
Network Working Group Reiner Ludwig
INTERNET-DRAFT Ericsson Research
Expires: April 2003 Andrei Gurtov
 Sonera Corporation
 October, 2002

The Eifel Response Algorithm for TCP
<draft-ietf-tsvwg-tcp-eifel-response-01.txt>

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 The Eifel response algorithm uses the Eifel detection algorithm to
 detect a posteriori whether the TCP sender has entered loss recovery
 unnecessarily. In response to a spurious timeout it avoids the often
 unnecessary go-back-N retransmits that would otherwise be sent, and
 reinitializes the RTT estimators to avoid further spurious timeouts.
 Likewise, it adapts the duplicate acknowledgement threshold in
 response to a spurious fast retransmit. In both cases, the Eifel
 response algorithm restores the congestion control state in such a
 way that packet bursts are avoided.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-response-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/lid-abstracts.txt
http://www.ietf.org/shadow.html

Ludwig & Gurtov [Page 1]

INTERNET-DRAFT TCP - Eifel Response October, 2002

Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 We refer to the first-time transmission of an octet as the 'original
 transmit'. A subsequent transmission of the same octet is referred to
 as a 'retransmit'. In most cases this terminology can likewise be
 applied to data segments as opposed to octets. However, when
 repacketization occurs, a segment can contain both first-time
 transmissions and retransmissions of octets. In that case this
 terminology is only consistent when applied to octets. For the Eifel
 detection and response algorithms this makes no difference as they
 also operate correctly when repacketization occurs.

 We use the term 'acceptable ACK' as defined in [RFC793]. That is an
 ACK that acknowledges previously unacknowledged data. We use the term
 'duplicate ACK', and the variable 'dupacks' as defined in [WS95]. The
 variable 'dupacks' is a counter of duplicate ACKs that have already
 been received by the TCP sender before the fast retransmit is sent.
 We use the variable 'DupThresh' to refer to the so-called duplicate
 acknowledgement threshold, i.e., the number of duplicate ACKs that
 need to arrive at the TCP sender to trigger a fast retransmit.
 Currently, DupThresh is specified as a fixed value of three
 [RFC2581].

 Furthermore, we use the TCP sender state variables 'SND.UNA' and
 'SND.NXT' as defined in [RFC793]. SND.UNA holds the segment sequence
 number of the oldest outstanding segment. SND.NXT holds the segment
 sequence number of the next segment the TCP sender will
 (re-)transmit. In addition, we define as 'SND.MAX' the segment
 sequence number of the next original transmit to be sent. The
 definition of SND.MAX is equivalent to the definition of snd_max in
 [WS95].

 We use the TCP sender state variables 'cwnd' (congestion window), and
 'ssthresh' (slow start threshold), and the terms 'SMSS', and
 'FlightSize' as defined in [RFC2581]. FlightSize is the amount of
 outstanding data in the network, or alternatively, the difference
 between SND.MAX and SND.UNA at a given point in time. We use the TCP
 sender state variables 'SRTT' and 'RTTVAR', and the term 'RTO' as
 defined in [RFC2988]. In addition, we assume that the TCP sender
 maintains in the variable 'RTT-SAMPLE' the value of the latest round-
 trip time (RTT) measurement.

1. Introduction

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988

 The Eifel response algorithm relies on the Eifel detection algorithm
 defined in [LM02]. That document discusses the relevant background

Ludwig & Gurtov [Page 2]

INTERNET-DRAFT TCP - Eifel Response October, 2002

 and motivation that also applies to this document. Hence, the reader
 is expected to be familiar with [LM02]. Note that alternative
 response algorithms are conceivable that could also rely on the Eifel
 detection algorithm.

 The Eifel response algorithm uses the Eifel detection algorithm to
 detect a posteriori whether the TCP sender has entered loss recovery
 unnecessarily. In response to a spurious timeout it avoids the often
 unnecessary go-back-N retransmits that would otherwise be sent, and
 reinitializes the RTT estimators to avoid further spurious timeouts.
 Likewise, it adapts the duplicate acknowledgement threshold in
 response to a spurious fast retransmit. In both cases, the Eifel
 response algorithm restores the congestion control state in such a
 way that packet bursts are avoided.

