled, applications must use the peer transport address provided
 in the msg_name field by recvmsg() to perform correlation to an
 association, since they will not have the association identifier.

 If all data in a single message has been delivered, MSG_EOR will be
 set in the msg_flags field of the msghdr structure (see Section 5.1).

 If the application does not provide enough buffer space to completely
 receive a data message, MSG_EOR will not be set in msg_flags.
 Successive reads will consume more of the same message until the
 entire message has been delivered, and MSG_EOR will be set.

 If the SCTP stack is running low on buffers, it may partially deliver
 a message. In this case, MSG_EOR will not be set, and more calls to
 recvmsg() will be necessary to completely consume the message. Only
 one message at a time can be partially delivered in any stream. The
 socket option SCTP_FRAGMENT_INTERLEAVE controls various aspects of
 what interlacing of messages occurs for both the one-to-one and the
 one-to-many model sockets. Please consult Section 8.1.20 for further
 details on message delivery options.

3.1.5. close()

 Applications use close() to perform graceful shutdown (as described
 in Section 10.1 of [RFC4960]) on all the associations currently
 represented by a one-to-many style socket.

 The function prototype is

 int close(int sd);

 and the argument is

 sd: The socket descriptor of the associations to be closed.

 0 is returned on success and -1 in case of an error.

 To gracefully shutdown a specific association represented by the one-
 to-many style socket, an application should use the sendmsg() call,
 and include the SCTP_EOF flag. A user may optionally terminate an
 association non-gracefully by sending with the SCTP_ABORT flag set
 and possibly passing a user specified abort code in the data field.
 Both flags SCTP_EOF and SCTP_ABORT are passed with ancillary data
 (see Section 5.3.4) in the sendmsg() call.

 If sd in the close() call is a branched-off socket representing only
 one association, the shutdown is performed on that association only.

https://datatracker.ietf.org/doc/html/rfc4960#section-10.1

Stewart, et al. Expires October 25, 2011 [Page 14]

Internet-Draft SCTP sockets API April 2011

3.1.6. connect()

 An application may use the connect() call in the one-to-many style to
 initiate an association without sending data.

 The function prototype is

 int connect(int sd,
 const struct sockaddr *nam,
 socklen_t len);

 and the arguments are

 sd: The socket descriptor to have a new association added to.

 nam: The address structure (struct sockaddr_in for an IPv4 address
 or struct sockaddr_in6 for an IPv6 address, see [RFC3493]).

 len: The size of the address.

 0 is returned on success and -1 in case of an error.

 Multiple connect() calls can be made on the same socket to create
 multiple associations. This is different from the semantics of
 connect() on a UDP socket.

 Note that SCTP allows data exchange, similar to T/TCP [RFC1644],
 during the association set up phase. If an application wants to do
 this, it cannot use the connect() call. Instead, it should use
 sendto() or sendmsg() to initiate an association. If it uses
 sendto() and it wants to change the initialization behavior, it needs
 to use the SCTP_INITMSG socket option before calling sendto(). Or it
 can use sendmsg() with SCTP_INIT type ancillary data to initiate an
 association without calling setsockopt(). Note that the implicit
 setup is supported for the one-to-many style sockets.

 SCTP does not support half close semantics. This means that unlike
 T/TCP, MSG_EOF should not be set in the flags parameter when calling
 sendto() or sendmsg() when the call is used to initiate a connection.
 MSG_EOF is not an acceptable flag with an SCTP socket.

3.2. Non-blocking mode

 Some SCTP application may wish to avoid being blocked when calling a
 socket interface function.

 Once a bind() and/or subsequent sctp_bindx() calls are complete on a
 one-to-many style socket, an application may set the non-blocking

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc1644

Stewart, et al. Expires October 25, 2011 [Page 15]

Internet-Draft SCTP sockets API April 2011

 option by a fcntl() (such as O_NONBLOCK). After setting the socket
 to non-blocking mode, the sendmsg() function returns immediately.
 The success or failure of sending the data message (with possible
 SCTP_INITMSG ancillary data) will be signaled by the
 SCTP_ASSOC_CHANGE event with SCTP_COMM_UP or SCTP_CANT_START_ASSOC.
 If user data could not be sent (due to a SCTP_CANT_START_ASSOC), the
 sender will also receive an SCTP_SEND_FAILED_EVENT event. Events can
 be received by the user calling recvmsg(). A server (having called
 listen()) is also notified of an association up event by the
 reception of an SCTP_ASSOC_CHANGE with SCTP_COMM_UP via the calling
 of recvmsg() and possibly the reception of the first data message.

 To shutdown the association gracefully, the user must call sendmsg()
 with no data and with the SCTP_EOF flag set as described in

Section 5.3.4. The function returns immediately, and completion of
 the graceful shutdown is indicated by an SCTP_ASSOC_CHANGE
 notification of type SHUTDOWN_COMPLETE (see Section 6.1.1). Note
 that this can also be done using the sctp_sendv() call described in

Section 9.12.

 An application is recommended to use caution when using select() (or
 poll()) for writing on a one-to-many style socket. The reason being
 that the interpretation of select on write is implementation
 specific. Generally a positive return on a select on write would
 only indicate that one of the associations represented by the one-to-
 many socket is writable. An application that writes after the
 select() returns may still block since the association that was
 writeable is not the destination association of the write call.
 Likewise select() (or poll()) for reading from a one-to-many socket
 will only return an indication that one of the associations
 represented by the socket has data to be read.

 An application that wishes to know that a particular association is
 ready for reading or writing should either use the one-to-one style
 or use the sctp_peeloff() (see Section 9.2) function to separate the
 association of interest from the one-to-many socket.

 Note some implementations may have an extended select call such as
 epoll or kqueue that may escape this limitation and allow a select on
 a specific association of a one-to-many socket, but this is an
 implementation specific detail that a portable application cannot
 depend on.

3.3. Special considerations

 The fact that a one-to-many style socket can provide access to many
 SCTP associations through a single socket descriptor, has important
 implications for both application programmers and system programmers

Stewart, et al. Expires October 25, 2011 [Page 16]

Internet-Draft SCTP sockets API April 2011

 implementing this API. A key issue is how buffer space inside the
 sockets layer is managed. Because this implementation detail
 directly affects how application programmers must write their code to
 ensure correct operation and portability, this section provides some
 guidance to both implementers and application programmers.

 An important feature that SCTP shares with TCP is flow control.
 Specifically, a sender may not send data faster than the receiver can
 consume it.

 For TCP, flow control is typically provided for in the sockets API as
 follows. If the reader stops reading, the sender queues messages in
 the socket layer until the send socket buffer is completely filled.
 This results in a "stalled connection". Further attempts to write to
 the socket will block or return the error EAGAIN or EWOULDBLOCK for a
 non-blocking socket. At some point, either the connection is closed,
 or the receiver begins to read again freeing space in the output
 queue.

 For one-to-one style SCTP sockets (this includes sockets descriptors
 that were separated from a one-to-many style socket with
 sctp_peeloff()) the behavior is identical. For one-to-many style
 SCTP sockets there are multiple associations for a single socket,
 which makes the situation more complicated. If the implementation
 uses a single buffer space allocation shared by all associations, a
 single stalled association can prevent the further sending of data on
 all associations active on a particular one-to-many style socket.

 For a blocking socket, it should be clear that a single stalled
 association can block the entire socket. For this reason,
 application programmers may want to use non-blocking one-to-many
 style sockets. The application should at least be able to send
 messages to the non-stalled associations.

 But a non-blocking socket is not sufficient if the API implementer
 has chosen a single shared buffer allocation for the socket. A
 single stalled association would eventually cause the shared
 allocation to fill, and it would become impossible to send even to
 non-stalled associations.

 The API implementer can solve this problem by providing each
 association with its own allocation of outbound buffer space. Each
 association should conceptually have as much buffer space as it would
 have if it had its own socket. As a bonus, this simplifies the
 implementation of sctp_peeloff().

 To ensure that a given stalled association will not prevent other
 non-stalled associations from being writable, application programmers

Stewart, et al. Expires October 25, 2011 [Page 17]

Internet-Draft SCTP sockets API April 2011

 should either:

 o demand that the underlying implementation dedicates independent
 buffer space reservation to each association (as suggested above),
 or

 o verify that their application layer protocol does not permit large
 amounts of unread data at the receiver (this is true of some
 request-response protocols, for example), or

 o use one-to-one style sockets for association which may potentially
 stall (either from the beginning, or by using sctp_peeloff before
 sending large amounts of data that may cause a stalled condition).

4. One-to-One Style Interface

 The goal of this style is to follow as closely as possible the
 current practice of using the sockets interface for a connection
 oriented protocol, such as TCP. This style enables existing
 applications using connection oriented protocols to be ported to SCTP
 with very little effort.

 One-to-one style sockets can be connected (explicitly or implicitly)
 at most once, similar to TCP sockets.

 Note that some new SCTP features and some new SCTP socket options can
 only be utilized through the use of sendmsg() and recvmsg() calls,
 see Section 4.1.8.

4.1. Basic Operation

 A typical server in one-to-one style uses the following system call
 sequence to prepare an SCTP endpoint for servicing requests:

 o socket()

 o bind()

 o listen()

 o accept()

 The accept() call blocks until a new association is set up. It
 returns with a new socket descriptor. The server then uses the new
 socket descriptor to communicate with the client, using recv() and
 send() calls to get requests and send back responses.

Stewart, et al. Expires October 25, 2011 [Page 18]

Internet-Draft SCTP sockets API April 2011

 Then it calls

 o close()

 to terminate the association.

 A typical client uses the following system call sequence to setup an
 association with a server to request services:

 o socket()

 o connect()

 After returning from connect(), the client uses send()/sendmsg() and
 recv()/recvmsg() calls to send out requests and receive responses
 from the server.

 The client calls

 o close()

 to terminate this association when done.

4.1.1. socket()

 Applications call socket() to create a socket descriptor to represent
 an SCTP endpoint.

 The function prototype is

 int socket(int domain,
 int type,
 int protocol);

 and one uses PF_INET or PF_INET6 as the domain, SOCK_STREAM as the
 type and IPPROTO_SCTP as the protocol.

 Here, SOCK_STREAM indicates the creation of a one-to-one style
 socket.

 Using the PF_INET domain indicates the creation of an endpoint which
 can use only IPv4 addresses, while PF_INET6 creates an endpoint which
 can use both IPv6 and IPv4 addresses.

4.1.2. bind()

 Applications use bind() to specify which local address and port the
 SCTP endpoint should associate itself with.

Stewart, et al. Expires October 25, 2011 [Page 19]

Internet-Draft SCTP sockets API April 2011

 An SCTP endpoint can be associated with multiple addresses. To do
 this, sctp_bindx() is introduced in Section 9.1 to help applications
 do the job of associating multiple addresses. But note that an
 endpoint can only be associated with one local port.

 These addresses associated with a socket are the eligible transport
 addresses for the endpoint to send and receive data. The endpoint
 will also present these addresses to its peers during the association
 initialization process, see [RFC4960].

 The function prototype of bind() is

 int bind(int sd,
 struct sockaddr *addr,
 socklen_t addrlen);

 and the arguments are

 sd: The socket descriptor returned by socket().

 addr: The address structure (struct sockaddr_in for an IPv4 address
 or struct sockaddr_in6 for an IPv6 address, see [RFC3493]).

 addrlen: The size of the address structure.

 If sd is an IPv4 socket, the address passed must be an IPv4 address.
 If sd is an IPv6 socket, the address passed can either be an IPv4 or
 an IPv6 address.

 Applications cannot call bind() multiple times to associate multiple
 addresses to the endpoint. After the first call to bind(), all
 subsequent calls will return an error.

 If the IP address part of addr is specified as a wildcard (INADDR_ANY
 for an IPv4 address, or as IN6ADDR_ANY_INIT or in6addr_any for an
 IPv6 address), the operating system will associate the endpoint with
 an optimal address set of the available interfaces. If the IPv4
 sin_port or IPv6 sin6_port is set to 0, the operating system will
 choose an ephemeral port for the endpoint.

 If a bind() is not called prior to the connect() call, the system
 picks an ephemeral port and will choose an address set equivalent to
 binding with a wildcard address. One of these addresses will be the
 primary address for the association. This automatically enables the
 multi-homing capability of SCTP.

 The completion of this bind() process does not allow the SCTP
 endpoint to accept inbound SCTP association requests. Until a

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires October 25, 2011 [Page 20]

Internet-Draft SCTP sockets API April 2011

 listen() system call, described below, is performed on the socket,
 the SCTP endpoint will promptly reject an inbound SCTP INIT request
 with an SCTP ABORT.

4.1.3. listen()

 Applications use listen() to allow the SCTP endpoint to accept
 inbound associations.

 The function prototype is

 int listen(int sd,
 int backlog);

 and the arguments are

 sd: the socket descriptor of the SCTP endpoint.

 backlog: this specifies the max number of outstanding associations
 allowed in the socket's accept queue. These are the associations
 that have finished the four-way initiation handshake (see Section

5 of [RFC4960]) and are in the ESTABLISHED state. Note, a backlog
 of '0' indicates that the caller no longer wishes to receive new
 associations.

 It returns 0 on success an -1 in case of an error.

4.1.4. accept()

 Applications use the accept() call to remove an established SCTP
 association from the accept queue of the endpoint. A new socket
 descriptor will be returned from accept() to represent the newly
 formed association.

 The function prototype is

 int accept(int sd,
 struct sockaddr *addr,
 socklen_t *addrlen);

 and the arguments are

 sd: The listening socket descriptor.

 addr: On return, addr (struct sockaddr_in for an IPv4 address or
 struct sockaddr_in6 for an IPv6 address, see [RFC3493]) will
 contain the primary address of the peer endpoint.

https://datatracker.ietf.org/doc/html/rfc4960#section-5
https://datatracker.ietf.org/doc/html/rfc4960#section-5
https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires October 25, 2011 [Page 21]

Internet-Draft SCTP sockets API April 2011

 addrlen: On return, addrlen will contain the size of addr.

 The function returns the socket descriptor for the newly formed
 association on success and -1 in case of an error.

4.1.5. connect()

 Applications use connect() to initiate an association to a peer.

 The function prototype is

 int connect(int sd,
 const struct sockaddr *addr,
 socklen_t addrlen);

 and the arguments are

 sd: The socket descriptor of the endpoint.

 addr: The peer's (struct sockaddr_in for an IPv4 address or struct
 sockaddr_in6 for an IPv6 address, see [RFC3493]) address.

 addrlen: The size of the address.

 It returns 0 on success and -1 on error.

 This operation corresponds to the ASSOCIATE primitive described in
Section 10.1 of [RFC4960].

 The number of outbound streams the new association has is stack
 dependent. Applications can use the SCTP_INITMSG option described in

Section 8.1.3 before connecting to change the number of outbound
 streams.

 If a bind() is not called prior to the connect() call, the system
 picks an ephemeral port and will choose an address set equivalent to
 binding with INADDR_ANY and IN6ADDR_ANY_INIT for IPv4 and IPv6 socket
 respectively. One of the addresses will be the primary address for
 the association. This automatically enables the multi-homing
 capability of SCTP.

 Note that SCTP allows data exchange, similar to T/TCP [RFC1644],
 during the association set up phase. If an application wants to do
 this, it cannot use the connect() call. Instead, it should use
 sendto() or sendmsg() to initiate an association. If it uses
 sendto() and it wants to change the initialization behavior, it needs
 to use the SCTP_INITMSG socket option before calling sendto(). Or it
 can use sendmsg() with SCTP_INIT type ancillary data to initiate an

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc4960#section-10.1
https://datatracker.ietf.org/doc/html/rfc1644

Stewart, et al. Expires October 25, 2011 [Page 22]

Internet-Draft SCTP sockets API April 2011

 association without calling setsockopt(). Note that the implicit
 setup is supported for the one-to-one style sockets.

 SCTP does not support half close semantics. This means that unlike
 T/TCP, MSG_EOF should not be set in the flags parameter when calling
 sendto() or sendmsg() when the call is used to initiate a connection.
 MSG_EOF is not an acceptable flag with an SCTP socket.

4.1.6. close()

 Applications use close() to gracefully close down an association.

 The function prototype is

 int close(int sd);

 and the argument is

 sd: The socket descriptor of the association to be closed.

 It returns 0 on success and -1 in case of an error.

 After an application calls close() on a socket descriptor, no further
 socket operations will succeed on that descriptor.

4.1.7. shutdown()

 SCTP differs from TCP in that it does not have half closed semantics.
 Hence the shutdown() call for SCTP is an approximation of the TCP
 shutdown() call, and solves some different problems. Full TCP-
 compatibility is not provided, so developers porting TCP applications
 to SCTP may need to recode sections that use shutdown(). (Note that
 it is possible to achieve the same results as half close in SCTP
 using SCTP streams.)

 The function prototype is

 int shutdown(int sd,
 int how);

 and the arguments are

 sd: The socket descriptor of the association to be closed.

 how: Specifies the type of shutdown. The values are as follows:

Stewart, et al. Expires October 25, 2011 [Page 23]

Internet-Draft SCTP sockets API April 2011

 SHUT_RD: Disables further receive operations. No SCTP protocol
 action is taken.

 SHUT_WR: Disables further send operations, and initiates the SCTP
 shutdown sequence.

 SHUT_RDWR: Disables further send and receive operations and
 initiates the SCTP shutdown sequence.

 It returns 0 on success and -1 in case of an error.

 The major difference between SCTP and TCP shutdown() is that SCTP
 SHUT_WR initiates immediate and full protocol shutdown, whereas TCP
 SHUT_WR causes TCP to go into the half closed state. SHUT_RD behaves
 the same for SCTP as TCP. The purpose of SCTP SHUT_WR is to close
 the SCTP association while still leaving the socket descriptor open.
 This allows the caller to receive back any data which SCTP is unable
 to deliver (see Section 6.1.4 for more information) and receive event
 notifications.

 To perform the ABORT operation described in [RFC4960] Section 10.1,
 an application can use the socket option SO_LINGER. It is described
 in Section 8.1.4.

4.1.8. sendmsg() and recvmsg()

 With a one-to-one style socket, the application can also use
 sendmsg() and recvmsg() to transmit data to and receive data from its
 peer. The semantics is similar to those used in the one-to-many
 style (see Section 3.1.4), with the following differences:

 1. When sending, the msg_name field in the msghdr is not used to
 specify the intended receiver, rather it is used to indicate a
 preferred peer address if the sender wishes to discourage the
 stack from sending the message to the primary address of the
 receiver. If the socket is connected and the transport address
 given is not part of the current association, the data will not
 be sent and an SCTP_SEND_FAILED_EVENT event will be delivered to
 the application if send failure events are enabled.

 2. Using sendmsg() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the
 SCTP implementation.

https://datatracker.ietf.org/doc/html/rfc4960#section-10.1

Stewart, et al. Expires October 25, 2011 [Page 24]

Internet-Draft SCTP sockets API April 2011

4.1.9. getpeername()

 Applications use getpeername() to retrieve the primary socket address
 of the peer. This call is for TCP compatibility, and is not multi-
 homed. It may not work with one-to-many style sockets depending on
 the implementation. See Section 9.3 for a multi-homed style version
 of the call.

 The function prototype is

 int getpeername(int sd,
 struct sockaddr *address,
 socklen_t *len);

 and the arguments are:

 sd: The socket descriptor to be queried.

 address: On return, the peer primary address is stored in this
 buffer. If the socket is an IPv4 socket, the address will be
 IPv4. If the socket is an IPv6 socket, the address will be either
 an IPv6 or IPv4 address.

 len: The caller should set the length of address here. On return,
 this is set to the length of the returned address.

 It returns 0 on success and -1 in case of an error.

 If the actual length of the address is greater than the length of the
 supplied sockaddr structure, the stored address will be truncated.

5. Data Structures

 This section discusses important data structures which are specific
 to SCTP and are used with sendmsg() and recvmsg() calls to control
 SCTP endpoint operations and to access ancillary information and
 notifications.

5.1. The msghdr and cmsghdr Structures

 The msghdr structure used in the sendmsg() and recvmsg() calls, as
 well as the ancillary data carried in the structure, is the key for
 the application to set and get various control information from the
 SCTP endpoint.

