
Internet Engineering Task Force David Wetherall
INTERNET DRAFT David Ely
draft-ietf-tsvwg-tcp-nonce-00.txt Neil Spring
 University of Washington
 January, 2001
 Expires: July, 2001

Robust ECN Signaling with Nonces

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This note describes a simple modification to ECN that protects
 against accidental or malicious concealment of marked packets from
 the TCP sender. This is valuable because it improves the robustness
 of congestion control by preventing receivers from exploiting ECN to
 gaining an unfair share of the bandwidth. The mechanism uses a
 slightly different encoding than the existing two ECN bits in the IP
 header, and also requires one additional bit in the TCP header. It is
 computationally efficient for both routers and hosts.

1. Introduction

 The correct operation of ECN requires the cooperation of the receiver
 to return Congestion Experienced signals to the sender, but the
 protocol lacks a mechanism to enforce this cooperation. This raises

Wetherall, Ely, Spring [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

 the possibility that an unscrupulous or poorly implemented receiver
 could always clear ECN-Echo and simply not return congestion signals
 to the sender. This in turn would give the receivers a performance
 advantage at the expense of competing connections that behave
 properly. More generally, any device along the path (NAT box,
 firewall, QOS bandwidth shapers, and so forth) could remove
 congestion marks with impunity.

 The above behaviors may or may not constitute a threat to the
 operation of congestion control in the Internet. However, given of
 the central role of congestion control, we feel it is prudent to
 design the ECN signaling loop to be robust against as many threats as
 possible. In this way ECN can provide a clear incentive for
 improvement over the prior state-of-the-art without potential
 incentives for abuse. In this note, we show how this can be achieved
 while at the same time keeping the protocol simple and efficient.

 Our signaling mechanism uses random one bit quantities to allow the
 sender to verify that the receiver has implemented ECN signaling
 correctly and that there is no other interference that conceals
 marked (or dropped) packets in the signaling path. This provides
 protection against both implementation errors and deliberate abuse.
 In developing the nonce signaling mechanism we met the following
 goals:

 - It provides an additional check but does not change other aspects
 of ECN, and nor does it reduce the benefits of ECN for behaving
 receivers.

 - It catches a misbehaving receiver with a high probability, and
 never convicts an innocent receiver

 - It is cheap in terms of per-packet overhead (one TCP header bit
 more than the existing ECN mechanism) and processing
 requirements.

 - It is simple and, to the best of our knowledge, not prone to
 other attacks

 The rest of this note describes the mechanism, first with an overview
 and then in terms of more detailed behavior at senders, routers and
 receivers.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 2]

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

2. Overview of Solution

 Our scheme builds on the existing ECN-Echo and CWR signaling
 mechanism. Familiarity with ECN is assumed in this note. Also, for
 simplicity, we describe our scheme in one direction only, though it
 is run in both directions in parallel.

 In a nutshell, our approach is to detect misbehavior by attaching a
 random one bit nonce value to packets at the sender and having
 acknowledgments from the receiver echo the nonce information that is
 received. At routers, packet marking becomes the process of erasing
 the nonce value. Therefore, once a packet has been marked by a
 router, it cannot be unmarked by any party without successfully
 guessing the value of the erased nonce. Thus receipt of correct nonce
 information from the receiver provides the sender with a
 probabilistic proof-of- receipt check for unmarked packets. The check
 is used by the TCP sender to verify that the ECN-Echo bit is being
 set correctly and that congestion indications in the form of marked
 (or dropped) packets are not being concealed. Because one bit of
 information is returned with each acknowledgement, senders have a
 50-50 chance of catching a lying receiver every time they perform a
 check. Because the check for each acknowledgement is an independent
 trial it is highly likely that cheaters will be caught quickly if
 there are repeated packet marks.

 There are several areas of detail missing from the preceding high-
 level description. We mention those areas to complete the overview.

