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Robust ECN Signaling with Nonces

                          Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet- Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

   This note describes a simple modification to ECN that protects
   against accidental or malicious concealment of marked packets from
   the TCP sender. This is valuable because it improves the robustness
   of congestion control by preventing receivers from exploiting ECN to
   gaining an unfair share of the bandwidth. The mechanism uses a
   slightly different encoding than the existing two ECN bits in the IP
   header, and also requires one additional bit in the TCP header. It is
   computationally efficient for both routers and hosts.

1. Introduction

   The correct operation of ECN requires the cooperation of the receiver
   to return Congestion Experienced signals to the sender, but the
   protocol lacks a mechanism to enforce this cooperation. This raises
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   the possibility that an unscrupulous or poorly implemented receiver
   could always clear ECN-Echo and simply not return congestion signals
   to the sender. This in turn would give the receivers a performance
   advantage at the expense of competing connections that behave
   properly. More generally, any device along the path (NAT box,
   firewall, QOS bandwidth shapers, and so forth) could remove
   congestion marks with impunity.

   The above behaviors may or may not constitute a threat to the
   operation of congestion control in the Internet. However, given of
   the central role of congestion control, we feel it is prudent to
   design the ECN signaling loop to be robust against as many threats as
   possible. In this way ECN can provide a clear incentive for
   improvement over the prior state-of-the-art without potential
   incentives for abuse. In this note, we show how this can be achieved
   while at the same time keeping the protocol simple and efficient.

   Our signaling mechanism uses random one bit quantities to allow the
   sender to verify that the receiver has implemented ECN signaling
   correctly and that there is no other interference that conceals
   marked (or dropped) packets in the signaling path. This provides
   protection against both implementation errors and deliberate abuse.
   In developing the nonce signaling mechanism we met the following
   goals:

     - It provides an additional check but does not change other aspects
       of ECN, and nor does it reduce the benefits of ECN for behaving
       receivers.

     - It catches a misbehaving receiver with a high probability, and
       never convicts an innocent receiver

     - It is cheap in terms of per-packet overhead (one TCP header bit
       more than the existing ECN mechanism) and processing
       requirements.

     - It is simple and, to the best of our knowledge, not prone to
       other attacks

   The rest of this note describes the mechanism, first with an overview
   and then in terms of more detailed behavior at senders, routers and
   receivers.
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2. Overview of Solution

   Our scheme builds on the existing ECN-Echo and CWR signaling
   mechanism.  Familiarity with ECN is assumed in this note. Also, for
   simplicity, we describe our scheme in one direction only, though it
   is run in both directions in parallel.

   In a nutshell, our approach is to detect misbehavior by attaching a
   random one bit nonce value to packets at the sender and having
   acknowledgments from the receiver echo the nonce information that is
   received. At routers, packet marking becomes the process of erasing
   the nonce value. Therefore, once a packet has been marked by a
   router, it cannot be unmarked by any party without successfully
   guessing the value of the erased nonce. Thus receipt of correct nonce
   information from the receiver provides the sender with a
   probabilistic proof-of- receipt check for unmarked packets. The check
   is used by the TCP sender to verify that the ECN-Echo bit is being
   set correctly and that congestion indications in the form of marked
   (or dropped) packets are not being concealed.  Because one bit of
   information is returned with each acknowledgement, senders have a
   50-50 chance of catching a lying receiver every time they perform a
   check. Because the check for each acknowledgement is an independent
   trial it is highly likely that cheaters will be caught quickly if
   there are repeated packet marks.

   There are several areas of detail missing from the preceding high-
   level description. We mention those areas to complete the overview.

   First, the nonce values are echoed in the form of nonce sums. Each
   nonce sum is carried in an acknowledgement, and represents the one
   bit sum (XOR or parity) of nonces over the byte range represented by
   the acknowledgement.  To understand why the sum is used, rather than
   individual echoes, consider the following argument. If every packet
   were reliably ACKed, then the nonce carried in the unmarked packet
   could simply be echoed. This would probabilistically prove to the
   sender that the receiver received the packet and the packet was
   unmarked.  However, ACKs are not carried across the network reliably,
   and not every packet is ACKed. In this case, the sender cannot
   distinguish a lost ACK from one that was never sent in order to
   conceal a marked packet. It would require additional mechanism,
   beyond that used in TCP, to convey the nonce bits reliably. Instead,
   we send the nonce sum that corresponds to the cumulative ACK. This
   sum prevents individual marked packets from being concealed by not
   acknowledging them. Note that because they are both one bit
   quantities, the sum is no easier to guess than the individual nonces.