 The msghdr and the related cmsghdr structures are defined and
 discussed in detail in [RFC3542]. They are defined as:

https://datatracker.ietf.org/doc/html/rfc3542

Stewart, et al. Expires October 25, 2011 [Page 25]

Internet-Draft SCTP sockets API April 2011

 struct msghdr {
 void *msg_name; /* ptr to socket address structure */
 socklen_t msg_namelen; /* size of socket address structure */
 struct iovec *msg_iov; /* scatter/gather array */
 int msg_iovlen; /* # elements in msg_iov */
 void *msg_control; /* ancillary data */
 socklen_t msg_controllen; /* ancillary data buffer length */
 int msg_flags; /* flags on received message */
 };

 struct cmsghdr {
 socklen_t cmsg_len; /* #bytes, including this header */
 int cmsg_level; /* originating protocol */
 int cmsg_type; /* protocol-specific type */
 /* followed by unsigned char cmsg_data[]; */
 };

 In the msghdr structure, the usage of msg_name has been discussed in
 previous sections (see Section 3.1.4 and Section 4.1.8).

 The scatter/gather buffers, or I/O vectors (pointed to by the msg_iov
 field) are treated by SCTP as a single user message for both
 sendmsg() and recvmsg().

 SCTP stack uses the ancillary data (msg_control field) to communicate
 the attributes, such as SCTP_RCVINFO, of the message stored in
 msg_iov to the socket end point. The different ancillary data types
 are described in Section 5.3.

 The msg_flags are not used when sending a message with sendmsg().

 If a notification has arrived, recvmsg() will return the notification
 in msg_iov field and set MSG_NOTIFICATION flag in msg_flags. If the
 MSG_NOTIFICATION flag is not set, recvmsg() will return data. See

Section 6 for more information about notifications.

 If all portions of a data frame or notification have been read,
 recvmsg() will return with MSG_EOR set in msg_flags.

5.2. Ancillary Data Considerations and Semantics

 Programming with ancillary socket data (msg_control) contains some
 subtleties and pitfalls, which are discussed below.

5.2.1. Multiple Items and Ordering

 Multiple ancillary data items may be included in any call to
 sendmsg() or recvmsg(); these may include multiple SCTP or non-SCTP,

Stewart, et al. Expires October 25, 2011 [Page 26]

Internet-Draft SCTP sockets API April 2011

 such as IP level items, or both.

 The ordering of ancillary data items (either by SCTP or another
 protocol) is not significant and is implementation-dependent, so
 applications must not depend on any ordering.

 SCTP_SNDRCV/SCTP_SNDINFO/SCTP_RCVINFO type ancillary data always
 correspond to the data in the msghdr's msg_iov member. There can be
 only one single such type ancillary data for each sendmsg() or
 recvmsg() call.

5.2.2. Accessing and Manipulating Ancillary Data

 Applications can infer the presence of data or ancillary data by
 examining the msg_iovlen and msg_controllen msghdr members,
 respectively.

 Implementations may have different padding requirements for ancillary
 data, so portable applications should make use of the macros
 CMSG_FIRSTHDR, CMSG_NXTHDR, CMSG_DATA, CMSG_SPACE, and CMSG_LEN. See
 [RFC3542] and the SCTP implementation's documentation for more
 information. The following is an example, from [RFC3542],
 demonstrating the use of these macros to access ancillary data:

 struct msghdr msg;
 struct cmsghdr *cmsgptr;

 /* fill in msg */

 /* call recvmsg() */

 for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;
 cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {
 if (cmsgptr->cmsg_level == ... && cmsgptr->cmsg_type == ...) {
 u_char *ptr;

 ptr = CMSG_DATA(cmsgptr);
 /* process data pointed to by ptr */
 }
 }

5.2.3. Control Message Buffer Sizing

 The information conveyed via SCTP_SNDRCV/SCTP_SNDINFO/SCTP_RCVINFO
 ancillary data will often be fundamental to the correct and sane
 operation of the sockets application. This is particularly true of
 the one-to-many semantics, but also of the one-to-one semantics. For
 example, if an application needs to send and receive data on

https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3542

Stewart, et al. Expires October 25, 2011 [Page 27]

Internet-Draft SCTP sockets API April 2011

 different SCTP streams, SCTP_SNDRCV/SCTP_SNDINFO/SCTP_RCVINFO
 ancillary data is indispensable.

 Given that some ancillary data is critical, and that multiple
 ancillary data items may appear in any order, applications should be
 carefully written to always provide a large enough buffer to contain
 all possible ancillary data that can be presented by recvmsg(). If
 the buffer is too small, and crucial data is truncated, it may pose a
 fatal error condition.

 Thus, it is essential that applications be able to deterministically
 calculate the maximum required buffer size to pass to recvmsg(). One
 constraint imposed on this specification that makes this possible is
 that all ancillary data definitions are of a fixed length. One way
 to calculate the maximum required buffer size might be to take the
 sum the sizes of all enabled ancillary data item structures, as
 calculated by CMSG_SPACE. For example, if we enabled
 SCTP_SNDRCV_INFO and IPV6_RECVPKTINFO [RFC3542], we would calculate
 and allocate the buffer size as follows:

 size_t total;
 void *buf;

 total = CMSG_SPACE(sizeof(struct sctp_sndrcvinfo)) +
 CMSG_SPACE(sizeof(struct in6_pktinfo));

 buf = malloc(total);

 We could then use this buffer (buf) for msg_control on each call to
 recvmsg() and be assured that we would not lose any ancillary data to
 truncation.

5.3. SCTP msg_control Structures

 A key element of all SCTP specific socket extensions is the use of
 ancillary data to specify and access SCTP specific data via the
 struct msghdr's msg_control member used in sendmsg() and recvmsg().
 Fine-grained control over initialization and sending parameters are
 handled with ancillary data.

 Each ancillary data item is proceeded by a struct cmsghdr (see
Section 5.1), which defines the function and purpose of the data

 contained in the cmsg_data[] member.

 By default on either style socket, SCTP will pass no ancillary data;
 Specific ancillary data items can be enabled with socket options
 defined for SCTP; see Section 6.2.

https://datatracker.ietf.org/doc/html/rfc3542

Stewart, et al. Expires October 25, 2011 [Page 28]

Internet-Draft SCTP sockets API April 2011

 Note that all ancillary types are fixed length; see Section 5.2 for
 further discussion on this. These data structures use struct
 sockaddr_storage (defined in [RFC3493]) as a portable, fixed length
 address format.

 Other protocols may also provide ancillary data to the socket layer
 consumer. These ancillary data items from other protocols may
 intermingle with SCTP data. For example, the IPv6 socket API
 definitions ([RFC3542] and [RFC3493]) define a number of ancillary
 data items. If a socket API consumer enables delivery of both SCTP
 and IPv6 ancillary data, they both may appear in the same msg_control
 buffer in any order. An application may thus need to handle other
 types of ancillary data besides those passed by SCTP.

 The sockets application must provide a buffer large enough to
 accommodate all ancillary data provided via recvmsg(). If the buffer
 is not large enough, the ancillary data will be truncated and the
 msghdr's msg_flags will include MSG_CTRUNC.

5.3.1. SCTP Initiation Structure (SCTP_INIT)

 This cmsghdr structure provides information for initializing new SCTP
 associations with sendmsg(). The SCTP_INITMSG socket option uses
 this same data structure. This structure is not used for recvmsg().

 +--------------+-----------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-----------+---------------------+
 | IPPROTO_SCTP | SCTP_INIT | struct sctp_initmsg |
 +--------------+-----------+---------------------+

 The sctp_initmsg structure is defined below:

 struct sctp_initmsg {
 uint16_t sinit_num_ostreams;
 uint16_t sinit_max_instreams;
 uint16_t sinit_max_attempts;
 uint16_t sinit_max_init_timeo;
 };

 sinit_num_ostreams: This is an integer number representing the
 number of streams that the application wishes to be able to send
 to. This number is confirmed in the SCTP_COMM_UP notification and
 must be verified since it is a negotiated number with the remote
 endpoint. The default value of 0 indicates to use the endpoint
 default value.

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3493

Stewart, et al. Expires October 25, 2011 [Page 29]

Internet-Draft SCTP sockets API April 2011

 sinit_max_instreams: This value represents the maximum number of
 inbound streams the application is prepared to support. This
 value is bounded by the actual implementation. In other words the
 user may be able to support more streams than the Operating
 System. In such a case, the Operating System limit overrides the
 value requested by the user. The default value of 0 indicates to
 use the endpoints default value.

 sinit_max_attempts: This integer specifies how many attempts the
 SCTP endpoint should make at resending the INIT. This value
 overrides the system SCTP 'Max.Init.Retransmits' value. The
 default value of 0 indicates to use the endpoints default value.
 This is normally set to the system's default 'Max.Init.Retransmit'
 value.

 sinit_max_init_timeo: This value represents the largest Time-Out or
 RTO value (in milliseconds) to use in attempting an INIT.
 Normally the 'RTO.Max' is used to limit the doubling of the RTO
 upon timeout. For the INIT message this value may override
 'RTO.Max'. This value must not influence 'RTO.Max' during data
 transmission and is only used to bound the initial setup time. A
 default value of 0 indicates to use the endpoints default value.
 This is normally set to the system's 'RTO.Max' value (60 seconds).

5.3.2. SCTP Header Information Structure (SCTP_SNDRCV) - DEPRECATED

 This cmsghdr structure specifies SCTP options for sendmsg() and
 describes SCTP header information about a received message through
 recvmsg(). This structure mixes the send and receive path.
 SCTP_SNDINFO described in Section 5.3.4 and SCTP_RCVINFO described in

Section 5.3.5 split this information. These structures should be
 used, when possible, since SCTP_SNDRCV is deprecated.

 +--------------+-------------+------------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-------------+------------------------+
 | IPPROTO_SCTP | SCTP_SNDRCV | struct sctp_sndrcvinfo |
 +--------------+-------------+------------------------+

 The sctp_sndrcvinfo structure is defined below:

Stewart, et al. Expires October 25, 2011 [Page 30]

Internet-Draft SCTP sockets API April 2011

 struct sctp_sndrcvinfo {
 uint16_t sinfo_stream;
 uint16_t sinfo_ssn;
 uint16_t sinfo_flags;
 uint32_t sinfo_ppid;
 uint32_t sinfo_context;
 uint32_t sinfo_timetolive;
 uint32_t sinfo_tsn;
 uint32_t sinfo_cumtsn;
 sctp_assoc_t sinfo_assoc_id;
 };

 sinfo_stream: For recvmsg() the SCTP stack places the message's
 stream number in this value. For sendmsg() this value holds the
 stream number that the application wishes to send this message to.
 If a sender specifies an invalid stream number an error indication
 is returned and the call fails.

 sinfo_ssn: For recvmsg() this value contains the stream sequence
 number that the remote endpoint placed in the DATA chunk. For
 fragmented messages this is the same number for all deliveries of
 the message (if more than one recvmsg() is needed to read the
 message). The sendmsg() call will ignore this parameter.

 sinfo_flags: This field may contain any of the following flags and
 is composed of a bitwise OR of these values.

 recvmsg() flags:

 SCTP_UNORDERED: This flag is present when the message was sent
 un-ordered.

 sendmsg() flags:

 SCTP_UNORDERED: This flag requests the un-ordered delivery of
 the message. If this flag is clear the datagram is
 considered an ordered send.

 SCTP_ADDR_OVER: This flag, in the one-to-many style, requests
 the SCTP stack to override the primary destination address
 with the address found with the sendto/sendmsg call.

 SCTP_ABORT: Setting this flag causes the specified association
 to abort by sending an ABORT message to the peer. The ABORT
 chunk will contain an error cause 'User Initiated Abort'
 with cause code 12. The cause specific information of this
 error cause is provided in msg_iov.

Stewart, et al. Expires October 25, 2011 [Page 31]

Internet-Draft SCTP sockets API April 2011

 SCTP_EOF: Setting this flag invokes the SCTP graceful shutdown
 procedure on the specified association. Graceful shutdown
 assures that all data queued by both endpoints is
 successfully transmitted before closing the association.

 SCTP_SENDALL: This flag, if set, will cause a one-to-many
 model socket to send the message to all associations that
 are currently established on this socket. For the one-to-
 one socket, this flag has no effect.

 sinfo_ppid: This value in sendmsg() is an unsigned integer that is
 passed to the remote end in each user message. In recvmsg() this
 value is the same information that was passed by the upper layer
 in the peer application. Please note that the SCTP stack performs
 no byte order modification of this field. For example, if the
 DATA chunk has to contain a given value in network byte order, the
 SCTP user has to perform the htonl() computation.

 sinfo_context: This value is an opaque 32 bit context datum that is
 used in the sendmsg() function. This value is passed back to the
 upper layer if an error occurs on the send of a message and is
 retrieved with each undelivered message.

 sinfo_timetolive: For the sending side, this field contains the
 message time to live in milliseconds. The sending side will
 expire the message within the specified time period if the message
 as not been sent to the peer within this time period. This value
 will override any default value set using any socket option. Also
 note that the value of 0 is special in that it indicates no
 timeout should occur on this message.

 sinfo_tsn: For the receiving side, this field holds a TSN that was
 assigned to one of the SCTP Data Chunks. For the sending side it
 is ignored.

 sinfo_cumtsn: This field will hold the current cumulative TSN as
 known by the underlying SCTP layer. Note this field is ignored
 when sending.

 sinfo_assoc_id: The association handle field, sinfo_assoc_id, holds
 the identifier for the association announced in the SCTP_COMM_UP
 notification. All notifications for a given association have the
 same identifier. Ignored for one-to-one style sockets.

 An sctp_sndrcvinfo item always corresponds to the data in msg_iov.

Stewart, et al. Expires October 25, 2011 [Page 32]

Internet-Draft SCTP sockets API April 2011

5.3.3. Extended SCTP Header Information Structure (SCTP_EXTRCV) -
 DEPRECATED

 This cmsghdr structure specifies SCTP options for SCTP header
 information about a received message via recvmsg(). Note that this
 structure is an extended version of SCTP_SNDRCV (see Section 5.3.2)
 and will only be received if the user has set the socket option
 SCTP_USE_EXT_RCVINFO to true in addition to any event subscription
 needed to receive ancillary data. See Section 8.1.22 on this socket
 option. Note that next message data is not valid unless the current
 message is completely read, i.e. the MSG_EOR is set, in other words
 if the application has more data to read from the current message
 then no next message information will be available.

 SCTP_NXTINFO described in Section 5.3.6 should be used when possible,
 since SCTP_EXTRCV is considered deprecated.

 +--------------+-------------+------------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-------------+------------------------+
 | IPPROTO_SCTP | SCTP_EXTRCV | struct sctp_extrcvinfo |
 +--------------+-------------+------------------------+

 The sctp_extrcvinfo structure is defined below:

 struct sctp_extrcvinfo {
 uint16_t sinfo_stream;
 uint16_t sinfo_ssn;
 uint16_t sinfo_flags;
 uint32_t sinfo_ppid;
 uint32_t sinfo_context;
 uint32_t sinfo_pr_value;
 uint32_t sinfo_tsn;
 uint32_t sinfo_cumtsn;
 uint16_t serinfo_next_flags;
 uint16_t serinfo_next_stream;
 uint32_t serinfo_next_aid;
 uint32_t serinfo_next_length;
 uint32_t serinfo_next_ppid;
 sctp_assoc_t sinfo_assoc_id;
 };

 sinfo_*: Please see Section 5.3.2 for the details for these fields.

 serinfo_next_flags: This bitmask will hold one or more of the
 following values:

Stewart, et al. Expires October 25, 2011 [Page 33]

Internet-Draft SCTP sockets API April 2011

 SCTP_NEXT_MSG_AVAIL: This bit, when set to 1, indicates that next
 message information is available i.e.: next_stream,
 next_asocid, next_length and next_ppid fields all have valid
 values. If this bit is set to 0, then these fields are not
 valid and should be ignored.

 SCTP_NEXT_MSG_ISCOMPLETE: This bit, when set, indicates that the
 next message is completely in the receive buffer. The
 next_length field thus contains the entire message size. If
 this flag is set to 0, then the next_length field only contains
 part of the message size since the message is still being
 received (it is being partially delivered).

 SCTP_NEXT_MSG_IS_UNORDERED: This bit, when set, indicates that
 the next message to be received was sent by the peer as
 unordered. If this bit is not set (i.e. the bit is 0) the next
 message to be read is an ordered message in the stream
 specified.

 SCTP_NEXT_MSG_IS_NOTIFICATION: This bit, when set, indicates that
 the next message to be received is not a message from the peer,
 but instead is a MSG_NOTIFICATION from the local SCTP stack.

 serinfo_next_stream: This value, when valid (see
 serinfo_next_flags), contains the next stream number that will be
 received on a subsequent call to one of the receive message
 functions.

 serinfo_next_aid: This value, when valid (see serinfo_next_flags),
 contains the next association identifier that will be received on
 a subsequent call to one of the receive message functions.

 serinfo_next_length: This value, when valid (see
 serinfo_next_flags), contains the length of the next message that
 will be received on a subsequent call to one of the receive
 message functions. Note that this length may be a partial length
 depending on the settings of next_flags.

 serinfo_next_ppid: This value, when valid (see serinfo_next_flags),
 contains the ppid of the next message that will be received on a
 subsequent call to one of the receive message functions.

5.3.4. SCTP Send Information Structure (SCTP_SNDINFO)

 This cmsghdr structure specifies SCTP options for sendmsg().

Stewart, et al. Expires October 25, 2011 [Page 34]

Internet-Draft SCTP sockets API April 2011

 +--------------+--------------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+--------------+---------------------+
 | IPPROTO_SCTP | SCTP_SNDINFO | struct sctp_sndinfo |
 +--------------+--------------+---------------------+

 The sctp_sndinfo structure is defined below:

 struct sctp_sndinfo {
 uint16_t snd_sid;
 uint16_t snd_flags;
 uint32_t snd_ppid;
 uint32_t snd_context;
 sctp_assoc_t snd_assoc_id;
 };

 snd_sid: This value holds the stream number that the application
 wishes to send this message to. If a sender specifies an invalid
 stream number an error indication is returned and the call fails.

 snd_flags: This field may contain any of the following flags and is
 composed of a bitwise OR of these values.

 SCTP_UNORDERED: This flag requests the un-ordered delivery of the
 message. If this flag is clear the datagram is considered an
 ordered send.

 SCTP_ADDR_OVER: This flag, in the one-to-many style, requests the
 SCTP stack to override the primary destination address with the
 address found with the sendto()/sendmsg call.

 SCTP_ABORT: Setting this flag causes the specified association to
 abort by sending an ABORT message to the peer. The ABORT chunk
 will contain an error cause 'User Initiated Abort' with cause
 code 12. The cause specific information of this error cause is
 provided in msg_iov.

 SCTP_EOF: Setting this flag invokes the SCTP graceful shutdown
 procedures on the specified association. Graceful shutdown
 assures that all data queued by both endpoints is successfully
 transmitted before closing the association.

 SCTP_SENDALL: This flag, if set, will cause a one-to-many model
 socket to send the message to all associations that are
 currently established on this socket. For the one-to-one
 socket, this flag has no effect.

Stewart, et al. Expires October 25, 2011 [Page 35]

Internet-Draft SCTP sockets API April 2011

 snd_ppid: This value in sendmsg() is an unsigned integer that is
 passed to the remote end in each user message. Please note that
 the SCTP stack performs no byte order modification of this field.
 For example, if the DATA chunk has to contain a given value in
 network byte order, the SCTP user has to perform the htonl()
 computation.

 snd_context: This value is an opaque 32 bit context datum that is
 used in the sendmsg() function. This value is passed back to the
 upper layer if an error occurs on the send of a message and is
 retrieved with each undelivered message.

 snd_assoc_id: The association handle field, sinfo_assoc_id, holds
 the identifier for the association announced in the SCTP_COMM_UP
 notification. All notifications for a given association have the
 same identifier. Ignored for one-to-one style sockets.

 An sctp_sndinfo item always corresponds to the data in msg_iov.

5.3.5. SCTP Receive Information Structure (SCTP_RCVINFO)

 This cmsghdr structure describes SCTP receive information about a
 received message through recvmsg().

 To enable the delivery of this information an application must use
 the SCTP_RECVRCVINFO socket option (see Section 8.1.29).

 +--------------+--------------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+--------------+---------------------+
 | IPPROTO_SCTP | SCTP_RCVINFO | struct sctp_rcvinfo |
 +--------------+--------------+---------------------+

 The sctp_rcvinfo structure is defined below:

 struct sctp_rcvinfo {
 uint16_t rcv_sid;
 uint16_t rcv_ssn;
 uint16_t rcv_flags;
 uint32_t rcv_ppid;
 uint32_t rcv_tsn;
 uint32_t rcv_cumtsn;
 uint32_t rcv_context;
 sctp_assoc_t rcv_assoc_id;
 };

Stewart, et al. Expires October 25, 2011 [Page 36]

Internet-Draft SCTP sockets API April 2011

 rcv_sid: The SCTP stack places the message's stream number in this
 value.

 rcv_ssn: This value contains the stream sequence number that the
 remote endpoint placed in the DATA chunk. For fragmented messages
 this is the same number for all deliveries of the message (if more
 than one recvmsg() is needed to read the message).

 rcv_flags: This field may contain any of the following flags and is
 composed of a bitwise OR of these values.