 First, the nonce values are echoed in the form of nonce sums. Each
 nonce sum is carried in an acknowledgement, and represents the one
 bit sum (XOR or parity) of nonces over the byte range represented by
 the acknowledgement. To understand why the sum is used, rather than
 individual echoes, consider the following argument. If every packet
 were reliably ACKed, then the nonce carried in the unmarked packet
 could simply be echoed. This would probabilistically prove to the
 sender that the receiver received the packet and the packet was
 unmarked. However, ACKs are not carried across the network reliably,
 and not every packet is ACKed. In this case, the sender cannot
 distinguish a lost ACK from one that was never sent in order to
 conceal a marked packet. It would require additional mechanism,
 beyond that used in TCP, to convey the nonce bits reliably. Instead,
 we send the nonce sum that corresponds to the cumulative ACK. This
 sum prevents individual marked packets from being concealed by not
 acknowledging them. Note that because they are both one bit
 quantities, the sum is no easier to guess than the individual nonces.

 Second, resynchronization of the sender and receiver sums is needed
 after congestion has occurred and packets have been marked. When

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 3]

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

 packets are marked, the nonce is cleared, and the sum of the nonces
 at the receiver will no longer reflect the sum at the sender. While
 this is conceptually fixed by having the receiver send a series of
 partial sums for the ranges of unmarked packets that it has received,
 this solution is clumsy because the required range information is not
 already being sent. Fortunately, there is a simple solution that
 does not require range information because ECN congestion indications
 do not need to indicate the particular packets that were marked. We
 observe that once nonces have been lost, the difference between
 sender and receiver nonce sums will be fixed until there is further
 loss. This means that it is possible to resynchronize the sender and
 receiver after congestion by having the sender set its nonce sum to
 that of the receiver. Because congestion indications do not need to
 be conveyed more frequently than once per round trip, we suspend
 checking while the CWR signal is being delivered and acknowledged by
 the receiver. We reset the sender nonce sum to the receiver sum when
 new data is acknowledged. This scheme is simple and has the benefit
 that the receiver is not explicitly involved in the re-
 synchronization process.

 Third, we need to reconcile the nonces that are sent with packet with
 acknowledgements that cover byte ranges. Acknowledged byte boundaries
 need not match the transmitted boundaries, and during retransmissions
 information can be resent with different byte boundaries. To handle
 these factors, we compute nonces and nonce sums using an underlying
 mapping of byte ranges to nonce values. Both sender and receiver
 understand this mapping, and can convert to and from the nonces
 carried on individual packets.

 The next sections describe the detailed behavior of senders, routers
 and receivers. We start with sender transmit behavior, and work our
 way around the ECN signaling loop until we arrive back at sender
 receive behavior. Comments in parenthesis highlight the changes
 between the nonce mechanism and the existing ECN specification.

3. Sender Behavior (Transmit)

 Senders in our scheme manage CWR and ECN-Echo as before. In addition
 they must place nonces on packets as they are transmitted and check
 the validity of the nonce sums on packets as they are received. This
 section describes the transmit process.

 To place a one bit nonce value on every IP packet requires first of
 all a way to encode these bits in IP packets. We use the following
 encoding of the ECN bits to identify different packet states. This
 encoding must be understood by all ECN capable senders, routers, and
 receivers in our scheme. (The second state below is currently unused

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 4]

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

 in the existing ECN specification, while the other states retain
 their existing meanings.)

 00 = ECN incapable

 10 = ECN capable, unmarked (nonce = 0)

 01 = ECN capable, unmarked (nonce = 1)

 11 = ECN capable, marked (nonce lost)

 Next, we require a simple way to map nonces to transmitted TCP
 packets in a manner that is compatible with checking the nonce sum on
 received TCP acknowledgements. This is complicated by several
 factors. Nonces are sent per packet but acknowledgements cover byte
 ranges that do not necessarily correspond to the original packet
 ranges; this can depend on implementation buffering strategies. In
 the case of retransmissions, the boundary of retransmitted packets
 need not correspond to the original transmissions either (because of
 path MTU changes, retransmission batching, and so forth). Finally,
 there is ambiguity at the sender as to whether the original or
 retransmitted packet was received. It is important that our
 implementation behave correctly even in these rare cases so that a
 receiver is never incorrectly labeled as misbehaving.

