
Network Working Group Reiner Ludwig
INTERNET-DRAFT Ericsson Research
Expires: September 2003 Andrei Gurtov
 Sonera Corporation
 March, 2003

The Eifel Response Algorithm for TCP
<draft-ietf-tsvwg-tcp-eifel-response-03.txt>

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 The Eifel response algorithm requires a detection algorithm to detect
 a posteriori whether the TCP sender has entered loss recovery
 unnecessarily. In response to a spurious timeout it adapts the
 retransmission timer to avoid further spurious timeouts, and can
 avoid - depending on the detection algorithm - the often unnecessary
 go-back-N retransmits that would otherwise be sent. Likewise, it
 adapts the duplicate acknowledgement threshold in response to a
 spurious fast retransmit. In both cases, the Eifel response algorithm
 restores the congestion control state in such a way that packet
 bursts are avoided.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-response-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/lid-abstracts.txt
http://www.ietf.org/shadow.html

Ludwig & Gurtov [Page 1]

INTERNET-DRAFT TCP - Eifel Response March, 2003

Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 We refer to the first-time transmission of an octet as the 'original
 transmit'. A subsequent transmission of the same octet is referred to
 as a 'retransmit'. In most cases this terminology can likewise be
 applied to data segments as opposed to octets. However, when
 repacketization occurs, a segment can contain both first-time
 transmissions and retransmissions of octets. In that case this
 terminology is only consistent when applied to octets. For the Eifel
 detection and response algorithms this makes no difference as they
 also operate correctly when repacketization occurs.

 We use the term 'acceptable ACK' as defined in [RFC793]. That is an
 ACK that acknowledges previously unacknowledged data. We use the term
 'duplicate ACK', and the variable 'dupacks' as defined in [WS95]. The
 variable 'dupacks' is a counter of duplicate ACKs that have already
 been received by the TCP sender before the fast retransmit is sent.
 We use the variable 'DupThresh' to refer to the so-called duplicate
 acknowledgement threshold, i.e., the number of duplicate ACKs that
 need to arrive at the TCP sender to trigger a fast retransmit.
 Currently, DupThresh is specified as a fixed value of three
 [RFC2581].

 Furthermore, we use the TCP sender state variables 'SND.UNA' and
 'SND.NXT' as defined in [RFC793]. SND.UNA holds the segment sequence
 number of the oldest outstanding segment. SND.NXT holds the segment
 sequence number of the next segment the TCP sender will
 (re-)transmit. In addition, we define as 'SND.MAX' the segment
 sequence number of the next original transmit to be sent. The
 definition of SND.MAX is equivalent to the definition of snd_max in
 [WS95].

 We use the TCP sender state variables 'cwnd' (congestion window), and
 'ssthresh' (slow start threshold), and the terms 'SMSS',
 'FlightSize', and 'Initial Window (IW)' as defined in [RFC2581].
 FlightSize is the amount of outstanding data in the network, or
 alternatively, the difference between SND.MAX and SND.UNA at a given
 point in time. The IW is the size of the sender's congestion window
 after the three-way handshake is completed. We use the TCP sender
 state variables 'SRTT' and 'RTTVAR', and the term 'RTO' as defined in
 [RFC2988]. In addition, we assume that the TCP sender maintains in
 the variable 'RTT-SAMPLE' the value of the latest round-trip time
 (RTT) measurement.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988

Ludwig & Gurtov [Page 2]

INTERNET-DRAFT TCP - Eifel Response March, 2003

1. Introduction

 The Eifel response algorithm relies on a detection algorithm such as
 the Eifel detection algorithm defined in [RFC***B]. That document
 discusses the relevant background and motivation that also applies to
 this document. Hence, the reader is expected to be familiar with
 [RFC***B]. Note that alternative response algorithms have been
 proposed [BDA03] that could also rely on the Eifel detection
 algorithm, and vice versa alternative detection algorithms have been
 proposed [BA02b], [SK03] that could work together with the Eifel
 response algorithm.

 The Eifel response algorithm requires a detection algorithm to detect
 a posteriori whether the TCP sender has entered loss recovery
 unnecessarily. In response to a spurious timeout it adapts the
 retransmission timer to avoid further spurious timeouts, and can
 avoid - depending on the detection algorithm - the often unnecessary
 go-back-N retransmits that would otherwise be sent. Likewise, it
 adapts the duplicate acknowledgement threshold in response to a
 spurious fast retransmit. In both cases, the Eifel response algorithm
 restores the congestion control state in such a way that packet
 bursts are avoided.