 SCTP_UNORDERED: This flag is present when the message was sent
 un-ordered.

 rcv_ppid: This value is the same information that was passed by the
 upper layer in the peer application. Please note that the SCTP
 stack performs no byte order modification of this field. For
 example, if the DATA chunk has to contain a given value in network
 byte order, the SCTP user has to perform the ntohl() computation.

 rcv_tsn: This field holds a TSN that was assigned to one of the SCTP
 Data Chunks.

 rcv_cumtsn: This field will hold the current cumulative TSN as known
 by the underlying SCTP layer.

 rcv_assoc_id: The association handle field, sinfo_assoc_id, holds
 the identifier for the association announced in the SCTP_COMM_UP
 notification. All notifications for a given association have the
 same identifier. Ignored for one-to-one style sockets.

 rcv_context: This value is an opaque 32 bit context datum that was
 set by the user with the SCTP_CONTEXT socket option. This value
 is passed back to the upper layer if an error occurs on the send
 of a message and is retrieved with each undelivered message.

 An sctp_rcvinfo item always corresponds to the data in msg_iov.

5.3.6. SCTP Next Receive Information Structure (SCTP_NXTINFO)

 This cmsghdr structure describes SCTP receive information of the next
 message which will be delivered through recvmsg() if this information
 is already available when delivering the current message.

 To enable the delivery of this information an application must use
 the SCTP_RECVNXTINFO socket option (see Section 8.1.30).

Stewart, et al. Expires October 25, 2011 [Page 37]

Internet-Draft SCTP sockets API April 2011

 +--------------+--------------+---------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+--------------+---------------------+
 | IPPROTO_SCTP | SCTP_NXTINFO | struct sctp_nxtinfo |
 +--------------+--------------+---------------------+

 The sctp_nxtinfo structure is defined below:

 struct sctp_nxtinfo {
 uint16_t nxt_sid;
 uint16_t nxt_flags;
 uint32_t nxt_ppid;
 uint32_t nxt_length;
 sctp_assoc_t nxt_assoc_id;
 };

 nxt_sid: The SCTP stack places the next message's stream number in
 this value.

 nxt_flags: This field may contain any of the following flags and is
 composed of a bitwise OR of these values.

 SCTP_UNORDERED: This flag is present when the next message was
 sent un-ordered.

 SCTP_COMPLETE: This flag indicates that the entire message has
 been received and is in the socket buffer. Note that this has
 special implications with respect to the nxt_length field, see
 nxt_length description below.

 SCTP_NOTIFICATION: This flag is present when the next message is
 not a user message but instead is a notification.

 nxt_ppid: This value is the same information that was passed by the
 upper layer in the peer application for the next message. Please
 note that the SCTP stack performs no byte order modification of
 this field. For example, if the DATA chunk has to contain a given
 value in network byte order, the SCTP user has to perform the
 ntohl() computation.

 nxt_length: This value is the length of the message currently within
 the socket buffer. This might NOT be the entire length of the
 message since a partial delivery may be in progress. Only if the
 flag SCTP_COMPLETE is set in the nxt_flags field does this field
 represent the entire next message size.

Stewart, et al. Expires October 25, 2011 [Page 38]

Internet-Draft SCTP sockets API April 2011

 nxt_assoc_id: The association handle field of the next message,
 nxt_assoc_id, holds the identifier for the association announced
 in the SCTP_COMM_UP notification. All notifications for a given
 association have the same identifier. Ignored for one-to-one
 style sockets.

5.3.7. SCTP PR-SCTP Information Structure (SCTP_PRINFO)

 This cmsghdr structure specifies SCTP options for sendmsg().

 +--------------+-------------+--------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+-------------+--------------------+
 | IPPROTO_SCTP | SCTP_PRINFO | struct sctp_prinfo |
 +--------------+-------------+--------------------+

 The sctp_prinfo structure is defined below:

 struct sctp_prinfo {
 uint16_t pr_policy;
 uint32_t pr_value;
 };

 pr_policy: This specifies which PR-SCTP policy is used. Using
 SCTP_PR_SCTP_NONE results in a reliable transmission. When
 SCTP_PR_SCTP_TTL is used, the PR-SCTP policy "timed reliability"
 defined in [RFC3758] is used. In this case, the lifetime is
 provided in pr_value.

 pr_value: The meaning of this field depends on the PR-SCTP policy
 specified by the pr_policy field. It is ignored when
 SCTP_PR_SCTP_NONE is specified. In case of SCTP_PR_SCTP_TTL the
 lifetime in milliseconds is specified.

 An sctp_prinfo item always corresponds to the data in msg_iov.

5.3.8. SCTP AUTH Information Structure (SCTP_AUTHINFO)

 This cmsghdr structure specifies SCTP options for sendmsg().

 +--------------+---------------+----------------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+---------------+----------------------+
 | IPPROTO_SCTP | SCTP_AUTHINFO | struct sctp_authinfo |
 +--------------+---------------+----------------------+

 The sctp_authinfo structure is defined below:

https://datatracker.ietf.org/doc/html/rfc3758

Stewart, et al. Expires October 25, 2011 [Page 39]

Internet-Draft SCTP sockets API April 2011

 struct sctp_authinfo {
 uint16_t auth_keyid;
 };

 auth_keyid: This specifies the shared key identifier used for
 sending the user message.

 An sctp_authinfo item always corresponds to the data in msg_iov.
 Please note that the SCTP implementation must not bundle user
 messages that needs to be authenticated using different shared key
 identifiers.

5.3.9. SCTP Destination Address Structure (IPv4) (SCTP_DSTADDRV4)

 This cmsghdr structure specifies SCTP options for sendmsg().

 +--------------+----------------+----------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+----------------+----------------+
 | IPPROTO_SCTP | SCTP_DSTADDRV4 | struct in_addr |
 +--------------+----------------+----------------+

 This ancillary data can be used to provide more than one destination
 address to sendmsg(). It can be used to implement sctp_sendv() using
 sendmsg().

5.3.10. SCTP Destination Address Structure (IPv6) (SCTP_DSTADDRV6)

 This cmsghdr structure specifies SCTP options for sendmsg().

 +--------------+----------------+-----------------+
 | cmsg_level | cmsg_type | cmsg_data[] |
 +--------------+----------------+-----------------+
 | IPPROTO_SCTP | SCTP_DSTADDRV6 | struct in6_addr |
 +--------------+----------------+-----------------+

 This ancillary data can be used to provide more than one destination
 address to sendmsg(). It can be used to implement sctp_sendv() using
 sendmsg().

6. SCTP Events and Notifications

 An SCTP application may need to understand and process events and
 errors that happen on the SCTP stack. These events include network
 status changes, association startups, remote operational errors and
 undeliverable messages. All of these can be essential for the
 application.

Stewart, et al. Expires October 25, 2011 [Page 40]

Internet-Draft SCTP sockets API April 2011

 When an SCTP application layer does a recvmsg() the message read is
 normally a data message from a peer endpoint. If the application
 wishes to have the SCTP stack deliver notifications of non-data
 events, it sets the appropriate socket option for the notifications
 it wants. See Section 6.2 for these socket options. When a
 notification arrives, recvmsg() returns the notification in the
 application-supplied data buffer via msg_iov, and sets
 MSG_NOTIFICATION in msg_flags.

 This section details the notification structures. Every notification
 structure carries some common fields which provide general
 information.

 A recvmsg() call will return only one notification at a time. Just
 as when reading normal data, it may return part of a notification if
 the msg_iov buffer is not large enough. If a single read is not
 sufficient, msg_flags will have MSG_EOR clear. The user must finish
 reading the notification before subsequent data can arrive.

6.1. SCTP Notification Structure

 The notification structure is defined as the union of all
 notification types.

 union sctp_notification {
 struct sctp_tlv {
 uint16_t sn_type; /* Notification type. */
 uint16_t sn_flags;
 uint32_t sn_length;
 } sn_header;
 struct sctp_assoc_change sn_assoc_change;
 struct sctp_paddr_change sn_paddr_change;
 struct sctp_remote_error sn_remote_error;
 struct sctp_send_failed sn_send_failed;
 struct sctp_shutdown_event sn_shutdown_event;
 struct sctp_adaptation_event sn_adaptation_event;
 struct sctp_pdapi_event sn_pdapi_event;
 struct sctp_authkey_event sn_auth_event;
 struct sctp_sender_dry_event sn_sender_dry_event;
 struct sctp_send_failed_event sn_send_failed_event;
 };

 sn_type: The following list describes the SCTP notification and
 event types for the field sn_type.

Stewart, et al. Expires October 25, 2011 [Page 41]

Internet-Draft SCTP sockets API April 2011

 SCTP_ASSOC_CHANGE: This tag indicates that an association has
 either been opened or closed. Refer to Section 6.1.1 for
 details.

 SCTP_PEER_ADDR_CHANGE: This tag indicates that an address that is
 part of an existing association has experienced a change of
 state (e.g. a failure or return to service of the reachability
 of an endpoint via a specific transport address). Please see

Section 6.1.2 for data structure details.

 SCTP_REMOTE_ERROR: The attached error message is an Operational
 Error received from the remote peer. It includes the complete
 TLV sent by the remote endpoint. See Section 6.1.3 for the
 detailed format.

 SCTP_SEND_FAILED_EVENT: The attached datagram could not be sent
 to the remote endpoint. This structure includes the original
 SCTP_SNDINFO that was used in sending this message i.e. this
 structure uses the sctp_sndinfo per Section 6.1.11.

 SCTP_SHUTDOWN_EVENT: The peer has sent a SHUTDOWN. No further
 data should be sent on this socket.

 SCTP_ADAPTATION_INDICATION: This notification holds the peer's
 indicated adaptation layer. Please see Section 6.1.6.

 SCTP_PARTIAL_DELIVERY_EVENT: This notification is used to tell a
 receiver that the partial delivery has been aborted. This may
 indicate the association is about to be aborted. Please see

Section 6.1.7.

 SCTP_AUTHENTICATION_EVENT: This notification is used to tell a
 receiver that either an error occurred on authentication, or a
 new key was made active. See Section 6.1.8.

 SCTP_SENDER_DRY_EVENT: This notification is used to inform the
 application that the sender has no more user data queued for
 transmission nor retransmission. See Section 6.1.9.

 sn_flags: These are notification-specific flags.

 sn_length: This is the length of the whole sctp_notification
 structure including the sn_type, sn_flags, and sn_length fields.

Stewart, et al. Expires October 25, 2011 [Page 42]

Internet-Draft SCTP sockets API April 2011

6.1.1. SCTP_ASSOC_CHANGE

 Communication notifications inform the application that an SCTP
 association has either begun or ended. The identifier for a new
 association is provided by this notification. The notification
 information has the following format:

 struct sctp_assoc_change {
 uint16_t sac_type;
 uint16_t sac_flags;
 uint32_t sac_length;
 uint16_t sac_state;
 uint16_t sac_error;
 uint16_t sac_outbound_streams;
 uint16_t sac_inbound_streams;
 sctp_assoc_t sac_assoc_id;
 uint8_t sac_info[];
 };

 sac_type: It should be SCTP_ASSOC_CHANGE.

 sac_flags: Currently unused.

 sac_length: This field is the total length of the notification data,
 including the notification header.

 sac_state: This field holds one of a number of values that
 communicate the event that happened to the association. They
 include:

 SCTP_COMM_UP: A new association is now ready and data may be
 exchanged with this peer. When an association has been
 established successfully, this notification should be the first
 one.

 SCTP_COMM_LOST: The association has failed. The association is
 now in the closed state. If SEND_FAILED notifications are
 turned on, an SCTP_COMM_LOST is accompanied by a series of
 SCTP_SEND_FAILED_EVENT events, one for each outstanding
 message.

 SCTP_RESTART: SCTP has detected that the peer has restarted.

 SCTP_SHUTDOWN_COMP: The association has gracefully closed.

Stewart, et al. Expires October 25, 2011 [Page 43]

Internet-Draft SCTP sockets API April 2011

 SCTP_CANT_STR_ASSOC: The association failed to setup. If non
 blocking mode is set and data was sent (on a one-to-many style
 socket), an SCTP_CANT_STR_ASSOC is accompanied by a series of
 SCTP_SEND_FAILED_EVENT events, one for each outstanding
 message.

 sac_error: If the state was reached due to an error condition (e.g.
 SCTP_COMM_LOST) any relevant error information is available in
 this field. This corresponds to the protocol error codes defined
 in [RFC4960].

 sac_outbound_streams:

 sac_inbound_streams: The maximum number of streams allowed in each
 direction are available in sac_outbound_streams and sac_inbound
 streams.

 sac_assoc_id: The sac_assoc_id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

 sac_info: If the sac_state is SCTP_COMM_LOST and an ABORT chunk was
 received for this association, sac_info[] contains the complete
 ABORT chunk as defined in the SCTP specification [RFC4960] Section

3.3.7. If the sac_state is SCTP_COMM_UP or SCTP_RESTART, sac_info
 may contain an array of uint8_t describing the features that the
 current association supports. Features may include

 SCTP_ASSOC_SUPPORTS_PR: Both endpoints support the protocol
 extension described in [RFC3758].

 SCTP_ASSOC_SUPPORTS_AUTH: Both endpoints support the protocol
 extension described in [RFC4895].

 SCTP_ASSOC_SUPPORTS_ASCONF: Both endpoints support the protocol
 extension described in [RFC5061].

 SCTP_ASSOC_SUPPORTS_MULTIBUF: For a one-to-many style socket, the
 local endpoints use separate send and/or receive buffers for
 each SCTP association.

6.1.2. SCTP_PEER_ADDR_CHANGE

 When a destination address of a multi-homed peer encounters a state
 change a peer address change event is sent. The notification has the
 following format:

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires October 25, 2011 [Page 44]

Internet-Draft SCTP sockets API April 2011

 struct sctp_paddr_change {
 uint16_t spc_type;
 uint16_t spc_flags;
 uint32_t spc_length;
 struct sockaddr_storage spc_aaddr;
 uint32_t spc_state;
 uint32_t spc_error;
 sctp_assoc_t spc_assoc_id;
 }

 spc_type: It should be SCTP_PEER_ADDR_CHANGE.

 spc_flags: Currently unused.

 spc_length: This field is the total length of the notification data,
 including the notification header.

 spc_aaddr: The affected address field holds the remote peer's
 address that is encountering the change of state.

 spc_state: This field holds one of a number of values that
 communicate the event that happened to the address. They include:

 SCTP_ADDR_AVAILABLE: This address is now reachable. This
 notification is provided whenever an address becomes reachable.

 SCTP_ADDR_UNREACHABLE: The address specified can no longer be
 reached. Any data sent to this address is rerouted to an
 alternate until this address becomes reachable. This
 notification is provided whenever an address becomes
 unreachable.

 SCTP_ADDR_REMOVED: The address is no longer part of the
 association.

 SCTP_ADDR_ADDED: The address is now part of the association.

 SCTP_ADDR_MADE_PRIM: This address has now been made to be the
 primary destination address. This notification is provided
 whenever an address is made primary.

 spc_error: If the state was reached due to any error condition (e.g.
 SCTP_ADDR_UNREACHABLE) any relevant error information is available
 in this field.

Stewart, et al. Expires October 25, 2011 [Page 45]

Internet-Draft SCTP sockets API April 2011

 spc_assoc_id: The spc_assoc_id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

6.1.3. SCTP_REMOTE_ERROR

 A remote peer may send an Operational Error message to its peer.
 This message indicates a variety of error conditions on an
 association. The entire ERROR chunk as it appears on the wire is
 included in an SCTP_REMOTE_ERROR event. Please refer to the SCTP
 specification [RFC4960] and any extensions for a list of possible
 error formats. An SCTP error notification has the following format:

 struct sctp_remote_error {
 uint16_t sre_type;
 uint16_t sre_flags;
 uint32_t sre_length;
 uint16_t sre_error;
 sctp_assoc_t sre_assoc_id;
 uint8_t sre_data[];
 };

 sre_type: It should be SCTP_REMOTE_ERROR.

 sre_flags: Currently unused.

 sre_length: This field is the total length of the notification data,
 including the notification header and the contents of sre_data.

 sre_error: This value represents one of the Operational Error causes
 defined in the SCTP specification, in network byte order.

 sre_assoc_id: The sre_assoc_id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

 sre_data: This contains the ERROR chunk as defined in the SCTP
 specification [RFC4960] Section 3.3.10.

6.1.4. SCTP_SEND_FAILED - DEPRECATED

 Please note that this notification is deprecated. Use
 SCTP_SEND_FAILED_EVENT instead.

 If SCTP cannot deliver a message, it can return back the message as a
 notification if the SCTP_SEND_FAILED event is enabled. The

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-3.3.10

Stewart, et al. Expires October 25, 2011 [Page 46]

Internet-Draft SCTP sockets API April 2011

 notification has the following format:

 struct sctp_send_failed {
 uint16_t ssf_type;
 uint16_t ssf_flags;
 uint32_t ssf_length;
 uint32_t ssf_error;
 struct sctp_sndrcvinfo ssf_info;
 sctp_assoc_t ssf_assoc_id;
 uint8_t ssf_data[];
 };

 ssf_type: It should be SCTP_SEND_FAILED.

 ssf_flags: The flag value will take one of the following values:

 SCTP_DATA_UNSENT: Indicates that the data was never put on the
 wire.

 SCTP_DATA_SENT: Indicates that the data was put on the wire.
 Note that this does not necessarily mean that the data was (or
 was not) successfully delivered.

 ssf_length: This field is the total length of the notification data,
 including the notification header and the payload in ssf_data.

 ssf_error: This value represents the reason why the send failed, and
 if set, will be an SCTP protocol error code as defined in

[RFC4960] Section 3.3.10.

 ssf_info: The ancillary data (struct sctp_sndrcvinfo) used to send
 the undelivered message. Regardless of if ancillary data is used
 or not, the ssf_info.sinfo_flags field indicates if the complete
 message or only part of the message is returned in ssf_data. If
 only part of the message is returned, it means that the part which
 is not present has been sent successfully to the peer.

 If the complete message cannot be sent, the SCTP_DATA_NOT_FRAG
 flags is set in ssf_info.sinfo_flags. If the first part of the
 message is sent successfully, the SCTP_DATA_LAST_FRAG is set.
 This means that the tail end of the message is returned in
 ssf_data.

 ssf_assoc_id: The ssf_assoc_id field, ssf_assoc_id, holds the
 identifier for the association. All notifications for a given
 association have the same association identifier. For a one-to-
 one style socket, this field is ignored.

https://datatracker.ietf.org/doc/html/rfc4960#section-3.3.10

Stewart, et al. Expires October 25, 2011 [Page 47]

Internet-Draft SCTP sockets API April 2011

 ssf_data: The undelivered message or part of the undelivered message
 will be present in the ssf_data field. Note that the
 ssf_info.sinfo_flags field as noted above should be used to
 determine if a complete message is present or just a piece of the
 message. Note that only user data is present in this field, any
 chunk headers or SCTP common headers must be removed by the SCTP
 stack.

6.1.5. SCTP_SHUTDOWN_EVENT

 When a peer sends a SHUTDOWN, SCTP delivers this notification to
 inform the application that it should cease sending data.

 struct sctp_shutdown_event {
 uint16_t sse_type;
 uint16_t sse_flags;
 uint32_t sse_length;
 sctp_assoc_t sse_assoc_id;
 };

 sse_type: It should be SCTP_SHUTDOWN_EVENT.

 sse_flags: Currently unused.

 sse_length: This field is the total length of the notification data,
 including the notification header. It will generally be
 sizeof(struct sctp_shutdown_event).

 sse_flags: Currently unused.

 sse_assoc_id: The sse_assoc_id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

6.1.6. SCTP_ADAPTATION_INDICATION

 When a peer sends an Adaptation Layer Indication parameter as
 described in [RFC5061], SCTP delivers this notification to inform the
 application about the peer's adaptation layer indication.

 struct sctp_adaptation_event {
 uint16_t sai_type;
 uint16_t sai_flags;
 uint32_t sai_length;
 uint32_t sai_adaptation_ind;
 sctp_assoc_t sai_assoc_id;
 };

https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires October 25, 2011 [Page 48]

Internet-Draft SCTP sockets API April 2011

 sai_type: It should be SCTP_ADAPTATION_INDICATION.

 sai_flags: Currently unused.

 sai_length: This field is the total length of the notification data,
 including the notification header. It will generally be
 sizeof(struct sctp_adaptation_event).

 sai_adaptation_ind: This field holds the bit array sent by the peer
 in the adaptation layer indication parameter.

 sai_assoc_id: The sai_assoc_id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket, this
 field is ignored.