2. The Eifel Response Algorithm

 The complete algorithm is specified in section 2.1. In sections 2.2
 to 2.4, we motivate the different steps of the algorithm.

2.1. The Algorithm

 Given that a TCP sender has enabled the Eifel detection algorithm
 [LM02] for a connection, a TCP sender MAY use the Eifel response
 algorithm as defined in this subsection. Note that this implies that
 the TCP Timestamps option [RFC1323] is used for that connection.
 Since the Eifel response algorithm is dependent on the Eifel
 detection algorithm, we describe it as an extension of the latter.

 If the combined Eifel detection and response algorithm is used, the
 following steps MUST be taken by the TCP sender, but only upon
 initiation of loss recovery, i.e., when either the timeout-based
 retransmit or the fast retransmit is sent. Note: The algorithm MUST
 NOT be reinitiated after loss recovery has already started. In
 particular, it may not be reinitiated upon subsequent timeouts for
 the same segment, and not upon retransmitting segments other than the
 oldest outstanding segment.

 Note that steps (1)-(6) are an one-to-one copy of the Eifel detection
 algorithm specified in [LM02], step (0) has been added, and step
 (RESP) from [LM02] has been replaced by steps (RESP)-(ReCC) given
 below.

 (0) Before the variables cwnd and ssthresh get updated when
 loss recovery is initiated, set a "pipe_prev" variable as
 follows:
 pipe_prev <- max (FlightSize, ssthresh)

https://datatracker.ietf.org/doc/html/rfc1323

 (1) Set a "SpuriousRecovery" variable to FALSE (equal 0).

Ludwig & Gurtov [Page 3]

INTERNET-DRAFT TCP - Eifel Response October, 2002

 (2) Set a "RetransmitTS" variable to the value of the
 Timestamp Value field of the Timestamps option included in
 the retransmit sent when loss recovery is initiated. A TCP
 sender must ensure that RetransmitTS does not get
 overwritten as loss recovery progresses, e.g., in case of
 a second timeout and subsequent second retransmit of the
 same octet.

 (3) Wait for the arrival of an acceptable ACK. When an
 acceptable ACK has arrived proceed to step (4).

 (4) If the value of the Timestamp Echo Reply field of the
 acceptable ACK's Timestamps option is smaller than the
 value of the variable RetransmitTS, then proceed to step
 (5),

 else proceed to step (DONE).

 (5) If the acceptable ACK does not carry a DSACK option
 [RFC2883], then proceed to step (6),

 else proceed to step (DONE).

 (6) If the loss recovery has been initiated with a timeout-
 based retransmit, then set
 SpuriousRecovery <- SPUR_TO (equal 1),

 else set
 SpuriousRecovery <- dupacks+1

 (RESP) If SpuriousRecovery equals SPUR_TO, then proceed to step
 (STO.1),

 else (spurious fast retransmit) proceed to step (SFR).

 (STO.1) Resume transmission off the top:

 Set
 SND.NXT <- SND.MAX

 (STO.2) Reinitialize the RTT estimators:

 Set
 SRTT <- RTT-SAMPLE
 RTTVAR <- RTT-SAMPLE/2,
 recalculate the RTO, and restart the retransmission timer.

 Proceed to step (ReCC).

https://datatracker.ietf.org/doc/html/rfc2883

 (SFR) Adapt the duplicate acknowledgement threshold:

Ludwig & Gurtov [Page 4]

INTERNET-DRAFT TCP - Eifel Response October, 2002

 Set
 DupThresh <- max (DupThresh, SpuriousRecovery)

 Proceed to step (ReCC).

 (ReCC) Revert the congestion control state:

 If the acceptable ACK has the ECN-Echo flag [RFC3168] set
 OR the TCP sender has already taken more than three
 timeouts for the oldest outstanding segment, then proceed
 to step (DONE),

 else set
 cwnd <- FlightSize + SMSS
 ssthresh <- pipe_prev

 Note: At this point in the algorithm, the value of
 FlightSize might be different from the value of FlightSize
 in step (0).

 Proceed to step (DONE).

 (DONE) No further processing.

