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Status of this memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups. Note that other
   groups may also distribute working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time. It is inappropriate to use Internet-Drafts as reference
   material or cite them other than as "work in progress".

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

   The Eifel response algorithm uses the Eifel detection algorithm to
   detect a posteriori whether the TCP sender has entered loss recovery
   unnecessarily. In response to a spurious timeout it avoids the often
   unnecessary go-back-N retransmits that would otherwise be sent, and
   reinitializes the RTT estimators to avoid further spurious timeouts.
   Likewise, it adapts the duplicate acknowledgement threshold in
   response to a spurious fast retransmit. In both cases, the Eifel
   response algorithm restores the congestion control state in such a
   way that packet bursts are avoided.
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Terminology

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [RFC2119].

   We refer to the first-time transmission of an octet as the 'original
   transmit'. A subsequent transmission of the same octet is referred to
   as a 'retransmit'. In most cases this terminology can likewise be
   applied to data segments as opposed to octets. However, when
   repacketization occurs, a segment can contain both first-time
   transmissions and retransmissions of octets. In that case this
   terminology is only consistent when applied to octets. For the Eifel
   detection and response algorithms this makes no difference as they
   also operate correctly when repacketization occurs.

   We use the term 'acceptable ACK' as defined in [RFC793]. That is an
   ACK that acknowledges previously unacknowledged data. We use the term
   'duplicate ACK', and the variable 'dupacks' as defined in [WS95]. The
   variable 'dupacks' is a counter of duplicate ACKs that have already
   been received by the TCP sender before the fast retransmit is sent.
   We use the variable 'DupThresh' to refer to the so-called duplicate
   acknowledgement threshold, i.e., the number of duplicate ACKs that
   need to arrive at the TCP sender to trigger a fast retransmit.
   Currently, DupThresh is specified as a fixed value of three
   [RFC2581].

   Furthermore, we use the TCP sender state variables 'SND.UNA' and
   'SND.NXT' as defined in [RFC793]. SND.UNA holds the segment sequence
   number of the oldest outstanding segment. SND.NXT holds the segment
   sequence number of the next segment the TCP sender will
   (re-)transmit. In addition, we define as 'SND.MAX' the segment
   sequence number of the next original transmit to be sent. The
   definition of SND.MAX is equivalent to the definition of snd_max in
   [WS95].

   We use the TCP sender state variables 'cwnd' (congestion window), and
   'ssthresh' (slow start threshold), and the terms 'SMSS', and
   'FlightSize' as defined in [RFC2581]. FlightSize is the amount of
   outstanding data in the network, or alternatively, the difference
   between SND.MAX and SND.UNA at a given point in time. We use the TCP
   sender state variables 'SRTT' and 'RTTVAR', and the term 'RTO' as
   defined in [RFC2988]. In addition, we assume that the TCP sender
   maintains in the variable 'RTT-SAMPLE' the value of the latest round-
   trip time (RTT) measurement.

1. Introduction

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988


   The Eifel response algorithm relies on the Eifel detection algorithm
   defined in [LM02]. That document discusses the relevant background
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   and motivation that also applies to this document. Hence, the reader
   is expected to be familiar with [LM02]. Note that alternative
   response algorithms are conceivable that could also rely on the Eifel
   detection algorithm.

   The Eifel response algorithm uses the Eifel detection algorithm to
   detect a posteriori whether the TCP sender has entered loss recovery
   unnecessarily. In response to a spurious timeout it avoids the often
   unnecessary go-back-N retransmits that would otherwise be sent, and
   reinitializes the RTT estimators to avoid further spurious timeouts.
   Likewise, it adapts the duplicate acknowledgement threshold in
   response to a spurious fast retransmit. In both cases, the Eifel
   response algorithm restores the congestion control state in such a
   way that packet bursts are avoided.

2. The Eifel Response Algorithm

   The complete algorithm is specified in section 2.1. In sections 2.2
   to 2.4, we motivate the different steps of the algorithm.