6.1.7. SCTP_PARTIAL_DELIVERY_EVENT

 When a receiver is engaged in a partial delivery of a message this
 notification will be used to indicate various events.

 struct sctp_pdapi_event {
 uint16_t pdapi_type;
 uint16_t pdapi_flags;
 uint32_t pdapi_length;
 uint32_t pdapi_indication;
 uint32_t pdapi_stream;
 uint32_t pdapi_seq;
 sctp_assoc_t pdapi_assoc_id;
 };

 pdapi_type: It should be SCTP_PARTIAL_DELIVERY_EVENT.

 pdapi_flags: Currently unused.

 pdapi_length: This field is the total length of the notification
 data, including the notification header. It will generally be
 sizeof(struct sctp_pdapi_event).

 pdapi_indication: This field holds the indication being sent to the
 application. Currently there is only one defined value:

 SCTP_PARTIAL_DELIVERY_ABORTED: This indicates that the partial
 delivery of a user message has been aborted. This happens, for
 example, if an association is aborted while a partial delivery
 is going on or the user message gets abandoned using PR-SCTP
 while the partial delivery of this message is going on.

Stewart, et al. Expires October 25, 2011 [Page 49]

Internet-Draft SCTP sockets API April 2011

 pdapi_stream: This field holds the stream on which the partial
 delivery event happened.

 pdapi_seq: This field holds the stream sequence number which was
 being partially delivered.

 pdapi_assoc_id: The pdapi_assoc_id field holds the identifier for
 the association. All notifications for a given association have
 the same association identifier. For a one-to-one style socket
 this field is ignored.

6.1.8. SCTP_AUTHENTICATION_EVENT

 [RFC4895] defines an extension to authenticate SCTP messages. The
 following notification is used to report different events relating to
 the use of this extension.

 struct sctp_authkey_event {
 uint16_t auth_type;
 uint16_t auth_flags;
 uint32_t auth_length;
 uint16_t auth_keynumber;
 uint32_t auth_indication;
 sctp_assoc_t auth_assoc_id;
 };

 auth_type: It should be SCTP_AUTHENTICATION_EVENT.

 auth_flags: Currently unused.

 auth_length: This field is the total length of the notification
 data, including the notification header. It will generally be
 sizeof(struct sctp_authkey_event).

 auth_keynumber: This field holds the keynumber for the affected key
 indicated in the event (depends on auth_indication).

 auth_indication: This field holds the error or indication being
 reported. The following values are currently defined:

 SCTP_AUTH_NEW_KEY: This report indicates that a new key has been
 made active (used for the first time by the peer) and is now
 the active key. The auth_keynumber field holds the user
 specified key number.

Stewart, et al. Expires October 25, 2011 [Page 50]

Internet-Draft SCTP sockets API April 2011

 SCTP_AUTH_NO_AUTH: This report indicates that the peer does not
 support SCTP AUTH as defined in [RFC4895].

 SCTP_AUTH_FREE_KEY: This report indicates that the SCTP
 implementation will no longer use the key identifier specified
 in auth_keynumber.

 auth_assoc_id: The auth_assoc_id field holds the identifier for the
 association. All notifications for a given association have the
 same association identifier. For a one-to-one style socket this
 field is ignored.

6.1.9. SCTP_SENDER_DRY_EVENT

 When the SCTP stack has no more user data to send or retransmit, this
 notification is given to the user. Also, at the time when a user app
 subscribes to this event, if there is no data to be sent or
 retransmit, the stack will immediately send up this notification.

 struct sctp_sender_dry_event {
 uint16_t sender_dry_type;
 uint16_t sender_dry_flags;
 uint32_t sender_dry_length;
 sctp_assoc_t sender_dry_assoc_id;
 };

 sender_dry_type: It should be SCTP_SENDER_DRY_EVENT.

 sender_dry_flags: Currently unused.

 sender_dry_length: This field is the total length of the
 notification data, including the notification header. It will
 generally be sizeof(struct sctp_sender_dry_event).

 sender_dry_assoc_id: The sender_dry_assoc_id field holds the
 identifier for the association. All notifications for a given
 association have the same association identifier. For a one-to-
 one style socket this field is ignored.

6.1.10. SCTP_NOTIFICATIONS_STOPPED_EVENT

 SCTP notifications, when subscribed to, are reliable. They are
 always delivered as long as there is space in the socket receive
 buffer. However, if an implementation experiences a notification
 storm, it may run out of socket buffer space. When this occurs it
 may wish to disable notifications. If the implementation chooses to
 do this, it will append a final notification
 SCTP_NOTIFICATIONS_STOPPED_EVENT. This notification is a union

https://datatracker.ietf.org/doc/html/rfc4895

Stewart, et al. Expires October 25, 2011 [Page 51]

Internet-Draft SCTP sockets API April 2011

 sctp_notification, where only the struct sctp_tlv (see the union
 above) is used. It only contains this type in the sn_type field, the
 sn_length field set to the sizeof an sctp_tlv structure and the
 sn_flags set to 0. If an application receives this notification, it
 will need to re-subscribe to any notifications of interest to it,
 except for the sctp_data_io_event (note that SCTP_EVENTS is
 deprecated).

 An endpoint is automatically subscribed to this event as soon as it
 is subscribed to any event other than data io events.

6.1.11. SCTP_SEND_FAILED_EVENT

 If SCTP cannot deliver a message, it can return back the message as a
 notification if the SCTP_SEND_FAILED_EVENT event is enabled. The
 notification has the following format:

 struct sctp_send_failed_event {
 uint16_t ssfe_type;
 uint16_t ssfe_flags;
 uint32_t ssfe_length;
 uint32_t ssfe_error;
 struct sctp_sndinfo ssfe_info;
 sctp_assoc_t ssfe_assoc_id;
 uint8_t ssfe_data[];
 };

 ssfe_type: It should be SCTP_SEND_FAILED_EVENT.

 ssfe_flags: The flag value will take one of the following values:

 SCTP_DATA_UNSENT: Indicates that the data was never put on the
 wire.

 SCTP_DATA_SENT: Indicates that the data was put on the wire.
 Note that this does not necessarily mean that the data was (or
 was not) successfully delivered.

 ssfe_length: This field is the total length of the notification
 data, including the notification header and the payload in
 ssf_data.

 ssfe_error: This value represents the reason why the send failed,
 and if set, will be an SCTP protocol error code as defined in

[RFC4960] Section 3.3.10.

https://datatracker.ietf.org/doc/html/rfc4960#section-3.3.10

Stewart, et al. Expires October 25, 2011 [Page 52]

Internet-Draft SCTP sockets API April 2011

 ssfe_info: The ancillary data (struct sctp_sndinfo) used to send the
 undelivered message. Regardless of if ancillary data is used or
 not, the ssfe_info.sinfo_flags field indicates if the complete
 message or only part of the message is returned in ssf_data. If
 only part of the message is returned, it means that the part which
 is not present has been sent successfully to the peer.

 If the complete message cannot be sent, the SCTP_DATA_NOT_FRAG
 flags is set in ssfe_info.sinfo_flags. If the first part of the
 message is sent successfully, the SCTP_DATA_LAST_FRAG is set.
 This means that the tail end of the message is returned in
 ssf_data.

 ssfe_assoc_id: The ssfe_assoc_id field, ssf_assoc_id, holds the
 identifier for the association. All notifications for a given
 association have the same association identifier. For a one-to-
 one style socket, this field is ignored.

 ssfe_data: The undelivered message or part of the undelivered
 message will be present in the ssf_data field. Note that the
 ssf_info.sinfo_flags field as noted above should be used to
 determine if a complete message is present or just a piece of the
 message. Note that only user data is present in this field, any
 chunk headers or SCTP common headers must be removed by the SCTP
 stack.

6.2. Notification Interest Options

6.2.1. SCTP_EVENTS option - DEPRECATED

 Please note that this option is deprecated. Use the SCTP_EVENT
 option described in Section 6.2.2 instead.

 To receive SCTP event notifications, an application registers its
 interest by setting the SCTP_EVENTS socket option. The application
 then uses recvmsg() to retrieve notifications. A notification is
 stored in the data part (msg_iov) of the struct msghdr. The socket
 option uses the following structure:

Stewart, et al. Expires October 25, 2011 [Page 53]

Internet-Draft SCTP sockets API April 2011

 struct sctp_event_subscribe {
 uint8_t sctp_data_io_event;
 uint8_t sctp_association_event;
 uint8_t sctp_address_event;
 uint8_t sctp_send_failure_event;
 uint8_t sctp_peer_error_event;
 uint8_t sctp_shutdown_event;
 uint8_t sctp_partial_delivery_event;
 uint8_t sctp_adaptation_layer_event;
 uint8_t sctp_authentication_event;
 uint8_t sctp_sender_dry_event;
 };

 sctp_data_io_event: Setting this flag to 1 will cause the reception
 of SCTP_SNDRCV information on a per message basis. The
 application will need to use the recvmsg() interface so that it
 can receive the event information contained in the msg_control
 field. Setting the flag to 0 will disable the reception of the
 message control information. Note that this is not really a
 notification and this is stored in the ancillary data
 (msg_control), not in the data part (msg_iov).

 sctp_association_event: Setting this flag to 1 will enable the
 reception of association event notifications. Setting the flag to
 0 will disable association event notifications.

 sctp_address_event: Setting this flag to 1 will enable the reception
 of address event notifications. Setting the flag to 0 will
 disable address event notifications.

 sctp_send_failure_event: Setting this flag to 1 will enable the
 reception of send failure event notifications. Setting the flag
 to 0 will disable send failure event notifications.

 sctp_peer_error_event: Setting this flag to 1 will enable the
 reception of peer error event notifications. Setting the flag to
 0 will disable peer error event notifications.

 sctp_shutdown_event: Setting this flag to 1 will enable the
 reception of shutdown event notifications. Setting the flag to 0
 will disable shutdown event notifications.

 sctp_partial_delivery_event: Setting this flag to 1 will enable the
 reception of partial delivery notifications. Setting the flag to
 0 will disable partial delivery event notifications.

Stewart, et al. Expires October 25, 2011 [Page 54]

Internet-Draft SCTP sockets API April 2011

 sctp_adaptation_layer_event: Setting this flag to 1 will enable the
 reception of adaptation layer notifications. Setting the flag to
 0 will disable adaptation layer event notifications.

 sctp_authentication_event: Setting this flag to 1 will enable the
 reception of authentication layer notifications. Setting the flag
 to 0 will disable authentication layer event notifications.

 sctp_sender_dry_event: Setting this flag to 1 will enable the
 reception of sender dry notifications. Setting the flag to 0 will
 disable sender dry event notifications.

 An example where an application would like to receive data_io_events
 and association_events but no others would be as follows:

 {
 struct sctp_event_subscribe events;

 memset(&events,0,sizeof(events));

 events.sctp_data_io_event = 1;
 events.sctp_association_event = 1;

 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &events, sizeof(events));
 }

 Note that for one-to-many style SCTP sockets, the caller of recvmsg()
 receives ancillary data and notifications for all associations bound
 to the file descriptor. For one-to-one style SCTP sockets, the
 caller receives ancillary data and notifications only for the single
 association bound to the file descriptor.

 By default both the one-to-one style and the one-to-many style socket
 do not subscribe to any notification.

6.2.2. SCTP_EVENT option

 The SCTP_EVENTS socket option has one issue for future compatibility.
 As new features are added the structure (sctp_event_subscribe) must
 be expanded. This can cause an application binary interface (ABI)
 issue unless an implementation has added padding at the end of the
 structure. To avoid this problem, SCTP_EVENTS has been deprecated
 and a new socket option SCTP_EVENT has taken its place. The option
 is used with the following structure:

Stewart, et al. Expires October 25, 2011 [Page 55]

Internet-Draft SCTP sockets API April 2011

 struct sctp_event {
 sctp_assoc_t se_assoc_id;
 uint16_t se_type;
 uint8_t se_on;
 };

 se_assoc_id: The se_assoc_id field is ignored for one-to-one style
 sockets. For one-to-many style sockets this field can be a
 particular association identifier or SCTP_{FUTURE|CURRENT|
 ALL}_ASSOC.

 se_type: The se_type field can be filled with any value that would
 show up in the respective sn_type field (in the sctp_tlv structure
 of the notification).

 se_on: The se_on field is set to 1 to turn on an event and set to 0
 to turn off an event.

 To use this option the user fills in this structure and then calls
 the setsockopt to turn on or off an individual event. The following
 is an example use of this option:

 {
 struct sctp_event event;

 memset(&event, 0, sizeof(event));

 event.se_assoc_id = SCTP_FUTURE_ASSOC;
 event.se_type = SCTP_SENDER_DRY_EVENT;
 event.se_on = 1;
 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(event));
 }

 By default both the one-to-one style and the one-to-many style socket
 do not subscribe to any notification.

7. Common Operations for Both Styles

7.1. send(), recv(), sendto(), and recvfrom()

 Applications can use send() and sendto() to transmit data to the peer
 of an SCTP endpoint. recv() and recvfrom() can be used to receive
 data from the peer.

 The function prototypes are

Stewart, et al. Expires October 25, 2011 [Page 56]

Internet-Draft SCTP sockets API April 2011

 ssize_t send(int sd,
 const void *msg,
 size_t len,
 int flags);

 ssize_t sendto(int sd,
 const void *msg,
 size_t len,
 int flags,
 const struct sockaddr *to,
 socklen_t tolen);

 ssize_t recv(int sd,
 void *buf,
 size_t len,
 int flags);

 ssize_t recvfrom(int sd,
 void *buf,
 size_t len,
 int flags,
 struct sockaddr *from,
 socklen_t *fromlen);

 and the arguments are

 sd: The socket descriptor of an SCTP endpoint.

 msg: The message to be sent.

 len: The size of the message or the size of the buffer.

 to: One of the peer addresses of the association to be used to send
 the message.

 tolen: The size of the address.

 buf: The buffer to store a received message.

 from: The buffer to store the peer address used to send the received
 message.

Stewart, et al. Expires October 25, 2011 [Page 57]

Internet-Draft SCTP sockets API April 2011

 fromlen: The size of the from address.

 flags: (described below).

 These calls give access to only basic SCTP protocol features. If
 either peer in the association uses multiple streams, or sends
 unordered data, these calls will usually be inadequate, and may
 deliver the data in unpredictable ways.

 SCTP has the concept of multiple streams in one association. The
 above calls do not allow the caller to specify on which stream a
 message should be sent. The system uses stream 0 as the default
 stream for send() and sendto(). recv() and recvfrom() return data
 from any stream, but the caller can not distinguish the different
 streams. This may result in data seeming to arrive out of order.
 Similarly, if a data chunk is sent unordered, recv() and recvfrom()
 provide no indication.

 SCTP is message based. The msg buffer above in send() and sendto()
 is considered to be a single message. This means that if the caller
 wants to send a message that is composed by several buffers, the
 caller needs to combine them before calling send() or sendto().
 Alternately, the caller can use sendmsg() to do that without
 combining them. Sending a message using send() or sendto() is atomic
 unless explicit EOR marking is enabled on the socket specified by sd.
 Using sendto() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the SCTP
 implementation. recv() and recvfrom() cannot distinguish message
 boundaries (i.e. there is no way to observe the MSG_EOR flag to
 detect partial delivery).

 In receiving, if the buffer supplied is not large enough to hold a
 complete message, the receive call acts like a stream socket and
 returns as much data as will fit in the buffer.

 Note, the send() and recv() calls may not be used for a one-to-many
 style socket.

 Note, if an application calls a send() or sendto() function with no
 user data the SCTP implementation should reject the request with an
 appropriate error message. An implementation is not allowed to send
 a DATA chunk with no user data [RFC4960].

7.2. setsockopt() and getsockopt()

 Applications use setsockopt() and getsockopt() to set or retrieve
 socket options. Socket options are used to change the default
 behavior of socket calls. They are described in Section 8.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 58]

Internet-Draft SCTP sockets API April 2011

 The function prototypes are

 int getsockopt(int sd,
 int level,
 int optname,
 void *optval,
 socklen_t *optlen);

 and

 int setsockopt(int sd,
 int level,
 int optname,
 const void *optval,
 socklen_t optlen);

 and the arguments are

 sd: The socket descriptor.

 level: Set to IPPROTO_SCTP for all SCTP options.

 optname: The option name.

 optval: The buffer to store the value of the option.

 optlen: The size of the buffer (or the length of the option
 returned).

 They return 0 on success and -1 in case of an error.

 All socket options set on a one-to-one style listening socket also
 apply to all future accepted sockets. For one-to-many style sockets
 often a socket option will pass a structure that includes an assoc_id
 field. This field can be filled with the association identifier of a
 particular association and unless otherwise specified can be filled
 with one of the following constants:

 SCTP_FUTURE_ASSOC: Specifies that only future associations created
 after this socket option will be affected by this call.

 SCTP_CURRENT_ASSOC: Specifies that only currently existing
 associations will be affected by this call, future associations
 will still receive the previous default value.

Stewart, et al. Expires October 25, 2011 [Page 59]

Internet-Draft SCTP sockets API April 2011

 SCTP_ALL_ASSOC: Specifies that all current and future associations
 will be affected by this call.

7.3. read() and write()

 Applications can use read() and write() to send and receive data to
 and from a peer. They have the same semantics as send() and recv()
 except that the flags parameter cannot be used.

7.4. getsockname()

 Applications use getsockname() to retrieve the locally-bound socket
 address of the specified socket. This is especially useful if the
 caller let SCTP choose a local port. This call is for single homed
 endpoints. It does not work well with multi-homed endpoints. See

Section 9.5 for a multi-homed version of the call.

 The function prototype is

 int getsockname(int sd,
 struct sockaddr *address,
 socklen_t *len);

 and the arguments are

 sd: The socket descriptor to be queried.

 address: On return, one locally bound address (chosen by the SCTP
 stack) is stored in this buffer. If the socket is an IPv4 socket,
 the address will be IPv4. If the socket is an IPv6 socket, the
 address will be either an IPv6 or IPv4 address.

 len: The caller should set the length of the address here. On
 return, this is set to the length of the returned address.

 It returns 0 on success and -1 in case of an error.

 If the actual length of the address is greater than the length of the
 supplied sockaddr structure, the stored address will be truncated.

 If the socket has not been bound to a local name, the value stored in
 the object pointed to by address is unspecified.

7.5. Implicit Association Setup

 The application can begin sending and receiving data using the
 sendmsg()/recvmsg() or sendto()/recvfrom() calls, without going
 through any explicit association setup procedures (i.e., no connect()

Stewart, et al. Expires October 25, 2011 [Page 60]

Internet-Draft SCTP sockets API April 2011

 calls required).

 Whenever sendmsg() or sendto() is called and the SCTP stack at the
 sender finds that no association exists between the sender and the
 intended receiver (identified by the address passed either in the
 msg_name field of msghdr structure in the sendmsg() call or the
 dest_addr field in the sendto() call), the SCTP stack will
 automatically setup an association to the intended receiver.

 Upon the successful association setup an SCTP_COMM_UP notification
 will be dispatched to the socket at both the sender and receiver
 side. This notification can be read by the recvmsg() system call
 (see Section 3.1.4).

 Note, if the SCTP stack at the sender side supports bundling, the
 first user message may be bundled with the COOKIE ECHO message
 [RFC4960].

 When the SCTP stack sets up a new association implicitly, the
 SCTP_INIT type ancillary data may also be passed along (see

Section 5.3.1 for details of the data structures) to change some
 parameters used in setting up a new association.

 If this information is not present in the sendmsg() call, or if the
 implicit association setup is triggered by a sendto() call, the
 default association initialization parameters will be used. These
 default association parameters may be set with respective
 setsockopt() calls or be left to the system defaults.

 Implicit association setup cannot be initiated by send() calls.

8. Socket Options

 The following sub-section describes various SCTP level socket options
 that are common to both styles. SCTP associations can be multi-
 homed. Therefore, certain option parameters include a
 sockaddr_storage structure to select which peer address the option
 should be applied to.

 For the one-to-many style sockets, an sctp_assoc_t (association
 identifier) parameter is used to identify the association instance
 that the operation affects. So it must be set when using this style.

 For the one-to-one style sockets and branched off one-to-many style
 sockets (see Section 9.2) this association ID parameter is ignored.

 Note that socket or IP level options are set or retrieved per socket.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 61]

Internet-Draft SCTP sockets API April 2011

 This means that for one-to-many style sockets, the options will be
 applied to all associations (similar to using SCTP_ALL_ASSOC as the
 association identifier) belonging to the socket. For one-to-one
 style, these options will be applied to all peer addresses of the
 association controlled by the socket. Applications should be careful
 in setting those options.