2. Interworking with Detection Algorithms

 If the Eifel response algorithm is implemented at the TCP sender, it
 MUST be implemented together with a detection algorithm that is
 specified in an RFC.

 Designers of detection algorithms who want to offer the possibility
 that their detection algorithms can work together with the Eifel
 response algorithm MUST reuse the variable SpuriousRecovery with the
 semantics and defined values as specified in [RFC***B]. In addition,
 we define LATE_SPUR_TO (equal -1) as another possible value of the
 variable SpuriousRecovery. Detection algorithms must set the value of
 SpuriousRecovery to LATE_SPUR_TO if the detection is based upon
 receiving the ACK for the retransmit. For example, this applies to
 detection algorithms that are based on the DSACK option.

3. The Eifel Response Algorithm

 The complete algorithm is specified in section 2.1. In sections 2.2
 to 2.4, we motivate the different steps of the algorithm.

3.1. The Algorithm

 Given that a TCP sender has enabled a detection algorithm that
 complies with the requirements set in Section 2, a TCP sender MAY use
 the Eifel response algorithm as defined in this subsection.

Ludwig & Gurtov [Page 3]

INTERNET-DRAFT TCP - Eifel Response March, 2003

 If the Eifel response algorithm is used, the following steps MUST be
 taken by the TCP sender, but only upon initiation of loss recovery,
 i.e., when either the timeout-based retransmit or the fast retransmit
 is sent. Note: The algorithm MUST NOT be reinitiated after loss
 recovery has already started. In particular, it may not be
 reinitiated upon subsequent timeouts for the same segment, and not
 upon retransmitting segments other than the oldest outstanding
 segment.

 (0) Before the variables cwnd and ssthresh get updated when
 loss recovery is initiated, set a "pipe_prev" variable as
 follows:
 pipe_prev <- max (FlightSize, ssthresh)

 (DTCT) This is a placeholder for a detection algorithm that must
 be executed at this point. In case [RFC***B] is used as
 the detection algorithm, steps (1) - (6) of that algorithm
 go here.

 (RESP) If SpuriousRecovery equals FALSE, then proceed to step
 (DONE),

 else if SpuriousRecovery equals SPUR_TO, then proceed to
 step (STO.1),

 else if SpuriousRecovery equals LATE_SPUR_TO, then proceed
 to step (STO.2),

 else (spurious fast retransmit) proceed to step (SFR).

 (STO.1) Resume transmission off the top:

 Set
 SND.NXT <- SND.MAX

 (STO.2) Adapt the Conservativeness of the Retransmission Timer:

 If the retransmission timer is implemented according to
 [RFC2988], then change the calculation of SRTT to
 SRTT <- SRTT + 1/FlightSize * (RTT-SAMPLE - SRTT)
 and set
 SRTT <- RTT-SAMPLE
 RTTVAR <- RTT-SAMPLE/2,
 recalculate the RTO, and restart the retransmission timer,

 Note: Even after changing the calculation of SRTT, the
 retransmission timer is considered as being
 implemented according to [RFC2988].

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

 else adapt the conservativeness of the retransmission
 timer.

Ludwig & Gurtov [Page 4]

INTERNET-DRAFT TCP - Eifel Response March, 2003

 Proceed to step (ReCC).

 (SFR) Adapt the duplicate acknowledgement threshold:

 Set
 DupThresh <- max (DupThresh, SpuriousRecovery)

 Proceed to step (ReCC).

 (ReCC) Revert the congestion control state:

 If the acceptable ACK has the ECN-Echo flag [RFC3168] set
 OR the TCP sender has already taken more than three
 timeouts for the oldest outstanding segment, then proceed
 to step (DONE),

 else set
 cwnd <- min (pipe_prev, (FlightSize + IW))
 ssthresh <- pipe_prev

 Proceed to step (DONE).

 (DONE) No further processing.

3.2 Responding to Spurious Timeouts

3.2.1 Suppressing the Unnecessary go-back-N Retransmits (step STO.1)

 Without the use of the TCP timestamps option, the TCP sender suffers
 from the retransmission ambiguity problem [Zh86], [KP87]. This means
 that when the first acceptable ACK arrives after a spurious timeout,
 the TCP sender must believe that that ACK was sent in response to the
 retransmit when in fact it was sent in response to the original
 transmit. Furthermore, the TCP sender must also believe that all
 other segments outstanding at that point were lost.