2.1. The Algorithm

   Given that a TCP sender has enabled the Eifel detection algorithm
   [LM02] for a connection, a TCP sender MAY use the Eifel response
   algorithm as defined in this subsection. Note that this implies that
   the TCP Timestamps option [RFC1323] is used for that connection.
   Since the Eifel response algorithm is dependent on the Eifel
   detection algorithm, we describe it as an extension of the latter.

   If the combined Eifel detection and response algorithm is used, the
   following steps MUST be taken by the TCP sender, but only upon
   initiation of loss recovery, i.e., when either the timeout-based
   retransmit or the fast retransmit is sent. Note: The algorithm MUST
   NOT be reinitiated after loss recovery has already started. In
   particular, it may not be reinitiated upon subsequent timeouts for
   the same segment, and not upon retransmitting segments other than the
   oldest outstanding segment.

   Note that steps (1)-(6) are an one-to-one copy of the Eifel detection
   algorithm specified in [LM02], step (0) has been added, and step
   (RESP) from [LM02] has been replaced by steps (RESP)-(ReCC) given
   below.

      (0)     Before the variables cwnd and ssthresh get updated when
              loss recovery is initiated, set a "pipe_prev" variable as
              follows:
                  pipe_prev <- max (FlightSize, ssthresh)

https://datatracker.ietf.org/doc/html/rfc1323


      (1)     Set a "SpuriousRecovery" variable to FALSE (equal 0).
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      (2)     Set a "RetransmitTS" variable to the value of the
              Timestamp Value field of the Timestamps option included in
              the retransmit sent when loss recovery is initiated. A TCP
              sender must ensure that RetransmitTS does not get
              overwritten as loss recovery progresses, e.g., in case of
              a second timeout and subsequent second retransmit of the
              same octet.

      (3)     Wait for the arrival of an acceptable ACK. When an
              acceptable ACK has arrived proceed to step (4).

      (4)     If the value of the Timestamp Echo Reply field of the
              acceptable ACK's Timestamps option is smaller than the
              value of the variable RetransmitTS, then proceed to step
              (5),

              else proceed to step (DONE).

      (5)     If the acceptable ACK does not carry a DSACK option
              [RFC2883], then proceed to step (6),

              else proceed to step (DONE).

      (6)     If the loss recovery has been initiated with a timeout-
              based retransmit, then set
               SpuriousRecovery <- SPUR_TO (equal 1),

              else set
               SpuriousRecovery <- dupacks+1

      (RESP)  If SpuriousRecovery equals SPUR_TO, then proceed to step
              (STO.1),

              else (spurious fast retransmit) proceed to step (SFR).

      (STO.1) Resume transmission off the top:

              Set
                  SND.NXT <- SND.MAX

      (STO.2) Reinitialize the RTT estimators:

              Set
                  SRTT <- RTT-SAMPLE
                  RTTVAR <- RTT-SAMPLE/2,
              recalculate the RTO, and restart the retransmission timer.

              Proceed to step (ReCC).

https://datatracker.ietf.org/doc/html/rfc2883


      (SFR)   Adapt the duplicate acknowledgement threshold:
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              Set
                  DupThresh <- max (DupThresh, SpuriousRecovery)

              Proceed to step (ReCC).

      (ReCC)  Revert the congestion control state:

              If the acceptable ACK has the ECN-Echo flag [RFC3168] set
              OR the TCP sender has already taken more than three
              timeouts for the oldest outstanding segment, then proceed
              to step (DONE),

              else set
                  cwnd <- FlightSize + SMSS
                  ssthresh <- pipe_prev

              Note: At this point in the algorithm, the value of
              FlightSize might be different from the value of FlightSize
              in step (0).

              Proceed to step (DONE).

      (DONE)  No further processing.

2.2 Responding to Spurious Timeouts

2.2.1 Suppressing the Unnecessary go-back-N Retransmits (step STO.1)

   Without the use of the TCP timestamps option, the TCP sender suffers
   from the retransmission ambiguity problem [Zh86], [KP87]. This means
   that when the first acceptable ACK arrives after a spurious timeout,
   the TCP sender must believe that that ACK was sent in response to the
   retransmit when in fact it was sent in response to the original
   transmit. Furthermore, the TCP sender must also believe that all
   other segments outstanding at that point were lost.