 For some IP stacks getsockopt() is read-only; so a new interface will
 be needed when information must be passed both into and out of the
 SCTP stack. The syntax for sctp_opt_info() is

 int sctp_opt_info(int sd,
 sctp_assoc_t id,
 int opt,
 void *arg,
 socklen_t *size);

 The sctp_opt_info() call is a replacement for getsockopt() only and
 will not set any options associated with the specified socket. A
 setsockopt() must be used to set any writeable option.

 For one-to-many style sockets, id specifies the association to query.
 For one-to-one style sockets, id is ignored. For one-to-many
 sockets, any association identifier in the structure provided as arg
 is ignored and id takes precedence.

 Note that SCTP_CURRENT_ASSOC and SCTP_ALL_ASSOC cannot be used with
 sctp_opt_info() or in getsockopt() calls. Using them will result in
 an error (returning -1 and errno set to EINVAL). SCTP_FUTURE_ASSOC
 can be used to query information for future associations.

 The field opt specifies which SCTP socket option to get. It can get
 any socket option currently supported that requests information
 (either read/write options or read only) such as:

 SCTP_RTOINFO

 SCTP_ASSOCINFO

 SCTP_DEFAULT_SEND_PARAM

 SCTP_GET_PEER_ADDR_INFO

 SCTP_PRIMARY_ADDR

Stewart, et al. Expires October 25, 2011 [Page 62]

Internet-Draft SCTP sockets API April 2011

 SCTP_PEER_ADDR_PARAMS

 SCTP_STATUS

 SCTP_CONTEXT

 SCTP_AUTH_ACTIVE_KEY

 SCTP_PEER_AUTH_CHUNKS

 SCTP_LOCAL_AUTH_CHUNKS

 The arg field is an option-specific structure buffer provided by the
 caller. See the rest of this sections subsections for more
 information on these options and option-specific structures.

 sctp_opt_info() returns 0 on success, or on failure returns -1 and
 sets errno to the appropriate error code.

8.1. Read / Write Options

8.1.1. Retransmission Timeout Parameters (SCTP_RTOINFO)

 The protocol parameters used to initialize and limit the
 retransmission timeout (RTO) are tunable. See [RFC4960] for more
 information on how these parameters are used in RTO calculation.

 The following structure is used to access and modify these
 parameters:

 struct sctp_rtoinfo {
 sctp_assoc_t srto_assoc_id;
 uint32_t srto_initial;
 uint32_t srto_max;
 uint32_t srto_min;
 };

 srto_initial: This contains the initial RTO value.

 srto_max and srto_min: These contain the maximum and minimum bounds
 for all RTOs.

 srto_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets the application may fill
 in an association identifier or SCTP_FUTURE_ASSOC. It is an error
 to use SCTP_{CURRENT|ALL}_ASSOC in srto_assoc_id.

 All times are given in milliseconds. A value of 0, when modifying

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 63]

Internet-Draft SCTP sockets API April 2011

 the parameters, indicates that the current value should not be
 changed.

 To access or modify these parameters, the application should call
 getsockopt() or setsockopt() respectively with the option name
 SCTP_RTOINFO.

8.1.2. Association Parameters (SCTP_ASSOCINFO)

 This option is used to both examine and set various association and
 endpoint parameters. See [RFC4960] for more information on how this
 parameter is used.

 The following structure is used to access and modify these
 parameters:

 struct sctp_assocparams {
 sctp_assoc_t sasoc_assoc_id;
 uint16_t sasoc_asocmaxrxt;
 uint16_t sasoc_number_peer_destinations;
 uint32_t sasoc_peer_rwnd;
 uint32_t sasoc_local_rwnd;
 uint32_t sasoc_cookie_life;
 };

 sasoc_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets the application may fill
 in an association identifier or SCTP_FUTURE_ASSOC. It is an error
 to use SCTP_{CURRENT|ALL}_ASSOC in sasoc_assoc_id.

 sasoc_asocmaxrxt: This contains the maximum retransmission attempts
 to make for the association.

 sasoc_number_peer_destinations: This is the number of destination
 addresses that the peer has.

 sasoc_peer_rwnd: This holds the current value of the peers rwnd
 (reported in the last SACK) minus any outstanding data (i.e. data
 in flight).

 sasoc_local_rwnd: This holds the last reported rwnd that was sent to
 the peer.

 sasoc_cookie_life: This is the association's cookie life value used
 when issuing cookies.

 The values of the sasoc_peer_rwnd is meaningless when examining
 endpoint information (i.e. it is only valid when examining

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 64]

Internet-Draft SCTP sockets API April 2011

 information on a specific association).

 All time values are given in milliseconds. A value of 0, when
 modifying the parameters, indicates that the current value should not
 be changed.

 The values of the sasoc_asocmaxrxt and sasoc_cookie_life may be set
 on either an endpoint or association basis. The rwnd and destination
 counts (sasoc_number_peer_destinations, sasoc_peer_rwnd,
 sasoc_local_rwnd) are not settable and any value placed in these is
 ignored.

 To access or modify these parameters, the application should call
 getsockopt() or setsockopt() respectively with the option name
 SCTP_ASSOCINFO.

 The maximum number of retransmissions before an address is considered
 unreachable is also tunable, but is address-specific, so it is
 covered in a separate option. If an application attempts to set the
 value of the association maximum retransmission parameter to more
 than the sum of all maximum retransmission parameters, setsockopt()
 may return an error. The reason for this, from [RFC4960] Section

8.2:

 Note: When configuring the SCTP endpoint, the user should avoid
 having the value of 'Association.Max.Retrans' (sasoc_maxrxt in this
 option) larger than the summation of the 'Path.Max.Retrans' (see

Section 8.1.12 on spp_pathmaxrxt) of all the destination addresses
 for the remote endpoint. Otherwise, all the destination addresses
 may become inactive while the endpoint still considers the peer
 endpoint reachable.

8.1.3. Initialization Parameters (SCTP_INITMSG)

 Applications can specify protocol parameters for the default
 association initialization. The structure used to access and modify
 these parameters is defined in Section 5.3.1. The option name
 argument to setsockopt() and getsockopt() is SCTP_INITMSG.

 Setting initialization parameters is effective only on an unconnected
 socket (for one-to-many style sockets only future associations are
 affected by the change).

8.1.4. SO_LINGER

 An application can use this option to perform the SCTP ABORT
 primitive. This option affects all associations related to the
 socket.

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 65]

Internet-Draft SCTP sockets API April 2011

 The linger option structure is:

 struct linger {
 int l_onoff; /* option on/off */
 int l_linger; /* linger time */
 };

 To enable the option, set l_onoff to 1. If the l_linger value is set
 to 0, calling close() is the same as the ABORT primitive. If the
 value is set to a negative value, the setsockopt() call will return
 an error. If the value is set to a positive value linger_time, the
 close() can be blocked for at most linger_time. Please note that the
 time unit is seconds according to POSIX, but might be different on
 specific platforms. If the graceful shutdown phase does not finish
 during this period, close() will return but the graceful shutdown
 phase will continue in the system.

 Note, this is a socket level option, not an SCTP level option. When
 using this option, an application must specify a level of SOL_SOCKET
 in the call.

8.1.5. SCTP_NODELAY

 Turn on/off any Nagle-like algorithm. This means that packets are
 generally sent as soon as possible and no unnecessary delays are
 introduced, at the cost of more packets in the network. Turning this
 option on disables any Nagle-like algorithm.

 This option expects an integer boolean flag, where a non-zero value
 turns on the option, and a zero value turns off the option.

8.1.6. SO_RCVBUF

 Sets the receive buffer size in octets. For SCTP one-to-one style
 sockets, this controls the receiver window size. For one-to-many
 style sockets the meaning is implementation dependent. It might
 control the receive buffer for each association bound to the socket
 descriptor or it might control the receive buffer for the whole
 socket. This option expects an integer.

 Note, this is a socket level option, not an SCTP level option. When
 using this option, an application must specify a level of SOL_SOCKET
 in the call.

8.1.7. SO_SNDBUF

 Sets the send buffer size. For SCTP one-to-one style sockets, this
 controls the amount of data SCTP may have waiting in internal buffers

Stewart, et al. Expires October 25, 2011 [Page 66]

Internet-Draft SCTP sockets API April 2011

 to be sent. This option therefore bounds the maximum size of data
 that can be sent in a single send call. For one-to-many style
 sockets, the effect is the same, except that it applies to one or all
 associations (see Section 3.3) bound to the socket descriptor used in
 the setsockopt() or getsockopt() call. The option applies to each
 association's window size separately. This option expects an
 integer.

 Note, this is a socket level option, not an SCTP level option. When
 using this option, an application must specify a level of SOL_SOCKET
 in the call.

8.1.8. Automatic Close of Associations (SCTP_AUTOCLOSE)

 This socket option is applicable to the one-to-many style socket
 only. When set it will cause associations that are idle for more
 than the specified number of seconds to automatically close using the
 graceful shutdown procedure. An association being idle is defined as
 an association that has not sent or received user data. The special
 value of '0' indicates that no automatic close of any association
 should be performed, this is the default value. This option expects
 an integer defining the number of seconds of idle time before an
 association is closed.

 An application using this option should enable receiving the
 association change notification. This is the only mechanism an
 application is informed about the closing of an association. After
 an association is closed, the association identifier assigned to it
 can be reused. An application should be aware of this to avoid the
 possible problem of sending data to an incorrect peer endpoint.

8.1.9. Set Primary Address (SCTP_PRIMARY_ADDR)

 Requests that the local SCTP stack uses the enclosed peer address as
 the association's primary. The enclosed address must be one of the
 association peer's addresses.

 The following structure is used to make a set peer primary request:

 struct sctp_setprim {
 sctp_assoc_t ssp_assoc_id;
 struct sockaddr_storage ssp_addr;
 };

Stewart, et al. Expires October 25, 2011 [Page 67]

Internet-Draft SCTP sockets API April 2011

 ssp_addr: The address to set as primary. No wildcard address is
 allowed.

 ssp_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it identifies the
 association for this request. Note that the special sctp_assoc_t
 SCTP_{FUTURE|ALL|CURRENT}_ASSOC are not allowed.

8.1.10. Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)

 Requests that the local endpoint set the specified Adaptation Layer
 Indication parameter for all future INIT and INIT-ACK exchanges.

 The following structure is used to access and modify this parameter:

 struct sctp_setadaptation {
 uint32_t ssb_adaptation_ind;
 };

 ssb_adaptation_ind: The adaptation layer indicator that will be
 included in any outgoing Adaptation Layer Indication parameter.

8.1.11. Enable/Disable Message Fragmentation (SCTP_DISABLE_FRAGMENTS)

 This option is a on/off flag and is passed as an integer where a non-
 zero is on and a zero is off. If enabled no SCTP message
 fragmentation will be performed. The effect of enabling this option
 are that if a message being sent exceeds the current PMTU size, the
 message will not be sent and instead an error will be indicated to
 the user. If this option is disabled (the default) then a message
 exceeding the size of the PMTU will be fragmented and reassembled by
 the peer.

8.1.12. Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)

 Applications can enable or disable heartbeats for any peer address of
 an association, modify an address's heartbeat interval, force a
 heartbeat to be sent immediately, and adjust the address's maximum
 number of retransmissions sent before an address is considered
 unreachable.

 The following structure is used to access and modify an address's
 parameters:

Stewart, et al. Expires October 25, 2011 [Page 68]

Internet-Draft SCTP sockets API April 2011

 struct sctp_paddrparams {
 sctp_assoc_t spp_assoc_id;
 struct sockaddr_storage spp_address;
 uint32_t spp_hbinterval;
 uint16_t spp_pathmaxrxt;
 uint32_t spp_pathmtu;
 uint32_t spp_flags;
 uint32_t spp_ipv6_flowlabel;
 uint8_t spp_ipv4_tos;
 };

 spp_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it identifies the
 association for this query. Note that the predefined constants
 are not allowed.

 spp_address: This specifies which address is of interest. If a
 wildcard address is provided it applies to all current and future
 paths.

 spp_hbinterval: This contains the value of the heartbeat interval,
 in milliseconds (HB.Interval in [RFC4960]). Note that unless the
 spp_flag is set to SPP_HB_ENABLE the value of this field is
 ignored. Note also that a value of zero indicates the current
 setting should be left unchanged. To set an actual value of zero
 the use of the flag SPP_HB_TIME_IS_ZERO should be used. Even when
 it is set to 0, it does not mean that SCTP will continuously send
 out heartbeat since the actual interval also includes the current
 RTO and jitter (see Section 8.3 in [RFC4960]).

 spp_pathmaxrxt: This contains the maximum number of retransmissions
 before this address shall be considered unreachable. Note that a
 value of zero indicates the current setting should be left
 unchanged.

 spp_pathmtu: The current path MTU of the peer address. It is the
 number of bytes available in an SCTP packet for chunks. Providing
 a value of 0 does not change the current setting. If a positive
 value is provided and SPP_PMTUD_DISABLE is set in the spp_flags,
 the given value is used as the path MTU. If SPP_PMTUD_ENABLE is
 set in the spp_flags, the spp_pathmtu field is ignored.

 spp_ipv6_flowlabel: This field is used in conjunction with the
 SPP_IPV6_FLOWLABEL flag. This setting has precedence over any
 IPv6 layer setting.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3

Stewart, et al. Expires October 25, 2011 [Page 69]

Internet-Draft SCTP sockets API April 2011

 spp_ipv4_tos: This field is used in conjunction with the
 SPP_IPV4_TOS flag. This setting has precedence over any IPv4
 layer setting.

 spp_flags: These flags are used to control various features on an
 association. The flag field is a bit mask which may contain zero
 or more of the following options:

 SPP_HB_ENABLE: Enable heartbeats on the specified address.

 SPP_HB_DISABLE: Disable heartbeats on the specified address.
 Note that SPP_HB_ENABLE and SPP_HB_DISABLE are mutually
 exclusive, only one of these two should be specified. Enabling
 both fields will have undetermined results.

 SPP_HB_DEMAND: Request a user initiated heartbeat to be made
 immediately. This must not be used in conjunction with a
 wildcard address.

 SPP_HB_TIME_IS_ZERO: Specifies that the time for heartbeat delay
 is to be set to the value of 0 milliseconds.

 SPP_PMTUD_ENABLE: This field will enable PMTU discovery upon the
 specified address.

 SPP_PMTUD_DISABLE: This field will disable PMTU discovery upon
 the specified address. Note that if the address field is empty
 then all addresses on the association are affected. Note also
 that SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
 exclusive. Enabling both will have undetermined results.

 SPP_IPV6_FLOWLABEL: Setting this flag enables the setting of the
 IPV6 flowlabel value. The value is obtained in the
 spp_ipv6_flowlabel field.

 Upon retrieval, this flag will be set to indicate that the
 spp_ipv6_flowlabel field has a valid value returned. If a
 specific destination address is set (in the spp_address field),
 then the value returned is that of the address. If just an
 association is specified (and no address), then the
 association's default flowlabel is returned. If neither an
 association nor a destination is specified, then the socket's
 default flowlabel is returned. For non IPv6 sockets, this flag
 will be left cleared.

Stewart, et al. Expires October 25, 2011 [Page 70]

Internet-Draft SCTP sockets API April 2011

 SPP_IPV4_TOS: Setting this flag enables the setting of the IPV4
 TOS value associated with either the association or a specific
 address. The value is obtained in the spp_ipv4_tos field.

 Upon retrieval, this flag will be set to indicate that the
 spp_ipv4_tos field has a valid value returned. If a specific
 destination address is set when called (in the spp_address
 field) then that specific destination address' TOS value is
 returned. If just an association is specified then the
 association default TOS is returned. If neither an association
 nor a destination is specified, then the sockets default TOS is
 returned.

 To read or modify these parameters, the application should call
 sctp_opt_info() with the SCTP_PEER_ADDR_PARAMS option.

8.1.13. Set Default Send Parameters (SCTP_DEFAULT_SEND_PARAM) -
 DEPRECATED

 Please note that this options is deprecated. Section 8.1.31 should
 be used instead.

 Applications that wish to use the sendto() system call may wish to
 specify a default set of parameters that would normally be supplied
 through the inclusion of ancillary data. This socket option allows
 such an application to set the default sctp_sndrcvinfo structure.
 The application that wishes to use this socket option simply passes
 the sctp_sndrcvinfo structure defined in Section 5.3.2 to this call.
 The input parameters accepted by this call include sinfo_stream,
 sinfo_flags, sinfo_ppid, sinfo_context, and sinfo_timetolive. The
 sinfo_flags is composed of a bitwise OR of SCTP_UNORDERED, SCTP_EOF,
 and SCTP_SENDALL. The sinfo_assoc_id field specifies the association
 to apply the parameters to. For a one-to-many style socket any of
 the predefined constants are also allowed in this field. The field
 is ignored on the one-to-one style.

8.1.14. Set Notification and Ancillary Events (SCTP_EVENTS) -
 DEPRECATED

 This socket option is used to specify various notifications and
 ancillary data the user wishes to receive. Please see Section 6.2.1
 for a full description of this option and its usage. Note that this
 option is considered deprecated and present for backward
 compatibility. New applications should use the SCTP_EVENT option.
 See Section 6.2.2 for a full description of that option as well.

Stewart, et al. Expires October 25, 2011 [Page 71]

Internet-Draft SCTP sockets API April 2011

8.1.15. Set/Clear IPv4 Mapped Addresses (SCTP_I_WANT_MAPPED_V4_ADDR)

 This socket option is a boolean flag which turns on or off the
 mapping of IPv4 addresses. If this option is turned on, then IPv4
 addresses will be mapped to V6 representation. If this option is
 turned off, then no mapping will be done of V4 addresses and a user
 will receive both PF_INET6 and PF_INET type addresses on the socket.
 See [RFC3542] for more details on mapped V6 addresses.

 If this socket option is used on a socket of type PF_INET an error is
 returned.

 By default this option is turned off and expects an integer to be
 passed where a non-zero value turns on the option and a zero value
 turns off the option.

8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)

 This option will get or set the maximum size to put in any outgoing
 SCTP DATA chunk. If a message is larger than this size it will be
 fragmented by SCTP into the specified size. Note that the underlying
 SCTP implementation may fragment into smaller sized chunks when the
 PMTU of the underlying association is smaller than the value set by
 the user. The default value for this option is '0' which indicates
 the user is not limiting fragmentation and only the PMTU will affect
 SCTP's choice of DATA chunk size. Note also that values set larger
 than the maximum size of an IP datagram will effectively let SCTP
 control fragmentation (i.e. the same as setting this option to 0).

 The following structure is used to access and modify this parameter:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

 assoc_id: This parameter is ignored for one-to-one style sockets.
 For one-to-many style sockets this parameter indicates which
 association the user is performing an action upon. It is an error
 to use SCTP_{CURRENT|ALL}_ASSOC in assoc_id.

 assoc_value: This parameter specifies the maximum size in bytes.

8.1.17. Get or Set the List of Supported HMAC Identifiers
 (SCTP_HMAC_IDENT)

 This option gets or sets the list of HMAC algorithms that the local
 endpoint requires the peer to use.

https://datatracker.ietf.org/doc/html/rfc3542

Stewart, et al. Expires October 25, 2011 [Page 72]

Internet-Draft SCTP sockets API April 2011

 The following structure is used to get or set these identifiers:

 struct sctp_hmacalgo {
 uint32_t shmac_number_of_idents;
 uint16_t shmac_idents[];
 };

 shmac_number_of_idents: This field gives the number of elements
 present in the array shmac_idents.

 shmac_idents: This parameter contains an array of HMAC identifiers
 that the local endpoint is requesting the peer to use, in priority
 order. The following identifiers are valid:

 * SCTP_AUTH_HMAC_ID_SHA1

 * SCTP_AUTH_HMAC_ID_SHA256

 Note that the list supplied must include SCTP_AUTH_HMAC_ID_SHA1 and
 may include any of the other values in its preferred order (lowest
 list position has the highest preference in algorithm selection).
 Note also that the lack of SCTP_AUTH_HMAC_ID_SHA1, or the inclusion
 of an unknown HMAC identifier (including optional identifiers unknown
 to the implementation) will cause the set option to fail and return
 an error.

8.1.18. Get or Set the Active Shared Key (SCTP_AUTH_ACTIVE_KEY)

 This option will get or set the active shared key to be used to build
 the association shared key.

 The following structure is used to access and modify these
 parameters:

 struct sctp_authkeyid {
 sctp_assoc_t scact_assoc_id;
 uint16_t scact_keynumber;
 };

 scact_assoc_id: This parameter sets the active key of the specified
 association. The special SCTP_{FUTURE|CURRENT|ALL}_ASSOC can be
 used. For one-to-one sockets, this parameter is ignored. Note,
 however, that this option will set the active key on the
 association if the socket is connected, otherwise this will set
 the default active key for the endpoint.