 Note: Except for certain cases where original ACKs were lost, that
 first acceptable ACK cannot carry any DSACK option [RFC2883].

 Consequently, once the TCP sender's state has been updated after the
 first acceptable ACK has arrived, SND.NXT equals SND.UNA. This is
 what causes the often unnecessary go-back-N retransmits. Now every
 arriving acceptable ACK that was sent in response to an original
 transmit will advance SND.NXT. But as long as SND.NXT is smaller than
 the value that SND.MAX had when the timeout occurred, those ACKs will
 clock out retransmits; whether those segments were lost or not.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2883

 In fact, during this phase the TCP sender breaks 'packet
 conservation' [Jac88]. This is because the go-back-N retransmits are

Ludwig & Gurtov [Page 5]

INTERNET-DRAFT TCP - Eifel Response March, 2003

 sent during slow start. I.e., for each original transmit leaving the
 network, two retransmits are sent into the network as long as SND.NXT
 does not equal SND.MAX (see [LK00] for more detail).

 The use of the TCP timestamps option reliably eliminates the
 retransmission ambiguity problem. Thus, once the Eifel detection
 algorithm detected that a timeout was spurious, it is therefore safe
 to let the TCP sender resume the transmission with new data. Thus,
 the Eifel response algorithm changes the TCP sender's state by
 setting SND.NXT to SND.MAX in that case.

3.2.2 Adapting the Retransmission Timer (step STO.2)

 There is currently only one retransmission timer standardized for TCP
 [RFC2988]. We therefore only address that timer explicitly. Future
 standards that might define alternatives to [RFC2988] should propose
 similar measures to adapt the conservativeness of the retransmission
 timer.

 Since the timeout was spurious, the TCP sender's RTT estimators are
 likely to be off. However, since timestamps are being used, a new and
 valid RTT measurement (RTT-SAMPLE) can be derived from the acceptable
 ACK. It is therefore suggested to reinitialize the RTT estimators
 from RTT-SAMPLE. Note that this RTT-SAMPLE will be relatively large
 since it will include the delay spike that caused the spurious
 timeout in the first place. To have the new RTO become effective, the
 retransmission timer needs to be restarted. This is consistent with
 [RFC2988] which recommends restarting the retransmission timer with
 the arrival of an acceptable ACK.

 When the path's RTT varies largely, it is recommended to take RTT
 samples more frequently than only once per RTT. This allows the TCP
 sender to track changes in the RTT more closely. In particular, a TCP
 sender can react more quickly to sudden increases of the RTT by
 sooner updating the RTO to a more conservative value. The TCP
 Timestamps option [RFC1323] provides this capability, allowing the
 TCP sender to sample the RTT from every segment that is acknowledged.
 Using timestamps across such paths leads to a more conservative TCP
 retransmission timer and reduces the risk of triggering spurious
 timeouts [IMLGK02].

 On the other hand, it is known that executing the RTO calculation
 defined in [RFC2988] more often than once per RTT leads to an RTO
 that decays too quickly, i.e., that converges to the RTT too quickly.
 This is because of the fixed gains (1/8 and 1/4) of RFC2988's RTT
 estimators. When timing every segment these gains are increasingly
 too large with an increasing FlightSize. This leads to the effect
 that the RTT estimators "lose" their memory too soon. This is a known

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

 conflict between [RFC2988] and [RFC1323]. Especially, a large RTO
 resulting from an RTT spike will decay within one or two RTTs (e.g.,
 see [LS00]). Hence, simply reinitializing RFC2988's RTT estimators

Ludwig & Gurtov [Page 6]

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2988

INTERNET-DRAFT TCP - Eifel Response March, 2003

 from RTT-SAMPLE is probably not enough to make the retransmission
 timer sufficiently conservative for at least the next couple of RTTs.
 A solution for the case when every segment is timed according to
 [RFC1323] is to make the gains adaptive to the FlightSize [LS00]. We
 suggest to adopt this solution for at least the SRTT.