   Second, resynchronization of the sender and receiver sums is needed
   after congestion has occurred and packets have been marked. When
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   packets are marked, the nonce is cleared, and the sum of the nonces
   at the receiver will no longer reflect the sum at the sender. While
   this is conceptually fixed by having the receiver send a series of
   partial sums for the ranges of unmarked packets that it has received,
   this solution is clumsy because the required range information is not
   already being sent.  Fortunately, there is a simple solution that
   does not require range information because ECN congestion indications
   do not need to indicate the particular packets that were marked. We
   observe that once nonces have been lost, the difference between
   sender and receiver nonce sums will be fixed until there is further
   loss. This means that it is possible to resynchronize the sender and
   receiver after congestion by having the sender set its nonce sum to
   that of the receiver. Because congestion indications do not need to
   be conveyed more frequently than once per round trip, we suspend
   checking while the CWR signal is being delivered and acknowledged by
   the receiver. We reset the sender nonce sum to the receiver sum when
   new data is acknowledged. This scheme is simple and has the benefit
   that the receiver is not explicitly involved in the re-
   synchronization process.

   Third, we need to reconcile the nonces that are sent with packet with
   acknowledgements that cover byte ranges. Acknowledged byte boundaries
   need not match the transmitted boundaries, and during retransmissions
   information can be resent with different byte boundaries. To handle
   these factors, we compute nonces and nonce sums using an underlying
   mapping of byte ranges to nonce values. Both sender and receiver
   understand this mapping, and can convert to and from the nonces
   carried on individual packets.

   The next sections describe the detailed behavior of senders, routers
   and receivers. We start with sender transmit behavior, and work our
   way around the ECN signaling loop until we arrive back at sender
   receive behavior. Comments in parenthesis highlight the changes
   between the nonce mechanism and the existing ECN specification.

3. Sender Behavior (Transmit)

   Senders in our scheme manage CWR and ECN-Echo as before. In addition
   they must place nonces on packets as they are transmitted and check
   the validity of the nonce sums on packets as they are received. This
   section describes the transmit process.

   To place a one bit nonce value on every IP packet requires first of
   all a way to encode these bits in IP packets. We use the following
   encoding of the ECN bits to identify different packet states. This
   encoding must be understood by all ECN capable senders, routers, and
   receivers in our scheme. (The second state below is currently unused
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   in the existing ECN specification, while the other states retain
   their existing meanings.)

       00 = ECN incapable

       10 = ECN capable, unmarked (nonce = 0)

       01 = ECN capable, unmarked (nonce = 1)

       11 = ECN capable, marked (nonce lost)

   Next, we require a simple way to map nonces to transmitted TCP
   packets in a manner that is compatible with checking the nonce sum on
   received TCP acknowledgements. This is complicated by several
   factors. Nonces are sent per packet but acknowledgements cover byte
   ranges that do not necessarily correspond to the original packet
   ranges; this can depend on implementation buffering strategies. In
   the case of retransmissions, the boundary of retransmitted packets
   need not correspond to the original transmissions either (because of
   path MTU changes, retransmission batching, and so forth). Finally,
   there is ambiguity at the sender as to whether the original or
   retransmitted packet was received. It is important that our
   implementation behave correctly even in these rare cases so that a
   receiver is never incorrectly labeled as misbehaving.

   We associate nonce values with byte ranges instead of individual
   packets to avoid these difficulties.  Starting from the initial
   sequence number, each block of SMSS bytes (the maximum segment size)
   in the TCP byte stream is associated with a single pseudorandom nonce
   bit.  The byte range of the packet determines what nonce value it
   will carry. If the packet, either original or a retransmission, spans
   multiple blocks, we use the block in which the final byte of the
   packet resides to determine which nonce value to transmit with the
   packet.  A series of small packets will carry the same nonce value
   until an entire block's worth of SMSS bytes has been transmitted.
   This is a useful tradeoff because sending partial packets makes a
   flow less likely to cause congestion. Since no packet can carry more
   than SMSS bytes, each block's nonce bit will be carried in at least
   one packet.

   The following table provides an example of how we decompose a byte
   stream into blocks and how we assign nonce values to each block
   (assuming a block size of 1460 bytes):
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   -------------------------------------------------------
   | Bytes:     | 1...1460 | 1461...2920 | 2921 ... 4380 |
   -------------------------------------------------------
   | Nonce:     |    1     |      1      |       0       |
   -------------------------------------------------------
   | Nonce Sum: |    1     |      0      |       1       |
   -------------------------------------------------------

4. Router Behavior

   Routers must be able to identify packets sent by ECN capable
   transports and mark them if indicated by active queue management. To
   mark packets, routers change either of the unmarked states to the
   single marked state. (The operation of marking has changed only in
   that routers now need to recognize two states as meaning not marked
   and so is still straightforward.) This erases the state of the
   original nonce carried with the packet, which is key to our scheme.
   Neither the receiver nor any other party can now unmark the packet
   without successfully guessing the value of the original nonce.

5. Receiver Behavior (Receive and Transmit)

   In addition to distinguishing marked and unmarked packets and setting
   the ECN- Echo flag as before, receivers in our scheme maintain a
   nonce sum as packets arrive, and return the sum that corresponds to a
   particular acknowledgment with the acknowledgment.

