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   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.
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   Internet-Drafts are draft documents valid for a maximum of six months
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   material or cite them other than as "work in progress".

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

   The Eifel response algorithm uses the Eifel detection algorithm to
   detect a posteriori whether the TCP sender has entered loss recovery
   unnecessarily. In response to a spurious timeout it avoids the
   go-back-N retransmits that would otherwise be sent, and reinitializes
   the RTT estimators to avoid further spurious timeouts. Likewise, it
   adapts the duplicate acknowledgement threshold in response to a
   spurious fast retransmit. In both cases, the Eifel response algorithm
   restores the congestion control state in way that avoids packet
   bursts.
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Terminology

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [RFC2119].

   We refer to the first-time transmission of an octet as the 'original
   transmit'. A subsequent transmission of the same octet is referred to
   as a 'retransmit'. In most cases this terminology can likewise be
   applied to "data segments" as opposed to "octets". However, when
   repacketization occurs, a segment can contain both first-time
   transmissions and retransmissions of octets. In that case this
   terminology is only consistent when applied to "octets". For the
   Eifel detection and response algorithms this makes no difference as
   they also operate correctly when repacketization occurs.

   We use the term 'acceptable ACK' as defined in [RFC793]. That is an
   ACK that acknowledges previously unacknowledged data. We use the term
   'duplicate ACK', and the variable 'dupacks' as defined in [WS95]. The
   variable 'dupacks' is a counter of duplicate ACKs that have already
   been received by the TCP sender before the fast retransmit is sent.
   We use the variable 'DupThresh' to refer to the so-called duplicate
   acknowledgement threshold, i.e., the number of duplicate ACKs that
   need to arrive at the TCP sender to trigger a fast retransmit.
   Currently, DupThresh is specified as a fixed value of three
   [RFC2581].

   Furthermore, we use the TCP sender state variables 'SND.UNA' and
   'SND.NXT' as defined in [RFC793]. SND.UNA holds the segment sequence
   number of the oldest outstanding segment. SND.NXT holds the segment
   sequence number of the next segment the TCP sender will
   (re-)transmit. In addition, we define as 'SND.MAX' the segment
   sequence number of the next original transmit to be sent. The
   definition of SND.MAX is equivalent to the definition of snd_max in
   [WS95].

   We use the TCP sender state variables 'cwnd' (congestion window), and
   'ssthresh' (slow start threshold), and the terms 'SMSS', and
   'FlightSize' as defined in [RFC2581]. FlightSize is the amount of
   outstanding data in the network, or alternatively, the difference
   between SND.MAX and SND.UNA at a given point in time. We use the TCP
   sender state variables 'SRTT' and 'RTTVAR', and the term 'RTO' as
   defined in [RFC2988]. In addition, we assume that the TCP sender
   maintains in the variable 'RTT-SAMPLE' the value of the latest round-
   trip time (RTT) measurement.

1. Introduction

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988


   The Eifel response algorithm uses the Eifel detection algorithm to
   detect a posteriori whether the TCP sender has entered loss recovery
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   unnecessarily. In response to a spurious timeout it avoids the
   go-back-N retransmits that would otherwise be sent, and reinitializes
   the RTT estimators to avoid further spurious timeouts. Likewise, it
   adapts the duplicate acknowledgement threshold in response to a
   spurious fast retransmit. In both cases, the Eifel response algorithm
   restores the congestion control state in way that avoids packet
   bursts.

   The Eifel response algorithm relies on the Eifel detection algorithm
   defined in [LM02]. That document discusses the relevant background
   and motivation that also applies to this document. Hence, the reader
   is expected to be familiar with [LM02], and should view this document
   as a companion document.

2. The Eifel Response Algorithm

   The complete algorithm is specified in section 2.1. In sections 2.2
   to 2.4, we motivate the different steps of the algorithm.

2.1. The Algorithm

   Given that a TCP sender has enabled the Eifel detection algorithm
   [LM02] for a connection, a TCP sender MAY use the Eifel response
   algorithm as defined in this subsection. Note that this implies that
   the TCP Timestamps option [RFC1323] is used for that connection.
   Since the Eifel response algorithm is dependent on the Eifel
   detection algorithm, we describe it as an extension of the latter.

   If the combined Eifel detection and response algorithm is used, the
   following steps MUST be taken by the TCP sender, but only upon
   initiation of loss recovery, i.e., when either the timeout-based
   retransmit or the fast retransmit is sent. Note: The algorithm MUST
   NOT be reinitiated after loss recovery has already started. In
   particular, it may not be reinitiated upon subsequent timeouts for
   the same segment, and not upon retransmitting segments other than the
   oldest outstanding segment.

   Note that steps (1)-(5) are an one-to-one copy of the Eifel detection
   algorithm specified in [LM02], step (0) has been added, and step
   (RESP) from [LM02] has been replaced by steps (RESP)-(ReCC) given
   below.

      (0)     Before the variables cwnd and ssthresh get updated when
               loss recovery is initiated, set a "cwnd_prev" variable to
               the current value of FlightSize, and set a
               "ssthresh_prev" variable to the value of ssthresh.