      Note: Except for certain cases where original ACKs were lost, that
      first acceptable ACK cannot carry any DSACK option [RFC2883].

   Consequently, once the TCP sender's state has been updated after the
   first acceptable ACK has arrived, SND.NXT equals SND.UNA. This is
   what causes the often unnecessary go-back-N retransmits. Now every
   arriving acceptable ACK that was sent in response to an original
   transmit will advance SND.NXT. But as long as SND.NXT is smaller than
   the value that SND.MAX had when the timeout occurred, those ACKs will
   clock out retransmits; whether those segments were lost or not.

   In fact, during this phase the TCP sender breaks 'packet

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2883


   conservation' [Jac88]. This is because the go-back-N retransmits are
   sent during slow start. I.e., for each original packet leaving the

Ludwig & Gurtov                                                 [Page 5]



INTERNET-DRAFT            TCP - Eifel Response             October, 2002

   network, two retransmits are sent into the network as long as SND.NXT
   does not equal SND.MAX (see [LK00] for more detail).

   The use of the TCP timestamps option reliably eliminates the
   retransmission ambiguity problem. Thus, once the Eifel detection
   algorithm detected that a timeout was spurious, it is therefore safe
   to let the TCP sender resume the transmission with new data. Thus,
   the Eifel response algorithm changes the TCP sender's state by
   setting SND.NXT to SND.MAX in that case.

2.2.2 Re-Initializing the RTT Estimators (step STO.2)

   Since the timeout was spurious, the TCP sender's RTT estimators are
   likely to be off. On the other hand, since timestamps are used, a new
   and valid RTT measurement (RTT-SAMPLE) can be derived from the
   acceptable ACK. It is therefore suggested to reinitialize the RTT
   estimators from RTT-SAMPLE.

   To have the new RTO become effective, the retransmission timer needs
   to be restarted. This is consistent with [RFC2988] which recommends
   restarting the retransmission timer with the arrival of an acceptable
   ACK.

2.3 Responding to Spurious Fast Retransmits (step SFR)

   The assumption behind the fast retransmit algorithm [RFC2581] is that
   a segment was lost if as many duplicate ACKs have arrived at the TCP
   sender as indicated by DupThresh. Currently, DupThresh is specified
   as a fixed value of three [RFC2581]. That value is assumed to be
   sufficiently conservative so that packet reordering and/or packet
   duplication does not falsely trigger the fast retransmit algorithm.
   Clearly, this assumption does not hold for a particular TCP
   connection once the TCP sender detects that the last fast retransmit
   was spurious. It is therefore suggested to dynamically adapt
   DupThresh to the reordering characteristics observed over the course
   of a particular connection.

   At the beginning of a connection DupThresh is initialized with three.
   Then for each spurious fast retransmit that is detected, DupThresh is
   set to the maximum of the previous DupThresh, and the lowest value
   that would have avoided that last spurious fast retransmit. Note that
   the Eifel detection algorithm records the latter value in
   SpuriousRecovery. This strategy ensures that the TCP sender is able
   to cope with the longest reordering length seen on a particular
   connection so far.

   However, the strategy bears the risk that the retransmission timer
   expires before the TCP sender receives the duplicate ACK that would

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581


   trigger a fast retransmit of the oldest outstanding segment. To
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   alleviate that potential problem the TCP sender may implement the
   Fast Timeout algorithm proposed in [Lu02].

   Also, we believe that this strategy should be implemented together
   with an advanced version of the Limited Transmit algorithm [RFC3042].
   That is for each duplicate ACK that arrives until DupThresh is
   reached, the TCP sender should sent a new data segment if allowed by
   the TCP receiver's advertised window, and if new data is available.
   Although, the current Limited Transmit algorithm only allows this for
   the first two duplicate ACKs, we believe that such an advanced
   limited transmit strategy is safe. It is already implemented in
   widely deployed TCPs [SK02].