2.2 Responding to Spurious Timeouts

2.2.1 Suppressing the Unnecessary go-back-N Retransmits (step STO.1)

 Without the use of the TCP timestamps option, the TCP sender suffers
 from the retransmission ambiguity problem [Zh86], [KP87]. This means
 that when the first acceptable ACK arrives after a spurious timeout,
 the TCP sender must believe that that ACK was sent in response to the
 retransmit when in fact it was sent in response to the original
 transmit. Furthermore, the TCP sender must also believe that all
 other segments outstanding at that point were lost.

 Note: Except for certain cases where original ACKs were lost, that
 first acceptable ACK cannot carry any DSACK option [RFC2883].

 Consequently, once the TCP sender's state has been updated after the
 first acceptable ACK has arrived, SND.NXT equals SND.UNA. This is
 what causes the often unnecessary go-back-N retransmits. Now every
 arriving acceptable ACK that was sent in response to an original
 transmit will advance SND.NXT. But as long as SND.NXT is smaller than
 the value that SND.MAX had when the timeout occurred, those ACKs will
 clock out retransmits; whether those segments were lost or not.

 In fact, during this phase the TCP sender breaks 'packet

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2883

 conservation' [Jac88]. This is because the go-back-N retransmits are
 sent during slow start. I.e., for each original packet leaving the

Ludwig & Gurtov [Page 5]

INTERNET-DRAFT TCP - Eifel Response October, 2002

 network, two retransmits are sent into the network as long as SND.NXT
 does not equal SND.MAX (see [LK00] for more detail).

 The use of the TCP timestamps option reliably eliminates the
 retransmission ambiguity problem. Thus, once the Eifel detection
 algorithm detected that a timeout was spurious, it is therefore safe
 to let the TCP sender resume the transmission with new data. Thus,
 the Eifel response algorithm changes the TCP sender's state by
 setting SND.NXT to SND.MAX in that case.

2.2.2 Re-Initializing the RTT Estimators (step STO.2)

 Since the timeout was spurious, the TCP sender's RTT estimators are
 likely to be off. On the other hand, since timestamps are used, a new
 and valid RTT measurement (RTT-SAMPLE) can be derived from the
 acceptable ACK. It is therefore suggested to reinitialize the RTT
 estimators from RTT-SAMPLE.

 To have the new RTO become effective, the retransmission timer needs
 to be restarted. This is consistent with [RFC2988] which recommends
 restarting the retransmission timer with the arrival of an acceptable
 ACK.

2.3 Responding to Spurious Fast Retransmits (step SFR)

 The assumption behind the fast retransmit algorithm [RFC2581] is that
 a segment was lost if as many duplicate ACKs have arrived at the TCP
 sender as indicated by DupThresh. Currently, DupThresh is specified
 as a fixed value of three [RFC2581]. That value is assumed to be
 sufficiently conservative so that packet reordering and/or packet
 duplication does not falsely trigger the fast retransmit algorithm.
 Clearly, this assumption does not hold for a particular TCP
 connection once the TCP sender detects that the last fast retransmit
 was spurious. It is therefore suggested to dynamically adapt
 DupThresh to the reordering characteristics observed over the course
 of a particular connection.

 At the beginning of a connection DupThresh is initialized with three.
 Then for each spurious fast retransmit that is detected, DupThresh is
 set to the maximum of the previous DupThresh, and the lowest value
 that would have avoided that last spurious fast retransmit. Note that
 the Eifel detection algorithm records the latter value in
 SpuriousRecovery. This strategy ensures that the TCP sender is able
 to cope with the longest reordering length seen on a particular
 connection so far.

 However, the strategy bears the risk that the retransmission timer
 expires before the TCP sender receives the duplicate ACK that would

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

 trigger a fast retransmit of the oldest outstanding segment. To

Ludwig & Gurtov [Page 6]

INTERNET-DRAFT TCP - Eifel Response October, 2002

 alleviate that potential problem the TCP sender may implement the
 Fast Timeout algorithm proposed in [Lu02].