 We associate nonce values with byte ranges instead of individual
 packets to avoid these difficulties. Starting from the initial
 sequence number, each block of SMSS bytes (the maximum segment size)
 in the TCP byte stream is associated with a single pseudorandom nonce
 bit. The byte range of the packet determines what nonce value it
 will carry. If the packet, either original or a retransmission, spans
 multiple blocks, we use the block in which the final byte of the
 packet resides to determine which nonce value to transmit with the
 packet. A series of small packets will carry the same nonce value
 until an entire block's worth of SMSS bytes has been transmitted.
 This is a useful tradeoff because sending partial packets makes a
 flow less likely to cause congestion. Since no packet can carry more
 than SMSS bytes, each block's nonce bit will be carried in at least
 one packet.

 The following table provides an example of how we decompose a byte
 stream into blocks and how we assign nonce values to each block
 (assuming a block size of 1460 bytes):

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 5]

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

 | Bytes: | 1...1460 | 1461...2920 | 2921 ... 4380 |

 | Nonce: | 1 | 1 | 0 |

 | Nonce Sum: | 1 | 0 | 1 |

4. Router Behavior

 Routers must be able to identify packets sent by ECN capable
 transports and mark them if indicated by active queue management. To
 mark packets, routers change either of the unmarked states to the
 single marked state. (The operation of marking has changed only in
 that routers now need to recognize two states as meaning not marked
 and so is still straightforward.) This erases the state of the
 original nonce carried with the packet, which is key to our scheme.
 Neither the receiver nor any other party can now unmark the packet
 without successfully guessing the value of the original nonce.

5. Receiver Behavior (Receive and Transmit)

 In addition to distinguishing marked and unmarked packets and setting
 the ECN- Echo flag as before, receivers in our scheme maintain a
 nonce sum as packets arrive, and return the sum that corresponds to a
 particular acknowledgment with the acknowledgment.

 To maintain the nonce sum, receivers use the same mapping as the
 sender to convert the nonces carried in unmarked packets to the
 nonces of the underlying blocks. These nonce values are summed over
 the byte range covered by the acknowledgement. Computing this sum
 correctly when packets of size SMSS are sent requires that all
 packets up to the one acknowledged be received. New sums are computed
 by taking the old value and XORing it with a new nonce. That is, the
 sum is also a one bit quantity, and old nonce state does not need to
 be maintained.

 In the case of marked packets, one or more nonce values may be
 unknown to the receiver. In this case the missing nonce values are
 ignored when calculating the sum (or equivalently a value of zero is
 assumed) and ECN-Echo will be set to signal congestion to the sender.

 Returning the nonce sum corresponding to a given acknowledgement is
 straightforward. It is carried in a single bit in the TCP header.
 (This bit is in addition the CWR and ECN-Echo bits and would require
 one of the reserved bits to be allocated.)

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 6]

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

 These nonce sums are checked for validity at the sender, as described
 below.

6. Sender Behavior (Receive)

 This section completes the description of sender behavior by
 describing how senders check the validity of the nonce sums.

 Checking is straightforward and is performed every time an
 acknowledgement is received, except during congestion recovery. Given
 the byte range covered by an acknowledgement and the mapping between
 bytes and nonces, the sender is able to compute the correct nonce
 sum. Minimal sender state is needed to do this because old nonce
 values can be discarded as acknowledgments and the sum advance.
 Checking consists of simply comparing the correct nonce sum and that
 carried in the acknowledgement.

 If ECN-Echo is not set, the receiver claims to have received no
 marked packets, and can therefore compute the correct nonce sum. To
 cheat, the receiver must successfully guess the sum of the nonces
 that it did not receive (because at least one packet was marked and
 the corresponding nonce was erased). Provided the individual nonces
 are equally likely to be 0 or 1, their sum is equally likely to be 0
 or 1. In other words, any guess is equally likely to be wrong and
 has a 50-50 chance of being caught by the sender. Because each
 acknowledgement (that covers a new block) is an independent trial, a
 cheating receiver is highly likely to be caught after a small number
 of lies.

