
Internet Engineering Task Force Neil Spring
INTERNET DRAFT David Wetherall
draft-ietf-tsvwg-tcp-nonce-04.txt David Ely
 University of Washington
 October, 2002
 Expires: April, 2002

Robust ECN Signaling with Nonces

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This note describes the ECN-nonce, an optional addition to ECN that
 protects against accidental or malicious concealment of marked
 packets from the TCP sender. It improves the robustness of
 congestion control by preventing receivers from exploiting ECN to
 gain an unfair share of network bandwidth. The ECN-nonce uses the
 two ECT codepoints in the ECN field of the IP header, and requires a
 flag in the TCP header. It is computationally efficient for both
 routers and hosts.

1. Introduction

 The correct operation of ECN requires the cooperation of the receiver
 to return Congestion Experienced signals to the sender, but the
 protocol lacks a mechanism to enforce this cooperation. This raises
 the possibility that an unscrupulous or poorly implemented receiver

Spring, Wetherall, Ely [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 could always clear ECN-Echo and simply not return congestion signals
 to the sender. This would give the receiver a performance advantage
 at the expense of competing connections that behave properly. More
 generally, any device along the path (NAT box, firewall, QOS
 bandwidth shapers, and so forth) could remove congestion marks with
 impunity.

 The above behaviors may or may not constitute a threat to the
 operation of congestion control in the Internet. However, given the
 central role of congestion control, it is prudent to design the ECN
 signaling loop to be robust against as many threats as possible. In
 this way, ECN can provide a clear incentive for improvement over the
 prior state-of-the-art without potential incentives for abuse. The
 ECN-nonce is a simple, efficient mechanism to eliminate the potential
 abuse of ECN.

 The ECN-nonce enables the sender to verify the correct behavior of
 the ECN receiver and that there is no other interference that
 conceals marked (or dropped) packets in the signaling path. The ECN-
 nonce protects against both implementation errors and deliberate
 abuse. The ECN-nonce:

 - catches a misbehaving receiver with a high probability, and never
 implicates an innocent receiver.

 - does not change other aspects of ECN, nor does it reduce the
 benefits of ECN for behaving receivers.

 - is cheap in both per-packet overhead (one TCP header flag) and
 processing requirements.

 - is simple and, to the best of our knowledge, not prone to other
 attacks.

 We also note that use of the ECN-nonce has two additional benefits,
 even when only drop-tail routers are used. First, packet drops
 cannot be concealed from the sender. Second, it prevents optimistic
 acknowledgements [Savage], in which TCP segments are acknowledged
 before they have been received. These benefits also serve to
 increase the robustness of congestion control from attacks. We do
 not elaborate on these benefits in this draft.

 The rest of this draft describes the ECN-nonce. We present an
 overview followed by detailed behavior at senders and receivers.

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04

Spring, Wetherall, Ely [Page 2]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

2. Overview

 The ECN-nonce builds on the existing ECN-Echo and CWR signaling
 mechanism. Familiarity with ECN [ECN] is assumed. For simplicity,
 we describe the ECN-nonce in one direction only, though it is run in
 both directions in parallel.

 The ECN protocol for TCP remains unchanged, except for the definition
 of a new field in the TCP header. As in [ECN], ECT(0) or ECT(1)
 (ECN-Capable Transport) is set in the ECN field of the IP header on
 outgoing packets. Congested routers change this field to CE
 (Congestion Experienced). When TCP receivers notice CE, the ECE
 (ECN-Echo) flag is set in subsequent acknowledgements until receiving
 a CWR (Congestion Window Reduced) flag. The CWR flag is sent on new
 data whenever the sender reacts to congestion.

 The ECN-nonce adds to this protocol, and enables the receiver to
 demonstrate to the sender that segments being acknowledged were
 received unmarked. A random one-bit value (a nonce) is encoded in
 the two ECT codepoints. The one-bit sum of these nonces is returned
 in a TCP header flag, the nonce sum (NS) bit. Packet marking erases
 the nonce value in the ECT codepoints because CE overwrites both ECN
 IP header bits. Since each nonce is required to calculate the sum,
 the correct nonce sum implies receipt of only unmarked packets. Not
 only are receivers prevented from concealing marked packets, middle-
 boxes along the network path cannot unmark a packet without
 successfully guessing the value of the original nonce.

 The sender can verify the nonce sum returned by the receiver to
 ensure that congestion indications in the form of marked (or dropped)
 packets are not being concealed. Because the nonce sum is only one
 bit long, senders have a 50-50 chance of catching a lying receiver
 whenever an acknowledgement conceals a mark. Because each
 acknowledgement is an independent trial, cheaters will be caught
 quickly if there are repeated congestion signals.