 Also, we believe that this strategy should be implemented together
 with an advanced version of the Limited Transmit algorithm [RFC3042].
 That is for each duplicate ACK that arrives until DupThresh is
 reached, the TCP sender should sent a new data segment if allowed by
 the TCP receiver's advertised window, and if new data is available.
 Although, the current Limited Transmit algorithm only allows this for
 the first two duplicate ACKs, we believe that such an advanced
 limited transmit strategy is safe. It is already implemented in
 widely deployed TCPs [SK02].

 Other alternatives for responding to spurious fast retransmits are
 discussed in [BA02a].

2.4 Reverting Congestion Control State (step ReCC)

 When a TCP sender enters loss recovery, it also assumes that is has
 received a congestion indication. In response to that it reduces
 cwnd, and ssthresh. However, once the TCP sender detects that the
 loss recovery has been falsely triggered, this reduction was
 unnecessary. In fact, no congestion signal has been received. We
 therefore believe that it is safe to revert to the previous
 congestion control state.

 To avoid packet bursts, we suggest to restore cwnd to the amount of
 data currently outstanding in the network plus one SMSS. That will
 allow no more than a single packet to be clocked out by the first
 acceptable ACK. In addition, we suggest to restore ssthresh to
 pipe_prev, i.e., the maximum of the previous value of ssthresh and
 the value that FlightSize had when loss recovery was unnecessarily
 entered. As a result, the TCP sender either immediately resumes
 probing the network for more bandwidth in congestion avoidance, or it
 first slow starts until it has reached its previous share of the
 available bandwidth.

 Clearly, when the acceptable ACK signals congestion through the
 ECN-Echo flag [RFC3168], the TCP sender MUST refrain from reverting
 congestion control state. The same is true if the TCP sender has
 already taken more than three timeouts for the oldest outstanding
 segment. Allowing three timeouts while still reverting congestion
 control state goes beyond [RFC2581]. That standard recommends setting
 cwnd to no more than the restart window (one SMSS) if the TCP sender
 has not sent data in an interval exceeding the current RTO. That is
 done to restart the ACK clock which is believed to be lost. The case
 in step (ReCC) of the Eifel response algorithm is different. Since,

https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2581

 an acceptable ACK corresponding to an original transmit has finally
 returned, the TCP has reason to believe that the ACK clock was merely
 interrupted but has now resumed "ticking" again.

Ludwig & Gurtov [Page 7]

INTERNET-DRAFT TCP - Eifel Response October, 2002

3. Interoperability with Advanced Loss Recovery Schemes

 We believe that there are no problems concerning interoperability
 with advanced loss recovery schemes such as NewReno [RFC2582], or
 SACK-based schemes [2018], [BA02b]. This is because in case loss
 recovery has been initiated unnecessarily, the Eifel response
 algorithm makes the TCP sender back out of loss recovery before those
 schemes would have a chance to kick in.

 In fact, we recommend that the Eifel response algorithm is
 implemented together with one of those advanced loss recovery
 schemes; ideally a SACK-based alternative. In an environment where
 spurious timeouts and back-to-back packet losses often coincide, we
 have found that TCP's performance can even suffer if the Eifel
 response algorithm is operated without an advanced loss recovery
 scheme [GL02].

 In that study, we among other variants compared TCP-Reno with and
 without the Eifel response algorithm (TCP-Reno/Eifel vs. TCP-Reno),
 and without an advanced loss recovery scheme for both variants. The
 reason that TCP-Reno performed better in the mentioned scenario, is
 its aggressiveness after a spurious timeout. Even though it breaks
 'packet conservation' (see Section 2.2.1) when blindly retransmitting
 all outstanding segments, it usually recovers the back-to-back packet
 losses within a single round-trip time. On the contrary, the more
 conservative TCP-Reno/Eifel was forced into another (backed-off)
 timeout in that case. In the study, we found that the best end-to-end
 performance was achieved when the TCP sender implemented both the
 Eifel response algorithm and SACK-based loss recovery. In case
 NewReno is chosen as the advanced loss recovery scheme, we found that
 it performs better if the 'bugfix' feature is disabled. That feature
 often leads the TCP sender to the wrong decision.