 If ECN-Echo is set, the receiver is sending a congestion signal and
 it is not necessary to check the nonce sum. The congestion window
 will be halved, CWR will be set on the next packet with new data
 sent, and ECN-Echo will be cleared once the CWR signal is received.
 During this recovery process, the sum may be incorrect because one or
 more nonces were not received. This does not matter during recovery,
 because TCP invokes congestion mechanisms at most once per RTT,
 whether there are one or more losses during that period. However,
 after recovery, it is necessary to re-synchronize the sender and
 receiver nonce sums so that further acknowledgments can be checked.
 If might be possible to send the missing nonces to the receiver, but
 this would be cumbersome because TCP lacks the mechanism to do so
 conveniently. Instead, we observe that if there are no more marked
 packets, the sender and receiver sums should differ by a constant
 amount. This leads to a simple re-synchronization mechanism where the
 sender resets its nonce sum to that of the receiver when it receives
 an acknowledgment for new data sent after the congestion window was
 reduced. In most instances, this will be the first acknowledgement

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 7]

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

 without the ECN-Echo flag set.

 A separate issue is the penalty for misbehavior that is caught by
 checking. During normal operation, both with and without packet
 marks and drops, no misbehavior will be uncovered unless some party
 after the marking router is behaving incorrectly. A simple remedy in
 this case would be to disable ECN at the sender, that is, not mark
 packets as ECN capable. This simultaneously deprives the receiver of
 the benefits of ECN and relieves the sender of the need to monitor
 the receiver. However, an additional consideration is that the nonce
 checking mechanism provides robustness beyond checking that marked
 packets are signaled to the sender. It also ensures that dropped
 packets cannot be concealed from the sender (because their nonces
 have been lost). Drops could potentially be concealed by a faulty TCP
 implementation, certain attacks, or even a hypothetical a TCP
 accelerator willing to gamble that it can either successfully ``fast
 start'' to a preset bandwidth quickly, retry with another connection,
 or provide reliability at the application level. If robustness
 against these faults is considered valuable (as opposed to simply
 detecting a faulty ECN implementation) then it is not clear that the
 nonce mechanism should be turned off. Instead, a penalty such as
 reducing the congestion window by a factor of 4 may be preferable.
 This would provide continued checking while punishing faulty
 operation. Luckily, this issue is separate from the checking
 mechanism and does not need to be handled uniformly by senders.

7. Conclusion

 We have described a simple modification to the ECN signaling
 mechanism that improves its robustness by preventing receivers from
 concealing marked (or dropped) packets. The intent of this work is to
 help improve the robustness of congestion control in the Internet.
 The modification is retains the character and simplicity of existing
 ECN signaling. It is also practical for deployment in the Internet.
 It requires two bits in the IP header (ECT and CE with a slightly
 different encoding) and one additional bit in the TCP header (as well
 as CWR and ECN-Echo) and has simple processing rules.

Acknowledgements

 This note grew out of research done by Stefan Savage, David Ely,
 David Wetherall, Tom Anderson and Neil Spring. We are grateful for
 feedback from Sally Floyd.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 8]

draft-ietf-tsvwg-tcp-nonce-00 Robust ECN Signaling with Nonces Jan 2001

Authors' Addresses

 David Wetherall
 Email: djw@cs.washington.edu
 Phone +1 (206) 616 4367

 David Ely
 Email: ely@cs.washington.edu

 Neil Spring
 Email: nspring@cs.washington.edu

 Computer Science and Engineering, 352350
 University of Washington
 Seattle, WA 98195-2350

 Send comments by electronic mail to all three authors.

 This draft was created in January 2001.
 It expires July 2001.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00

Wetherall, Ely, Spring [Page 9]