   To maintain the nonce sum, receivers use the same mapping as the
   sender to convert the nonces carried in unmarked packets to the
   nonces of the underlying blocks. These nonce values are summed over
   the byte range covered by the acknowledgement. Computing this sum
   correctly when packets of size SMSS are sent requires that all
   packets up to the one acknowledged be received. New sums are computed
   by taking the old value and XORing it with a new nonce. That is, the
   sum is also a one bit quantity, and old nonce state does not need to
   be maintained.

   In the case of marked packets, one or more nonce values may be
   unknown to the receiver. In this case the missing nonce values are
   ignored when calculating the sum (or equivalently a value of zero is
   assumed) and ECN-Echo will be set to signal congestion to the sender.

   Returning the nonce sum corresponding to a given acknowledgement is
   straightforward. It is carried in a single bit in the TCP header.
   (This bit is in addition the CWR and ECN-Echo bits and would require
   one of the reserved bits to be allocated.)
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   These nonce sums are checked for validity at the sender, as described
   below.

6. Sender Behavior (Receive)

   This section completes the description of sender behavior by
   describing how senders check the validity of the nonce sums.

   Checking is straightforward and is performed every time an
   acknowledgement is received, except during congestion recovery. Given
   the byte range covered by an acknowledgement and the mapping between
   bytes and nonces, the sender is able to compute the correct nonce
   sum. Minimal sender state is needed to do this because old nonce
   values can be discarded as acknowledgments and the sum advance.
   Checking consists of simply comparing the correct nonce sum and that
   carried in the acknowledgement.

   If ECN-Echo is not set, the receiver claims to have received no
   marked packets, and can therefore compute the correct nonce sum. To
   cheat, the receiver must successfully guess the sum of the nonces
   that it did not receive (because at least one packet was marked and
   the corresponding nonce was erased). Provided the individual nonces
   are equally likely to be 0 or 1, their sum is equally likely to be 0
   or 1.  In other words, any guess is equally likely to be wrong and
   has a 50-50 chance of being caught by the sender. Because each
   acknowledgement (that covers a new block) is an independent trial, a
   cheating receiver is highly likely to be caught after a small number
   of lies.

   If ECN-Echo is set, the receiver is sending a congestion signal and
   it is not necessary to check the nonce sum. The congestion window
   will be halved, CWR will be set on the next packet with new data
   sent, and ECN-Echo will be cleared once the CWR signal is received.
   During this recovery process, the sum may be incorrect because one or
   more nonces were not received. This does not matter during recovery,
   because TCP invokes congestion mechanisms at most once per RTT,
   whether there are one or more losses during that period. However,
   after recovery, it is necessary to re-synchronize the sender and
   receiver nonce sums so that further acknowledgments can be checked.
   If might be possible to send the missing nonces to the receiver, but
   this would be cumbersome because TCP lacks the mechanism to do so
   conveniently. Instead, we observe that if there are no more marked
   packets, the sender and receiver sums should differ by a constant
   amount. This leads to a simple re-synchronization mechanism where the
   sender resets its nonce sum to that of the receiver when it receives
   an acknowledgment for new data sent after the congestion window was
   reduced.  In most instances, this will be the first acknowledgement
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   without the ECN-Echo flag set.

   A separate issue is the penalty for misbehavior that is caught by
   checking.  During normal operation, both with and without packet
   marks and drops, no misbehavior will be uncovered unless some party
   after the marking router is behaving incorrectly. A simple remedy in
   this case would be to disable ECN at the sender, that is, not mark
   packets as ECN capable. This simultaneously deprives the receiver of
   the benefits of ECN and relieves the sender of the need to monitor
   the receiver. However, an additional consideration is that the nonce
   checking mechanism provides robustness beyond checking that marked
   packets are signaled to the sender. It also ensures that dropped
   packets cannot be concealed from the sender (because their nonces
   have been lost). Drops could potentially be concealed by a faulty TCP
   implementation, certain attacks, or even a hypothetical a TCP
   accelerator willing to gamble that it can either successfully ``fast
   start'' to a preset bandwidth quickly, retry with another connection,
   or provide reliability at the application level. If robustness
   against these faults is considered valuable (as opposed to simply
   detecting a faulty ECN implementation) then it is not clear that the
   nonce mechanism should be turned off. Instead, a penalty such as
   reducing the congestion window by a factor of 4 may be preferable.
   This would provide continued checking while punishing faulty
   operation. Luckily, this issue is separate from the checking
   mechanism and does not need to be handled uniformly by senders.

7. Conclusion

   We have described a simple modification to the ECN signaling
   mechanism that improves its robustness by preventing receivers from
   concealing marked (or dropped) packets. The intent of this work is to
   help improve the robustness of congestion control in the Internet.
   The modification is retains the character and simplicity of existing
   ECN signaling. It is also practical for deployment in the Internet.
   It requires two bits in the IP header (ECT and CE with a slightly
   different encoding) and one additional bit in the TCP header (as well
   as CWR and ECN-Echo) and has simple processing rules.
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