3.3 Responding to Spurious Fast Retransmits (step SFR)

 The assumption behind the fast retransmit algorithm [RFC2581] is that
 a segment was lost if as many duplicate ACKs have arrived at the TCP
 sender as indicated by DupThresh. Currently, DupThresh is specified
 as a fixed value of three [RFC2581]. That value is assumed to be
 sufficiently conservative so that packet reordering and/or packet
 duplication does not falsely trigger the fast retransmit algorithm.
 Clearly, this assumption does not hold for a particular TCP
 connection once the TCP sender detects that the last fast retransmit
 was spurious. It is therefore suggested to dynamically adapt
 DupThresh to the reordering characteristics observed over the course
 of a particular connection.

 At the beginning of a connection DupThresh is initialized with three.
 Then for each spurious fast retransmit that is detected, DupThresh is
 set to the maximum of the previous DupThresh, and the lowest value
 that would have avoided that last spurious fast retransmit. Note that
 the Eifel detection algorithm records the latter value in
 SpuriousRecovery. This strategy ensures that the TCP sender is able
 to cope with the longest reordering length seen on a particular
 connection so far. However, the strategy may lead to fast timeouts
 [RFC***B], i.e., an event where the retransmission timer expires
 before the TCP sender receives the duplicate ACK that would trigger a
 fast retransmit of the oldest outstanding segment.

 Also, we believe that this strategy should be implemented together
 with an advanced version of the Limited Transmit algorithm [RFC3042].
 That is for each duplicate ACK that arrives until DupThresh is
 reached, the TCP sender should sent a new data segment if allowed by
 the TCP receiver's advertised window, and if new data is available.
 Although, the current Limited Transmit algorithm only allows this for
 the first two duplicate ACKs, we believe that such an advanced
 limited transmit strategy is safe. It is already implemented in
 widely deployed TCPs [SK02].

 Other alternatives for responding to spurious fast retransmits are
 discussed in [BA02a].

3.4 Reverting Congestion Control State (step ReCC)

 When a TCP sender enters loss recovery, it also assumes that is has

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042

 received a congestion indication. In response to that it reduces
 cwnd, and ssthresh. However, once the TCP sender detects that the
 loss recovery has been falsely triggered, this reduction was

Ludwig & Gurtov [Page 7]

INTERNET-DRAFT TCP - Eifel Response March, 2003

 unnecessary. In fact, no congestion signal has been received. We
 therefore believe that it is safe to revert to the previous
 congestion control state.

 We suggest to restore cwnd to the minimum of the previous FlightSize,
 and the current FlightSize plus IW. The latter avoids large packet
 bursts that may occur with less careful variants for restoring
 congestion control state. For example, the original proposal [LK00]
 typically causes large bursts after packet reordering. The current
 proposal limits a potential packet burst to IW, which is considered
 an acceptable burst size. It is the amount of data that a TCP sender
 may send into a yet "unprobed" network at the beginning of a
 connection.

 In addition, we suggest to restore ssthresh to pipe_prev, i.e., the
 maximum of the previous value of ssthresh and the value that
 FlightSize had when loss recovery was unnecessarily entered. As a
 result, the TCP sender either immediately resumes probing the network
 for more bandwidth in congestion avoidance, or it first slow starts
 until it has reached its previous share of the available bandwidth.

 Clearly, when the acceptable ACK signals congestion through the
 ECN-Echo flag [RFC3168], the TCP sender MUST refrain from reverting
 congestion control state. The same is true if the TCP sender has
 already taken more than three timeouts for the oldest outstanding
 segment. Allowing three timeouts while still reverting congestion
 control state goes beyond [RFC2581]. That standard recommends setting
 cwnd to no more than the restart window (one SMSS) if the TCP sender
 has not sent data in an interval exceeding the current RTO. That is
 done to restart the ACK clock which is believed to be lost. The case
 in step (ReCC) of the Eifel response algorithm is different. Since,
 an acceptable ACK corresponding to an original transmit has finally
 returned, the TCP has reason to believe that the ACK clock was merely
 interrupted but has now resumed "ticking" again.

4. Non-Conservative Advanced Loss Recovery after Spurious Timeouts

 A TCP sender MAY implement an optimistic form of advanced loss
 recovery after a spurious timeout has been detected as motivated in
 this section. Such a scheme MUST be terminated after the highest
 sequence number outstanding when the spurious timeout was detected
 has been acknowledged.