 The following paragraphs describe aspects of the ECN-nonce protocol
 in greater detail.

 Each acknowledgement carries a nonce sum, which is the one bit sum
 (exclusive-or, or parity) of nonces over the byte range represented
 by the acknowledgement. The sum is used because not every packet is
 acknowledged individually, nor are packets acknowledged reliably. If
 a sum were not used, the nonce in an unmarked packet could be echoed

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04
https://datatracker.ietf.org/doc/html/rfc2119

Spring, Wetherall, Ely [Page 3]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 to prove to the sender that the individual packet arrived unmarked.
 However, since these acks are not reliably delivered, the sender
 could not distinguish a lost ACK from one that was never sent in
 order to conceal a marked packet. The nonce sum prevents individual
 marked packets from being concealed by not acknowledging them.
 Because the nonce and nonce sum are both one bit quantities, the sum
 is no easier to guess than the individual nonces. We show the nonce
 sum calculation below in Figure 1.

 Sender Receiver
 initial sum = 1
 -- 1:4 ECT(0) --> NS = 1 + 0(1:4) = 1(:4)
 <- ACK 4, NS=1 ---
 -- 4:8 ECT(1) --> NS = 1(:4) + 1(4:8) = 0(:8)
 <- ACK 8, NS=0 ---
 -- 8:12 ECT(1) -> NS = 0(:8) + 1(8:12) = 1(:12)
 <- ACK 12, NS=1 --
 -- 12:16 ECT(1) -> NS = 1(:12) + 1(12:16) = 0(:16)
 <- ACK 16, NS=0 --
 Figure 1: The calculation of nonce sums at the receiver.

 After congestion has occurred and packets have been marked or lost,
 resynchronization of the sender and receiver nonce sums is needed.
 When packets are marked, the nonce is cleared, and the sum of the
 nonces at the receiver will no longer match the sum at the sender.
 Once nonces have been lost, the difference between sender and
 receiver nonce sums is constant until there is further loss. This
 means that it is possible to resynchronize the sender and receiver
 after congestion by having the sender set its nonce sum to that of
 the receiver. Because congestion indications do not need to be
 conveyed more frequently than once per round trip, the sender
 suspends checking while the CWR signal is being delivered and resets
 its nonce sum to the receiver's when new data is acknowledged. This
 has the benefit that the receiver is not explicitly involved in the
 re-synchronization process. The resynchronization process is shown
 in Figure 2 below. Note that the nonce sum returned in ACK 12 (NS=0)
 differs from that in the previous example (NS=1), and it continues to
 differ for ACK 16.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04

Spring, Wetherall, Ely [Page 4]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 Sender Receiver
 initial sum = 1
 -- 1:4 ECT(0) -> NS = 1 + 0(1:4) = 1(:4)
 <- ACK 4, NS=1 --
 -- 4:8 ECT(1) -> CE -> NS = 1(:4) + ?(4:8) = 1(:8)
 <- ACK 8, ECE NS=1 --
 -- 8:12 ECT(1), CWR -> NS = 1(:8) + 1(8:12) = 0(:12)
 <- ACK 12, NS=0 --
 -- 12:16 ECT(1) -> NS = 0(:12) + 1(12:16) = 1(:16)
 <- ACK 16, NS=1 --
 Figure 2: The calculation of nonce sums at the receiver when a
 packet (4:8) is marked. The receiver may calculate the wrong
 nonce sum when the original nonce information is lost after a
 packet is marked.

 Third, we need to reconcile that nonces are sent with packets but
 acknowledgements cover byte ranges. Acknowledged byte boundaries
 need not match the transmitted boundaries, and information can be
 retransmitted in packets with different byte boundaries. However,
 ECN is disabled for retransmissions, so can carry no nonce. Since
 retransmissions are associated with congestion events, nonce checking
 is suspended until after CWR is acknowledged and the congestion event
 is over.

 The next sections describe the detailed behavior of senders, routers
 and receivers, starting with sender transmit behavior, then around
 the ECN signaling loop, and finish with sender acknowledgement
 processing.

3. Sender Behavior (Transmit)

 Senders manage CWR and ECN-Echo as before. In addition, they must
 place nonces on packets as they are transmitted and check the
 validity of the nonce sums in acknowledgments as they are received.
 This section describes the transmit process.

 To place a one bit nonce value on every ECN-capable IP packet, the
 sender uses the two ECT codepoints: ECT(0) represents a nonce of 0,
 and ECT(1) a nonce of 1. As in ECN, retransmissions are not ECN-
 capable, so carry no nonce.