4. Security Considerations

 There is a risk that TCP receivers make genuine retransmits appear to
 the TCP sender as spurious retransmits by forging echoed timestamps.
 This could effectively disable congestion control at the TCP sender.
 A reliable method to protect against that risk is to implement the
 safe variant of the Eifel detection algorithm specified in [LM02].

Acknowledgments

 Many thanks to Keith Sklower, Randy Katz, Michael Meyer, Stephan
 Baucke, Sally Floyd, Vern Paxson, Mark Allman, and Ethan Blanton for

https://datatracker.ietf.org/doc/html/rfc2582

 very useful discussions that contributed to this work.

Ludwig & Gurtov [Page 8]

INTERNET-DRAFT TCP - Eifel Response October, 2002

Normative References

 [RFC2581] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control,
RFC 2581, April 1999.

 [RFC3042] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's Loss
 Recovery Using Limited Transmit, RFC 3042, January 2001.

 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate
 Requirement Levels, RFC 2119, March 1997.

 [RFC2582] S. Floyd, T. Henderson, The NewReno Modification to TCP's
 Fast Recovery Algorithm, RFC 2582, April 1999.

 [RFC2883] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, A. Romanow,
 An Extension to the Selective Acknowledgement (SACK) Option
 for TCP, RFC 2883, July 2000.

 [RFC1323] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High
 Performance, RFC 1323, May 1992.

 [LM02] R. Ludwig, M. Meyer, The Eifel Detection Algorithm for TCP,
 work in progress, October 2002.

 [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
 Acknowledgement Options, RFC 2018, October 1996.

 [RFC2988] V. Paxson, M. Allman, Computing TCP's Retransmission Timer,
RFC 2988, November 2000.

 [RFC793] J. Postel, Transmission Control Protocol, RFC793, September
 1981.

 [RFC3168] K. Ramakrishnan, S. Floyd, D. Black, The Addition of
 Explicit Congestion Notification (ECN) to IP, RFC 3168,
 September 2001

Informative References

 [BA02a] E. Blanton, M. Allman, On Making TCP More Robust to Packet
 Reordering, ACM Computer Communication Review, Vol. 32,
 No. 1, January 2002.

 [BA02b] E. Blanton, M. Allman, A Conservative SACK-based Loss
 Recovery Algorithm for TCP, work in progress, October 2002.

 [Gu01] A. Gurtov, Effect of Delays on TCP Performance, In

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3168

 Proceedings of IFIP Personal Wireless Conference,
 August 2001.

Ludwig & Gurtov [Page 9]

INTERNET-DRAFT TCP - Eifel Response October, 2002

 [GL02] A. Gurtov, R. Ludwig, Evaluating the Eifel Algorithm for
 TCP in a GPRS Network, In Proceedings of the European
 Wireless Conference, February 2002.

 [KP87] P. Karn, C. Partridge, Improving Round-Trip Time Estimates
 in Reliable Transport Protocols, In Proceedings of ACM
 SIGCOMM 87.

 [LK00] R. Ludwig, R. H. Katz, The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions, ACM Computer
 Communication Review, Vol. 30, No. 1, January 2000.

 [Lu02] R. Ludwig, Responding to Fast Timeouts in TCP, work in
 progress, July 2002.

 [SK02] P. Sarolahti, A. Kuznetsov, Congestion Control in Linux
 TCP, In Proceedings of USENIX, June 2002.

 [WS95] G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2
 (The Implementation), Addison Wesley, January 1995.

 [Zh86] L. Zhang, Why TCP Timers Don't Work Well, In Proceedings of
 ACM SIGCOMM 88.

Author's Address

 Reiner Ludwig
 Ericsson Research (EED)
 Ericsson Allee 1
 52134 Herzogenrath, Germany
 Email: Reiner.Ludwig@ericsson.com

 Andrei Gurtov
 Cellular Systems Development
 P.O. Box 970, FIN-00051 Sonera
 Helsinki, Finland
 Phone: +358(0)20401
 Fax: +358(0)204064365
 Email: andrei.gurtov@sonera.com
 Homepage: http://www.cs.helsinki.fi/u/gurtov

This Internet-Draft expires in April 2003.

http://www.cs.helsinki.fi/u/gurtov

Ludwig & Gurtov [Page 10]