Stewart, et al. Expires October 25, 2011 [Page 73]

Internet-Draft SCTP sockets API April 2011

 scact_keynumber: This parameter is the shared key identifier which
 the application is requesting to become the active shared key to
 be used for sending authenticated chunks. The key identifier must
 correspond to an existing shared key. Note that shared key
 identifier '0' defaults to a null key.

 When used with setsockopt() the SCTP implementation must use the
 indicated shared key identifier for all messages being given to an
 SCTP implementation via a send call after the setsockopt() call until
 changed again. Therefore, the SCTP implementation must not bundle
 user messages which should be authenticated using different shared
 key identifiers.

 Initially the key with key identifier 0 is the active key.

8.1.19. Get or Set Delayed SACK Timer (SCTP_DELAYED_SACK)

 This option will affect the way delayed sacks are performed. This
 option allows the application to get or set the delayed sack time, in
 milliseconds. It also allows changing the delayed sack frequency.
 Changing the frequency to 1 disables the delayed sack algorithm.
 Note that if sack_delay or sack_freq are 0 when setting this option,
 the current values will remain unchanged.

 The following structure is used to access and modify these
 parameters:

 struct sctp_sack_info {
 sctp_assoc_t sack_assoc_id;
 uint32_t sack_delay;
 uint32_t sack_freq;
 };

 sack_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets this parameter indicates
 which association the user is performing an action upon. The
 special SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

 sack_delay: This parameter contains the number of milliseconds that
 the user is requesting the delayed SACK timer to be set to. Note
 that this value is defined in the standard to be between 200 and
 500 milliseconds.

 sack_freq: This parameter contains the number of packets that must
 be received before a sack is sent without waiting for the delay
 timer to expire. The default value is 2, setting this value to 1
 will disable the delayed sack algorithm.

Stewart, et al. Expires October 25, 2011 [Page 74]

Internet-Draft SCTP sockets API April 2011

8.1.20. Get or Set Fragmented Interleave (SCTP_FRAGMENT_INTERLEAVE)

 Fragmented interleave controls how the presentation of messages
 occurs for the message receiver. There are three levels of fragment
 interleave defined. Two of the levels affect the one-to-one model,
 while the one-to-many model is affected by all three levels.

 This option takes an integer value. It can be set to a value of 0, 1
 or 2. Attempting to set this level to other values will return an
 error.

 Setting the three levels provides the following receiver
 interactions:

 level 0: Prevents the interleaving of any messages. This means that
 when a partial delivery begins, no other messages will be received
 except the message being partially delivered. If another message
 arrives on a different stream (or association) that could be
 delivered, it will be blocked waiting for the user to read all of
 the partially delivered message.

 level 1: Allows interleaving of messages that are from different
 associations. For the one-to-one model, level 0 and level 1 thus
 have the same meaning since a one-to-one socket always receives
 messages from the same association. Note that setting the one-to-
 many model to this level may cause multiple partial deliveries
 from different associations but for any given association, only
 one message will be delivered until all parts of a message have
 been delivered. This means that one large message, being read
 with an association identifier of "X", will block other messages
 from association "X" from being delivered.

 level 2: Allows complete interleaving of messages. This level
 requires that the sender carefully observes not only the peer
 association identifier (or address) but must also pay careful
 attention to the stream number. With this option enabled a
 partially delivered message may begin being delivered for
 association "X" stream "Y" and the next subsequent receive may
 return a message from association "X" stream "Z". Note that no
 other messages would be delivered for association "X" stream "Y"
 until all of stream "Y"'s partially delivered message was read.
 Note that this option also affects the one-to-one model. Also
 note that for the one-to-many model not only another stream's
 message from the same association may be delivered upon the next
 receive, some other association's message may be delivered upon
 the next receive.

 An implementation should default the one-to-many model to level 1.

Stewart, et al. Expires October 25, 2011 [Page 75]

Internet-Draft SCTP sockets API April 2011

 The reason for this is that otherwise it is possible that a peer
 could begin sending a partial message and thus block all other peers
 from sending data. However a setting of level 2 requires the
 application to not only be aware of the association (via the
 association identifier or peer's address) but also the stream number.
 The stream number is not present unless the user has subscribed to
 the sctp_data_io_event (see Section 6.2). This is also why we
 recommend that the one-to-one model be defaulted to level 0 (level 1
 for the one-to-one model has no effect). Note that an implementation
 should return an error if an application attempts to set the level to
 2 and has not subscribed to the sctp_data_io_event.

 For applications that have subscribed to events, those events appear
 in the normal socket buffer data stream. This means that unless the
 user has set the fragmentation interleave level to 0, notifications
 may also be interleaved with partially delivered messages.

8.1.21. Set or Get the SCTP Partial Delivery Point
 (SCTP_PARTIAL_DELIVERY_POINT)

 This option will set or get the SCTP partial delivery point. This
 point is the size of a message where the partial delivery API will be
 invoked to help free up rwnd space for the peer. Setting this to a
 lower value will cause partial deliveries to happen more often. This
 option expects an integer that sets or gets the partial delivery
 point in bytes. Note also that the call will fail if the user
 attempts to set this value larger than the socket receive buffer
 size.

 Note that any single message having a length smaller than or equal to
 the SCTP partial delivery point will be delivered in one single read
 call as long as the user provided buffer is large enough to hold the
 message.

8.1.22. Set or Get the Use of Extended Receive Info
 (SCTP_USE_EXT_RCVINFO) - DEPRECATED

 This option will enable or disable the use of the extended version of
 the sctp_sndrcvinfo structure. If this option is disabled, then the
 normal sctp_sndrcvinfo structure is returned in all receive message
 calls. If this option is enabled then the sctp_extrcvinfo structure
 is returned in all receive message calls. The default is off.

 Note that the sctp_extrcvinfo structure is never used in any send
 call.

 This option is present for compatibility with older applications and
 is deprecated. Future applications should use SCTP_NXTINFO to

Stewart, et al. Expires October 25, 2011 [Page 76]

Internet-Draft SCTP sockets API April 2011

 retrieve this same information via ancillary data.

8.1.23. Set or Get the Auto ASCONF Flag (SCTP_AUTO_ASCONF)

 This option will enable or disable the use of the automatic
 generation of ASCONF chunks to add and delete addresses to an
 existing association. Note that this option has two caveats namely:
 a) it only affects sockets that are bound to all addresses available
 to the SCTP stack, and b) the system administrator may have an
 overriding control that turns the ASCONF feature off no matter what
 setting the socket option may have.

 This option expects an integer boolean flag, where a non-zero value
 turns on the option, and a zero value turns off the option.

8.1.24. Set or Get the Maximum Burst (SCTP_MAX_BURST)

 This option will allow a user to change the maximum burst of packets
 that can be emitted by this association. Note that the default value
 is 4, and some implementations may restrict this setting so that it
 can only be lowered to positive values.

 To set or get this option the user fills in the following structure:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

 assoc_id: This parameter is ignored for one-to-one style sockets.
 For one-to-many style sockets this parameter indicates which
 association the user is performing an action upon. The special
 SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

 assoc_value: This parameter contains the maximum burst. Setting the
 value to 0 disables burst mitigation.

8.1.25. Set or Get the Default Context (SCTP_CONTEXT)

 The context field in the sctp_sndrcvinfo structure is normally only
 used when a failed message is retrieved holding the value that was
 sent down on the actual send call. This option allows the setting of
 a default context on an association basis that will be received on
 reading messages from the peer. This is especially helpful in the
 one-to-many model for an application to keep some reference to an
 internal state machine that is processing messages on the
 association. Note that the setting of this value only affects
 received messages from the peer and does not affect the value that is

Stewart, et al. Expires October 25, 2011 [Page 77]

Internet-Draft SCTP sockets API April 2011

 saved with outbound messages.

 To set or get this option the user fills in the following structure:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

 assoc_id: This parameter is ignored for one-to-one style sockets.
 For one-to-many style sockets this parameter indicates which
 association the user is performing an action upon. The special
 SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

 assoc_value: This parameter contains the context.

8.1.26. Enable or Disable Explicit EOR Marking (SCTP_EXPLICIT_EOR)

 This boolean flag is used to enable or disable explicit end of record
 (EOR) marking. When this option is enabled, a user may make multiple
 send system calls to send a record and must indicate that they are
 finished sending a particular record by including the SCTP_EOR flag.
 If this boolean flag is disabled then each individual send system
 call is considered to have an SCTP_EOR indicator set on it implicitly
 without the user having to explicitly add this flag. The default is
 off.

 This option expects an integer boolean flag, where a non-zero value
 turns on the option, and a zero value turns off the option.

8.1.27. Enable SCTP Port Reusage (SCTP_REUSE_PORT)

 This option only supports one-to-one style SCTP sockets. If used on
 a one-to-many style SCTP socket an error is indicated.

 This option expects an integer boolean flag, where a non-zero value
 turns on the option, and a zero value turns off the option.

 This socket option must not be used after calling bind() or
 sctp_bindx() for a one-to-one style SCTP socket. If using bind() or
 sctp_bindx() on a socket with the SCTP_REUSE_PORT option, all other
 SCTP sockets bound to the same port must have set the
 SCTP_REUSE_PORT. Calling bind() or sctp_bindx() for a socket without
 having set the SCTP_REUSE_PORT option will fail if there are other
 sockets bound to the same port. At most one socket being bound to
 the same port may be listening.

 It should be noted that the behavior of the socket level socket

Stewart, et al. Expires October 25, 2011 [Page 78]

Internet-Draft SCTP sockets API April 2011

 option to reuse ports and/or addresses for SCTP sockets is
 unspecified.

8.1.28. Set Notification Event (SCTP_EVENT)

 This socket option is used to set a specific notification option.
 Please see Section 6.2.2 for a full description of this option and
 its usage.

8.1.29. Enable or Disable the Delivery of SCTP_RCVINFO as Ancillary
 Data (SCTP_RECVRCVINFO)

 Setting this option specifies that SCTP_RCVINFO defined in
Section 5.3.5 is returned as ancillary data by recvmsg().

 This option expects an integer boolean flag, where a non-zero value
 turns on the option, and a zero value turns off the option.

8.1.30. Enable or Disable the Delivery of SCTP_NXTINFO as Ancillary
 Data (SCTP_RECVNXTINFO)

 Setting this option specifies that SCTP_NXTINFO defined in
Section 5.3.6 is returned as ancillary data by recvmsg().

 This option expects an integer boolean flag, where a non-zero value
 turns on the option, and a zero value turns off the option.

8.1.31. Set Default Send Parameters (SCTP_DEFAULT_SNDINFO)

 Applications that wish to use the sendto() system call may wish to
 specify a default set of parameters that would normally be supplied
 through the inclusion of ancillary data. This socket option allows
 such an application to set the default sctp_sndinfo structure. The
 application that wishes to use this socket option simply passes the
 sctp_sndinfo structure defined in Section 5.3.4 to this call. The
 input parameters accepted by this call include snd_sid, snd_flags,
 snd_ppid, snd_context. The snd_flags is composed of a bitwise OR of
 SCTP_UNORDERED, SCTP_EOF, and SCTP_SENDALL. The snd_assoc_id field
 specifies the association to apply the parameters to. For a one-to-
 many style socket any of the predefined constants are also allowed in
 this field. The field is ignored on the one-to-one style.

8.2. Read-Only Options

 The options defined in this subsection are read-only. Using this
 option in a setsockopt() call will result in an error indicating
 EOPNOTSUPP.

Stewart, et al. Expires October 25, 2011 [Page 79]

Internet-Draft SCTP sockets API April 2011

8.2.1. Association Status (SCTP_STATUS)

 Applications can retrieve current status information about an
 association, including association state, peer receiver window size,
 number of unacked data chunks, and number of data chunks pending
 receipt. This information is read-only.

 The following structure is used to access this information:

 struct sctp_status {
 sctp_assoc_t sstat_assoc_id;
 int32_t sstat_state;
 uint32_t sstat_rwnd;
 uint16_t sstat_unackdata;
 uint16_t sstat_penddata;
 uint16_t sstat_instrms;
 uint16_t sstat_outstrms;
 uint32_t sstat_fragmentation_point;
 struct sctp_paddrinfo sstat_primary;
 };

 sstat_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it holds the identifier
 for the association. All notifications for a given association
 have the same association identifier. The special SCTP_{FUTURE|
 CURRENT|ALL}_ASSOC cannot be used.

 sstat_state: This contains the association's current state, i.e. one
 of the following values:

 * SCTP_CLOSED

 * SCTP_BOUND

 * SCTP_LISTEN

 * SCTP_COOKIE_WAIT

 * SCTP_COOKIE_ECHOED

 * SCTP_ESTABLISHED

 * SCTP_SHUTDOWN_PENDING

 * SCTP_SHUTDOWN_SENT

 * SCTP_SHUTDOWN_RECEIVED

Stewart, et al. Expires October 25, 2011 [Page 80]

Internet-Draft SCTP sockets API April 2011

 * SCTP_SHUTDOWN_ACK_SENT

 sstat_rwnd: This contains the association peer's current receiver
 window size.

 sstat_unackdata: This is the number of unacked data chunks.

 sstat_penddata: This is the number of data chunks pending receipt.

 sstat_instrms: The number of streams that the peer will be using
 outbound.

 sstat_outstrms: The number of streams that the endpoint is allowed
 to use outbound.

 sstat_fragmentation_point: The size at which SCTP fragmentation will
 occur.

 sstat_primary: This is information on the current primary peer
 address.

 To access these status values, the application calls getsockopt()
 with the option name SCTP_STATUS.

8.2.2. Peer Address Information (SCTP_GET_PEER_ADDR_INFO)

 Applications can retrieve information about a specific peer address
 of an association, including its reachability state, congestion
 window, and retransmission timer values. This information is read-
 only.

 The following structure is used to access this information:

 struct sctp_paddrinfo {
 sctp_assoc_t spinfo_assoc_id;
 struct sockaddr_storage spinfo_address;
 int32_t spinfo_state;
 uint32_t spinfo_cwnd;
 uint32_t spinfo_srtt;
 uint32_t spinfo_rto;
 uint32_t spinfo_mtu;
 };

 spinfo_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets the following applies:
 This field may be filled by the application, if so, this field
 will have priority in looking up the association instead of using
 the address specified in spinfo_address. Note that if the address

Stewart, et al. Expires October 25, 2011 [Page 81]

Internet-Draft SCTP sockets API April 2011

 does not belong to the association specified then this call will
 fail. If the application does not fill in the spinfo_assoc_id,
 then the address will be used to lookup the association and on
 return this field will have the valid association identifier. In
 other words, this call can be used to translate an address into an
 association identifier. Note that the predefined constants are
 not allowed on this option.

 spinfo_address: This is filled by the application, and contains the
 peer address of interest.

 spinfo_state: This contains the peer address' state:

 SCTP_UNCONFIRMED: The initial state of a peer address.

 SCTP_ACTIVE: The state is entered the first time after path
 verification. It can also be entered if the state is
 SCTP_INACTIVE and the path supervision detects that the peer
 address is reachable again.

 SCTP_INACTIVE: This state is entered whenever a path failure is
 detected.

 spinfo_cwnd: This contains the peer address' current congestion
 window.

 spinfo_srtt: This contains the peer address' current smoothed round-
 trip time calculation in milliseconds.

 spinfo_rto: This contains the peer address' current retransmission
 timeout value in milliseconds.

 spinfo_mtu: The current path MTU of the peer address. It is the
 number of bytes available in an SCTP packet for chunks.

8.2.3. Get the List of Chunks the Peer Requires to be Authenticated
 (SCTP_PEER_AUTH_CHUNKS)

 This option gets a list of chunk types (see [RFC4960]) for a
 specified association that the peer requires to be received
 authenticated only.

 The following structure is used to access these parameters:

 struct sctp_authchunks {
 sctp_assoc_t gauth_assoc_id;
 uint32_t gauth_number_of_chunks
 uint8_t gauth_chunks[];

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 82]

Internet-Draft SCTP sockets API April 2011

 };

 gauth_assoc_id: This parameter indicates for which association the
 user is requesting the list of peer authenticated chunks. For
 one-to-one sockets, this parameter is ignored. Note that the
 predefined constants are not allowed with this option.

 gauth_number_of_chunks: This parameter gives the number of elements
 in the array gauth_chunks.

 gauth_chunks: This parameter contains an array of chunk types that
 the peer is requesting to be authenticated. If the passed in
 buffer size is not large enough to hold the list of chunk types,
 ENOBUFS is returned.

8.2.4. Get the List of Chunks the Local Endpoint Requires to be
 Authenticated (SCTP_LOCAL_AUTH_CHUNKS)

 This option gets a list of chunk types (see [RFC4960]) for a
 specified association that the local endpoint requires to be received
 authenticated only.

 The following structure is used to access these parameters:

 struct sctp_authchunks {
 sctp_assoc_t gauth_assoc_id;
 uint32_t gauth_number_of_chunks;
 uint8_t gauth_chunks[];
 };

 gauth_assoc_id: This parameter indicates for which association the
 user is requesting the list of local authenticated chunks. For
 one-to-one sockets, this parameter is ignored.

 gauth_number_of_chunks: This parameter gives the number of elements
 in the array gauth_chunks.

 gauth_chunks: This parameter contains an array of chunk types that
 the local endpoint is requesting to be authenticated. If the
 passed in buffer is not large enough to hold the list of chunk
 types, ENOBUFS is returned.

8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)

 This option gets the current number of associations that are attached
 to a one-to-many style socket. The option value is an uint32_t.
 Note that this number is only a snap shot. This means that the
 number of associations may have changed when the caller gets back the

https://datatracker.ietf.org/doc/html/rfc4960

Stewart, et al. Expires October 25, 2011 [Page 83]

Internet-Draft SCTP sockets API April 2011

 option result.

 For a one-to-one style socket, this socket option results in an
 error.

8.2.6. Get the Current Identifiers of Associations
 (SCTP_GET_ASSOC_ID_LIST)

 This option gets the current list of SCTP association identifiers of
 the SCTP associations handled by a one-to-many style socket.

 The option value has the structure

 struct sctp_assoc_ids {
 uint32_t gaids_number_of_ids;
 sctp_assoc_t gaids_assoc_id[];
 };

 The caller must provide a large enough buffer to hold all association
 identifiers. If the buffer is too small, an error must be returned.
 The user can use the SCTP_GET_ASSOC_NUMBER socket option to get an
 idea how large the buffer has to be. gaids_number_of_ids gives the
 number of elements in the array gaids_assoc_id. Note also that some
 or all of sctp_assoc_t returned in the array may become invalid by
 the time the caller gets back the result.

 For a one-to-one style socket, this socket option results in an
 error.

8.3. Write-Only Options

 The options defined in this subsection are write-only. Using this
 option in a getsockopt() or sctp_opt_info() call will result in an
 error indicating EOPNOTSUPP.

8.3.1. Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)

 Requests that the peer marks the enclosed address as the association
 primary (see [RFC5061]). The enclosed address must be one of the
 association's locally bound addresses.

 The following structure is used to make a set peer primary request:

 struct sctp_setpeerprim {
 sctp_assoc_t sspp_assoc_id;
 struct sockaddr_storage sspp_addr;
 };

https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires October 25, 2011 [Page 84]

Internet-Draft SCTP sockets API April 2011

 sspp_assoc_id: This parameter is ignored for one-to-one style
 sockets. For one-to-many style sockets it identifies the
 association for this request. Note that the predefined constants
 are not allowed on this option.

 sspp_addr: The address to set as primary.

8.3.2. Add a Chunk that must be Authenticated (SCTP_AUTH_CHUNK)

 This set option adds a chunk type that the user is requesting to be
 received only in an authenticated way. Changes to the list of chunks
 will only affect future associations on the socket.

 The following structure is used to add a chunk:

 struct sctp_authchunk {
 uint8_t sauth_chunk;
 };

 sauth_chunk: This parameter contains a chunk type that the user is
 requesting to be authenticated.

 The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE, and AUTH
 chunks must not be used. If they are used, an error must be
 returned. The usage of this option enables SCTP AUTH in cases where
 it is not required by other means (for example the use of dynamic
 address reconfiguration).

8.3.3. Set a Shared Key (SCTP_AUTH_KEY)

 This option will set a shared secret key that is used to build an
 association shared key.