 The sender maintains a mapping from each packet's end sequence number
 to the expected nonce sum (not the nonce placed in the original
 transmission) in the acknowledgement bearing that sequence number.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04

Spring, Wetherall, Ely [Page 5]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

4. Router Behavior

 Routers behave as specified in [RFC3168]. By marking packets to
 signal congestion, the original value of the nonce, in ECT(0) or
 ECT(1), is removed. Neither the receiver nor any other party can
 unmark the packet without successfully guessing the value of the
 original nonce.

5. Receiver Behavior (Receive and Transmit)

 ECN-nonce receivers maintain the nonce sum as in-order packets arrive
 and return the current nonce sum in each acknowledgement. Receiver
 behavior is otherwise unchanged from [RFC3168]. Returning the nonce
 sum is optional, but recommended, as senders are allowed to
 discontinue sending ECN-capable packets to receivers that do not
 support the ECN-nonce.

 As packets are removed from the queue of out-of-order packets to be
 acknowledged, the nonce is recovered from the IP header. The nonce
 is added to the current nonce sum as the acknowledgement sequence
 number is advanced for the recent packet.

 In the case of marked packets, one or more nonce values may be
 unknown to the receiver. In this case the missing nonce values are
 ignored when calculating the sum (or equivalently a value of zero is
 assumed) and ECN-Echo will be set to signal congestion to the sender.

 Returning the nonce sum corresponding to a given acknowledgement is
 straightforward. It is carried in a single "NS" (Nonce Sum) bit in
 the TCP header. This bit is adjacent to the CWR and ECN-Echo bits,
 set as Bit 7 in the Reserved field of the TCP header, as shown below:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | C | E | U | A | P | R | S | F |
 | Header Length | Reserved | W | C | R | C | S | S | Y | I |
 | | | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 3: The old definition of bytes 13 and 14 of the TCP Header.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | N | C | E | U | A | P | R | S | F |
 | Header Length | Reserved | S | W | C | R | C | S | S | Y | I |
 | | | | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Spring, Wetherall, Ely [Page 6]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 Figure 4: The new definition of bytes 13 and 14 of the TCP Header.

 The initial nonce sum is 1, and is included in the SYN/ACK and ACK of
 the three way TCP handshake. This allows the other endpoint to infer
 nonce support, but is not a negotiation, in that the receiver of the
 SYN/ACK need not check if NS is set to decide whether to set NS in
 the subsequent ACK.

6. Sender Behavior (Receive)

 This section completes the description of sender behavior by
 describing how senders check the validity of the nonce sums.

 The nonce sum is checked when an acknowledgement of new data is
 received, except during congestion recovery when additional ECN-Echo
 signals would be ignored. Checking consists of comparing the correct
 nonce sum stored in a buffer to that carried in the acknowledgement,
 with a correction described in the following subsection.

 If ECN-Echo is not set, the receiver claims to have received no
 marked packets, and can therefore compute and return the correct
 nonce sum. To conceal a mark, the receiver must successfully guess
 the sum of the nonces that it did not receive, because at least one
 packet was marked and the corresponding nonce was erased. Provided
 the individual nonces are equally likely to be 0 or 1, their sum is
 equally likely to be 0 or 1. In other words, any guess is equally
 likely to be wrong and has a 50-50 chance of being caught by the
 sender. Because each new acknowledgement is an independent trial, a
 cheating receiver is likely to be caught after a small number of
 lies.

 If ECN-Echo is set, the receiver is sending a congestion signal and
 it is not necessary to check the nonce sum. The congestion window
 will be halved, CWR will be set on the next packet with new data
 sent, and ECN-Echo will be cleared once the CWR signal is received,
 as in [RFC3168]. During this recovery process, the sum may be
 incorrect because one or more nonces were not received. This does
 not matter during recovery, because TCP invokes congestion mechanisms
 at most once per RTT, whether there are one or more losses during
 that period.

6.1 Resynchronization After Loss or Mark

 After recovery, it is necessary to re-synchronize the sender and
 receiver nonce sums so that further acknowledgments can be checked.
 When the receiver's sum is incorrect, it will remain incorrect until

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04
https://datatracker.ietf.org/doc/html/rfc3168

Spring, Wetherall, Ely [Page 7]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 further loss.
 This leads to a simple re-synchronization mechanism where the sender
 resets its nonce sum to that of the receiver when it receives an
 acknowledgment for new data sent after the congestion window was
 reduced. When responding to explicit congestion signals, this will
 be the first acknowledgement without the ECN-Echo flag set: the
 acknowledgement of the packet containing the CWR flag.