 We have studied environments where spurious timeouts and multiple
 losses from the same flight of packets often coincide [GL02]. Note
 that we refer to the case were the oldest outstanding segment does
 arrive at the TCP receiver but one or more packets from the remaining
 outstanding flight are lost. We found that in such a case TCP-Reno's

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2581

 performance can even suffer if the Eifel response algorithm is
 operated without an advanced loss recovery scheme such as NewReno
 [RFC2582], or SACK-based schemes [2018], [RFC***A]. The reason is

Ludwig & Gurtov [Page 8]

https://datatracker.ietf.org/doc/html/rfc2582

INTERNET-DRAFT TCP - Eifel Response March, 2003

 TCP-Reno's aggressiveness after a spurious timeout. Even though it
 breaks 'packet conservation' (see Section 2.2.1) when blindly
 retransmitting all outstanding segments, it usually recovers the
 back-to-back packet losses within a single round-trip time. On the
 contrary, the more conservative TCP-Reno/Eifel was forced into
 another (backed-off) timeout in that case.

 However, in a more recent study [GL03], we found that the mentioned
 advanced loss recovery schemes are often too conservative to compete
 against TCP-Reno's blind go-back-N in terms of quickly recovering
 multiple losses after a spurious timeout. The problem with the
 NewReno scheme is that it does not exploit knowledge (e.g., provided
 through SACK options) about which segments were lost. The problem
 with the conservative SACK-based scheme [RFC***A] is that it waits
 for three SACKs before it retransmits a lost segment. This may often
 lead to a second - and in this case genuine - (potentially backed-
 off) timeout. In those cases TCP-Reno's loss recovery is often
 quicker due the blind go-back-N. This could be viewed as a
 disincentive to the deployment of the Eifel response algorithm.

 [Making TCP (even) more conservative by fixing a misbehavior in
 the name of 'packet conservation' would probably at most result in
 credits in the academic world.]

 We therefore suggest that a TCP sender MAY implement an optimistic
 (non-conservative) form of advanced loss recovery after a spurious
 timeout has been detected, if the following guidelines are met:

 - Packet Conservation: The TCP sender may not have more segments
 (counting both original transmits and retransmits) in flight
 than indicated by the congestion window.

 - A retransmit may only be sent when a potential loss has been
 indicated. For example, a single duplicate ACK is such an
 indication; potentially with the corresponding SACK info in case
 the SACK option is enabled for the connection.

 We have developed and evaluated such a scheme (a variant of NewReno
 that exploits SACK info) in [GL03] that shows good results.

5. IPR Considerations

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights at http://www.ietf.org/ipr.

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to

http://www.ietf.org/ipr

 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights

Ludwig & Gurtov [Page 9]

INTERNET-DRAFT TCP - Eifel Response March, 2003

 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

6. Security Considerations

 There is a risk that a detection algorithm is fooled by spoofed ACKs
 that make genuine retransmits appear to the TCP sender as spurious
 retransmits. When such a detection algorithm is run together with the
 Eifel response algorithm, this could effectively disable congestion
 control at the TCP sender. Should this become a concern, the Eifel
 response algorithm SHOULD only be run together with detection
 algorithms that are known to be safe against such "ACK spoofing
 attacks".

 For example, the safe variant of the Eifel detection algorithm
 [RFC***B], is a reliable method to protect against this risk.

Acknowledgments

 Many thanks to Keith Sklower, Randy Katz, Michael Meyer, Stephan
 Baucke, Sally Floyd, Vern Paxson, Mark Allman, Ethan Blanton, Pasi
 Sarolahti, and Alexey Kuznetsov for very useful discussions that
 contributed to this work.

Normative References

 [RFC2581] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control,
RFC 2581, April 1999.

 [RFC3042] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's Loss
 Recovery Using Limited Transmit, RFC 3042, January 2001.

 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate
 Requirement Levels, RFC 2119, March 1997.

 [RFC2582] S. Floyd, T. Henderson, The NewReno Modification to TCP's
 Fast Recovery Algorithm, RFC 2582, April 1999.

 [RFC2883] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, A. Romanow,
 An Extension to the Selective Acknowledgement (SACK) Option
 for TCP, RFC 2883, July 2000.

https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2883

 [RFC1323] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High
 Performance, RFC 1323, May 1992.

Ludwig & Gurtov [Page 10]

https://datatracker.ietf.org/doc/html/rfc1323

INTERNET-DRAFT TCP - Eifel Response March, 2003

 [RFC***B] R. Ludwig, M. Meyer, The Eifel Detection Algorithm for TCP,
 RFC***B, March 2003.