 The following structure is used to access and modify these
 parameters:

 struct sctp_authkey {
 sctp_assoc_t sca_assoc_id;
 uint16_t sca_keynumber;
 uint16_t sca_keylength;
 uint8_t sca_key[];
 };

 sca_assoc_id: This parameter indicates what association the shared
 key is being set upon. The special SCTP_{FUTURE|CURRENT|
 ALL}_ASSOC can be used. For one-to-one sockets, this parameter is
 ignored. Note, however on one to one sockets, that this option
 will set a key on the association if the socket is connected,

Stewart, et al. Expires October 25, 2011 [Page 85]

Internet-Draft SCTP sockets API April 2011

 otherwise this will set a key on the endpoint.

 sca_keynumber: This parameter is the shared key identifier by which
 the application will refer to this shared key. If a key of the
 specified index already exists, then this new key will replace the
 old existing key. Note that shared key identifier '0' defaults to
 a null key.

 sca_keylength: This parameter is the length of the array sca_key.

 sca_key: This parameter contains an array of bytes that is to be
 used by the endpoint (or association) as the shared secret key.
 Note, if the length of this field is zero, a null key is set.

8.3.4. Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)

 This set option indicates that the application will no longer send
 user messages using the indicated key identifier.

 struct sctp_authkeyid {
 sctp_assoc_t scact_assoc_id;
 uint16_t scact_keynumber;
 };

 scact_assoc_id: This parameter indicates which association the
 shared key identifier is being deleted from. The special
 SCTP_{FUTURE|CURRENT|ALL}_ASSOC can be used. For one-to-one
 sockets, this parameter is ignored. Note, however, that this
 option will deactivate the key from the association if the socket
 is connected, otherwise this will deactivate the key from the
 endpoint.

 scact_keynumber: This parameter is the shared key identifier which
 the application is requesting to be deactivated. The key
 identifier must correspond to an existing shared key. Note if
 this parameter is zero, use of the null key identifier '0' is
 deactivated on the endpoint and/or association.

 The currently active key cannot be deactivated.

8.3.5. Delete a Shared Key (SCTP_AUTH_DELETE_KEY)

 This set option will delete a shared secret key which has been
 deactivated of an SCTP association.

 struct sctp_authkeyid {
 sctp_assoc_t scact_assoc_id;
 uint16_t scact_keynumber;

Stewart, et al. Expires October 25, 2011 [Page 86]

Internet-Draft SCTP sockets API April 2011

 };

 scact_assoc_id: This parameter indicates which association the
 shared key identifier is being deleted from. The special
 SCTP_{FUTURE|CURRENT|ALL}_ASSOC can be used. For one-to-one
 sockets, this parameter is ignored. Note, however, that this
 option will delete the key from the association if the socket is
 connected, otherwise this will delete the key from the endpoint.

 scact_keynumber: This parameter is the shared key identifier which
 the application is requesting to be deleted. The key identifier
 must correspond to an existing shared key and must not be in use
 for any packet being sent by the SCTP implementation. This means
 in particular, that it must be deactivated first. Note if this
 parameter is zero, use of the null key identifier '0' is deleted
 from the endpoint and/or association.

 Only deactivated keys that are no longer used by an association can
 be deleted.

9. New Functions

 Depending on the system, the following interface can be implemented
 as a system call or library function.

9.1. sctp_bindx()

 This function allows the user to bind a specific subset of addresses
 or, if the SCTP extension described in [RFC5061] is supported, add or
 delete specific addresses.

 The function prototype is

 int sctp_bindx(int sd,
 struct sockaddr *addrs,
 int addrcnt,
 int flags);

 If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
 If the sd is an IPv6 socket, the addresses passed can either be IPv4
 or IPv6 addresses.

 A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
Section 3.1.2 for this usage.

 addrs is a pointer to an array of one or more socket addresses. Each
 address is contained in its appropriate structure. For an IPv6

https://datatracker.ietf.org/doc/html/rfc5061

Stewart, et al. Expires October 25, 2011 [Page 87]

Internet-Draft SCTP sockets API April 2011

 socket, an array of sockaddr_in6 is used. For a IPv4 socket, an
 array of sockaddr_in is used. The caller specifies the number of
 addresses in the array with addrcnt. Note that the wildcard
 addresses cannot be used in combination with non wildcard addresses
 on a socket with this function, doing so will result in an error.

 On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
 -1 and sets errno to the appropriate error code.

 For SCTP, the port given in each socket address must be the same, or
 sctp_bindx() will fail, setting errno to EINVAL.

 The flags parameter is formed from the bitwise OR of zero or more of
 the following currently defined flags:

 o SCTP_BINDX_ADD_ADDR

 o SCTP_BINDX_REM_ADDR

 SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
 socket (i.e. endpoint), and SCTP_BINDX_REM_ADDR directs SCTP to
 remove the given addresses from the socket. The two flags are
 mutually exclusive; if both are given, sctp_bindx() will fail with
 EINVAL. A caller may not remove all addresses from a socket;
 sctp_bindx() will reject such an attempt with EINVAL.

 An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
 additional addresses with an endpoint after calling bind(). Or use
 sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
 socket is associated with, so that no new association accepted will
 be associated with these addresses. If the endpoint supports dynamic
 address reconfiguration, an SCTP_BINDX_REM_ADDR or
 SCTP_BINDX_ADD_ADDR may cause an endpoint to send the appropriate
 message to its peers to change the peers' address lists.

 Adding and removing addresses from established associations is an
 optional functionality. Implementations that do not support this
 functionality should return -1 and set errno to EOPNOTSUPP.

 sctp_bindx() can be called on an already bound socket or on an
 unbound socket. If the socket is unbound and the first port number
 in the addrs is zero, the kernel will choose a port number. All port
 numbers after the first one being 0 must also be zero. If the first
 port number is not zero, the following port numbers must be zero or
 have the same value as the first one. For an already bound socket,
 all port numbers provided must be the bound one or 0.

 sctp_bindx() is an atomic operation. Therefore, the binding will be

Stewart, et al. Expires October 25, 2011 [Page 88]

Internet-Draft SCTP sockets API April 2011

 either successful on all addresses or fail on all addresses. If
 multiple addresses are provided and the sctp_bindx() call fails there
 is no indication which address is responsible for the failure. The
 only way to identify the specific error indication is to call
 sctp_bindx() sequentially with only one address per call.

9.2. sctp_peeloff()

 After an association is established on a one-to-many style socket,
 the application may wish to branch off the association into a
 separate socket/file descriptor.

 This is particularly desirable when, for instance, the application
 wishes to have a number of sporadic message senders/receivers remain
 under the original one-to-many style socket, but branch off these
 associations carrying high volume data traffic into their own
 separate socket descriptors.

 The application uses the sctp_peeloff() call to branch off an
 association into a separate socket (Note the semantics are somewhat
 changed from the traditional one-to-one style accept() call). Note
 that the new socket is a one-to-one style socket. Thus it will be
 confined to operations allowed for a one-to-one style socket.

 The function prototype is

 int sctp_peeloff(int sd,
 sctp_assoc_t assoc_id);

 and the arguments are

 sd: The original one-to-many style socket descriptor returned from
 the socket() system call (see Section 3.1.1).

 assoc_id: the specified identifier of the association that is to be
 branched off to a separate file descriptor (Note, in a traditional
 one-to-one style accept() call, this would be an out parameter,
 but for the one-to-many style call, this is an in parameter).

 The function returns a non-negative file descriptor representing the
 branched-off association, or -1 if an error occurred. The variable
 errno is then set appropriately.

9.3. sctp_getpaddrs()

 sctp_getpaddrs() returns all peer addresses in an association.

 The function prototype is:

Stewart, et al. Expires October 25, 2011 [Page 89]

Internet-Draft SCTP sockets API April 2011

 int sctp_getpaddrs(int sd,
 sctp_assoc_t id,
 struct sockaddr **addrs);

 On return, addrs will point to a dynamically allocated array of
 sockaddr structures of the appropriate type for the socket type. The
 caller should use sctp_freepaddrs() to free the memory. Note that
 the in/out parameter addrs must not be NULL.

 If sd is an IPv4 socket, the addresses returned will be all IPv4
 addresses. If sd is an IPv6 socket, the addresses returned can be a
 mix of IPv4 or IPv6 addresses, with IPv4 addresses returned according
 to the SCTP_I_WANT_MAPPED_V4_ADDR option setting.

 For one-to-many style sockets, id specifies the association to query.
 For one-to-one style sockets, id is ignored.

 On success, sctp_getpaddrs() returns the number of peer addresses in
 the association. If there is no association on this socket,
 sctp_getpaddrs() returns 0, and the value of *addrs is undefined. If
 an error occurs, sctp_getpaddrs() returns -1, and the value of *addrs
 is undefined.

9.4. sctp_freepaddrs()

 sctp_freepaddrs() frees all resources allocated by sctp_getpaddrs().

 The function prototype is

 void sctp_freepaddrs(struct sockaddr *addrs);

 and addrs is the array of peer addresses returned by
 sctp_getpaddrs().

9.5. sctp_getladdrs()

 sctp_getladdrs() returns all locally bound address(es) on a socket.

 The function prototype is

 int sctp_getladdrs(int sd,
 sctp_assoc_t id,
 struct sockaddr **addrs);

 On return, addrs will point to a dynamically allocated array of
 sockaddr structures of the appropriate type for the socket type. The
 caller should use sctp_freeladdrs() to free the memory. Note that
 the in/out parameter addrs must not be NULL.

Stewart, et al. Expires October 25, 2011 [Page 90]

Internet-Draft SCTP sockets API April 2011

 If sd is an IPv4 socket, the addresses returned will be all IPv4
 addresses. If sd is an IPv6 socket, the addresses returned can be a
 mix of IPv4 or IPv6 addresses, with IPv4 addresses returned according
 to the SCTP_I_WANT_MAPPED_V4_ADDR option setting.

 For one-to-many style sockets, id specifies the association to query.
 For one-to-one style sockets, id is ignored.

 If the id field is set to the value '0' then the locally bound
 addresses are returned without regard to any particular association.

 On success, sctp_getladdrs() returns the number of local addresses
 bound to the socket. If the socket is unbound, sctp_getladdrs()
 returns 0, and the value of *addrs is undefined. If an error occurs,
 sctp_getladdrs() returns -1, and the value of *addrs is undefined.

9.6. sctp_freeladdrs()

 sctp_freeladdrs() frees all resources allocated by sctp_getladdrs().

 The function prototype is

 void sctp_freeladdrs(struct sockaddr *addrs);

 and addrs is the array of local addresses returned by
 sctp_getladdrs().

9.7. sctp_sendmsg() - DEPRECATED

 This function is deprecated, sctp_sendv() (see Section 9.12) should
 be used instead.

 An implementation may provide a library function (or possibly system
 call) to assist the user with the advanced features of SCTP.

 The function prototype is

 ssize_t sctp_sendmsg(int sd,
 const void *msg,
 size_t len,
 const struct sockaddr *to,
 socklen_t tolen,
 uint32_t ppid,
 uint32_t flags,
 uint16_t stream_no,
 uint32_t timetolive,
 uint32_t context);

Stewart, et al. Expires October 25, 2011 [Page 91]

Internet-Draft SCTP sockets API April 2011

 and the arguments are:

 sd: The socket descriptor.

 msg: The message to be sent.

 len: The length of the message.

 to: The destination address of the message.

 tolen: The length of the destination address.

 ppid: The same as sinfo_ppid (see Section 5.3.2).

 flags: The same as sinfo_flags (see Section 5.3.2).

 stream_no: The same as sinfo_stream (see Section 5.3.2).

 timetolive: The same as sinfo_timetolive (see Section 5.3.2).

 context: The same as sinfo_context (see Section 5.3.2).

 The call returns the number of characters sent, or -1 if an error
 occurred. The variable errno is then set appropriately.

 Sending a message using sctp_sendmsg() is atomic (unless explicit EOR
 marking is enabled on the socket specified by sd).

 Using sctp_sendmsg() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the SCTP
 implementation.

9.8. sctp_recvmsg() - DEPRECATED

 This function is deprecated, sctp_recvv() (see Section 9.13) should
 be used instead.

 An implementation may provide a library function (or possibly system
 call) to assist the user with the advanced features of SCTP. Note
 that in order for the sctp_sndrcvinfo structure to be filled in by
 sctp_recvmsg() the caller must enable the sctp_data_io_event with the
 SCTP_EVENTS option. Note that the setting of the
 SCTP_USE_EXT_RCVINFO will affect this function as well, causing the
 sctp_sndrcvinfo information to be extended.

 The function prototype is

Stewart, et al. Expires October 25, 2011 [Page 92]

Internet-Draft SCTP sockets API April 2011

 ssize_t sctp_recvmsg(int sd,
 void *msg,
 size_t len,
 struct sockaddr *from,
 socklen_t *fromlen
 struct sctp_sndrcvinfo *sinfo
 int *msg_flags);

 and the arguments are

 sd: The socket descriptor.

 msg: The message buffer to be filled.

 len: The length of the message buffer.

 from: A pointer to an address to be filled with the sender of this
 messages address.

 fromlen: An in/out parameter describing the from length.

 sinfo: A pointer to an sctp_sndrcvinfo structure to be filled upon
 receipt of the message.

 msg_flags: A pointer to an integer to be filled with any message
 flags (e.g. MSG_NOTIFICATION). Note that this field is an in-out
 field. Options for the receive may also be passed into the value
 (e.g. MSG_PEEK). On return from the call, the msg_flags value
 will be different than what was sent in to the call. If
 implemented via a recvmsg() call, the msg_flags should only
 contain the value of the flags from the recvmsg() call.

 The call returns the number of bytes received, or -1 if an error
 occurred. The variable errno is then set appropriately.

9.9. sctp_connectx()

 An implementation may provide a library function (or possibly system
 call) to assist the user with associating to an endpoint that is
 multi-homed. Much like sctp_bindx() this call allows a caller to
 specify multiple addresses at which a peer can be reached. The way
 the SCTP stack uses the list of addresses to set up the association
 is implementation dependent. This function only specifies that the
 stack will try to make use of all the addresses in the list when
 needed.

 Note that the list of addresses passed in is only used for setting up
 the association. It does not necessarily equal the set of addresses

Stewart, et al. Expires October 25, 2011 [Page 93]

Internet-Draft SCTP sockets API April 2011

 the peer uses for the resulting association. If the caller wants to
 find out the set of peer addresses, it must use sctp_getpaddrs() to
 retrieve them after the association has been set up.

 The function prototype is

 int sctp_connectx(int sd,
 struct sockaddr *addrs,
 int addrcnt,
 sctp_assoc_t *id);

 and the arguments are:

 sd: The socket descriptor.

 addrs: An array of addresses.

 addrcnt: The number of addresses in the array.

 id: An output parameter that if passed in as a non-NULL will return
 the association identifier for the newly created association (if
 successful).

 The call returns 0 on success or -1 if an error occurred. The
 variable errno is then set appropriately.

9.10. sctp_send() - DEPRECATED

 This function is deprecated, sctp_sendv() should be used instead.

 An implementation may provide another alternative function or system
 call to assist an application with the sending of data without the
 use of the CMSG header structures.

 The function prototype is

 ssize_t sctp_send(int sd,
 const void *msg,
 size_t len,
 const struct sctp_sndrcvinfo *sinfo,
 int flags);

 and the arguments are

 sd: The socket descriptor.

Stewart, et al. Expires October 25, 2011 [Page 94]

Internet-Draft SCTP sockets API April 2011

 msg: The message to be sent.

 len: The length of the message.

 sinfo: A pointer to an sctp_sndrcvinfo structure used as described
 in Section 5.3.2 for a sendmsg() call.

 flags: The same flags as used by the sendmsg() call flags (e.g.
 MSG_DONTROUTE).

 The call returns the number of bytes sent, or -1 if an error
 occurred. The variable errno is then set appropriately.

 This function call may also be used to terminate an association using
 an association identifier by setting the sinfo.sinfo_flags to
 SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
 to be terminated. In such a case the len of the message can be zero.

 Using sctp_send() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the SCTP
 implementation.

 Sending a message using sctp_send() is atomic unless explicit EOR
 marking is enabled on the socket specified by sd.

9.11. sctp_sendx() - DEPRECATED

 This function is deprecated, sctp_sendv() should be used instead.

 An implementation may provide another alternative function or system
 call to assist an application with the sending of data without the
 use of the CMSG header structures that also gives a list of
 addresses. The list of addresses is provided for implicit
 association setup. In such a case the list of addresses serves the
 same purpose as the addresses given in sctp_connectx() (see

Section 9.9).

 The function prototype is

 ssize_t sctp_sendx(int sd,
 const void *msg,
 size_t len,
 struct sockaddr *addrs,
 int addrcnt,
 struct sctp_sndrcvinfo *sinfo,
 int flags);

 and the arguments are:

Stewart, et al. Expires October 25, 2011 [Page 95]

Internet-Draft SCTP sockets API April 2011

 sd: The socket descriptor.

 msg: The message to be sent.

 len: The length of the message.

 addrs: Is an array of addresses.

 addrcnt: The number of addresses in the array.

 sinfo: A pointer to an sctp_sndrcvinfo structure used as described
 in Section 5.3.2 for a sendmsg() call.

 flags: The same flags as used by the sendmsg() call flags (e.g.
 MSG_DONTROUTE).

 The call returns the number of bytes sent, or -1 if an error
 occurred. The variable errno is then set appropriately.

 Note that in case of implicit connection setup, on return from this
 call the sinfo_assoc_id field of the sinfo structure will contain the
 new association identifier.

 This function call may also be used to terminate an association using
 an association identifier by setting the sinfo.sinfo_flags to
 SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
 to be terminated. In such a case the len of the message would be
 zero.

 Sending a message using sctp_sendx() is atomic unless explicit EOR
 marking is enabled on the socket specified by sd.

 Using sctp_sendx() on a non-connected one-to-one style socket for
 implicit connection setup may or may not work depending on the SCTP
 implementation.

9.12. sctp_sendv()

 The function prototype is

 ssize_t sctp_sendv(int sd,
 const struct iovec *iov,
 int iovcnt,
 struct sockaddr *addrs,
 int addrcnt,
 void *info,
 socklen_t infolen,
 unsigned int infotype,

Stewart, et al. Expires October 25, 2011 [Page 96]

Internet-Draft SCTP sockets API April 2011

 int flags);

 The function sctp_sendv() provides an extensible way for an
 application to communicate different send attributes to the SCTP
 stack when sending a message. An implementation may provide
 sctp_sendv() as a library function or a system call.

 This document defines three types of attributes which can be used to
 describe a message to be sent. They are struct sctp_sndinfo
 (Section 5.3.4), struct sctp_prinfo (Section 5.3.7), and struct
 sctp_authinfo (Section 5.3.8). The following structure
 sctp_sendv_spa is defined to be used when more than one of the above
 attributes are needed to describe a message to be sent.

 struct sctp_sendv_spa {
 uint32_t sendv_flags;
 struct sctp_sndinfo sendv_sndinfo;
 struct sctp_prinfo sendv_prinfo;
 struct sctp_authinfo sendv_authinfo;
 };

 The sendv_flags field holds a bit wise OR of SCTP_SEND_SNDINFO_VALID,
 SCTP_SEND_PRINFO_VALID and SCTP_SEND_AUTHINFO_VALID indicating if the
 sendv_sndinfo/sendv_prinfo/sendv_authinfo fields contain valid
 information.

 In future, when new send attributes are needed, new structures can be
 defined. But those new structures do not need to be based on any of
 the above defined structures.

 The function takes the following arguments:

 sd: The socket descriptor.

 iov: The gather buffer. The data in the buffer is treated as one
 single user message.

 iovcnt: The number of elements in iov.

 addrs: An array of addresses to be used to set up an association or
 one single address to be used to send the message. Pass in NULL
 if the caller does not want to set up an association nor want to
 send the message to a specific address.

 addrcnt: The number of addresses in the addrs array.

Stewart, et al. Expires October 25, 2011 [Page 97]

Internet-Draft SCTP sockets API April 2011

 info: A pointer to the buffer containing the attribute associated
 with the message to be sent. The type is indicated by info_type
 parameter.

 infolen: The length in bytes of info.

 infotype: Identifies the type of the information provided in info.
 The current defined values are:

 SCTP_SENDV_SNDINFO: The type of info is struct sctp_sndinfo.

 SCTP_SENDV_PRINFO: The type of info is struct sctp_prinfo.

 SCTP_SENDV_AUTHINFO: The type of info is struct sctp_authinfo.

 SCTP_SENDV_SPA: The type of info is struct sctp_sendv_spa.

 flags: The same flags as used by the sendmsg() call flags (e.g.
 MSG_DONTROUTE).

 The call returns the number of bytes sent, or -1 if an error
 occurred. The variable errno is then set appropriately.

 A note on one-to-many style socket. The struct sctp_sndinfo
 attribute must always be used in order to specify the association the
 message is to be sent on. The only case where it is not needed is
 when this call is used to set up a new association.