 Sender Receiver
 initial sum = 1
 -- 1:4 ECT(0) -> NS = 1 + 0(1:4) = 1(:4)
 <- ACK 4, NS=1 --
 -- 4:8 ECT(1) -> LOST
 -- 8:12 ECT(1) -> nonce sum calculation deferred
 until in-order data received
 <- ACK 4, NS=0 --
 -- 12:16 ECT(1) -> nonce sum calculation deferred
 <- ACK 4, NS=0 --
 -- 4:8 retransmit -> NS = 1(:4) + ?(4:8) +
 1(8:12) + 1(12:16) = 1(:16)
 <- ACK 16, NS=1 --
 -- 16:20 ECT(1) CWR ->
 <- ACK 20, NS=0 -- NS = 1(:16) + 1(16:20) = 0(:20)

 Figure 5: The calculation of nonce sums at the receiver when a
 packet is lost, and resynchronization after loss. The nonce sum
 is not changed until the cumulative acknowledgement is advanced.

 In practice, resynchronization can be accomplished by storing a bit
 that has the value one if the expected nonce sum stored by the sender
 and the received nonce sum in the acknowledgement of CWR differ, and
 zero otherwise. This synchronization offset bit can then be used in
 the comparison between expected nonce sum and received nonce sum.

 The sender should ignore the nonce sum returned on any
 acknowledgements bearing the ECN-echo flag.

 When an acknowledgment covers only a portion of a segment, such as
 when a middlebox resegments at the TCP layer instead of fragmenting
 IP packets, the sender should accept the nonce sum expected at the
 next segment boundary. In other words, an acknowledgement covering
 part of an original segment will include the nonce sum expected when
 the entire segment is acknowledged.

 Finally, in ECN, senders can choose not to indicate ECN capability on
 some packets for any reason. An ECN-nonce sender must resynchronize
 after sending such ECN-incapable packets, as though a CWR had been
 sent with the first new data after the ECN-incapable packets. The

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04

Spring, Wetherall, Ely [Page 8]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 sender loses protection for any unacknowledged packets until
 resynchronization occurs.

6.2 Sender Behavior - Incorrect Nonce Received

 The sender's response to an incorrect nonce is a matter of policy.
 It is separate from the checking mechanism and does not need to be
 handled uniformly by senders. Further, checking received nonce sums
 at all is optional, and may be disabled.

 If the receiver has never sent a non-zero nonce sum, the sender can
 infer that the receiver does not understand the nonce, and rate limit
 the connection, place it in a lower-priority queue, or cease setting
 ECT in outgoing segments.

 If the received nonce sum has been set in a previous acknowledgement,
 the sender might infer that a network device has interfered with
 correct ECN signaling between ECN-nonce supporting endpoints. The
 minimum response to an incorrect nonce is the same as the response to
 a received ECE. However, to compensate for hidden congestion
 signals, the sender might reduce the congestion window to one segment
 and cease setting ECT in outgoing segments. An incorrect nonce sum is
 a sign of misbehavior or error between ECN-nonce supporting
 endpoints.

6.2.1 Using the ECN-nonce to Protect Against Other Misbehaviors

 The ECN-nonce can provide robustness beyond checking that marked
 packets are signaled to the sender. It also ensures that dropped
 packets cannot be concealed from the sender (because their nonces
 have been lost). Drops could potentially be concealed by a faulty
 TCP implementation, certain attacks, or even a hypothetical TCP
 accelerator. Such an accelerator could gamble that it can either
 successfully ``fast start'' to a preset bandwidth quickly, retry with
 another connection, or provide reliability at the application level.
 If robustness against these faults is also desired, then the ECN-
 nonce should not be disabled. Instead, reducing the congestion
 window to one, or using a low-priority queue, would penalize faulty
 operation while providing continued checking.

 The ECN-nonce can also detect misbehavior in Eifel [Eifel], a
 recently proposed mechanism for removing the retransmission ambiguity
 to improve TCP performance. A misbehaving receiver might claim to
 have received only original transmissions to convince the sender to
 undo congestion actions. Since retransmissions are sent without ECT,
 and thus no nonce, returning the correct nonce sum confirms that only
 original transmissions were received.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04

Spring, Wetherall, Ely [Page 9]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

7. Interactions
7.1 Path MTU Discovery

 As described in RFC3168, use of the Don't Fragment bit with ECN is
 recommended. Receivers that receive unmarked fragments can
 reconstruct the original nonce to conceal a marked fragment. The
 ECN-nonce cannot protect against misbehaving receivers that conceal
 marked fragments, so some protection is lost in situations where Path
 MTU discovery is disabled.