 [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
 Acknowledgement Options, RFC 2018, October 1996.

 [RFC2988] V. Paxson, M. Allman, Computing TCP's Retransmission Timer,
RFC 2988, November 2000.

 [RFC793] J. Postel, Transmission Control Protocol, RFC793, September
 1981.

 [RFC3168] K. Ramakrishnan, S. Floyd, D. Black, The Addition of
 Explicit Congestion Notification (ECN) to IP, RFC 3168,
 September 2001

Informative References

 [BA02a] E. Blanton, M. Allman, On Making TCP More Robust to Packet
 Reordering, ACM Computer Communication Review, Vol. 32,
 No. 1, January 2002.

 [BA02b] E. Blanton, M. Allman, Using TCP DSACKs and SCTP Duplicate
 TSNs to Detect Spurious Retransmissions, draft-blanton-

dsack-use-02.txt (work in progress), October 2002.

 [BDA03] E. Blanton, R. Dimond, M. Allman. Practices for TCP Senders
 in the Face of Segment Reordering, draft-blanton-tcp-

reordering-00.txt (work in progress), February 2003..

 [RFC***A] E. Blanton, M. Allman, K. Fall, L. Wang, A Conservative
 SACK-based Loss Recovery Algorithm for TCP, RFC***A,
 March 2003.

 [Gu01] A. Gurtov, Effect of Delays on TCP Performance, In
 Proceedings of IFIP Personal Wireless Conference,
 August 2001.

 [GL02] A. Gurtov, R. Ludwig, Evaluating the Eifel Algorithm for
 TCP in a GPRS Network, In Proceedings of the European
 Wireless Conference, February 2002.

 [GL03] A. Gurtov, R. Ludwig, Responding to Spurious Timeouts in
 TCP, In Proceedings of IEEE INFOCOM 03, .

 [RFC3481] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov,
 F. Khafizov, TCP over Second (2.5G) and Third (3G)
 Generation Wireless Networks, RFC3481, February 2003.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/draft-blanton-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/draft-blanton-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/draft-blanton-tcp-reordering-00.txt
https://datatracker.ietf.org/doc/html/draft-blanton-tcp-reordering-00.txt
https://datatracker.ietf.org/doc/html/rfc3481

Ludwig & Gurtov [Page 11]

INTERNET-DRAFT TCP - Eifel Response March, 2003

 [KP87] P. Karn, C. Partridge, Improving Round-Trip Time Estimates
 in Reliable Transport Protocols, In Proceedings of ACM
 SIGCOMM 87.

 [LK00] R. Ludwig, R. H. Katz, The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions, ACM Computer
 Communication Review, Vol. 30, No. 1, January 2000.

 [LS00] R. Ludwig, K. Sklower, The Eifel Retransmission Timer, ACM
 Computer Communication Review, Vol. 30, No. 3, July 2000.

 [SK02] P. Sarolahti, A. Kuznetsov, Congestion Control in Linux
 TCP, In Proceedings of USENIX, June 2002.

 [SK03] P. Sarolahti, M. Kojo, F-RTO: A TCP RTO Recovery Algorithm
 for Avoiding Unnecessary Retransmissions, draft-sarolahti-

tsvwg-tcp-frto-03.txt (work in progress), January 2003.

 [WS95] G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2
 (The Implementation), Addison Wesley, January 1995.

 [Zh86] L. Zhang, Why TCP Timers Don't Work Well, In Proceedings of
 ACM SIGCOMM 88.

Author's Address

 Reiner Ludwig
 Ericsson Research (EED)
 Ericsson Allee 1
 52134 Herzogenrath, Germany
 Email: Reiner.Ludwig@ericsson.com

 Andrei Gurtov
 Cellular Systems Development
 P.O. Box 970, FIN-00051 Sonera
 Helsinki, Finland
 Phone: +358(0)20401
 Fax: +358(0)204064365
 Email: andrei.gurtov@sonera.com
 Homepage: http://www.cs.helsinki.fi/u/gurtov

This Internet-Draft expires in September 2003.

https://datatracker.ietf.org/doc/html/draft-sarolahti-tsvwg-tcp-frto-03.txt
https://datatracker.ietf.org/doc/html/draft-sarolahti-tsvwg-tcp-frto-03.txt
http://www.cs.helsinki.fi/u/gurtov

Ludwig & Gurtov [Page 12]