   Other alternatives for responding to spurious fast retransmits are
   discussed in [BA02a].

2.4 Reverting Congestion Control State (step ReCC)

   When a TCP sender enters loss recovery, it also assumes that is has
   received a congestion indication. In response to that it reduces
   cwnd, and ssthresh. However, once the TCP sender detects that the
   loss recovery has been falsely triggered, this reduction was
   unnecessary. In fact, no congestion signal has been received. We
   therefore believe that it is safe to revert to the previous
   congestion control state.

   To avoid packet bursts, we suggest to restore cwnd to the amount of
   data currently outstanding in the network plus one SMSS. That will
   allow no more than a single packet to be clocked out by the first
   acceptable ACK. In addition, we suggest to restore ssthresh to
   pipe_prev, i.e., the maximum of the previous value of ssthresh and
   the value that FlightSize had when loss recovery was unnecessarily
   entered. As a result, the TCP sender either immediately resumes
   probing the network for more bandwidth in congestion avoidance, or it
   first slow starts until it has reached its previous share of the
   available bandwidth.

   Clearly, when the acceptable ACK signals congestion through the
   ECN-Echo flag [RFC3168], the TCP sender MUST refrain from reverting
   congestion control state. The same is true if the TCP sender has
   already taken more than three timeouts for the oldest outstanding
   segment. Allowing three timeouts while still reverting congestion
   control state goes beyond [RFC2581]. That standard recommends setting
   cwnd to no more than the restart window (one SMSS) if the TCP sender
   has not sent data in an interval exceeding the current RTO. That is
   done to restart the ACK clock which is believed to be lost. The case
   in step (ReCC) of the Eifel response algorithm is different. Since,

https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2581


   an acceptable ACK corresponding to an original transmit has finally
   returned, the TCP has reason to believe that the ACK clock was merely
   interrupted but has now resumed "ticking" again.
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3. Interoperability with Advanced Loss Recovery Schemes

   We believe that there are no problems concerning interoperability
   with advanced loss recovery schemes such as NewReno [RFC2582], or
   SACK-based schemes [2018], [BA02b]. This is because in case loss
   recovery has been initiated unnecessarily, the Eifel response
   algorithm makes the TCP sender back out of loss recovery before those
   schemes would have a chance to kick in.

   In fact, we recommend that the Eifel response algorithm is
   implemented together with one of those advanced loss recovery
   schemes; ideally a SACK-based alternative. In an environment where
   spurious timeouts and back-to-back packet losses often coincide, we
   have found that TCP's performance can even suffer if the Eifel
   response algorithm is operated without an advanced loss recovery
   scheme [GL02].

   In that study, we among other variants compared TCP-Reno with and
   without the Eifel response algorithm (TCP-Reno/Eifel vs. TCP-Reno),
   and without an advanced loss recovery scheme for both variants. The
   reason that TCP-Reno performed better in the mentioned scenario, is
   its aggressiveness after a spurious timeout. Even though it breaks
   'packet conservation' (see Section 2.2.1) when blindly retransmitting
   all outstanding segments, it usually recovers the back-to-back packet
   losses within a single round-trip time. On the contrary, the more
   conservative TCP-Reno/Eifel was forced into another (backed-off)
   timeout in that case. In the study, we found that the best end-to-end
   performance was achieved when the TCP sender implemented both the
   Eifel response algorithm and SACK-based loss recovery. In case
   NewReno is chosen as the advanced loss recovery scheme, we found that
   it performs better if the 'bugfix' feature is disabled. That feature
   often leads the TCP sender to the wrong decision.

4. Security Considerations

   There is a risk that TCP receivers make genuine retransmits appear to
   the TCP sender as spurious retransmits by forging echoed timestamps.
   This could effectively disable congestion control at the TCP sender.
   A reliable method to protect against that risk is to implement the
   safe variant of the Eifel detection algorithm specified in [LM02].