      (1)     Set a "RetransmitTS" variable to the value of the

https://datatracker.ietf.org/doc/html/rfc1323


               Timestamp Value field of the Timestamps option included
               in the retransmit sent when loss recovery is initiated. A
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               TCP sender must ensure that RetransmitTS does not get
               overwritten as loss recovery progresses, e.g., in case of
               a second timeout and subsequent second retransmit of the
               same octet.

      (2)     Set a "SpuriousRecovery" variable to FALSE.

      (3)     Wait for the arrival of an acceptable ACK. If an
               acceptable ACK has arrived, then proceed to step (4).

      (4)     If the value of the Timestamp Echo Reply field of the
               acceptable ACK's Timestamps option is smaller than the
               value of the variable RetransmitTS, then proceed to step
               (5),

               else proceed to step (DONE).

      (5)     If the loss recovery has been initiated with a timeout-
               based retransmit, then set
                    SpuriousRecovery <- SPUR_TO,

               else set
                    SpuriousRecovery <- dupacks+1

      (RESP)  If SpuriousRecovery equals SPUR_TO, then proceed to step
               (STO.1),

               else (spurious fast retransmit) proceed to step (SFR).

      (STO.1) Resume transmission off the top:

               Set
                    SND.NXT <- SND.MAX

      (STO.2) Reinitialize the RTT estimators:

               Set
                    SRTT <- RTT-SAMPLE
                    RTTVAR <- RTT-SAMPLE/2,
               recalcualte the RTO, and restart the retransmission
               timer.

               Proceed to step (ReCC).

      (SFR)   Adapt the duplicate acknowledgement threshold:

               Set
                    DupThresh <- max (DupThresh, SpuriousRecovery)



               Proceed to step (ReCC).
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      (ReCC)  Revert the congestion control state:

               If the acceptable ACK has the ECN-Echo flag [RFC3168] set
               OR the TCP sender has already taken more than three
               timeouts for the oldest outstanding segment, then proceed
               to step (DONE),

               else set
                    cwnd <- FlightSize + SMSS
                    ssthresh <- max (cwnd_prev, ssthresh_prev)

               Note: At this point in the algorithm, the value of
               FlightSize might be different from the value of
               FlightSize in step (0).

               Proceed to step (DONE).

      (DONE)  No further processing.

2.2 Responding to Spurious Timeouts

2.2.1 Suppressing the Spurious go-back-N Retransmits (step STO.1)

   Without the Eifel detection algorithm, the TCP sender suffers from
   the retransmission ambiguity problem [KP87]. This means that when the
   first acceptable ACK arrives after a spurious timeout, the TCP sender
   must believe that that ACK was sent in response to the retransmit
   when in fact it was sent in response to the original transmit.
   Furthermore, the TCP sender must also believe that all other segments
   outstanding at that point have been lost. Note: the mentioned ACK
   cannot carry any SACK option [RFC2018].

   Consequently, once the TCP sender's state has been updated after the
   first acceptable ACK has arrived, SND.NXT equals SND.UNA. This is
   what causes the often unnecessary go-back-N retransmits. Any newly
   arriving acceptable ACK that was sent in response to an original
   transmit will now clock out the segment pointed at by SND.UNA;
   whether it was lost or not. In fact, during this phase the TCP sender
   breaks 'packet conservation' [Jac88]. This is because the unnecessary
   go-back-N retransmits are sent during slow start, i.e., for each
   original packet leaving the network, two useless retransmits are sent
   into the network (see [LK00] for more detail).

   The Eifel detection algorithm reliably eliminates the retransmission
   ambiguity problem. Once it detected that a timeout was spurious, it
   is therefore safe to let the TCP sender resume the transmission with
   new data. Thus, the Eifel response algorithm changes the TCP sender's

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2018


   state by setting SND.NXT to SND.MAX in that case.
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2.2.2 Re-Initializing the RTT Estimators (step STO.2)

   Since the timeout was spurious, the TCP sender's RTT estimators are
   likely to be off. On the other hand, since timestamps are used, a new
   and valid RTT measurement (RTT-SAMPLE) can be derived from the
   acceptable ACK. It is therefore suggested to reinitialize the RTT
   estimators from RTT-SAMPLE.

   To have the new RTO become effective, the retransmission timer needs
   to be restarted. This is consistent with [RFC2988] which recommends
   restarting the retransmission timer with the arrival of an acceptable
   ACK.

2.3 Responding to Spurious Fast Retransmits (step SFR)

   The assumption behind the fast retransmit algorithm [RFC2581] is that
   a segment was lost if as many duplicate ACKs have arrived at the TCP
   sender as indicated by DupThresh. Currently, DupThresh is specified
   as a fixed value of three [RFC2581]. That value is assumed to be
   sufficiently conservative so that packet reordering and/or packet
   duplication does not falsely trigger the fast retransmit algorithm.
   Clearly, this assumption does not hold for a particular TCP
   connection once the TCP sender detects that the last fast retransmit
   has been spurious. It is therefore suggested to dynamically adapt
   DupThresh to the reordering characteristics observed over the course
   of a particular connection.