 The caller provides a list of addresses in the addrs parameter to set
 up an association. This function will behave like calling
 sctp_connectx() (see Section 9.9) first using the list of addresses
 and then calling sendmsg() with the given message and attributes.
 For an one-to-many style socket, if struct sctp_sndinfo attribute is
 provided, the snd_assoc_id field must be 0. When this function
 returns, the snd_assoc_id field will contain the association
 identifier of the newly established association. Note that struct
 sctp_sndinfo attribute is not required to set up an association for
 one-to-many style socket. If this attribute is not provided, the
 caller can enable the SCTP_ASSOC_CHANGE notification and use the
 SCTP_COMM_UP message to find out the association identifier.

 If the caller wants to send the message to a specific peer address
 (hence overriding the primary address), it can provide the specific
 address in the addrs parameter and provide a struct sctp_sndinfo
 attribute with the field snd_flags set to SCTP_ADDR_OVER.

 This function call may also be used to terminate an association. The
 caller provides an sctp_sndinfo attribute with the snd_flags set to

Stewart, et al. Expires October 25, 2011 [Page 98]

Internet-Draft SCTP sockets API April 2011

 SCTP_EOF. In this case the len of the message would be zero.

 Sending a message using sctp_sendv() is atomic unless explicit EOR
 marking is enabled on the socket specified by sd.

9.13. sctp_recvv()

 The function prototype is

 ssize_t sctp_recvv(int sd,
 const struct iovec *iov,
 int iovlen,
 struct sockaddr *from,
 socklen_t *fromlen,
 void *info,
 socklen_t *infolen,
 unsigned int *infotype,
 int *flags);

 The function sctp_recvv() provides an extensible way for the SCTP
 stack to pass up different SCTP attributes associated with a received
 message to an application. An implementation may provide
 sctp_recvv() as a library function or as a system call.

 This document defines two types of attributes which can be returned
 by this call, the attribute of the received message and the attribute
 of the next message in receive buffer. The caller enables the
 SCTP_RECVRCVINFO and SCTP_RECVNXTINFO socket option to receive these
 attributes respectively. Attributes of the received message are
 returned in struct sctp_rcvinfo (Section 5.3.5) and attributes of the
 next message are returned in struct sctp_nxtinfo (Section 5.3.6). If
 both options are enabled, both attributes are returned using the
 following structure.

 struct sctp_recvv_rn {
 struct sctp_rcvinfo recvv_rcvinfo;
 struct sctp_nxtinfo recvv_nxtinfo;
 };

 In future, new structures can be defined to hold new types of
 attributes. The new structures do not need to be based on struct
 sctp_recvv_rn or struct sctp_rcvinfo.

 This function takes the following arguments:

Stewart, et al. Expires October 25, 2011 [Page 99]

Internet-Draft SCTP sockets API April 2011

 sd: The socket descriptor.

 iov: The scatter buffer. Only one user message is returned in this
 buffer.

 iovlen: The number of elements in iov.

 from: A pointer to an address to be filled with the sender of the
 received message's address.

 fromlen: An in/out parameter describing the from length.

 info: A pointer to the buffer to hold the attributes of the received
 message. The structure type of info is determined by the
 info_type parameter.

 infolen: An in/out parameter describing the size of the info buffer.

 infotype: In return, *info_type is set to the type of the info
 buffer. The current defined values are:

 SCTP_RECVV_NOINFO: If both SCTP_RECVRCVINFO and SCTP_RECVNXTINFO
 options are not enabled, no attribute will be returned. If
 only the SCTP_RECVNXTINFO option is enabled but there is no
 next message in the buffer, there will also no attribute be
 returned. In these cases *info_type will be set to
 SCTP_RECVV_NOINFO.

 SCTP_RECVV_RCVINFO: The type of info is struct sctp_rcvinfo and
 the attribute is about the received message.

 SCTP_RECVV_NXTINFO: The type of info is struct sctp_nxtinfo and
 the attribute is about the next message in receive buffer.
 This is the case when only the SCTP_RECVNXTINFO option is
 enabled and there is a next message in buffer.

 SCTP_RECVV_RN: The type of info is struct sctp_recvv_rn. The
 recvv_rcvinfo field is the attribute of the received message
 and the recvv_nxtinfo field is the attribute of the next
 message in buffer. This is the case when both SCTP_RECVRCVINFO
 and SCTP_RECVNXTINFO options are enabled and there is a next
 message in the receive buffer.

 flags: A pointer to an integer to be filled with any message flags
 (e.g. MSG_NOTIFICATION). Note that this field is an in/out
 parameter. Options for the receive may also be passed into the
 value (e.g. MSG_PEEK). On return from the call, the flags value
 will be different than what was sent in to the call. If

Stewart, et al. Expires October 25, 2011 [Page 100]

Internet-Draft SCTP sockets API April 2011

 implemented via a recvmsg() call, the flags should only contain
 the value of the flags from the recvmsg() call when calling
 sctp_recvv() and on return it has the value from msg_flags.

 The call returns the number of bytes received, or -1 if an error
 occurred. The variable errno is then set appropriately.

10. IANA Considerations

 This document requires no actions from IANA.

11. Security Considerations

 Many TCP and UDP implementations reserve port numbers below 1024 for
 privileged users. If the target platform supports privileged users,
 the SCTP implementation should restrict the ability to call bind() or
 sctp_bindx() on these port numbers to privileged users.

 Similarly unprivileged users should not be able to set protocol
 parameters that could result in the congestion control algorithm
 being more aggressive than permitted on the public Internet. These
 parameters are:

 o struct sctp_rtoinfo

 If an unprivileged user inherits a one-to-many style socket with open
 associations on a privileged port, it may be permitted to accept new
 associations, but it should not be permitted to open new
 associations. This could be relevant for the r* family of protocols.

 Applications using the one-to-many style sockets and using the
 interleave level if 0 are subject to denial of service attacks as
 described in Section 8.1.20.

12. Acknowledgments

 Special acknowledgment is given to Ken Fujita, Jonathan Woods,
 Qiaobing Xie, and La Monte Yarroll, who helped extensively in the
 early formation of this document.

 The authors also wish to thank Kavitha Baratakke, Mike Bartlett,
 Martin Becke, Jon Berger, Mark Butler, Thomas Dreibholz, Scott
 Kimble, Renee Revis, Andreas Fink, Jonathan Leighton, Irene
 Ruengeler, and many others on the TSVWG mailing list for contributing
 valuable comments.

Stewart, et al. Expires October 25, 2011 [Page 101]

Internet-Draft SCTP sockets API April 2011

 A special thanks to Phillip Conrad, for his suggested text, quick and
 constructive insights, and most of all his persistent fighting to
 keep the interface to SCTP usable for the application programmer.

13. References

13.1. Normative References

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, February 2003.

 [RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
 "Advanced Sockets Application Program Interface (API) for
 IPv6", RFC 3542, May 2003.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758, May 2004.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, August 2007.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061,
 September 2007.

13.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC1644] Braden, B., "T/TCP -- TCP Extensions for Transactions
 Functional Specification", RFC 1644, July 1994.

Appendix A. One-to-One Style Code Example

 The following code is an implementation of a simple client which

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1644

Stewart, et al. Expires October 25, 2011 [Page 102]

Internet-Draft SCTP sockets API April 2011

 sends a number of messages marked for unordered delivery to an echo
 server making use of all outgoing streams. The example shows how to
 use some features of one-to-one style IPv4 SCTP sockets, including:

 o Creating and connecting an SCTP socket.

 o Requesting to negotiate a number of outgoing streams.

 o Determining the negotiated number of outgoing streams.

 o Setting an adaptation layer indication.

 o Sending messages with a given payload protocol identifier on a
 particular stream using sctp_sendv().

 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <netinet/sctp.h>
 #include <arpa/inet.h>
 #include <string.h>
 #include <stdio.h>
 #include <unistd.h>
 #include <stdlib.h>

 #define PORT 9
 #define ADDR "127.0.0.1"
 #define SIZE_OF_MESSAGE 1000
 #define NUMBER_OF_MESSAGES 10
 #define PPID 1234

 int
 main(void) {
 unsigned int i;
 int sd;
 struct sockaddr_in addr;
 char buffer[SIZE_OF_MESSAGE];
 struct iovec iov;
 struct sctp_status status;
 struct sctp_initmsg init;
 struct sctp_sndinfo info;
 struct sctp_setadaptation ind;
 socklen_t opt_len;

 /* Create a one-to-one style SCTP socket. */
 if ((sd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) < 0) {
 perror("socket");

Stewart, et al. Expires October 25, 2011 [Page 103]

Internet-Draft SCTP sockets API April 2011

 exit(1);
 }

 /* Prepare for requesting 2048 outgoing streams. */
 memset(&init, 0, sizeof(init));
 init.sinit_num_ostreams = 2048;
 if (setsockopt(sd, IPPROTO_SCTP, SCTP_INITMSG,
 &init, (socklen_t)sizeof(init)) < 0) {
 perror("setsockopt");
 exit(1);
 }

 ind.ssb_adaptation_ind = 0x01020304;
 if (setsockopt(sd, IPPROTO_SCTP, SCTP_ADAPTATION_LAYER,
 &ind, (socklen_t)sizeof(ind)) < 0) {
 perror("setsockopt");
 exit(1);
 }

 /* Connect to the discard server. */
 memset(&addr, 0, sizeof(addr));
 #ifdef HAVE_SIN_LEN
 addr.sin_len = sizeof(struct sockaddr_in);
 #endif
 addr.sin_family = AF_INET;
 addr.sin_port = htons(PORT);
 addr.sin_addr.s_addr = inet_addr(ADDR);
 if (connect(sd,
 (const struct sockaddr *)&addr,
 sizeof(struct sockaddr_in)) < 0) {
 perror("connect");
 exit(1);
 }

 /* Get the actual number of outgoing streams. */
 memset(&status, 0, sizeof(status));
 opt_len = (socklen_t)sizeof(status);
 if (getsockopt(sd, IPPROTO_SCTP, SCTP_STATUS,
 &status, &opt_len) < 0) {
 perror("getsockopt");
 exit(1);
 }

 memset(&info, 0, sizeof(info));
 info.snd_ppid = htonl(PPID);
 info.snd_flags = SCTP_UNORDERED;
 memset(buffer, 'A', SIZE_OF_MESSAGE);
 iov.iov_base = buffer;

Stewart, et al. Expires October 25, 2011 [Page 104]

Internet-Draft SCTP sockets API April 2011

 iov.iov_len = SIZE_OF_MESSAGE;
 for (i = 0; i < NUMBER_OF_MESSAGES; i++) {
 info.snd_sid = i % status.sstat_outstrms;
 if (sctp_sendv(sd,
 (const struct iovec *)&iov, 1,
 NULL, 0,
 &info, sizeof(info), SCTP_SENDV_SNDINFO,
 0) < 0) {
 perror("sctp_sendv");
 exit(1);
 }
 }

 if (close(sd) < 0) {
 perror("close");
 exit(1);
 }
 return(0);
 }

Appendix B. One-to-Many Style Code Example

 The following code is a simple implementation of a discard server
 over SCTP. The example shows how to use some features of one-to-many
 style IPv6 SCTP sockets, including:

 o Opening and binding of a socket.

 o Enabling notifications.

 o Handling notifications.

 o Configuring the auto close timer.

 o Using sctp_recvv() to receive messages.

 Please note that this server can be used in combination with the
 client described in Appendix A.

 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <netinet/sctp.h>
 #include <arpa/inet.h>
 #include <string.h>
 #include <stdio.h>
 #include <stdlib.h>

Stewart, et al. Expires October 25, 2011 [Page 105]

Internet-Draft SCTP sockets API April 2011

 #include <unistd.h>

 #define BUFFER_SIZE (1<<16)
 #define PORT 9
 #define ADDR "0.0.0.0"
 #define TIMEOUT 5

 static void
 print_notification(void *buf)
 {
 struct sctp_assoc_change *sac;
 struct sctp_paddr_change *spc;
 struct sctp_adaptation_event *sad;
 union sctp_notification *snp;
 char addrbuf[INET6_ADDRSTRLEN];
 const char *ap;
 struct sockaddr_in *sin;
 struct sockaddr_in6 *sin6;

 snp = buf;

 switch (snp->sn_header.sn_type) {
 case SCTP_ASSOC_CHANGE:
 sac = &snp->sn_assoc_change;
 printf("^^^ Association change: ");
 switch (sac->sac_state) {
 case SCTP_COMM_UP:
 printf("Communication up (streams (in/out)=(%u/%u)).\n",
 sac->sac_inbound_streams, sac->sac_outbound_streams);
 break;
 case SCTP_COMM_LOST:
 printf("Communication lost (error=%d).\n", sac->sac_error);
 break;
 case SCTP_RESTART:
 printf("Communication restarted (streams (in/out)=(%u/%u).\n",
 sac->sac_inbound_streams, sac->sac_outbound_streams);
 break;
 case SCTP_SHUTDOWN_COMP:
 printf("Communication completed.\n");
 break;
 case SCTP_CANT_STR_ASSOC:
 printf("Communication couldn't be started.\n");
 break;
 default:
 printf("Unknown state: %d.\n", sac->sac_state);
 break;
 }
 break;

Stewart, et al. Expires October 25, 2011 [Page 106]

Internet-Draft SCTP sockets API April 2011

 case SCTP_PEER_ADDR_CHANGE:
 spc = &snp->sn_paddr_change;
 if (spc->spc_aaddr.ss_family == AF_INET) {
 sin = (struct sockaddr_in *)&spc->spc_aaddr;
 ap = inet_ntop(AF_INET, &sin->sin_addr,
 addrbuf, INET6_ADDRSTRLEN);
 } else {
 sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr;
 ap = inet_ntop(AF_INET6, &sin6->sin6_addr,
 addrbuf, INET6_ADDRSTRLEN);
 }
 printf("^^^ Peer Address change: %s ", ap);
 switch (spc->spc_state) {
 case SCTP_ADDR_AVAILABLE:
 printf("is available.\n");
 break;
 case SCTP_ADDR_UNREACHABLE:
 printf("is not available (error=%d).\n", spc->spc_error);
 break;
 case SCTP_ADDR_REMOVED:
 printf("was removed.\n");
 break;
 case SCTP_ADDR_ADDED:
 printf("was added.\n");
 break;
 case SCTP_ADDR_MADE_PRIM:
 printf("is primary.\n");
 break;
 default:
 printf("unknown state (%d).\n", spc->spc_state);
 break;
 }
 break;
 case SCTP_SHUTDOWN_EVENT:
 printf("^^^ Shutdown received.\n");
 break;
 case SCTP_ADAPTATION_INDICATION:
 sad = &snp->sn_adaptation_event;
 printf("^^^ Adaptation indication 0x%08x received.\n",
 sad->sai_adaptation_ind);
 break;
 default:
 printf("^^^ Unknown event of type: %u.\n",
 snp->sn_header.sn_type);
 break;
 };
 }

Stewart, et al. Expires October 25, 2011 [Page 107]

Internet-Draft SCTP sockets API April 2011

 int
 main(void) {
 int sd, flags, timeout, on;
 ssize_t n;
 unsigned int i;
 union {
 struct sockaddr sa;
 struct sockaddr_in sin;
 struct sockaddr_in6 sin6;
 } addr;
 socklen_t fromlen, infolen;
 struct sctp_rcvinfo info;
 unsigned int infotype;
 struct iovec iov;
 char buffer[BUFFER_SIZE];
 struct sctp_event event;
 uint16_t event_types[] = {SCTP_ASSOC_CHANGE,
 SCTP_PEER_ADDR_CHANGE,
 SCTP_SHUTDOWN_EVENT,
 SCTP_ADAPTATION_INDICATION};

 /* Create a 1-to-many style SCTP socket. */
 if ((sd = socket(AF_INET6, SOCK_SEQPACKET, IPPROTO_SCTP)) < 0) {
 perror("socket");
 exit(1);
 }

 /* Enable the events of interest. */
 memset(&event, 0, sizeof(event));
 event.se_assoc_id = SCTP_FUTURE_ASSOC;
 event.se_on = 1;
 for (i = 0; i < sizeof(event_types)/sizeof(uint16_t); i++) {
 event.se_type = event_types[i];
 if (setsockopt(sd, IPPROTO_SCTP, SCTP_EVENT,
 &event, sizeof(event)) < 0) {
 perror("setsockopt");
 exit(1);
 }
 }

 /* Configure auto-close timer. */
 timeout = TIMEOUT;
 if (setsockopt(sd, IPPROTO_SCTP, SCTP_AUTOCLOSE,
 &timeout, sizeof(timeout)) < 0) {
 perror("setsockopt SCTP_AUTOCLOSE");
 exit(1);
 }

Stewart, et al. Expires October 25, 2011 [Page 108]

Internet-Draft SCTP sockets API April 2011

 /* Enable delivery of SCTP_RCVINFO. */
 on = 1;
 if (setsockopt(sd, IPPROTO_SCTP, SCTP_RECVRCVINFO,
 &on, sizeof(on)) < 0) {
 perror("setsockopt SCTP_RECVRCVINFO");
 exit(1);
 }

 /* Bind the socket to all local addresses. */
 memset(&addr, 0, sizeof(addr));
 #ifdef HAVE_SIN6_LEN
 addr.sin6.sin6_len = sizeof(addr.sin6);
 #endif
 addr.sin6.sin6_family = AF_INET6;
 addr.sin6.sin6_port = htons(PORT);
 addr.sin6.sin6_addr = in6addr_any;
 if (bind(sd, &addr.sa, sizeof(addr.sin6)) < 0) {
 perror("bind");
 exit(1);
 }
 /* Enable accepting associations. */
 if (listen(sd, 1) < 0) {
 perror("listen");
 exit(1);
 }

 for (;;) {
 flags = 0;
 memset(&addr, 0, sizeof(addr));
 fromlen = (socklen_t)sizeof(addr);
 memset(&info, 0, sizeof(info));
 infolen = (socklen_t)sizeof(info);
 infotype = 0;
 iov.iov_base = buffer;
 iov.iov_len = BUFFER_SIZE;

 n = sctp_recvv(sd, &iov, 1,
 &addr.sa, &fromlen,
 &info, &infolen, &infotype,
 &flags);

 if (flags & MSG_NOTIFICATION) {
 print_notification(iov.iov_base);
 } else {
 char addrbuf[INET6_ADDRSTRLEN];
 const char *ap;
 in_port_t port;

Stewart, et al. Expires October 25, 2011 [Page 109]

Internet-Draft SCTP sockets API April 2011

 if (addr.sa.sa_family == AF_INET) {
 ap = inet_ntop(AF_INET, &addr.sin.sin_addr,
 addrbuf, INET6_ADDRSTRLEN);
 port = ntohs(addr.sin.sin_port);
 } else {
 ap = inet_ntop(AF_INET6, &addr.sin6.sin6_addr,
 addrbuf, INET6_ADDRSTRLEN);
 port = ntohs(addr.sin6.sin6_port);
 }
 printf("Message received from %s:%u: len=%d",
 ap, port, (int)n);
 switch (infotype) {
 case SCTP_RECVV_RCVINFO:
 printf(", sid=%u", info.rcv_sid);
 if (info.rcv_flags & SCTP_UNORDERED) {
 printf(", unordered");
 } else {
 printf(", ssn=%u", info.rcv_ssn);
 }
 printf(", tsn=%u", info.rcv_tsn);
 printf(", ppid=%u.\n", ntohl(info.rcv_ppid));
 break;
 case SCTP_RECVV_NOINFO:
 case SCTP_RECVV_NXTINFO:
 case SCTP_RECVV_RN:
 printf(".\n");
 break;
 default:
 printf(" unknown infotype.\n");
 }
 }
 }

 if (close(sd) < 0) {
 perror("close");
 exit(1);
 }

 return (0);
 }

Stewart, et al. Expires October 25, 2011 [Page 110]

Internet-Draft SCTP sockets API April 2011

Authors' Addresses

 Randall R. Stewart
 Adara Networks
 Chapin, SC 29036
 USA

 Email: randall@lakerest.net

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstr. 39
 48565 Steinfurt
 Germany

 Email: tuexen@fh-muenster.de

 Kacheong Poon
 Oracle Corporation

 Email: ka-cheong.poon@oracle.com

 Peter Lei
 Cisco Systems, Inc.
 9501 Technology Blvd
 West Office Center
 Rosemont, IL 60018
 USA

 Email: peterlei@cisco.com

 Vladislav Yasevich
 HP
 110 Spitrook Rd
 Nashua, NH 03062
 USA

 Email: vladislav.yasevich@hp.com

Stewart, et al. Expires October 25, 2011 [Page 111]