Acknowledgments

   Many thanks to Keith Sklower, Randy Katz, Michael Meyer, Stephan
   Baucke, Sally Floyd, Vern Paxson, Mark Allman, and Ethan Blanton for

https://datatracker.ietf.org/doc/html/rfc2582


   very useful discussions that contributed to this work.

Ludwig & Gurtov                                                 [Page 8]



INTERNET-DRAFT            TCP - Eifel Response             October, 2002

Normative References

   [RFC2581] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control,
RFC 2581, April 1999.

   [RFC3042] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's Loss
             Recovery Using Limited Transmit, RFC 3042, January 2001.

   [RFC2119] S. Bradner, Key words for use in RFCs to Indicate
             Requirement Levels, RFC 2119, March 1997.

   [RFC2582] S. Floyd, T. Henderson, The NewReno Modification to TCP's
             Fast Recovery Algorithm, RFC 2582, April 1999.

   [RFC2883] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, A. Romanow,
             An Extension to the Selective Acknowledgement (SACK) Option
             for TCP, RFC 2883, July 2000.

   [RFC1323] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High
             Performance, RFC 1323, May 1992.

   [LM02]    R. Ludwig, M. Meyer, The Eifel Detection Algorithm for TCP,
             work in progress, October 2002.

   [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
             Acknowledgement Options, RFC 2018, October 1996.

   [RFC2988] V. Paxson, M. Allman, Computing TCP's Retransmission Timer,
RFC 2988, November 2000.

   [RFC793]  J. Postel, Transmission Control Protocol, RFC793, September
             1981.

   [RFC3168] K. Ramakrishnan, S. Floyd, D. Black, The Addition of
             Explicit Congestion Notification (ECN) to IP, RFC 3168,
             September 2001

Informative References

   [BA02a]   E. Blanton, M. Allman, On Making TCP More Robust to Packet
             Reordering, ACM Computer Communication Review, Vol. 32,
             No. 1, January 2002.

   [BA02b]   E. Blanton, M. Allman, A Conservative SACK-based Loss
             Recovery Algorithm for TCP, work in progress, October 2002.

   [Gu01]    A. Gurtov, Effect of Delays on TCP Performance, In

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3168


             Proceedings of IFIP Personal Wireless Conference,
             August 2001.

Ludwig & Gurtov                                                 [Page 9]



INTERNET-DRAFT            TCP - Eifel Response             October, 2002

   [GL02]    A. Gurtov, R. Ludwig, Evaluating the Eifel Algorithm for
             TCP in a GPRS Network, In Proceedings of the European
             Wireless Conference, February 2002.

   [KP87]    P. Karn, C. Partridge, Improving Round-Trip Time Estimates
             in Reliable Transport Protocols, In Proceedings of ACM
             SIGCOMM 87.

   [LK00]    R. Ludwig, R. H. Katz, The Eifel Algorithm: Making TCP
             Robust Against Spurious Retransmissions, ACM Computer
             Communication Review, Vol. 30, No. 1, January 2000.

   [Lu02]    R. Ludwig, Responding to Fast Timeouts in TCP, work in
             progress, July 2002.

   [SK02]    P. Sarolahti, A. Kuznetsov, Congestion Control in Linux
             TCP, In Proceedings of USENIX, June 2002.

   [WS95]    G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2
             (The Implementation), Addison Wesley, January 1995.

   [Zh86]    L. Zhang, Why TCP Timers Don't Work Well, In Proceedings of
             ACM SIGCOMM 88.

Author's Address

     Reiner Ludwig
     Ericsson Research (EED)
     Ericsson Allee 1
     52134 Herzogenrath, Germany
     Email: Reiner.Ludwig@ericsson.com

     Andrei Gurtov
     Cellular Systems Development
     P.O. Box 970, FIN-00051 Sonera
     Helsinki, Finland
     Phone: +358(0)20401
     Fax:   +358(0)204064365
     Email: andrei.gurtov@sonera.com
     Homepage: http://www.cs.helsinki.fi/u/gurtov

This Internet-Draft expires in April 2003.

http://www.cs.helsinki.fi/u/gurtov


Ludwig & Gurtov                                                [Page 10]