   At the beginning of a connection DupThresh is initialized with three.
   Then for each spurious fast retransmit that is detected, DupThresh is
   set to the maximum of the previous DupThresh, and the lowest value
   that would have avoided that spurious fast retransmit. Note that the
   Eifel detection algorithm records the latter value in
   SpuriousRecovery. This strategy ensures that the TCP sender is able
   to cope with the longest reordering length seen on a particular
   connection so far.

   However, the strategy bears the risk that the retransmission timer
   expires before the TCP sender receives the duplicate ACK that would
   trigger a fast retransmit of the oldest outstanding segment. To
   alleviate that potential problem the TCP sender should implement the
   "fast timeout" algorithm proposed in [Lu02].

   Also, we believe that this strategy should be implemented together
   with an advanced version of the Limited Transmit algorithm [RFC3042].
   That is for each duplicate ACK that arrives until DupThresh is
   reached, the TCP sender should sent a new data segment if new data is
   available, and the TCP receiver's advertised window allows so.
   Although, the current Limited Transmit algorithm only allows this for

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042


   the first two duplicate ACKs, we believe that this is safe. This is
   already implemented in widely deployed TCPs [SK02].
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   Other alternatives for responding to spurious fast retransmits are
   discussed in [BA02a].

2.4 Reverting Congestion Control State (step ReCC)

   When a TCP sender enters loss recovery, it also assumes that is has
   received a congestion indication. In response to that it reduces
   cwnd, and ssthresh. However, once the TCP sender detects that the
   loss recovery has been falsely triggered, this reduction was
   unnecessary. In fact, no congestion signal has been received. We
   therefore believe that it is safe to revert to the previous
   congestion control state.

   Instead, of simply restoring cwnd, and ssthresh, it is suggested to
   set cwnd to one half the previous cwnd, and then enter the slow start
   phase. This is more conservative than the original proposal, but it
   avoids the packet burst that could otherwise be triggered after a
   spurious fast retransmit [LK00]. When the spurious loss recovery has
   been triggered during slow start, the previous slow start threshold
   is restored. Otherwise, the TCP sender slow starts to the FlightSize
   it had before the loss recovery was initiated (cwnd_prev).

   Clearly, when the acceptable ACK signals congestion through the
   ECN-Echo flag [RFC3168], the TCP sender MUST refrain from reverting
   congestion control state. The same is true if the TCP sender has
   already taken more than three timeouts for the oldest outstanding
   segment. Allowing three timeouts while still reverting congestion
   control state goes beyond [RFC2581]. That standard recommends setting
   cwnd to no more than the restart window before beginning transmission
   if the TCP sender has not sent data in an interval exceeding the
   current RTO. The motivation for doing so is to restart the ACK clock
   which is believed to have been lost. The case in step (ReCC) of the
   Eifel response algorithm is different. Since, an acceptable ACK has
   finally returned, the TCP has reason to believe that the ACK clock
   was merely interrupted but has now resumed "ticking" again.

3. Interoperability with Advanced Loss Recovery Schemes

   We believe that there are no problems concerning interoperability
   with advanced loss recovery schemes such as NewReno [RFC2582], or
   SACK-based schemes [2018], [BA02b]. This is because in case loss
   recovery has been initiated unnecessarily, the Eifel response
   algorithm will have caused the TCP sender to back out of loss
   recovery before those schemes would have kicked in.

   In fact, we recommend that the Eifel response algorithm is
   implemented together with one of those advanced loss recovery scheme;

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582


   ideally a SACK-based alternative. In an environment where spurious
   timeouts and back-to-back packet losses often coincide, we have found
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   that TCP's performance can even suffer if the Eifel response
   algorithm is operated without an advanced loss recovery scheme
   [GL02].

   In that study we among other variants compared TCP-Reno with and
   without the Eifel response algorithm (TCP-Reno/Eifel vs. TCP-Reno),
   and without an advanced loss recovery scheme for both variants. The
   reason that TCP-Reno performed better in the mentioned scenario, is
   its aggressiveness after a spurious timeout. Even though it breaks
   'packet conservation' (see Section 2.2.1) when blindly retransmitting
   all outstanding segments, it usually recovers the back-to-back packet
   losses within a single round-trip time. On the contrary, the more
   conservative TCP-Reno/Eifel was forced into another (backed-off)
   timeout in that case. In the study, we found that the best end-to-end
   performance was achieved when the TCP sender implemented both the
   Eifel response algorithm and SACK-based loss recovery. In case
   NewReno is chosen as the advanced loss recovery scheme, we found that
   it performs better if the 'bugfix' feature is disabled. That feature
   often lead the TCP sender to the wrong decision.

4. Security Considerations

   There is a risk that TCP receivers make a genuine retransmit appear
   to the TCP sender as a spurious retransmit by forging echoed
   timestamps. This could effectively disable congestion control at the
   TCP sender. A reliable method to protect against that risk is to
   implement the safe variant of the Eifel detection algorithm specified
   in [LM02].
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