 When responding to a small path MTU, the sender will retransmit a
 smaller frame in place of a larger one. Since these smaller packets
 are retransmissions, they will be ECN-incapable and bear no nonce.
 The sender should resynchronize on the first newly transmitted
 packet.

7.2 SACK

 Selective acknowledgements allow receivers to acknowledge out of
 order segments as an optimization. It is not necessary to modify the
 selective acknowledgment option to fit per-range nonce sums, because
 SACKs cannot be used by a receiver to hide a congestion signal. The
 nonce sum corresponds only to the data acknowledged by the cumulative
 acknowledgement.

7.3 IPv6

 Although the IPv4 header is protected by a checksum, this is not the
 case with IPv6, making undetected bit errors in the IPv6 header more
 likely. Bit errors that compromise the integrity of the congestion
 notification fields may cause an incorrect nonce to be received, and
 an incorrect nonce sum to be returned.

8. Security Considerations

 The random one-bit nonces need not be from a cryptographic-quality
 pseudo-random number generator. A strong random number generator
 would compromise performance. Consequently, the sequence of random
 nonces should not be used for any other purpose.

 Conversely, the pseudo-random bit sequence should not be generated by
 a linear feedback shift register [Schneier], or similar scheme that
 would allow an adversary who has seen several previous bits to infer
 the generation function and thus its future output.

 Although the ECN-nonce protects against concealment of congestion
 signals and optimistic acknowledgement, it provides no additional
 protection for the integrity of the connection.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04
https://datatracker.ietf.org/doc/html/rfc3168

Spring, Wetherall, Ely [Page 10]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

9. IANA Considerations

 The Nonce Sum (NS) is carried in a reserved TCP header bit that must
 be allocated. This document describes the use of Bit 7, adjacent to
 the other header bits used by ECN.

 The codepoint for the NS flag in the TCP header is specified by the
 Standards Action of this RFC, as is required by RFC 2780. When this
 draft is published as an RFC, IANA should add the following to the
 registry for "TCP Header Flags":

 RFC xxx defines bit 7 from the Reserved field to be used for the
 Nonce Sum, as follows:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | N | C | E | U | A | P | R | S | F |
 | Header Length | Reserved | S | W | C | R | C | S | S | Y | I |
 | | | | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 TCP Header Flags

 Bit Name Reference
 --- ---- ---------
 7 NS (Nonce Sum) [RFC xxx]

10. Conclusion

 The ECN-nonce is a simple modification to the ECN signaling mechanism
 that improves ECN's robustness by preventing receivers from
 concealing marked (or dropped) packets. The intent of this work is
 to help improve the robustness of congestion control in the Internet.
 The modification retains the character and simplicity of existing ECN
 signaling. It is also practical for deployment in the Internet. It
 uses the ECT(0) and ECT(1) codepoints and one TCP header flag (as
 well as CWR and ECN-Echo) and has simple processing rules.

10. References

 [ECN] "The ECN Web Page", URL "http://www-
 nrg.ee.lbl.gov/floyd/ecn.html".
 [RFC3168] K. Ramakrishnan, S. Floyd, and D. Black. The addition of
 explicit congestion notification (ECN) to IP. RFC 3168, September,
 2001.
 [Eifel] R. Ludwig and R. Katz. The Eifel Algorithm: Making TCP Robust
 Against Spurious Retransmissions. Computer Communications Review,
 January, 2000.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04
https://datatracker.ietf.org/doc/html/rfc2780
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Spring, Wetherall, Ely [Page 11]

draft-ietf-tsvwg-tcp-nonce-04 Robust ECN Signaling with Nonces Oct 2002

 [B97] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.
 [Savage] S. Savage, N. Cardwell, D. Wetherall, T. Anderson. TCP
 congestion control with a misbehaving receiver. SIGCOMM CCR, October
 1999.
 [Schneier] Bruce Schneier. Applied Cryptography, 2nd ed., 1996

Acknowledgements

 This note grew out of research done by Stefan Savage, David Ely,
 David Wetherall, Tom Anderson and Neil Spring. We are very grateful
 for feedback and assistance from Sally Floyd.

Authors' Addresses

 Neil Spring
 Email: nspring@cs.washington.edu

 David Wetherall
 Email: djw@cs.washington.edu
 Phone +1 (206) 616 4367

 David Ely
 Email: ely@cs.washington.edu

 Computer Science and Engineering, 352350
 University of Washington
 Seattle, WA 98195-2350

 Send comments by electronic mail to all three authors.

 This draft was created in October 2002.
 It expires April 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-04
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Spring, Wetherall, Ely [Page 12]

